
CAPD::DynSys: a flexible C++ toolbox for rigorous numerical
analysis of dynamical systems

Tomasz Kapela1, Marian Mrozek1, Daniel Wilczak1,∗, Piotr Zgliczyński2,

Faculty of Mathematics and Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, Poland.

Abstract

We present the CAPD::DynSys library for rigorous numerical analysis of dynamical systems.
The basic interface is described together with several interesting case studies illustrating how it
can be used for computer-assisted proofs in dynamics of ODEs.

Keywords: rigorous numerical analysis, C++ library, computer-assisted proof
2010 MSC: 65G20,
2010 MSC: 37C27

1. Introduction

In the study of nonlinear ODEs, there is a huge gap between what we can observe in numer-
ical simulations and what we can prove rigorously. It is possible to overcome this problem by
means of computer-assisted poofs. For its realization it is desirable to have a library for rigorous
integration of ODEs and computation of Poincaré maps derived from ODEs. There are several
libraries designed for rigorous integration of ODEs. Some of them are open source, just to men-
tion [1, 2, 3], and some are not [4]. To the best of our knowledge none of them directly supports
computation of Poincaré maps, which is a powerful tool for studying dynamics of ODEs.

In the present paper we describe the CAPD::DynSys library [5] which is well suited for this
task. What this library offers may be described as follows.

Consider an initial value problem for an ODE

x′ = f (λ, t, x), (1)
x(t0) = x0, (2)

where x ∈ Rn, t is a time variable, λ ∈ Λ ⊂ Rk is a fixed parameter and f : Λ × R × Rn → Rn is
a smooth, ’programmable’ function. Let ϕ(t, t0, λ, x0) be a solution of (1)–(2) for some fixed λ.
Given a set of initial conditions Z ⊂ Rn, parameters ∆ ⊂ Λ and a t > t0 we want to:

∗Corresponding author.
Email addresses: Tomasz.Kapela@uj.edu.pl (Tomasz Kapela), Marian.Mrozek@ii.uj.edu.pl (Marian

Mrozek), Daniel.Wilczak@ii.uj.edu.pl (Daniel Wilczak), Piotr.Zgliczynski@ii.uj.edu.pl (Piotr
Zgliczyński)

1This research is partially supported by the Polish National Science Center under Maestro Grant No.
2014/14/A/ST1/00453 and under Grant No. 2015/19/B/ST1/01454.

2This research is partially supported by the Polish National Science Center under Grant No. 2019/35/B/ST1/00655.
Preprint submitted to Communications in Nonlinear Science and Numerical Simulation September 8, 2020

• establish that for all x0 ∈ Z and λ ∈ ∆ the solution ϕ(t, t0, λ, x0) is defined,

• give a rigorous bound for Daϕ(t, t0, λ, x0) valid for all x0 ∈ Z and λ ∈ ∆, where Da is the
partial derivative operator with respect x0 and/or λ of order r. The case r = 0 means that
we compute rigorous bounds for ϕ(t, t0,∆,Z).

Analogous questions can be asked for Poincaré maps for ODEs.
The CAPD::DynSys library can accomplish these tasks for many interesting systems for n

not too large (an example of a ‘large’ value of n up to which the library performed well is n = 80,
which was used for choreografies in N-body problem) and the order of the partial derivatives is
also not too large, say r = 2, 3 (the library handled r = 5 in validation of KAM tori [6]) if the
sizes of initial conditions are not too big and the integration time t − t0 is not very large.

The fact that we can compute (enclose) ϕ(t, t0,∆,Z) in single computation is essential for the
computer assisted proofs, as very often abstract theorems in dynamics involve assumptions on
the behavior of solutions on sets, while the single trajectory computations usually do not lead to
interesting rigorous statements about the dynamics of the underlining ODE.

In the following discussion we will say that we performed Cr computations if the partial
derivatives up to order r have been computed.

1.1. Short history

CAPD is an acronym for “Computer Assisted Proofs in Dynamics”. The library was initiated
in early 1990’s by Marian Mrozek as the tool for the computer assisted proof of chaotic dynamics
in the Lorenz system [7, 8, 9]. The library is split into CAPD::DynSys devoted to the dynamics
and discussed in this paper and CAPD::RedHom devoted to topology [10]. The DynSys part was
developed by Mrozek’s Ph. D. students and their descendants at the Jagiellonian University in
Krakow, Poland. The most important contributors are (listed more or less chronologically): P.
Zgliczyński, P. Pilarczyk, D. Wilczak, T. Kapela.

Papers of Mischaikow, Mrozek and Szymczak on the Lorenz attractor [7, 8, 9] used C0 com-
putations, only. Other results using C0 computations in CAPD library from these early stages of
development are

• symbolic dynamics for the Rössler system [11],

• connecting orbits in the Michelson system [12],

• periodic orbits in the Rössler system [13].

The early version of C0-integrator was based on the logarithmic norms and it was slow and
inefficient, when compared to the algorithms currently used by the library.

Around 2000 the Lohner algorithm [14] (for C0-computations) and C1-Lohner type algo-
rithm [15] for efficient C1-computations were implemented in the CAPD library. The initial
implementation was for second order polynomial vector fields, only. Around that time Daniel
Wilczak joined the project and implemented these algorithms for general ’programmable’ vector
fields using the automatic differentiation. The CAPD library was published online for the first
time in 2004. Around the year 2008 the Cr-Lohner algorithm [16] was added to the library, and
soon after this a rigorous solver of differential inclusions [17] and support for computation in
high precision were written by Tomasz Kapela.

2

1.2. Some computer assisted proofs using CAPD library
The quality of the bounds provided by the CAPD::DynSys library can be judged by looking

at the list of computer-assisted proofs in dynamics of ODEs in which it was used. The list below
is incomplete, we focus only on a number of selected applications. The results using C0- and C1-
computations include the questions of the existence of periodic orbits and their local uniqueness,
the existence of symbolic dynamics, the existence of hyperbolic invariants sets, the existence of
homo- and heteroclinic orbits. Here are some examples

• symbolic dynamics in the Hénon-Heiles Hamiltonian [18],

• symbolic dynamics and symmetric periodic orbits in Michelson system [19],

• homoclinic and heteroclinic connections between Lyapunov orbits and symbolic dynamics
in the planar circular restricted three body problem [20, 21],

• Shilnikov orbits and Bykov cycles in the Michelson system [22],

• existence of choreographies in Newtonian N-body problem [23, 24],

• hyperbolic Smale-Williams attractor for Kuznetsov System [25],

• invariant manifolds in the restricted three body problem by Capiński and his coworkers
[26, 27],

• Birkhoff regions of instability in the three body problem, using Aubry-Mather theory, by
Galante and Kaloshin [28],

• existence of double spiral attractor in the Chua’s circuits by Galias and Tucker [29],

• counting of periodic orbits of flows by Galias and Tucker [30, 31],

• stability of N-body motions forming platonic polyhedra by Fenucci and Gronchi [32],

• study of periodic by orbits by Miyaji and Okamoto [33],

• existence of unimodal solutions in the Proudman–Johnson equation by Miyaji and Okamoto
[34],

• study of singularities in dynamical systems by Matsue [35],

• applications to rigorous estimates of reachable sets in the context of control theory and
robotic by Jaulin and his coauthors [36, 37] and Cyranka et al. [38],

• heteroclinic connections in Ohta–Kawasaki Model by Cyranka and Wanner [39].

To address other phenomena, such as bifurcations of periodic orbits, invariant tori through
the KAM theory, nonlinear stability of elliptic periodic orbits, KAM stability etc. one needs
the knowledge of partial derivatives with respect to the initial conditions of the higher order.
Using algorithms from CAPD::DynSys library for Cr-computations the following results has
been obtained

• global and local bifurcations of periodic orbits and invariant manifolds [40, 41, 42, 43],

• Arnold diffusion in the restricted three body problem by Capiński and Gidea [44],

• non-linear stability of elliptic periodic solutions [45, 6, 46],

• normally hyperbolic invariant manifolds and computer assisted Melnikov method [47, 48].
3

1.3. Outline of the paper

In Section 2 we describe the basic interface to CAPD::DynSys library. In Sections 3, 4 and
5 we present a list of case studies on how the CAPD::DynSys library can be used in various
contexts. Examples are grouped by the maximal order of space derivatives involved – we refer
to them as C0, C1 and Cr computations. The examples selected here are on the one hand very
short (so that it is possible to write out the full C++ code) but on the other side are non-trivial
and present diverse spectrum of mathematical problems, where the CAPD::DynSys library may
be helpful.

2. The CAPD library: interface and basic usage

The CAPD::DynSys library provides data structures and algorithms designed for analysis of
discrete and continuous dynamical systems in finite and infinite dimension. They are written in
the spirit of generic programming with high level of abstraction allowing the user to tune or adapt
some subroutines for specific problems.

The CAPD::DynSys library provides algorithms for both non-rigorous and rigorous compu-
tation. The non-rigorous ones are mainly used for simulation, prototyping or finding approxima-
tions of objects we are interested in. They are based on double precision floating point numbers
supported by hardware so they are fast but prone to errors coming from rounding, significant
bits cancellation, inaccuracy of numerical method etc. On the other hand, rigorous methods are
group of algorithms, which compute an outer bounds of the objects we are interested in (like
values and derivatives of maps, solutions to IVPs).

Most often used interface of the CAPD::DynSys library is available via the following two
header files

#include "capd/capdlib.h" // CAPD library header

#include "capd/mpcapdlib.h" // Multi -precision CAPD header

using namespace capd;

All types and algorithms are defined in the main namespace capd.

2.1. Basic arithmetic types and naming convention.

In the CAPD::DynSys library the special type interval provides interval arithmetic (see
[49]) and is a base for all data types used in rigorous computations. The precision provided
by built-in floating point types is sometimes not sufficient and causes huge overestimation in
rigorous computations. The CAPD::DynSys library defines MpFloat and MpInterval types that
provide floating point numbers and intervals, respectively, of arbitrary precision. The implemen-
tation is based on the MPFR library [50]. The following example shows the basic usage of the
above four arithmetic types.

#include <iostream > // C++ standard output libary

#include "capd/capdlib.h" // CAPD library header

#include "capd/mpcapdlib.h" // Multi -precision CAPD header

using namespace std;

using namespace capd;

template <typename T>

T f(T x){

return sqr(sin(x))*exp(x) + 2*x*(cos(x));

}

4

int main(){

cout.precision (17);

// Non -rigorous computations

double x = 0.51342;

cout << "f=" << f(x) << endl;

// Rigorous computations using

// interval arithmetics with hardware support (53 mantissa bits)

interval iy = f(interval(x));

cout << "f=" << iy << ", width = " << width(iy) << endl;

// Non -rigorous computations using multiprecision arithmetics

cout.precision (60);

MpFloat :: setDefaultPrecision (200); // with 200 mantissa bits

cout << "f=" << f(MpFloat(x)) << endl;

// Rigorous computations using multiprecision interval arithmetics

MpInterval mpfx = f(MpInterval(x));

cout << "f=" << mpfx << ",\nwidth = " << width(mpfx) << endl;

}

/* Output:

f=1.2975560311330947

f=[1.2975560311330918 , 1.2975560311330983] , width = 6.4392935428259079e-15

f=1.29755603113309452347947091620085844766281107712888485123359

f=[1.29755603113309452347947091620085844766281107712888485123358

,1.29755603113309452347947091620085844766281107712888485123359],

width = 3.73380916671668502428643843226807454435415130123270027986067e-60

*/

On top of these four basic arithmetic types the CAPD::DynSys library builds data structures
such as vectors, matrices, hessians, jets (truncated Taylor series) and algorithms for manipulating
them. Other data structures represent functions, solutions to ODEs or Poincaré maps, etc. Most
of defined types use the following naming convention pattern

[Prefix]ClassName

for example

DVector , DMatrix , DJet , DMap , DOdeSolver , DPoincareMap , ...

MpVector , MpMatrix , MpJet , MpMap , MpOdeSolver , MpPoincareMap , ...

IVector , IMatrix , IJet , IMap , IOdeSolver , IPoincareMap , ...

MpIVector , MpIMatrix , MpIJet , MpIMap , MpIOdeSolver , MpIPoincareMap , ...

Prefixes D and Mp mean that the class is designed for non-rigorous computation based on
double and MpFloat arithmetic types, respectively. Similarly, classes with prefixes I and MpI

provide data structures and rigorous algorithms based respectively on interval and MpInterval.
Whenever possible, we try to provide common interface for all kinds of data types and algorithms
so that it is possible to switch between them if needed.

2.2. Maps and their Taylor coefficients.

One of the most important types is the class [Prefix]Map which represents a (possibly
parameter dependent) map

fa : R × Rn 3 (t, x1, x2, . . . , xn)→ (f1, f2, . . . , fm) ∈ Rm,

where a = (a1, a2, . . . , ak) for some k ≥ 0 is a vector of parameters. This class is usually used to
define a generator of a discrete dynamical system or a vector field. The special time variable can
be used to define non-autonomous vector fields.

5

This class provides also an easy to use interface for computation of higher order Taylor
coefficients of the underlying map by means of automatic differentiation [51]. An instance of
Map can be created by means of two constructors. If the map is given by a short formula it is
convenient to parse the expression from a string with the following syntax

IMap f("par:a1,a2 ,...,ak;time:t;var:x1 ,x2 ,...,xn;fun:f1,f2 ,...,fm;");

The sections par and time are optional. More complicated expressions can be defined as C++

functions with the signature

void f(capd:: autodiff ::Node t, // time variable

capd:: autodiff ::Node in[], int dimIn , // input variables x1 ,...,xn

capd:: autodiff ::Node out[], int dimOut , // output: function values

capd:: autodiff ::Node params[], int noParam // parameters

);

and then sent to the constructor of Map. Below we present a short example illustrating the us-
age of both constructors and how the class can be used to compute values and derivatives of
represented function.

#include <iostream >

#include "capd/capdlib.h"

using namespace capd;

using namespace std;

/** Ikeda map is given by

X = 1+u*(x*cos(r)-y*sin(r))

Y = u*(x*sin(r)+x*cos(r))

where

r = p - 6/(1+x^2+y^2)

and p,u are parameters */

void ikeda(capd:: autodiff ::Node /*t*/, // unused time variable

capd:: autodiff ::Node in[], int dimIn , // input variables x,

capd:: autodiff ::Node out[], int dimOut , // output: function values X,Y

capd:: autodiff ::Node params[], int noParam // parameters: p,u

){

capd:: autodiff ::Node r = params [0] -6./(1.+ sqr(in[0])+sqr(in[1]));

capd:: autodiff ::Node s = sin(r), c = cos(r);

out [0] = 1+ params [1]*(in[0]*c - in[1]*s);

out [1] = params [1]*(in[0]*s + in[1]*c);

}

int main(){

IMap Henon("par:a,b;var:x,y;fun:y+1-a*x^2,b*x;");

// Set parameter a=1.4. Note: it is not representable.

Henon.setParameter("a",interval (14) /10.);

// Set b\in [0.2 ,0.4] , which contains the standard one b=0.3

Henon.setParameter("b",interval(2, 4)/10.);

IVector ix { {-1,2}, {0,1} }; // ix =[-1,2] x [0,1]

IVector hx = Henon(ix); // enclose Henon_{a,b}(ix)

// Enclose derivative D Henon_{a,b}(ix)

// for each point x in ix and for parameters a,b as above

IMatrix Dhx = Henon.derivative(ix);

int dimIn=2, dimOut=2, noParams=2, highestDerivative =5;

IMap Ikeda(ikeda ,dimIn ,dimOut ,noParams ,highestDerivative);

// Set parameters p=0.4, u=0.75

Ikeda.setParameters ({ interval (4)/10, interval (0.75) });

IVector x {{1. ,1.} ,{1.5 ,1.5}};

// Container for Taylor coefficient of 2-dimensional map up to order 4

6

IJet jet(2,4);

Ikeda(ix, jet); // Compute Taylor expansion of Ikeda map at point ix

cout << jet.toString () << endl; // and print in human readable form

// Access to first order derivatives

cout << jet(0,0) << ", " << jet(0,1) << endl;

cout << jet(1,0) << ", " << jet(1,1) << endl;

// jet(i,j,c) gives access to normalized derivative
∂2 fi
∂x j∂xc

cout << jet(0,0,1) << ", " << jet(1,0,0) << endl; //
∂2 f0
∂x0∂x1

and 1
2!
∂2 f1
∂x2

0

// jet(i,j,c,k) gives access to normalized derivative
∂3 fi

∂x j∂xc∂xk

cout << jet(1,0,0,1) << endl; // 1
2!

∂3 f1
∂x2

0∂x1

// For higher order Taylor coefficients use Multiindex notation

cout << jet(Multiindex ({2 ,2})) << endl; // Access to vector 1
2!2!

∂4 f
∂x2

0∂x2
1

}

2.3. Solving initial value problems.

Algorithms which solve initial value problems (IVPs) are split between three groups of
classes.
One-step solvers. The first group consists of

[Prefix]OdeSolver , [Prefix]CnOdeSolver

The above classes provide algorithms for one-step integration of ODEs. The class OdeSolver
is optimized for C0 and C1 integration, that is solutions to IVPs and/or associated first order
variational equations. The second class CnOdeSolver can integrate higher order variational
equations as well. An example of its usage will be given in Section 5.
Long-time integration. The above one-step methods are in general not recommended for direct
usage. The second group of classes is built on top of [Cn]OdeSolver, that is

[Prefix]TimeMap , [Prefix]CnTimeMap ,

[Prefix]PoincareMap , [Prefix]CnPoincareMap.

Class [Cn]TimeMap combines a one-step solver with automatic step control strategies to com-
pute trajectory segment over (usually) large time range. If integration time is not given explicitly
but is determined by reaching certain Poincaré section, then one should use [Cn]PoincareMap.
This class provides algorithms for computation of Poincaré maps and their derivatives. In the
CAPD::DynSys library a Poincaré section is always defined as the set of zeroes of a smooth
scalar-valued function S : Rm → R and realized by classes

[Prefix]NonlinearSection , [Prefix]AffineSection , [Prefix]CoordinateSection.

The most general nonlinear case is covered by NonlinearSection. The library provides also
computationally more efficient AffineSection, where the section is a hyperplane given by the
normal vector n ∈ Rm and translation c ∈ Rm, that is S (x) = 〈n, x − c〉. The last, and very often
used type of section is CoordinateSection, where S (x) = xi − c for some i ∈ 1, . . . ,m and a
constant c ∈ R.
Sets and their propagation. The third group consists of classes which specify different ways
of representation of initial conditions and their propagation along trajectories. In rigorous com-
putations special care should be taken on how intermediate results are represented. When a set
of initial condition is propagated by a dynamical system and on each step the image is bounded

7

by an interval vector (product of intervals), then typically we observe the wrapping effect that
leads to huge overestimation. On the other hand when the image is bounded by some non-linear
shape, e.g given by multidimensional polynomials (like in the case of Taylor models [4]), then
the result is more accurate but the computational cost increases rapidly with the dimension and
degree of the polynomial.

In the CAPD::DynSys library the sets are represented (see [52]) as parallelepipeds, double-
tons and tripletons. These strategies provide good compromise between speed and accuracy as
shown in [53]. To choose appropriate set representation there are several factors to consider:

• What set geometry will bring good compromise between speed and accuracy? The two
that are usually the most efficient are

– Rect2 - doubleton representation of the form x + C ∗ r0 + Q ∗ q where x, q, r0 are
interval vectors (x is a point interval vector) and C,Q are interval matrices, with Q
close to orthogonal.

– Tripleton - a subset of Rm in the form x + C ∗ r0 + intersection(B ∗ r,Q ∗ q) where
x, q, r, r0 are interval vectors (x is a point interval vector) and C, B,Q are interval
matrices, with Q close to orthogonal.

• What order of derivatives with respect to initial condition do we need? It is indicated by
the prefix: C0 sets enclose only the trajectory, C1 sets enclose also first order derivatives
with respect to initial conditions and Cn sets are used to store jets of flow up to given order,
which has to be specified at the set construction.

• What numerical method should be used to propagate the set? There are two main groups
of methods implemented in CAPD::DynSys: one based on the Taylor method and second
based on the Hermite-Obreshkov (explicit-implicit) formula [54]. The infix HO indicates
that the Hermite-Obreshkov method is requested.

• Is default double precision enough? If not add Mp prefix to compute with arbitrary preci-
sion (paying appropriate computational cost).

Summarizing, the names of data structures which represent initial conditions for ODEs follow
the pattern

[Mp]Cx[HO]GeometrySet

Not all combinations of components are implemented (please consult documentation for the full
list of supported set representations), but the above pattern helps to encode a set representation
type. For example

• C0HOTripletonSet stores C0 information only using tripleton representation and is prop-
agated by the Hermite-Obershkov method [54],

• C1HORect2Set stores points on the trajectory and first order derivatives with respect to
initial conditions both in the form of doubletons and uses Hermite-Obreshkov method [55]
for their propagation.

• MpCnRect2Set stores values and all derivatives up to given order in form of doubletons
with MpInterval coefficients and propagates them by the Taylor method.

8

The following short code illustrates basic usage of the above three groups of classes.

#include <iostream >

#include "capd/capdlib.h"

using namespace capd;

using namespace std;

int main(){

cout.precision (11);

// define vector field , solver and classes for long time integration

IMap pendulum("par:w,pi;time:t;var:x,dx;fun:dx,cos(pi*t)-w*dx-sin(x);");

pendulum.setParameters ({ interval (1)/100, interval ::pi()});

IOdeSolver solver(pendulum , 20);

ITimeMap tm(solver);

ICoordinateSection section (2,0); // two variables , index of x=0 is 0

// alternatively , we could here use:

// INonlinearSection section ("var:x,y;fun:x;");

// IAffineSection section(IVector (2),IVector ({1. ,0.})); //(origin ,normal)

IPoincareMap pm(solver ,section);

// integrate set [1,1]\ times [0.25 ,0.5] over T=1

C0HOTripletonSet s0(IVector ({{1. ,1.} , {0.25 ,0.5}}));

cout << "y=" << tm(1.,s0) << endl;

// integrate point (1 ,0.5) and variational equations over T=100 and then

// print image and solution to variational equation (monodromy matrix)

C1Rect2Set s1(IVector ({{1. ,1.} , {0.5 ,0.5}}));

cout << "u=" << tm(100. ,s1) << endl;

cout << "D=" << (IMatrix)s1 << endl;

// continue integration of s1 until it reaches the section x=0

IMatrix DP(2,2);

IVector P = pm(s1 ,DP);

cout << "P=" << P << endl;

cout << "DP=" << DP << endl;

// After computation P = pm(s1,DP) the set s1 is often far from section.

cout << "s1=" << (IVector)s1 << endl;

cout << "Ds1=" << (IMatrix)s1 << endl;

}

/* Output (rounded to 11 digits):

y={[1.0115905491 , 1.2463432271] ,[-0.6386533516 , -0.42846233913]}

u={[0.38323812527 , 0.38323812528] ,[0.50996214875 , 0.50996214877]}

D={

{[-4.3182170195 , -4.3182170176] ,[-3.3700059498 , -3.3700059482]} ,

{[4.3928041834 , 4.3928041856] ,[3.3430225316 , 3.3430225334]}

}

P={[-1.8354535396e-11, 1.8354535396e -11] ,[-0.34402409982 , -0.34402409981]}

DP={

{[6.2681785123 , 6.2681785151] ,[4.8172609505 , 4.8172609528]} ,

{[-0.43855824706 , -0.43855824587] ,[-0.27979305979 , -0.27979305885]}

}

s1 ={[-0.063583452514 , -0.063583452497] ,[-0.37811336848 , -0.37811336848]}

Ds1={

{[6.0890412578 , 6.0890412606] ,[4.6898120176 , 4.6898120199]} ,

{[-1.5492512746 , -1.5492512733] ,[-1.1344125491 , -1.1344125481]}

} */

9

2.4. The role of coordinate systems in integration of ODEs and computation of Poincaré maps
The data structures, which represent initial conditions for ODEs provide constructors, that

allow to set x0,C, r0 in both doubleton and tripleton representation. A proper usage of them
can significantly improve obtained bounds. We will illustrate this issue with two suggestive
examples.

Consider the pendulum equation x′′ = − sin(x) and the following IVP: x(0) ∈ [2, 3] and
x′(0) = 5 − x(0), that is a line segment joining points (2, 3) and (3, 2) in the phase space. The
following short code shows huge difference between two bounds on (x(2), x′(2)), depending on
how this line segment is initially represented. The set s1 represents initial conditions as

x0 + C ∗ r0 =

[
2.5
2.5

]
+

[
1 1
−1 1

] [
[−0.5, 0.5]

[0, 0]

]
,

while s2wraps it to the smallest interval vector, which contains this line segment, that is (x(0), x′(0)) ∈
[2, 3]2.

#include <iostream >

#include "capd/capdlib.h"

using namespace capd;

int main(){

IMap vf("var:x,dx;fun:dx ,-sin(x);");

IOdeSolver solver(vf ,10);

ITimeMap tm(solver);

IVector x0 ({2.5 ,2.5}) , r0({{ -0.5 ,0.5} ,{0. ,0.}});

IMatrix C({{1. ,1.} ,{ -1. ,1.}});

C0HOTripletonSet s1(x0,C,r0), s2(x0+C*r0);

std::cout << "s1(t=2): " << tm(2.,s1) << std::endl;

std::cout << "s2(t=2): " << tm(2.,s2) << std::endl;

}

/** Output (rounded to 6 digits):

s1(t=2): {[7.821 , 8.33752] ,[2.36664 , 3.07598]}

s2(t=2): {[4.4177 , 11.7408] ,[-0.930075 , 6.3727]} */

Setting coordinate system on the Poincaré section also matters. Let us consider the Lorenz
system [56]

x′ = 10(y − x), y′ = x(28 − z), z′ = xy −
8
3

z.

Let us fix the Poincaré section Π = {(x, y, z) : z = 27} and denote by P : Π→ Π the correspond-
ing Poincaré map. We will use coordinates (x, y) to describe points on Π. Define α = 7π/18
and

Qα =

[
cosα − sinα
sinα cosα

]
.

A computer-assisted proof of the existence of chaotic dynamics in the Lorenz system given
by Galias and Zgliczyński [57] required in particular, that the following inequality holds true:∣∣∣πyQ−1

α P
2(u)

∣∣∣ < 3.6 for u = Qα · (s, 0), s ∈ [0.625, 0.675]. (3)

The following program illustrates the difference between multiplication by Q−1
α after computation

of Poincaré map, that is Q−1
α

(
P2(u)

)
and computation of

(
Q−1
α P

2
)

(u) in a single routine. We
see that the second estimate is much tighter and, in particular, the requested inequality (3) is
validated.

10

#include <iostream >

#include "capd/capdlib.h"

using namespace capd;

int main(){

interval alpha = 7.* interval ::pi()/18;

interval c = cos(alpha), s = sin(alpha), z = 0.;

IMatrix Q ({{c,-s,z},{s,c,z},{z,z,interval (1.) }});

IMatrix invQ = transpose(Q);

IMap lorenz("par:s;var:x,y,z;fun :10*(y-x),x*(28-z)-y,x*y-s*z;");

lorenz.setParameter (0,interval (8) /3);

IOdeSolver solver(lorenz ,30); // ODE integrator

ICoordinateSection section (3 ,2 ,27.); // section is z=27

IPoincareMap pm(solver ,section);

IVector r0(interval (625 ,675) /1000,- interval (36) /10 ,27);

C0HOTripletonSet s1(IVector (3),Q,r0), s2 = s1;

interval returnTime;

// here we print πyQ−1
(
P2(x0 + C ∗ r0)

)
std::cout << "y1: " << (invQ*pm(s1 ,2))[1] << std::endl;

// here we print πy
(
Q−1P2

)
(x0 + C ∗ r0)

std::cout << "y2: " << pm(s2,IVector (3),invQ ,returnTime ,2) [1];

}

/** Output (rounded to 6 digits):

y1: [-4.16179 , -0.129486]

y2: [-3.18066 , -1.19211] */

3. C0 solver and its applications

Topological methods are powerful and inexpensive in comparison to methods requiring esti-
mates on derivatives. In this section we present two case studies:

• the existence of symmetric periodic orbits in the Michelson system and

• the existence of an attractor for the Rössler system.

3.1. Periodic orbits in the Michelson system

The Michelson system [58] is a 3D system

x′ = y, y′ = z, z′ = c2 − y − x2/2. (4)

reversible with respect to the involution

R : (x, y, z)→ (−x, y,−z).

The above symmetry maps trajectories onto trajectories of the system but reverses the time, that
is R(φ(t, u)) = φ(−t,R(u)) whenever φ(t, u) exists. A trajectory of (4) is said to be R-symmetric
if it is invariant under this symmetry.

Let us define a Poincaré section

Π = {(0, y, z) : y, z ∈ R}
11

-2 -1 1 2
x

-2

-1

1

y

-2 -1 1 2
z

-2

-1

1

y

Figure 1: Projections of two observed R-symmetric periodic orbits for the system (4) with the parameter c = 1.

and denote by
Pc : Π→ Π (5)

a family of Poincaré maps parametrized by c > 0. Note that we allow intersection of trajectories
with the section Π in both directions. It is easy to see that Pc is reversible with respect to the
involution R(y, z) = (y,−z), that is R ◦ P = P−1 ◦ R— see [19]. In [59] an analytic proof of the
existence of two R-symmetric periodic orbits for the system (4) is given — see Figure 1. Here
we extend this result to a range of parameters.

Theorem 1. For all parameter values c ∈ C := [1−1/128, 1 + 1/128] the system (4) has at least
two R-symmetric periodic solutions.

Proof: In order to prove the existence of a family of symmetric period-two points for Pc in the
set {0} × Y × {0} parametrized by c ∈ C it suffices to show that

• Pc is defined and continuous on {0} × Y × {0} for c ∈ C and

• πzPc(0,min Y, 0) and πzPc(0,max Y, 0) have opposite signs for all c ∈ C.

Then for each c ∈ C there is a y∗c ∈ Y such that Pc(0, y∗c, 0) = (0, ỹc, 0) for some ỹc ∈ R and
the result follows from the reversibility of Pc. The following program checks the above set of
inequalities for two disjoint subintervals Y1,Y2 of positive semi-axis. Additionally, the program
checks that πyPc(0 × y × 0) < 0 for all c ∈ C and y ∈ Y1 ∪ Y2, which implies(

πyPc({0} × Y1 × {0}) ∪ πyPc({0} × Y2 × {0})
)
∩ (Y1 ∪ Y2) = ∅

and thus the two families of periodic points in Y1 and Y2 are different. The program executes
within less than 1 second on a laptop-type computer. �

/* Proof of symmetric periodic orbits in the Michelson system. */

#include <iostream >

#include "capd/capdlib.h"

using namespace capd;

/**

* @param c - parameter range

* @param Y - interval on the y-axis

12

* @param n - numer of grid elements in Y

*/

void validateSymPO(interval c, interval Y, int n){

IMap vf("par:c;var:x,y,z;fun:y,z,c^2-y-0.5*x^2;");

IOdeSolver solver(vf, 15); // order of the solver

ICoordinateSection section(3, 0); // Poincare section x=0

IPoincareMap pm(solver , section);

vf.setParameter("c",c);

// We split Y into n subintervals and check that

// the Poincare map is defined on (0,Y ,0). What the result is

// is not crucial , as long as the image is in the y<0 halfplane.

interval g = (Y.right ()-Y.left())/n;

for(int i=0;i<n;++i){

C0HOTripletonSet s({0.,Y.left() + interval(i,i+1)*g,0.});

assert(pm(s)[1] < 0.);

}

// Compute P(0,min(Y) ,0) and P(0,max(Y) ,0)

C0HOTripletonSet s1(IVector ({0.,Y.left() ,0.}));

C0HOTripletonSet s2(IVector ({0.,Y.right () ,0.}));

IVector r1 = pm(s1), r2 = pm(s2);

// Check that z-coordinate changes the sign

std::cout << "validated? " << (r1[2]*r2[2]<0) << ": "

<< r1[2] << ", " << r2[2] << std::endl;

}

int main(){

std::cout.precision (4);

interval I(-1,1);

// Call the algorithm with two approximate periodic points.

// Parameter c=1, validate orbits with accuracy 1e-13.

validateSymPO (1., 1.5259617305036892 + 1e-13*I, 1);

validateSymPO (1., 0.50002564853520548 + 1e-13*I, 1);

// Repeat for parameter range c \in [1 -1/128 ,1+1/128].

validateSymPO (1+I/128, 1.5259617305036892 + 2e-1*I, 2);

validateSymPO (1+I/128, 0.50002564853520548 + 2e-1*I, 4);

return 0;

}

/* Ouptut (rounded to 4 digits , change of the signs is relevant):

validated? 1: [1.414e-13, 2.466e-13], [-2.48e-13, -1.444e-13]

validated? 1: [-4.212e-13, -2.477e-13], [2.331e-13, 4.036e-13]

validated? 1: [0.1046 , 0.6294] , [-0.6001 , -0.1967]

validated? 1: [-1.314, -0.09417] , [0.03929 , 1.153] */

3.2. Attractor in the Rössler system

Simulation shows that for a wide range of parameter values the Rössler system [60]

x′ = −(y + z), y′ = x + by, z′ = b + z(x − a) (6)

possesses a chaotic attractor — see Fig. 2. To the best of our knowledge, the first proof that for
classical parameter values there is a trapping region for the attractor was given in [42]. To present
the details of the computer assisted proof, let us define a Poincaré section and the corresponding
Poincaré map by

Π = {(0, y, z) : y, z ∈ R, x′ > 0} ,
Pa,b : Π→ Π.

(7)

13

-5

0

5

10

x

0

y

0

10

20

z

-10 -8 -6 -4

0.028

0.029

0.030

0.031

0.032

0.033

0.034

y

z

Figure 2: (Left) Observed chaotic attractor of the system (6) with b = 0.2 and a = 5.7. (Right) Plot of trapping region W
and rigorous enclosure of Pa,b(W) for the system with parameters b = 0.2 and a = 5.7.

Theorem 2 ([55]). For a = 5.7 and b = 0.2 the set

W = Y × Z := [−10.7,−2.7] × [0.028, 0.034] (8)

is forward invariant for Pa,b. In particular, it contains compact, connected invariant set A =⋂
n>0 P

n
a,b(W).

Proof: First observe, that x′ = −(y + z) ≥ 2.7 − 0.034 > 0 for all (y, z) ∈ W and hence W ⊂ Π.
Inclusion Pa,b(W) ⊂ W can be checked in direct computation. The set W is subdivided uniformly
(for simplicity of the program) W ⊂

⋃N
i=1 Yi × Z and then inclusion Pa,b(Yi × Z) ⊂ W is checked

for all i = 1, . . . ,N. The program executes within less than 1 second on a laptop-type computer.
�

#include <iostream >

#include "capd/capdlib.h"

using namespace capd;

int main(){

IMap vf("par:a,b;var:x,y,z;fun:-(y+z),x+b*y,b+z*(x-a);");

vf.setParameter("a",interval (57) /10);

vf.setParameter("b",interval (2) /10);

IOdeSolver solver(vf, 20);

ICoordinateSection section(3, 0); // section is given by x = 0 and

IPoincareMap pm(solver , section , poincare :: MinusPlus); // x’> 0

// Coordinates of the trapping region W = Y\times Z

interval Y = interval (-107,-27) /10; // Y=[-10.7 , -2.7]

interval Z = interval (28 ,34) /1000; // Z=[0.028 ,0.034]

// Subdivide uniformly Y onto N subintervals

const int N = 150;

bool result = true;

for (int i = 0; i < N and result; ++i) {

IVector Wi ({0., Y.left() + diam(Y)*interval(i,i+1)/N, Z});

C0HOTripletonSet s(Wi);

IVector u = pm(s);

result = result and subset(u[1],Y) and subset (u[2],Z);

}

std::cout << "Trapping region validated? : " << result << std::endl;

return 0;

}

14

In the next section we will show that the attractor A =
⋂

n>0 P
n
a,b(W) contains a chaotic and

uniformly hyperbolic invariant set.

4. C1 solver and its applications

By a rigorous C1-algorithm we mean an algorithm capable of computing bounds for the
following system of ODEs

x′(t) = f (t, x(t)), V ′(t) = Dx f (t, x(t)) · V(t)

for some initial conditions x(0) ∈ [x0] ⊂ Rn and V(0) ∈ [V0] ⊂ Rn×n. In principle, any C0

solver is capable of doing this task. Taking into account special structure of this system of
equations, one can design an algorithm of complexity O(n3) which is much faster than the direct
application of the C0 solver which has complexity O(n6). Such an algorithm was proposed in
[15] and later improved in [55]. Both versions are very powerful tools for studying hyperbolic-
like properties of dynamical systems, such as verification of periodic orbits and their stability
[23, 24, 61], connecting orbits [20, 62] and hyperbolic attractors [25]. Here we present a few
short, yet non-trivial examples:

• verification of the existence of a solution to a boundary value problem,

• verification of the existence of hyperbolic periodic solutions with very high localization
accuracy,

• verification of the existence of a hyperbolic chaotic set.

4.1. Boundary value problem.

In this section we show that C1 algorithms can be used to solve boundary value problems. As
an example, we reproduce the result by Nakao [63].

Theorem 3 ([63]). The equation

x′′ = −0.1x − 0.1x3 − 0.4464 cos t (9)

has a solution satisfying x′(0) = x′(2π) = 0.

Proof: The proof in [63] is also computer-assisted but relies on solving a zero-finding prob-
lem in some infinite-dimensional functional space. Here we propose a direct approach, as
we have tools capable to compute derivatives of ODEs with respect to initial conditions. De-
note by ϕ(t, t0, x0, x′0) = (ϕx(t, t0, x0, x′0), ϕẋ(t, t0, x0, x′0)) a solution of the initial value problem
x(t0) = x0, x′(t0) = x′0 for (9). It is easy to see that the zeroes of

F(x) = ϕẋ(2π, 0, x, 0) = 0

correspond to the solutions of the boundary value problem we are looking for. The following
program checks, by means of the interval Newton operator (10), that the function F has a zero
at some x∗ with |x∗ + 0.5072| ≤ 10−4. The program executes within less than 1 second on a
laptop-type computer. �

15

/** Example of solving BVP: x ’(0)=x ’(2pi)=0 **/

#include <iostream >

#include "capd/capdlib.h"

using namespace capd;

using namespace std;

int main(){

IMap f("par:a;time:t;var:x,dx;fun:dx,-x*(1+x^2)/10 + a*cos(t);");

f.setParameter("a",interval (4464)/interval (10000));

IOdeSolver solver(f,20); // ODE integrator

ITimeMap tm(solver); // class for long time integration

IVector u0({ -0.5072 ,0.});

IVector r({ interval(-1e-4,1e-4) ,0.});

C0HOTripletonSet s0(u0);

C1HORect2Set s(u0,r); // represent set s = u0 + Id*r

// integrate set and variational equation until T=2*pi

IVector y = tm(2.* interval ::pi(),s0); // C0 computation

tm(2.* interval ::pi(),s); // C1 computation

// solve equation F(r1) := proj_{x ’}(phi(2pi,u0+(r1 ,0))) = 0

interval N = - y[1]/((IMatrix)s)[1][0];

cout << "(N,r1)=(" << N << "," << r[0] << ")"<< endl;

cout << "subset(N,r)? = " << boolalpha << subset(N,r[0]) << endl;

return 0;

}

/* Output (rounded to six digits):

(N,r1)=([-2.68037e-05, -2.67903e-05] ,[-0.0001 , 0.0001])

subset(N,r)? = true

*/

4.2. High localization accuracy bounds for periodic orbits in the Rössler system.
In Section 3.2 we have proved that system (6) has an attractor. Here we will prove the

existence of three periodic orbits on this attractor with very high localization accuracy.

Theorem 4. Put

u1 = (−8.3809417428298762873487630431, 0.029590060630667102951494027735),
u2 = (−5.4240738226652043515673025463, 0.031081210807876445187367377796),
u3 = (−6.2331586285379749515076479411, 0.030640111658160569478006226700).

There exist three hyperbolic periodic points u∗m = um + rm, m = 1, 2, 3 for the Poincaré map (7)
of period 1, 2, 3, respectively satisfying ‖rm‖1 ≤ 10−28 and the coordinates of rm are known with
accuracy 10−54.

Proof: The proof relies on properties of the interval Newton operator [64]

N(f , x0, X) = x0 − [D f (X)]−1
I f (x0), (10)

where by [A]I we mean an interval hull of the matrix A. It is well known [64], that if X is a convex
set, x0 ∈ X and N(f , x0, X) ⊂ X then the mapping f has a unique zero in the set X. Moreover,
this zero belongs to N(f , x0, X). The following program validates the existence of three periodic
solutions by means of the interval Newton operator applied to the function f = Pm

a,b − Id for
m = 1, 2, 3, depending on the orbit. It also prints the largest diameter of the components of
N(Pm

a,b − Id, um, um + Rm) − um, where Rm = 10−28 · [−1, 1]2, which in each case m = 1, 2, 3 is
16

less than 10−54. This shows, that coordinates of rm ∈ N(Pm
a,b − Id, um, um + Rm) − um are known

with accuracy 10−54. We would like to emphasize, that it is very easy to obtain much higher
localization accuracy by either providing more digits for initial points or by iterating the interval
Newton operator. Finally, the program computes bounds on the eigenvalues of the Poincaré map
at periodic points which proves that they are all of saddle type. From these bounds it is also clear,
that the three orbits are different.

The program uses high-precision version of the C1 ODE solver from the CAPD::DynSys
library to obtain tiny bounds on Pa,b and its derivative. The program executes within 20 seconds
on a laptop-type computer. �

#include <iostream >

#include "capd/mpcapdlib.h"

using namespace capd;

using namespace std;

/**

* @param (y,z) - approximate periodic point

* @param e - radius of the set centred at (y,z)

* @param n - period

*/

void po(MpFloat y, MpFloat z, int n, double e=1e-28){

MpIMap vf("par:a,b;var:x,y,z;fun:-(y+z),x+b*y,b+z*(x-a);");

vf.setParameter("a",MpInterval (57) /10);

vf.setParameter("b",MpInterval (2) /10);

MpIOdeSolver solver(vf ,80); // ODE integrator of order 80

MpICoordinateSection section (3 ,0.); // the section is x=0

MpIPoincareMap pm(solver ,section , poincare :: MinusPlus);

// Approximate periodic point and a ball around it.

MpIVector u0({ MpInterval (0.),y,z});

MpIVector r({ MpInterval (0.),MpInterval(-e,e),MpInterval(-e,e)});

MpC0TripletonSet s0(u0);

// Compute P^n(u0)-u0 and project it onto (y,z)

MpIVector fu0(2, (pm(s0 ,n) - u0).begin() + 1);

MpC1Rect2Set s1(u0,r); // represent s1 = u0 + Id*r

MpIMatrix Dphi (3,3);

// compute DP^n(u0+r)

MpIVector u = pm(s1 ,Dphi ,n);

MpIMatrix DP = pm.computeDP(u,Dphi);

// projection of DP^n(u0+r)-Id onto 2D subspace

MpIMatrix M({{DP[1][1] -1. ,DP[1][2]} ,{DP[2][1] ,DP [2][2] -1.}});

// enclose -(DP^n(u0+r)-Id)^{ -1}*(P^n(u0)-u0)

MpIVector N = - matrixAlgorithms ::gauss(M,fu0);

cout << boolalpha << "(validated?, accuracy) = ("

<< subset(N,MpIVector (2,r.begin ()+1)) << ", " << maxWidth(N) << ")";

// compute bound on eigenvalues using an explicit formula

MpInterval t = sqrt (4*DP [2][1]* DP [1][2] + sqr(DP[1][1] -DP [2][2]));

cout << "\neigenvalues =(" << 0.5*(DP [1][1]+ DP[2][2] -t)

<< "," << 0.5*(DP [1][1]+ DP [2][2]+t) << ")" << endl;

}

int main(){

MpFloat :: setDefaultPrecision (200); // 200 manitissa bits

po(" -8.3809417428298762873487630431",".029590060630667102951494027735" ,1);

po(" -5.4240738226652043515673025463",".031081210807876445187367377796" ,2);

po(" -6.2331586285379749515076479411",".030640111658160569478006226700" ,3);

}

/* Output (rounded to 6 digits) of the program:

(validated?, accuracy) = (true , 8.10612e-56)

eigenvalues =([-2.40396 , -2.40395] ,[-1.28211e-14 , -1.28210e-14])

17

(validated?, accuracy) = (true , 2.03877e-55)

eigenvalues =([-3.51201 , -3.51200] ,[-1.24264e-26 ,1.20278e-26])

(validated?, accuracy) = (true , 6.49223e-55)

eigenvalues =([-2.34193 , -2.34192] ,[-2.73947e-26 ,2.73947e-26])*/

4.3. Uniformly hyperbolic chaotic invariant set

In the last example of this section we would like to recall the result from [55] about the
existence of a uniformly hyperbolic and chaotic invariant set in the Rössler system (6). From
Theorem 2 we know that the set W = Y × Z defined by (8) is a trapping region for the Poincaré
map (7) of the Rössler system (6) for parameters values a = 5.7, b = 0.2. This implies the
existence of a connected, compact invariant setA =

⋂
n>0 P

n
a,b(W). Here we present a proof that

this attractor is non-trivial.

Theorem 5 ([55]). Let lM = −8.4, rM = −7.6, lN = −5.7, rN = −4.6 and define two subsets of
W,

M = [lM , rM] × Z and N = [lN , rN] × Z.

Fix a = 5.7, b = 0.2 and denote P = Pa,b. Then the maximal invariant set for P2 in N ∪ M,
denoted by H = inv(P2,N ∪ M) ⊂ A, is uniformly hyperbolic; in particular it is robust under
perturbations of the system. The dynamics of P2 on H is chaotic in the sense that P2|H is
conjugated to the Bernoulli shift on two symbols.

Proof: The proof relies on some partial results from [11, 40, 25]. Semiconjugacy of P2|H to the
Bernoulli shift is proved by means of the method of covering relations [11]. It is sufficient to
check the following geometric conditions

πyP
2
a,b(y, z) < lM for (y, z) ∈ {lM} × Z,

πyP
2(y, z) > rN for (y, z) ∈ {rM} × Z,

πyP
2(y, z) < lM for (y, z) ∈ {rN} × Z,

πyP
2(y, z) > rN for (y, z) ∈ {lN} × Z,

(11)

where πy denotes the projection onto y coordinate. Rigorous bounds onP2({lM}×Z),P2({rM}×Z),
P2({lN} × Z) and P2({rN} × Z), returned by our routine, are shown in Fig. 3.

Figure 3: The sets M and N and rigorous enclosures of the images of their exit edges — see (11).

18

Hyperbolicity of H is proved by means of the cone condition introduced in [40]. Let Q be
a diagonal matrix Q = Diag(λ, µ) with arbitrary coefficients satisfying λ > 0 and µ < 0. It was
shown in [25] that if for all (y, z) ∈ N ∪ M the matrix

DP2(y, z)T · Q · DP2(y, z) − Q (12)

is positive definite, then the maximal invariant set for P2 in N ∪ M is uniformly hyperbolic. The
following program checks all necessary conditions with constants λ = 1 and µ = −100. Some
subdivision of sets was necessary to obtain sharp bounds on the derivative of P2. The program
executes within less than 2 seconds on a laptop-type computer. �

#include <iostream >

#include "capd/capdlib.h"

using namespace capd;

using namespace std;

// z-coordinate of the trapping region

interval Z = interval (28 ,34) /1000; // Z=[0.028 ,0.034]

// y-coordinates of sets M and N

interval My=interval (-84,-76)/10, Ny=interval (-57,-46)/10;

/// This routine checks cone -condition on the set Y\times Z

/// The interval Y is split into g pieces

bool checkCC(IPoincareMap& pm, interval Y, int g) {

bool res = true;

interval p = (Y.right ()-Y.left())/g;

IMatrix Dphi (3,3);

// define quadratic form Q

IMatrix Q({{0. ,0. ,0.} ,{0. ,1 ,0.} ,{0. ,0. , -100}});

for (int i = 0; i < g and res; ++i) {

// compute derivative of P^2 on a grid element

C1Rect2Set s({0.,Y.left()+interval(i,i+1)*p,Z});

interval returnTime; // not used , by required by syntax below

IVector y = pm(s, Dphi , returnTime , 2);

IMatrix DP = pm.computeDP(y,Dphi);

// check positive definitness by Sylvester criterion

DP = transpose(DP)*Q*DP - Q;

res = res and DP[1][1] >0 and (DP [1][1]* DP[2][2] - sqr(DP [1][2])) >0;

}

return res;

}

int main(){

IMap vf("par:a,b;var:x,y,z;fun:-(y+z),x+b*y,b+z*(x-a);");

vf.setParameter("a",interval (57) /10);

vf.setParameter("b",interval (2) /10);

IOdeSolver solver(vf, 20);

ICoordinateSection section(3, 0); // section x=0, x’>0

IPoincareMap pm(solver , section , poincare :: MinusPlus);

// Inequalities for the covering relations -- see (11).

cout << boolalpha;

C0HOTripletonSet LM(IVector ({0.,My.left(), Z}));

C0HOTripletonSet RM(IVector ({0.,My.right(),Z}));

C0HOTripletonSet LN(IVector ({0.,Ny.left(), Z}));

C0HOTripletonSet RN(IVector ({0.,Ny.right(),Z}));

cout << "pi_y P^2(LM) < lM? " << (pm(LM ,2) [1] < My) << endl;

cout << "pi_y P^2(RM) > rN? " << (pm(RM ,2) [1] > Ny) << endl;

cout << "pi_y P^2(LN) > rN? " << (pm(LN ,2) [1] > Ny) << endl;

19

cout << "pi_y P^2(RN) < lM? " << (pm(RN ,2) [1] < My) << endl;

// Check cone conditions.

cout << "Cone condition on M? " << checkCC(pm,My ,80) << endl;

cout << "Cone condition on N? " << checkCC(pm,Ny ,40) << endl;

}

5. C r solver and its application

The CAPD::DynSys library offers a rigorous solver for higher order variational equations,
that is

d
dt
φ(t, x) = f (t, x(t)),

d
dt

Dxφ(t, x) = Dx f (t, x(t)) · Dxφ(t, x),

d
dt

Daφ(t, x) = Dx f (t, x(t))Daφ(t, x) + h.o.t,

where Da is the partial derivative operator with respect to a multiindex a and h.o.t. stands for
higher order terms not written explicitly. Higher order derivatives are extremely useful in study-
ing global and local bifurcations [40, 41, 42, 43] as well as non-linear stability of elliptic periodic
solutions [45, 6]. Here we present one short example of application of Cr solver to study KAM
tori near an elliptic periodic orbit in the Michelson system (4). The existence of a wide branch
of such orbits parametrized by c was proved in [6]. Here we give a proof for just one parameter
value close to 1 : 4 resonance – see Fig. 4. The following theorem is a special case of the result
from [6].

Theorem 6. For the parameter value c = 0.226 the Poincaré map (5) has a symmetric period-
two point u∗ = (0, y∗, 0), |y∗ − 0.43407644067709| ≤ 2 · 10−14, which is stable. That is, any
neighbourhood U ⊂ R3 of the periodic trajectory O(u∗) contains a 2D invariant torus surround-
ing the orbit O(u∗) and separating the phase space.

Proof: The proof utilizes the classical result by Siegel and Moser [65] with computational tools.
First, we have to check that the periodic orbit indeed exists. The interval Newton operator (10)
applied to the scalar equation

F(y) = πz(Pc(0, y, 0)) = 0

validates the existence of a zero y∗ of F satisfying |y∗ − 0.43407644067709| ≤ 2 · 10−14.
Then we compute truncated Birkhoff normal form at the periodic orbit and we check the twist

condition. If a certain coefficient in the normal form does not vanish then the existence of KAM
tori and stability of periodic orbit follow from the theorem by Siegel and Moser. The following
program executes within less than 1 second on a laptop-type computer. �

/** Existence of invariant curves around an elliptic PO **/

#include <iostream >

#include "capd/capdlib.h"

#include "capd/normalForms/planarMaps.hpp"

using namespace capd;

using namespace std;

int main(){

cout.precision (17);

20

-1 0.25

y

-0.3

-0.2

-0.1

0.1

0.2

0.3
z

-1 0.25

y

-0.3

-0.2

-0.1

0.1

0.2

0.3
z

c=0.225

c=0.226

Figure 4: Phase portrait of the Poincaré map (5) of the Michelson system (4). It is an evidence that a family of elliptic
periodic orbits crosses 1 : 4 resonance when the parameter varies in the interval c ∈ [0.225, 0.226]. The existence of such
period quadrupling bifurcation was proved in [42].

21

IMap vf("par:c;var:x,y,z;fun:y,z,c^2-y-0.5*x^2;" ,3);

vf.setParameter("c",interval (226) /1000);

ICnOdeSolver solver(vf ,20);

ICoordinateSection section (3,0); // x=0

ICnPoincareMap pm(solver ,section);

IMatrix DP(3,3);

// Validate existence of a periodic point by the Newton method

IVector u0 ({0 ,.43407644067709 ,0.});

IVector r = 1e-12* interval (-1,1)*IVector {0. ,1 ,0.};

C0TripletonSet s0(u0);

IVector y0 = pm(s0);

C1Rect2Set s(u0,r); // represent s = u0 + Id*r

IVector y = pm(s,DP);

DP = pm.computeDP(y,DP);

interval N = - y0[2]/DP [2][1];

cout << "subset(N,r)? = " << boolalpha << subset(N,r[1])

<< ", N = " << N << endl;

// Integrate 3rd order variational equations over the full period 2

CnRect2Set S(u0+N,3);

IJet jet(3,3,3);

y = pm(S,jet ,2);

jet = pm.computeDP(jet);

// project onto 2-dim section

IJet P(2,2,3);

for(int j=0;j <=3;++j)

for(int c=0;c<=j;++c){

Multiindex m1({c,j-c}), m2({0,c,j-c});

for(int i=0;i<2;++i)

P(i,m1) = jet(i+1,m2);

}

// Coefficient of the Birkhoff normal form should not vanish - see [65]

std::cout << "twist? " <<

normalForms :: computePlanarEllipticNormalForm(P)[1]. real();

}

/* Output:

subset(N,r)? = true , N = [-1.859388640094055e-15, 1.0194263423055196e-14]

twist? [15.406918970206604 , 15.406919005718061]

*/

6. Summary

In this article we described a basic interface of the CAPD::DynSys library. The C++ source
code of the CAPD::DynSys library consists of over 120 000 lines and thus it is clear that present-
ing all implemented features and details of algorithms in one article is impossible. We showed,
however, that the library is a powerful tool for rigorous numerical analysis of dynamical systems
by examining several non-trivial examples.

We would like to mention, that the library provides support for integration of differential
inclusions [17] and algorithms for rigorous integration of dissipative PDEs [66]. In the near-
est future a C1 algorithm for PDEs, constrained C0 − C1 algorithms for ODEs (that is taking
into account constraints of the system, like Hamiltonians, measure preservation) and for delay
differential equations should be added.

22

References

References

[1] N. S. Nedialkov, VNODE-LP: A validated solver for initial value problems in ordinary differential equations, Tech.
Rep. Technical Report CAS-06-06-NN (2006).

[2] M. Kashiwagi, kv -a c++ library for verified numerical computation (2019).
URL http://verifiedby.me/kv/

[3] A. Rauh, M. Brill, C. Günther, A novel interval arithmetic approach for solving differential-algebraic equations
with ValEncIA-IVP, Int. J. Appl. Math. Comput. Sci. 19 (3) (2009) 381–397. doi:10.2478/v10006-009-0032-4.

[4] M. Berz, K. Makino, New methods for high-dimensional verified quadrature, Reliable Computing 5 (1) (1999)
13–22. doi:10.1023/A:1026437523641.

[5] CAPD, Computer Assisted Proofs in Dynamics, a package for rigorous numerics, http://capd.ii.uj.edu.pl.
[6] D. Wilczak, R. Barrio, Systematic computer-assisted proof of branches of stable elliptic periodic orbits and sur-

rounding invariant tori, SIAM Journal on Applied Dynamical Systems 16 (3) (2017) 1618–1649.
[7] K. Mischaikow, M. Mrozek, Chaos in the Lorenz equations: a computer-assisted proof, Bull. Amer. Math. Soc.

(N.S.) 32 (1) (1995) 66–72.
[8] K. Mischaikow, M. Mrozek, Chaos in the Lorenz equations: a computer-assisted proof. Part II: Details, Mathemat-

ics of Computations (67) (1998) 1023–1046.
[9] K. Mischaikow, M. Mrozek, A. Szymczak, Chaos in the Lorenz equations: a computer-assisted proof. Part III: the

classical parameter values, Journal of Differential Equations (169) (2001) 17–56.
[10] M. Juda, M. Mrozek, CAPD::RedHom v2 - homology software based on reduction algorithms, in: Mathematical

Software – ICMS 2014, Hong, Hoon, Yap, Chee K. (Eds.), Vol. 8592 of Lecture Notes in Computer Science, 2014,
pp. 160–166.

[11] P. Zgliczyński, Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity
10 (1) (1997) 243–252.

[12] M. Żelawski, Rigorous numerical approach to isolation in dynamical systems on the example of the Kuramoto-
Sivashinsky equation, Reliable Computing 5 (2) (1999) 113–129.

[13] P. Pilarczyk, Computer assisted method for proving existence of periodic orbits, Topol. Methods Nonlinear Anal.
13 (2) (1999) 365–377.

[14] R. J. Lohner, Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value prob-
lems, in: Computational ordinary differential equations (London, 1989), Vol. 39 of Inst. Math. Appl. Conf. Ser.
New Ser., Oxford Univ. Press, New York, 1992, pp. 425–435.

[15] P. Zgliczyński, C1-Lohner algorithm, Foundations of Computational Mathematics 2 (4) (2002) 429–465.
doi:10.1007/s102080010025.

[16] D. Wilczak, P. Zgliczyński, Cr-Lohner algorithm, Schedae Informaticae 20 (2011) 9–46.
[17] T. Kapela, P. Zgliczyński, A Lohner-type algorithm for control systems and ordinary differential inclusions, Dis-

crete & Continuous Dynamical Systems - B 11 (2009) 365–385. doi:10.3934/dcdsb.2009.11.365.
[18] G. Arioli, P. Zgliczyński, Symbolic dynamics for the Hénon–Heiles hamiltonian on the critical energy level, J. Diff.

Eq 171 (2001) 173–202.
[19] D. Wilczak, Chaos in the Kuramoto-Sivashinsky equations–a computer-assisted proof, Journal of Differential Equa-

tions 194 (2) (2003) 433–459. doi:http://dx.doi.org/10.1016/S0022-0396(03)00104-9.
[20] D. Wilczak, P. Zgliczyński, Heteroclinic connections between periodic orbits in planar restricted circular three-

body problem – a computer assisted proof, Comm. Math. Phys. 234(1) 37–75.
[21] D. Wilczak, P. Zgliczyński, Heteroclinic connections between periodic orbits in planar restricted circular three body

problem. part II, Comm. Math. Phys. 259 (2005) 561–576.
[22] D. Wilczak, The existence of Shilnikov homoclinic orbits in the Michelson system: A computer assisted proof,

Foundations of Computational Mathematics 6 (4) (2006) 495–535. doi:10.1007/s10208-005-0201-2.
[23] T. Kapela, P. Zgliczyński, The existence of simple choreographies for the N-body problem – a computer-assisted

proof, Nonlinearity 16 (6) (2003) 1899.
[24] T. Kapela, C. Simó, Computer assisted proofs for nonsymmetric planar choreographies and for stability of the

eight, Nonlinearity 20 (5) (2007) 1241.
[25] D. Wilczak, Uniformly hyperbolic attractor of the Smale–Williams type for a Poincarḿap in the Kuznetsov system,

SIAM Journal on Applied Dynamical Systems 9 (4) (2010) 1263–1283. doi:10.1137/100795176.
[26] M. J. Capiński, Computer assisted existence proofs of Lyapunov orbits at L2 and transversal intersections of in-

variant manifolds in the Jupiter-Sun PCR3BP, SIAM J. Applied Dynamical Systems 11 (4) (2012) 1723–1753.
[27] M. J. Capiński, A. Wasieczko-Zaja̧c, Geometric proof of strong stable/unstable manifolds with application to the

restricted three body problem, Top. Meth. Non. Anal. 46 (1) (2015) 363—-399.

23

[28] J. Galante, V. Kaloshin, Destruction of invariant curves in the restricted circular planar three body problem using
comparison of action, Duke Math. J. 159 (2) (2011) 275–327.

[29] Z. Galias, W. Tucker, Rigorous integration of smooth vector fields around spiral saddles with an application to the
cubic Chua’s attractor, Journal of Differential Equations 266 (5) (2019) 2408–2434. doi:10.1016/j.jde.2018.08.035.

[30] Z. Galias, W. Tucker, Rigorous study of short periodic orbits for the Lorenz system, in: Circuits and Systems, 2008.
ISCAS 2008. IEEE International Symposium on, 2008, pp. 764–767. doi:10.1109/ISCAS.2008.4541530.

[31] Z. Galias, W. Tucker, Validated study of the existence of short cycles for chaotic systems using symbolic dynamics
and interval tools, Int. J. Bifurcation Chaos 21 (2) (2011) 551–563. doi:10.1142/S021812741102857X.

[32] M. Fenucci, G. F. Gronchi, On the stability of periodic n-body motions with the symmetry of platonic polyhedra,
Nonlinearity 31 (11) (2018) 4935–4954. doi:10.1088/1361-6544/aad644.

[33] T. Miyaji, H. Okamoto, A computer-assisted proof of existence of a periodic solution, Proc. Japan Acad. Ser. A
Math. Sci. 90 (10) (2014) 139–144.

[34] T. Miyaji, H. Okamoto, Existence proof of unimodal solutions of the Proudman–Johnson equation via interval
analysis, Japan Journal of Industrial and Applied Mathematics 36 (1) (2019) 287–298. doi:10.1007/s13160-018-
00339-x.
URL https://doi.org/10.1007/s13160-018-00339-x

[35] K. Matsue, Rigorous numerics of finite-time singularities in dynamical systems - methodology and applications,
prepint.

[36] S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, S. M. Veres, Reliable non-linear state estimation involving time
uncertainties, Automatica 93 (2018) 379 – 388. doi:https://doi.org/10.1016/j.automatica.2018.03.074.
URL http://www.sciencedirect.com/science/article/pii/S0005109818301699

[37] S. Rohou, L. Jaulin, L. Mihaylova, F. Le Bars, S. M. Veres, Guaranteed computation of robot trajectories, Robotics
and Autonomous Systems 93 (2017) 76 – 84. doi:https://doi.org/10.1016/j.robot.2017.03.020.
URL http://www.sciencedirect.com/science/article/pii/S0921889016304006

[38] J. Cyranka, M. A. Islam, G. Byrne, P. Jones, S. A. Smolka, R. Grosu, Lagrangian reachabililty, in: International
Conference on Computer Aided Verification, Springer, 2017, pp. 379–400.

[39] J. Cyranka, T. Wanner, Computer-assisted proof of heteroclinic connections in the one-dimensional Ohta–Kawasaki
model, SIAM Journal on Applied Dynamical Systems 17 (1) (2018) 694–731. doi:10.1137/17M111938X.

[40] H. Kokubu, D. Wilczak, P. Zgliczyński, Rigorous verification of cocoon bifurcations in the Michelson system,
Nonlinearity 20 (9) (2007) 2147–2174.

[41] D. Wilczak, P. Zgliczyński, Period doubling in the Rössler system – a computer assisted proof, Foundations of
Computational Mathematics 9 (5) (2009) 611–649. doi:10.1007/s10208-009-9040-x.

[42] I. Walawska, D. Wilczak, Validated numerics for period-tupling and touch-and-go bifurcations of symmetric peri-
odic orbits in reversible systems, Communications in Nonlinear Science and Numerical Simulation 74 (2019) 30 –
54. doi:https://doi.org/10.1016/j.cnsns.2019.03.005.
URL http://www.sciencedirect.com/science/article/pii/S1007570419300735

[43] D. Wilczak, P. Zgliczyński, Computer assisted proof of the existence of homoclinic tangency for the Hénon map
and for the forced damped pendulum, SIAM Journal on Applied Dynamical Systems 8 (4) (2009) 1632–1663.
doi:10.1137/090759975.

[44] M. J. Capiński, M. Gidea, Arnold diffusion, quantitative estimates and stochastic behavior in the three-body prob-
lem, preprint.

[45] T. Kapela, C. Simó, Rigorous KAM results around arbitrary periodic orbits for hamiltonian systems, Nonlinearity
30 (3) (2017) 965–986.

[46] D. Wilczak, R. Barrio, Distribution of stable islands within chaotic areas in the non-hyperbolic and hyperbolic
regimes in the Hénon-Heiles system, Nonlinear Dynamics (to appear).

[47] M. J. Capiński, P. Zgliczyński, Beyond the Melnikov method: a computer assisted approach, J. Differential Equa-
tions 262 (1) (2017) 365–417. doi:10.1016/j.jde.2016.09.032.
URL https://doi.org/10.1016/j.jde.2016.09.032

[48] M. J. Capiński, P. Zgliczyński, Beyond the Melnikov method II: Multidimensional setting, Journal of Differential
Equations 265 (9) (2018) 3988 – 4015. doi:https://doi.org/10.1016/j.jde.2018.05.028.
URL http://www.sciencedirect.com/science/article/pii/S0022039618303097

[49] R. E. Moore, Interval analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966.
[50] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR: A Multiple-Precision binary Floating-point

library with correct Rounding, ACM Trans. Math. Softw. 33 (2) (2007) 13–es. doi:10.1145/1236463.1236468.
URL https://doi.org/10.1145/1236463.1236468

[51] L. B. Rall, G. F. Corliss, An introduction to automatic differentiation, in: Computational differentiation (Santa Fe,
NM, 1996), SIAM, Philadelphia, PA, 1996, pp. 1–18.

[52] M. Mrozek, P. Zgliczyński, Set arithmetic and the enclosing problem in dynamics, Ann. Polon. Math. 74 (2000)
237–259.

24

[53] T. Miyaji, P. Pilarczyk, M. Gameiro, H. Kokubu, K. Mischaikow, A study of rigorous ode integra-
tors for multi-scale set-oriented computations, Applied Numerical Mathematics 107 (2016) 34 – 47.
doi:https://doi.org/10.1016/j.apnum.2016.04.005.
URL http://www.sciencedirect.com/science/article/pii/S0168927416300435

[54] N. S. Nedialkov, K. R. Jackson, An interval Hermite–Obreschkoff method for computing rigorous bounds on the
solution of an initial value problem for an ordinary differential equation, Developments in Reliable Computing 5
(1998) 289–310.

[55] I. Walawska, D. Wilczak, An implicit algorithm for validated enclosures of the solutions to variational equations
for ODEs, Applied Mathematics and Computation 291 (2016) 303–322.

[56] E. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963) 130–141.
[57] Z. Galias, P. Zgliczyński, Computer assisted proof of chaos in the Lorenz equations, Phys. D 115 (3-4) (1998)

165–188.
[58] D. Michelson, Steady solutions of the Kuramoto-Sivashinsky equation, Physica D: Nonlinear Phenomena 19 (1)

(1986) 89–111. doi:http://dx.doi.org/10.1016/0167-2789(86)90055-2.
[59] W. C. Troy, The existence of steady solutions of the Kuramoto–Sivashinsky equation, Journal of Differential Equa-

tions 82 (2) (1989) 269 – 313. doi:https://doi.org/10.1016/0022-0396(89)90134-4.
URL http://www.sciencedirect.com/science/article/pii/0022039689901344

[60] O. E. Rössler, An equation for continuous chaos, Phys. Lett. A 57 (5) (1976) 397–398.
[61] R. Barrio, M. Rodrı́guez, F. Blesa, Computer-assisted proof of skeletons of periodic orbits, Computer Physics

Communications 183 (1) (2012) 80 – 85. doi:http://dx.doi.org/10.1016/j.cpc.2011.09.001.
[62] D. Wilczak, Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system, Discrete Contin.

Dyn. Syst. Ser. B 11 (4) (2009) 1039–1055.
[63] M. T. Nakao, A numerical verification method for the existence of weak solutions for nonlinear bound-

ary value problems, Journal of Mathematical Analysis and Applications 164 (2) (1992) 489 – 507.
doi:https://doi.org/10.1016/0022-247X(92)90129-2.
URL http://www.sciencedirect.com/science/article/pii/0022247X92901292

[64] A. Neumaier, Interval methods for systems of equations, Vol. 37 of Encyclopedia of Mathematics and its Applica-
tions, Cambridge University Press, Cambridge, 1990.

[65] C. L. Siegel, J. K. Moser, Lectures on Celestial Mechanics, Springer-Verlag, 1971.
[66] D. Wilczak, P. Zgliczyński, A geometric method for infinite-dimensional chaos: Symbolic dynamics for the

Kuramoto-Sivashinsky PDE on the line, Journal of Differential Equations 269 (10) (2020) 8509 – 8548.
doi:https://doi.org/10.1016/j.jde.2020.06.020.
URL http://www.sciencedirect.com/science/article/pii/S002203962030334X

25

