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Finding periodic orbits

@ Reduction to the discrete case: the Poincaré map P defined
by the section X,

@ periodic orbits of length n: zeros of g = id — P",

@ a better choice: use the map F: X"+ X"
[F(2)]k = X(k+1) mod n — P(xx) for0<k<n,

where z = (xp, ..., xs—1). F(z) =0 if and only if xg is a fixed
point of f".
@ Motivation: The high-dimensional space in ¥" compensates

for the problems associated with the long integration times
needed for P".
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Interval operators for zero finding

e The interval Newton operator: N(z) = 2 — (F'(z))"*F(2),
where 2 € z. One usually chooses 2 = mid(z).

Standard Newton Interval Newton

—

= V N@)

-

@ Existence and uniqueness of zeros:
If N(z) Nz = (), then z contains no roots of F.
If N(z) C intz, then z contains exactly one root of F.

Z. Galias, W. Tucker, DyToComp, 02.06.2009 Rigorous results on short periodic orbits for the Lorenz system



Periodic orbits The Poincaré map
The Roessler system Interval operators
The Lorenz system Finding all short cycles

Interval operators for zero finding

The Krawczyk operator avoids inverting an interval matrix:
K(z) =2 — CF(2) — (CF'(z) — I)(z — 2),

We will use 2 = mid(z), C = (F'(2))"L.

In order to evaluate K, we must be able to compute enclosures of
the return map P and its partial derivatives P’ over sets
(rectangles in X).
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Finding all short cycles

e Find a trapping region,
@ generate a graph representation,
@ find all cycles in the graph of length n,

e for each cycle generate an interval vector z, evaluate the
interval operator K(z) and check the existence condition,
@ decreasing the number of cycles to be verified: a refinement
technique
e after generation of cycles the size of boxes is increased,
e an example (period—8 orbits for the Roessler system)

@ the number of cycles of length 8 for boxes of size
(0.0125,0.000025) is 114106,

e for ¢ = (0.0015625,0.000003125) there are 21655 cycles of
length 8, after increasing the box size 8 times,
e = (0.0125,0.000025) there are 27 cycles,
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The graph representation
Short periodic orbits

The Roessler system

a4 [ —X2 — X3
a X2 = X1 + axo s
X3 b+ x3(x1 — ¢)

@ parameter values: a =0.2, b=0.2, c =5.7,
e the Poincaré map P, ¥ = {x € R3: x; =0, x; > 0},

@ the graph representation (the number of boxes b, the number
of nonforbidden transitions c¢),
box size b c
(0.1,0.0002) x 272 | 793 | 4301
(0.1,0.0002) x 2=+ | 2808 | 12323
(
(

0.1,0.0002) x 2-6 | 10477 | 43681
0.1,0.0002) x 2-8 | 52167 | 241556

Z. Galias, W. Tucker, DyToComp, 02.06.2009 Rigorous results on short periodic orbits for the Lorenz system



Periodic orbits
The Roessler system
The Lorenz system

The Roessler system: periodic orbits with period n < 20

The graph representation
Short periodic orbits

n Qn Pn H n Cn Dn
1 1 10 1 1
2 1 3 | 0.54931 7 2
3 2 7 | 0.64864 17 3
4 1 7 | 0.48648 30 3
5 2 11 | 0.47958 43 4
6 3 27 | 0.54931 287 8
7 4 29 | 0.48104 220 5
8 7 63 | 0.51789 1972 10
9 10 97 | 0.50830 3475 18

10 15 163 | 0.50938 12842 28

11 24 265 | 0.50725 290896 34

12 36 463 | 0.51148 116437 65

13 58 755 | 0.50975 469835 111

14 88 1263 | 0.51009 1041859 164

15 138 2087 | 0.50957 2678303 297

16 216 3519 | 0.51037 9290861 542

17 340 5781 | 0.50955 24156174 780

18 531 9675 | 0.50985 75523431 1442

19 848 | 16113 | 0.50986 222765071 4584

20 | 1330 | 26767 | 0.50975 649120739 3911
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The Lorenz equations

Background
The graph representation
Using dynamical information

Introduced in 1963:

X] = —0X1 + 0Xx2
Xp = 0X] — X2 — X1X3

X3 = —[3x3 + x1x2,

X
50 (-2~ e
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Classical parameters: o =10, 5 =8/3, o = 28.
Symmetry: S(x1,x2,x3) = (—x1, —x2, X3).
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The geometric

Background

The graph representation
Using dynamical information

Introduced by Guckenheimer and Williams (1979).

Assumes certain properties of the Poincaré map P: & — ¥
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The geometric model

Projecting along stable leaves gives a
1-d function f: [-1,1] — [-1, 1] sat-
isfying:

o f(—x)=—f(x),

@ limy_o f'(x) = 400,

e f’(x) <0on (0,1],

o f(x) > 2.

It follows that f is topologically transitive on [—1,1].
Theorem [Tucker-98]: For the classical parameter values, the

Lorenz equations support a robust strange attractor — the Lorenz
attractor.
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The graph representation

@ Consider the Poincaré map P
defined by the section ]
Y ={x=(x1,x,x3): x3 = 2L 3
r—1,% <0}, ]

@ there is a trapping region 7 ]
N C X for the map P. Nis 2 .
composed of 14518 boxes of T
size 1/27 x 1/27, R S

@ the dynamics of P is represented in the form of a directed
graph (N, E), where boxes N; are the vertices of the graph,
and non-forbidden connections are graph edges:

E={(i.j): P(Ni) Y N; # 0},

%

A
T

#E = 514126,
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Average return time

Background
The graph representation
Using dynamical information

@ Using information on
return times for
individual boxes, we can
find lower bounds t, of
the return time for P".

o the flow—time of any
periodic orbit
corresponding to a
period—n cycle of P is
larger than n-0.6397.
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n tn  to/n
1 0.537044 0.537044
2 1.147434 0.573717
5 2.981325 0.596265
10 6.047894 0.6047894
100 63.721019 0.63721019
10000 6397.362682 0.6397362682
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Finding all short periodic orbits using graph representation

@ All period—n cycles in the graph are found.

@ For each period—n cycle we evaluate the Krawczyk operator K,
and check for existence/uniqueness: K(z) C z or K(z) Nz = (.
@ Application of the standard method:
e no fixed points,
o one self-symmetric period—-2 orbit,
e for p > 2 the method failed,
@ An additional section:
e a pair of symmetric period—3 orbits,
o three period—4 orbits: a pair of symmetric orbits, and one
self-symmetric orbit.
e For p > 4 the method failed: more sections needed,
computation time increases very fast with p.
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Using dynamical information for finding all short orbits

@ -y — the first intersection of the (two-dimensional) stable
manifold of the origin with the return plane ¥,

o labelling trajectories: if the trajectory intersects ¥ to the left
(right) of 7, then the intersection point is labelled with L (R).

@ Fact: A periodic symbol sequence corresponds to at most one
periodic orbit.

@ Consequence: We know how many period-n orbits to expect.

@ Strategy: Locate all period—n orbits by non-rigorous, heuristic
methods. Verify the existence with the Krawczyk operator.

@ Potential: There are 111011 periodic symbol sequences of
length < 20 [Viswanath, 2003].
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Short periodic orbits for the Lorenz system

e Finding all short periodic orbits:

e a trajectory of P composed of 1000000 points was generated,

e all symbol sequences of length p < 14 were generated, for each
of them an approximate position of the corresponding periodic
orbit is guessed using the symbol information from the data
set, a Newton iteration is used to improve the approximation
and finally the existence of a nearby true periodic orbit is
proved using the Krawczyk operator,

e we have shown that for each symbol sequence s of length
p=2,3,...,14 with the minimum period p there exists one
periodic point of P with the symbol sequence s.
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Results

@ There are 2536 periodic orbits of P with period p < 14.

np | flow times
1 | [1.5586,1.5587]
2 | [2.3059,2.3060]
3 | [3.0235,3.0843]
6 | [3.7256,3.8696]

9 | [4.4177,4.6372]
18 | [5.1030,5.4292]
30 | [5.7834,6.1947]
56 | [6.4602,6.9880]
10 | 99 | [7.1346,7.7531]
11 | 186 | [7.8073,8.5467]
12 | 335 | [8.4792,9.3117]
13 | 630 | [9.1509,10.1054]
14 | 1161 | [9.8231,10.8703]

@ The flow-time of any other periodic orbit of P is larger than
15-0.6397 = 9.5955
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Periodic orbits with period p < 6
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Longer periodic orbits

@ The method can be used to prove the existence of longer
periodic orbits. Examples:
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