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Abstract. We call a continuous self-map that reveals itself through a discrete
set of point-value pairs a sampled dynamical system. Capturing the available
information with chain maps on Delaunay complexes, we use persistent homol-
ogy to quantify the evidence of recurrent behavior. We establish a sampling
theorem to recover the eigenspaces of the endomorphism on homology induced
by the self-map. Using a combinatorial gradient flow arising from the discrete
Morse theory for Čech and Delaunay complexes, we construct a chain map
to transform the problem from the natural but expensive Čech complexes to
the computationally efficient Delaunay triangulations. The fast chain map
algorithm has applications beyond dynamical systems.

1. Introduction

Suppose M is a compact subset of Rn and f : M → M is a continuous self-map
with finite Lipschitz constant. We study the thus defined dynamical system in the
setting in which f reveals itself through a sample, by which we mean a finite set
X ⊆ M, a self-map g : X → X, and a real number ρ such that ‖g(x) − f(x)‖ ≤ ρ
for every x ∈ X. We call ρ the approximation constant of the sample. Calling this
setting a sampled dynamical system, we formalize a concept that appears already
in [3]. It is less demanding than the classical discrete dynamical system, in which
time is discrete but space is not [10]. We believe that this relaxation is essential to
make inroads into experimental studies, in which pairs (x, f(x)) can be observed
individually, while the self-map remains in the dark. The approximation constant
models the experimental uncertainty, but it is also needed to accommodate a finite
sample. Consider for example the map f : [0, 1] → [0, 1] defined by f(x) = x

2 .
Letting u be the smallest positive value in a finite set X ⊆ [0, 1], its image does not
belong to X: f(u) 6∈ X. We call

λ = max
x,y∈X,x 6=y

‖g(x)− g(y)‖
‖x− y‖

(1)

the Lipschitz constant of g. It is not necessarily close to the Lipschitz constant
of f , even in the case in which the ρ-neighborhoods of the points in X cover M.
However, Kirszbraun proved that for every g : X → X there is a continuous ex-
tension f0 : M → M that has the same Lipschitz constant. Specifically, this is a
consequence of the more general Kirszbraun Extension Property [11, 12]. Let F
be a fixed field and let H(M;F) denote the homology of M with coefficients in F.
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Hence, H(M;F) is a vector space. Throughout the paper we only use homology
with coefficients in the field F, so we abbreviate the notation to H(M). The map
f0 induces a linear map H(f0) : H(M) → H(M). A natural characterization of this
linear map are the t-eigenvectors. They capture homology classes invariant under
the self-map up to a multiplicative factor t, called an eigenvalue. The t-eigenvectors
span the t-eigenspace of the map. Starting with a finite filtration of the domain of
the map, we get t-eigenspaces at every step, connected by linear maps, and there-
fore a finite path in the category of vector spaces, called an eigenspace module. The
Stability Theorem in [3] implies a connection between the dynamics of g and f0,
namely that for every eigenvalue t the interleaving distance between the eigenspace
modules induced by g and by f0 is at most the Hausdorff distance between the
graph of g and that of f0. Furthermore, the Inference Theorem in the same paper
implies that for small enough ρ and any eigenvalue, the eigenspace module for g
gives the correct dimension of the corresponding eigenspace of the endomorphism
between the homology groups of M induced by f0.

1.1. Prior Work and Results. We employ the discrete Morse theory for Čech
and Delaunay complexes developed in [1] to address the computational problem
of estimating the homology of a self-map from a finite sample. Our results con-
tinue the program started in [3], with the declared goal to embed the concept of
persistent homology in the computational approach to dynamical systems. Specifi-
cally, we contribute by improving the computation of persistent recurrent dynamics.
This improvement is based on several interacting innovations, which lead to better
theoretical guarantees as well as better computational efficiency than in [3]:

1. We use the parallel filtrations of Čech and Delaunay complexes and the
existence of a collapse from the former to the latter established in [1] to
define chain maps between Delaunay complexes.

2. We construct the chain maps by implementing the collapse implicitly, avoid-
ing the prohibitive construction of the Čech complex.

3. We establish inference results with a less stringent sampling condition than
given in [3], depending only on the self-map and the domain.

The improved computational efficiency derives primarily from the use of Delaunay
rather than Čech or Vietoris–Rips complexes. Indeed, in the targeted 2-dimensional
case, the size of the Delaunay triangulation is at most six times the number of data
points, while the Čech and Vietoris–Rips complexes reach exponential size for large
radii. The improved theoretical guarantees rely on the use of chain maps that avoid
the information loss caused by the interaction of local expansion and partial maps
observed in [3]. The improvements are obtained using refined mathematical and
computational methods as mentioned above.

We first explain how we use Čech complexes, namely as an intermediate step
to construct the chain maps from one Delaunay complex to another. Recall the
Kirszbraun intersection property for balls established by Gromov [8]: letting Q be a
finite set of points in Rn, and g : Q→ Rn a map that satisfies ‖g(x)−g(y)‖ ≤ ‖x−y‖
for all x, y ∈ Q, then ⋂

x∈Q
Br(x) 6= ∅ =⇒

⋂
x∈Q

Br(g(x)) 6= ∅,(2)

in which Br(x) is the closed ball with radius r and center x. Similarly, if we weaken
the condition to ‖g(x) − g(y)‖ ≤ λ‖x − y‖, for some λ > 1, then the common
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intersection of the balls Bλr(g(x)) is non-empty. This implies that the image of the
Delaunay complex for radius r includes in the Čech complex for radius λr. To return
to the Delaunay triangulation, we exploit the collapsibility of the Čech complex for
radius λr to the Delaunay complex of radius λr recently established in [1]. We
second explain how we collapse without explicit construction of the Čech complex.
Starting with a simplex, we use a modification of Welzl’s miniball algorithm [13] to
follow the flow induced by the collapse step by step until we arrive at the Delaunay
complex, where the image of the simplex is now a chain. The expected running
time for a single step is linear in the number of points, so we have a fast algorithm
provided the number of steps in the collapse is not large. While we do not have a
bound on this number, our computational experiments provide evidence that it is
typically small.

. . . DČechr(X) . . . DČechs(X) . . .

Čechλr(X) Čechλs(X)

. . . DČechλr(X) . . . DČechλs(X) . . .

. . . Er . . . Es . . .

Figure 1: In each column, we get the eigenspace by comparing the inclusion between
Delaunay–Čech complexes with the chain map obtained with the Čech complex as in-
termediary. The map DČechr(X) → Čechλr(X) is induced by g, while the map
Čechλr(X)→ DČechλr(X) is a simplicial collapse, and similarly for s instead of r.

We give a global picture of our algorithm in Figure 1. In the top row, we see
a filtration of Delaunay–Čech complexes, which are convenient substitutes for the
better known Delaunay complexes (also called alpha complexes) with the same
homotopy type. The left map down from the top row is inclusion, and the right
map down is the chain map induced by g. As indicated, the right map is composed
of the inclusion into the Čech complex and the discrete flow induced by the collapse.
In the bottom row, we see the eigenspace module computed by comparing the left
and right vertical maps.

1.2. Outline. Section 2 describes the background in discrete Morse theory, its
application to Čech and Delaunay complexes, and its extension to persistent ho-
mology. Section 3 addresses the algorithmic aspects of our method, which include
the proof of collapsibility and the generalization of the miniball algorithm. Section
4 explains the circumstances under which the eigenspace of the self-map can be
obtained from the eigenspace module of the discrete sample. Section 5 presents the
results of our computational experiments, comparing them with the algorithm in
[3]. Section 6 concludes this paper.
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Figure 2: An example illustrating the difference between Delaunay and Delaunay–Čech
complexes. The Delaunay complex for the given radius has three vertices and two edges.
In contrast, the Delaunay–Čech complex is the full simplex on the three vertices (not
shown), as all simplices are Delaunay and enclosed by a sphere of radius r.

2. Background

In this section, we introduce concepts from discrete Morse Theory [6] and apply
them to Čech as well as to Delaunay complexes of finite point sets [1]. We begin
with the definition of the complexes and finish by complementing the picture with
the theory of persistent homology.

2.1. Geometric Complexes. Our approach to dynamical systems is based on
Čech complexes and Delaunay complexes — two common ingredients in topologi-
cal data analysis — and the Delaunay–Čech complexes, which offer a convenient
computational short-cut.

Čech complexes. Let X ⊆ Rn be finite, r ≥ 0, and Br(x) be the closed ball of points
at distance r or less from x ∈ X. The Čech complex of X for radius r consists of all
subsets of X for which the balls of radius r have a non-empty common intersection:

Čechr(X) = {Q ⊆ X |
⋂

x∈Q
Br(x) 6= ∅};(3)

it is isomorphic to the nerve of the balls of radius r centered at the points in X.
Equivalently, Čechr(X) consist of all subsets Q ⊆ X having an enclosing sphere
of radius at most r. For r smaller than half the distance between the two closest
points, Čechr(X) = X, and for r larger than

√
2/2 times the distance between

the two farthest points, Čechr(X) is the full simplex on the vertices X, denoted
by ∆(X). The size of ∆(X) is exponential in the size of X, which motivates the
following construction.

Delaunay triangulations. The Voronoi domain of a point x ∈ X consists of all
points u ∈ Rn for which x minimizes the distance from u: dom(x,X) = {u ∈ Rn |
‖x − u‖ ≤ ‖y − u‖, for all y ∈ X}. The Voronoi tessellation of X is the set of
Voronoi domains dom(x,X) with x ∈ X. Assuming general position of the points
in X, any p+ 1 Voronoi domains are either disjoint or they intersect in a common
(n − p)-dimensional face. The Delaunay triangulation of X consists of all subsets
of X for which the Voronoi domains have a non-empty common intersection:

Del(X) = {Q ⊆ X |
⋂

x∈Q
dom(x,X) 6= ∅};(4)

it is isomorphic to the nerve of the Voronoi tessellation. Equivalently, Delr(X)
consist of all subsets Q ⊆ X having an empty circumsphere (containing no points
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of X in its interior). Again assuming general position, the Delaunay triangulation is
an n-dimensional simplicial complex with natural geometric realization in Rn. The
Upper Bound Theorem for convex polytopes implies that the number of simplices
in Del(X) is at most some constant times cardX to the power dn/2e. In n = 2
dimensions, this is linear in cardX, which compares favorably to the exponentially
many simplices in the Čech complexes.

Delaunay–Čech complexes. To combine the small size of the Delaunay triangula-
tion with the scale-dependence of the Čech complex, we define the Delaunay–Čech
complex of X for radius r as the intersection of the two:

DČechr(X) = Čechr(X) ∩Del(X).(5)

Observe that the Delaunay triangulation effectively curbs the explosive growth
of simplex numbers, but does so only if the points are in general position. We
will therefore assume that the points in X are in general position, justifying the
assumption with computational simulation that enforce this assumption [5].

Delaunay complexes. There is a more direct way to select subcomplexes of the
Delaunay triangulation using r as a parameter. Specifically, the Delaunay complex
of X for radius r consists of all subsets of X for which the restriction of the Voronoi
domains to the balls of radius r have a non-empty common intersection:

Delr(X) = {Q ⊆ X |
⋂

x∈Q
[dom(x,X) ∩Br(x)] 6= ∅};(6)

it is isomorphic to the nerve of the restricted Voronoi domains. Equivalently,
Delr(X) consist of all subsets Q ⊆ X having an empty circumsphere of radius
at most r. The Delaunay complexes, also known as alpha complexes, are the bet-
ter known relatives of the Delaunay–Čech complexes. We use the They satisfy
Delr(X) ⊆ DČechr(X), and it is easy to exhibit sets X and radii r for which the
two complexes are different. See Figure 2 for an illustrating example. As proved
in [1], the Delaunay complex has the same homotopy type as the Delaunay–Čech
complex for the same radius. This is indeed the reason we can freely use the latter
as a substitute of the former.

2.2. Radius Functions. Structural properties of the geometric complexes are con-
veniently expressed in terms of their radius functions. In each case, the function
maps a simplex to the smallest radius, r, for which the simplex belongs to the
complex:

RC(Q) = min{r | Q ∈ Čechr(X)},(7)

RDC(Q) = min{r | Q ∈ DČechr(X)},(8)
RD(Q) = min{r | Q ∈ Delr(X)}.(9)

All three functions are monotonic, by which we mean that the radius assigned to
any simplex is greater than or equal to the radii assigned to its faces. This property
is sufficient to define their persistence diagrams, as we will see shortly. However, we
will need more, namely compatible discrete gradients of the radius functions. After
introducing the discrete Morse theory of Forman [6] as a framework within which
discrete gradients can be defined, we will return to the question of compatibility.
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Discrete Morse theory. In a nutshell, a monotonic function on a simplicial complex,
F : K → R, is a discrete Morse function if any two contiguous sublevel sets differ by
a single elementary collapse or a critical simplex. We are now more precise. A pair
consists of two simplices, P ⊆ Q, with dimensions dimQ = 1 + dimP . A discrete
vector field is a partition, V , of K into pairs and singletons. It is acyclic if there is
a monotonic function, F : K → R, with F (P ) = F (Q) iff P and Q belong to a pair
in V . Such a function F is called a discrete Morse function, and V is its discrete
gradient. A simplex is critical if it is in a singleton of V , and it is non-critical if it
belongs to a pair of V .

The reason for our interest in this formalism is its connection to the homotopy
type of complexes. To explain suppose Q ∈ K maximizes F . If Q belongs to a
pair (P,R) ∈ V , then we can remove both and obtain a smaller simplicial complex,
K\{P,R}. We refer to this operation as an elementary collapse, we say K collapses
to the smaller complex, denoted K ↘ K \{P,R}, and we note that both complexes
have the same homotopy type. If on the other hand Q is a critical simplex, its
removal changes the homotopy type of the complex.

Collapsing the geometric complexes. The radius functions are not necessarily dis-
crete Morse functions, but they are amenable to discrete gradients. To explain
what we mean, consider a monotonic function, F : K → R, and call Q ∈ K crit-
ical if F (Q) is different from the values of all proper faces and cofaces of Q. We
say that an acyclic partition of K into pairs and singletons is compatible with F
if every sublevel set of F is a union of pairs and singletons in this partition, and
Q is in a singleton of the partition iff Q is a critical simplex of F . The proof of
collapsibility in [1] hinges on the fact that there is an acyclic partition, V , of ∆(X)
that is simultaneously compatible with RC, RD, and RDC. Indeed, the existence
of this acyclic partition is at the core of the proof of Theorem 5.10 in [1], which
asserts that

Čechr(X)↘ DČechr(X)↘ Delr(X)(10)

for every finite set X ⊆ Rn in general position, and every r ≥ 0. Observe that
this implies that the three radius functions have the same set of critical simplices.
Indeed, these are the sets Q ⊆ X for which the smallest enclosing sphere passes
through all points of Q and no point of X lies inside this sphere.

2.3. Persistent Homology. In its original conception, persistent homology starts
with a filtration of a topological space, it applies the homology functor for coeffi-
cients in a field F, and it decomposes the resulting sequence of vector spaces into
indecomposable summands [4, 14]. This decomposition is unique and has an intu-
itive interpretation in terms of births and deaths of homology classes. We flesh out
the idea using the filtration of Delaunay–Čech complexes as an example.

Let X ⊆ Rn be finite and in general position, and recall that RDC : Del(X)→ R
is the radius function whose sublevel sets are the Delaunay–Čech complexes. RDC
is monotonic but not necessarily discrete Morse. The Delaunay triangulation is
finite, which implies that RDC has only finitely many sublevel sets. To index them
consecutively, we write r1 < r2 < . . . < rN for the values and Ki = R−1

DC[0, ri] for
the i-th Delaunay–Čech complex of X. Applying the homology functor, we get

0 = H(K1)→ H(K2)→ . . .→ H(KN ),(11)
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in which we write H(Ki) for the direct sum of the homology groups of all dimensions.
Together with the maps hi,j : H(Ki)→ H(Kj) induced by the inclusions Ki ⊆ Kj ,
which are linear, we call this diagram the persistent homology of the filtration.
More generally, a diagram of vector spaces with this shape is called a persistence
module. Such a module is indecomposable if all vector spaces are trivial, except for
an interval of 1-dimensional vector spaces, F→ F→ . . .→ F, that are connected by
isomorphisms. Indeed, (11), and more generally, any persistence module of finite-
dimensional vector spaces, can be written as the direct sum of indecomposable
modules, and this decomposition is essentially unique. See [3, Basis Lemma] for a
constructive proof. If an interval starts at position i and ends at position j − 1,
then we say there is a homology class born at Ki that dies entering Kj . To allow
for the case j − 1 = N , we introduce rN+1 = ∞ and represent the interval by the
birth-death pair (ri, rj). Its dimension is the homological degree in which the class
arises, and its persistence is rj − ri.

By construction, the rank of H(Ki) is the number of indecomposable mod-
ules whose intervals cover ri. It is readily computed from the multiset of birth-
death pairs, which we call the persistence diagram of the radius function, denoted
Dgm(RDC). More generally, we can use this diagram to compute the rank of the
image of hi,j for i ≤ j; see e.g. [2, page 152].

3. Computing the Čech–Delaunay gradient flow

The main algorithmic challenge we face in this paper is the local computation of
the gradient that induces the collapse of the Čech to the Delaunay–Čech complex.
Specifically, we trace chains through the collapse, using their images to construct
the chain map that is central to our analysis. We explain the algorithm in three
stages: first sketching the relevant steps of the existence proof, second describing
how we compute minimum separating spheres, and third explaining the discrete
flow that constructs the chain map. Once we arrive at the eigenspaces, we compute
their persistent homology with the software implementing the algorithms in [3].

3.1. Computing Separating Spheres. At the core of the discrete gradient flow
is the construction of smallest separating spheres, which are defined as follows. Let
X ⊆ Rn be a finite set of points in general position, and let A ⊆ X be a subset.
An (n− 1)-dimensional sphere separates another subset Q ⊆ X from A if

• all points of Q lie inside or on the sphere, and
• all points of A lie outside or on the sphere.

If a point belongs to both A and Q, then it must lie on the separating sphere. Given
Q and A, a separating sphere may or may not exist, and if it exists, then there is
a unique smallest separating sphere, which we denote S(Q,A).

The smallest separating sphere can be characterized in geometric terms as foll-
wos. For a sphere S, write InclS,ExclS ⊆ X for the subsets of enclosed and
excluded points, with OnS = InclS ∩ ExclS. Now assume that S is the smallest
circumsphere of the points OnS, i.e., the center z of S lies in their affine hull:

z =
∑

x∈OnS
ρxx with 1 =

∑
x∈OnS

ρx.



8 U. BAUER, H. EDELSBRUNNER, G. JAB LOŃSKI AND M. MROZEK

By general position, the affine combination is unique, and ρx 6= 0 for all x ∈ OnS.
We call

FrontS = {x ∈ OnS | ρx > 0},
BackS = {x ∈ OnS | ρx < 0}

the front face and the back face of OnS, respectively. The following lemma states
necessary and sufficient conditions for a sphere to be a smallest separating sphere.
It is a special case of the general Karush–Kuhn–Tucker conditions, expressed in
geometric and combinatorial terms.
Lemma 1 (Combinatorial KKT Conditions [1]). Let X be a finite set of points in
general spherical position, and let Q,A ⊆ X. A sphere S satisfies S = S(Q,A) iff

(i) S is the smallest circumsphere of the points OnS,
(ii) FrontS ⊆ Q ⊆ InclS, and

(iii) BackS ⊆ A ⊆ ExclS.
Based on these optimality conditions, we can state a recursive formula for the

smallest separating sphere.
Lemma 2. Assume that S(Q,A) exists. If x ∈ Q, then

S(Q,A) =
{
S(Q \ {x}, A) if that sphere encloses x,
S(Q,A ∪ {x}) otherwise.

Similarly, if x ∈ A, then

S(Q,A) =
{
S(Q,A \ {x}) if that sphere excludes x,
S(Q ∪ {x}, A) otherwise.

Proof. We only show the first part, with x ∈ Q, the other part being analogous.
First, assume that S := S(Q \ {x}, A) encloses x. Then we have Q ⊆ InclS, and

thus S(Q,A) = S by Lemma 1.
On the other hand, if S(Q \ {x}, A) does not enclose x, then we must have

S := S(Q,A) 6= S(Q \ {x}, A), and thus Lemma 1 gives FrontS 6⊆ Q \ {x}. But
Lemma 1 also gives FrontS ⊆ Q, and so we must have x ∈ FrontS. Since FrontS ⊆
OnS ⊆ ExclS, it follows that A ∪ {x} ⊆ ExclS, and thus S(Q,A ∪ {x}) = S by
Lemma 1. �

We now turn these results into an algorithm for computing the smallest sepa-
rating sphere of sets Q,A ⊆ X, or deciding that no separating sphere exists. We
pattern the algorithm after the randomized algorithm for the smallest enclosing
sphere described in [13], which we recall first.

Welzl’s randomized miniball algorithm. The smallest enclosing sphere of a set Q ⊆
Rn is determined by at most n+ 1 of the points. In other words, there is a subset
R ⊆ Q of at most n+ 1 points such that the smallest enclosing sphere of R is also
the smallest enclosing sphere of Q. The algorithm below makes essential use of this
observation. It partitions Q into two disjoint subsets: R containing the points we
know lie on the smallest enclosing sphere, and P = Q \ R. Initially, R = ∅ and
P = Q. In a general step, the algorithm removes a random point from P and tests
whether it lies on or inside the recursively computed smallest enclosing sphere of
the remaining points. If yes, the point is discarded, and if no, the point is added
to R.
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1 sphere Enclose(P,R):
2 if P = ∅ then let S be the smallest circumsphere of R
3 else choose a random point x ∈ P ;
4 S = Enclose(P \ {x}, R);
5 if x outside S then S = Enclose(P \ {x}, R ∪ {x});
6 return S.

Since the algorithm makes random choices, its running time is a random variable.
Remarkably, the expected running time is linear in the number of points in Q, and
the reason is the high probability that the randomly chosen point, x, lies inside the
recursively computed smallest enclosing sphere and can therefore be discarded.

Generalization to smallest separating spheres. Rather than enclosing spheres, we
need separating spheres to compute the collapse. Here we get an additional case,
when the sphere does not exist, which we indicate by returning null. As before,
we work with two sets of points: R containing the points we know lie on the
smallest separating sphere, and P containing the rest. Initially, R = Q ∩ A and
P = (Q ∪A) \R. Each point has enough memory to remember whether it belongs
to Q and thus needs to lie on or inside the sphere, or to A and thus needs to lie on
our outside the sphere. We say the point contradicts S if it lies on the wrong side.

1 sphere Separate(P,R):
2 if cardR > n+ 1 then return null;
3 if P = ∅ then let S be the smallest circumsphere of R
4 else choose a random point x ∈ P ;
5 S = Separate(P \ {x}, R);
6 if x contradicts S then S = Separate(P \ {x}, R ∪ {x});
7 return S.

Since the smallest separating sphere is again determined by at most n + 1 of the
points, the expected running time of the algorithm is linear in the number of points,
as before. The correctness of the algorithm is warranted by Lemma 2.

Iterative version with move-to-front heuristic. Because finding separating spheres
is at the core of our algorithm, we are motivated to improve its running time, even if
it is only by a constant factor. Following the advise in [7], we turn the tail-recursion
into an iteration and combine this with a move-to-front heuristic. Indeed, if a point
contradicts the current sphere, it is likely that it does the same to a later computed
sphere. The earlier the point is tested, the faster this new sphere can be rejected.
Storing the points in a linear list, early testing of this point can be enforced by
moving it to the front of the list. Write L for the list, which contains all points of
Q∪A, and write L(i) for the point stored at the i-th location. As before, each point
remembers whether it belongs to Q, to A, or to both. In addition, we mark the
points we know lie on the smallest separating sphere as members of R, initializing
this set to R = Q ∩A. Furthermore, we initialize m = card (Q ∪A).
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1 sphere MoveToFront(L,m,R):
2 if cardR > n+ 1 then return null;
3 let S be smallest circumsphere of R;
4 for i = 1 to m do
5 if x = L(i) contradicts S then S = MoveToFront(L, i− 1, R ∪ {x});
6 if S = null then return null;
7 move x to front of L;
8 return S.
Section 5 will present experimental evidence that the move-to-front heuristic accel-
erates the computations.

3.2. Collapsing non-Delaunay simplices. Recall that the collapsing sequence
in (10) is facilitated by a discrete gradient, W , that is compatible with all three
radius functions. To collapse a Čech complex to the Delaunay–Čech complex, we
only need the pairs in W that partition the difference: Čechr(X) \ DČechr(X) ⊆
∆(X) \ Del(X). This difference is indeed partitioned solely by pairs because all
singletons contain critical simplices, which belong to Del(X). The discrete gradient
on the full simplex ∆(X) determined by those non-Delaunay pairs will be denoted
by V .

Following [1, Lemma 5.8], we note that every pair of the discrete gradient V is
of the form (P,R) with P ⊆ R ⊆ X and R \P = {x} for a unique vertex v ∈ R. In
other words, (P,R) ∈ V uniquely determines the vertex in which the two simplices
differ, and given Q ∈ {P,R} together with this vertex, we can recover the pair as
(P,R) = (Q \ {x}, Q∪{x}). We therefore introduce the map ψ : ∆(X) \Del(X)→
X defined by mapping the non-Delaunay simplex Q to the corresponding vertex,
ψ(Q) = x, and we use this map to represent the discrete gradient V .

We now describe the construction of the map ψ from [1] that defines the discrete
gradient V , whose pairs partition the non-Delaunay simplices. To this end, we
choose an arbitrary but fixed total ordering x1, x2, . . . , xN of the points in X. For
each 0 ≤ j ≤ N , we write Xj = {xi | i ≤ j} for the prefix. Given a non-Delaunay
simplex Q ∈ ∆(X) \ Del(X), let EQ ⊆ X be the subset of points that lie on or
outside of the smallest enclosing sphere of Q, and for each 0 ≤ j ≤ N , define
Aj = EQ ∪Xj . The sequence A0, A1, . . . , AN starts with just the exterior points,
A0 = EQ, and ends with all points, AN = X. Since Q 6∈ Del(X), there is a
minimal index j ≤ N such that Q and Aj do not permit a separating sphere. We
use the corresponding vertex xj to define ψ(Q) = xj . To compute ψ(Q), it thus
suffices to iterate through the sequence A0, A1, . . . , AN and find the first index j
such that there is no sphere separating Q from Aj . This can be determined using
the algorithm described in Section 3.1.

3.3. Constructing the Chain Map. We now have the necessary prerequisites
for constructing the chain map. Specifically, given a cycle in DČechr(X), we are
interested in computing its image, which is a cycle in DČechs(X), with r ≤ s ≤
ρ+ λr. The construction of the chain map is an application of the discrete Morse
theoretic formalism of a discrete gradient flow and the corresponding stabilization
map, which we now review.

We follow the notation in [6], in which the discrete gradient flow is formulated
as a map on chains. Let K be a simplicial complex and V a discrete gradient on
K. In our sitation, K = Čechr(X), and V contains the pairs defined by the map ψ
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introduced in Section 3.2, which partition Čechr(X) \DČechr(X). It is convenient
to consider the discrete gradient as a chain map. Fixing an orientation on each
simplex, this chain map is defined by linear extension of the map on the oriented
simplices given by

V (P ) =
{
±R if (P,R) ∈ V,
0 otherwise,(12)

where the sign is chosen so that P appears with coefficient −1 in the boundary
of R. In terms of the map ψ defining the gradient V as discussed in Section 3.2,
this definition can be rewritten as

V (P ) =
{
±(P ∪ {ψ(P )}) if ψ(P ) 6∈ P,

0 otherwise,(13)

This map sends every oriented p-simplex to 0 or to an oriented (p+1)-simplex. The
linear extension yields a homomorphism V : C(K) → C(K), which maps every p-
chain to a possibly trivial (p+1)-chain. Recall that the boundary map, ∂ : C(K)→
C(K), sends every p-chain to a possibly trivial (p − 1)-chain. We use both to
introduce Φ: C(K)→ C(K) defined by

Φ(c) = c+ ∂(V (c)) + V (∂(c)),(14)

in which c is a p-chain and its image, Φ(c), is a possibly trivial p-chain. We call Φ the
discrete gradient flow induced by V . Importantly, it commutes with the boundary
map: ∂Φ = Φ∂, which makes it a chain map; see [6, Theorem 6.4]. Moreover, the
iteration of Φ stabilizes in the sense that ΦM = ΦN for large enough M and N [6,
Theorem 7.2]. We call this chain map the stabilization map of Φ and denote it by
Φ∞.

In this paper, we apply the discrete flow exclusively to cycles. In other words,
c ∈ C(K) satisfies ∂c = 0, which simplifies the above formula (14) to

Φ(c) = c+ ∂(V (c)).(15)

In order to evaluate the stabilization map Φ∞, we simply iterate Φ until it stabilizes.
The most demanding step in each iteration is the computation of smallest separating
spheres, as discussed in Section 3.1.

4. Eigenspace Inference

We use the chain maps connecting the Delaunay–Čech complexes to construct a
persistence module of eigenspaces from the sample g : X → X, and specify proper-
ties of the sampled dynamical system under which the eigenspaces of the underlying
self-map can be inferred from this module. Because of this specific goal, we typi-
cally work with coefficients in a finite field of larger order, in contrast to the typical
setup in applied topology, where homology is often taken with coefficients in the
field Z2.

4.1. Eigenspaces. Given a finite set X ⊆M ⊆ Rn, we recall thatRDC : Del(X)→
R is the radius function whose sublevel sets are the Delaunay–Čech complexes of X.
Let r1 < r2 < . . . < rN be the values of RDC, and write DČechr(X) = R−1

DC[0, r]
for the Delaunay–Čech complex at radius r. We construct the persistence diagram
of this filtration, denoted Dgm(RDC), which is a multi-set of intervals of the form
[ri, rj). For each such interval, there is a unique homology class born at DČechri(X)
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that maps to 0 when it dies entering DČechri(X), and the collection of such classes
gives a basis for the homology group of every complex in the filtration.

To define the eigenspace, for each r we consider two maps between homology
groups, ιr, κr : H(DČechr(X)) → H(DČechr+q(X)), in which ι is induced by the
inclusion DČechr(X) ⊆ DČechr+q(X), κ is induced by the chain map composed of
g followed by the stabilization map Φ∞, and q ≥ 0 is chosen such that all generators
of H(DČechr(X)) have images under the chain map κ in H(DČechr+q(X)). For
geometric reasons, the corresponding radius satisfies r + q ≤ λr, in which λ is the
Lipschitz constant of g. It is convenient to represent ιr and κr by matrices that
write the images of the generators of H(DČechr(X)) in terms of the generators of
H(DČechr+q(X)). Following [3], we consider the generalized eigenspace of the two
maps for an eigenvalue t:

Et(κr, ιr) = ker(κr − t · ιr)/(kerκr ∩ ker ιr).(16)

In words, Et(κr, ιr) is generated by the cycles in DČechr(X) whose images under
κr are homologous to t times their images under ι. Note that this is a slight
modification of the classic eigenvalue problem in which the image and the range are
identical. This is not the case for κr, so we compare it to ιr to get the eigenspace.
The maps between the eigenspaces,

etr,s = Et(κr, ιr)→ Et(κs, ιs)(17)

are obtained as restrictions of the maps hr,s : H(DČechr(X)) → H(DČechs(X))
induced by inclusion. For fixed t ∈ F, we have a sequence of eigenspaces,

0→ Et(κr1 , ιr1)→ Et(κr2 , ιr2)→ . . .→ Et(κrN , ιrN ),(18)

which together with the maps etri,rj form a persistence module. Recall from Sec-
tion 2.3 that this persistence module has an essentially unique interval decomposi-
tion. We can therefore compute the persistence diagram, which we refer to as the
eigenspace diagram of g for eigenvalue t, denoted Egm(g, t).

4.2. Maps between Nerves. We will relate the eigenspace of f for t with the
eigenspace module in three steps. The second step will use results about nerves of
covers, which we now review.

Let X be a topological space and U = (Ui)i∈I a cover of X. U is closed or open
if every Ui is closed or open, respectively, and U is good if the common intersection
of any subset of cover elements is empty or contractible. Recall that the nerve of U
is the collection of subsets with non-empty common intersection:

N(U) = {B ⊆ U |
⋂
B 6= ∅}.(19)

Calling B a simplex, the nerve is an abstract simplicial complex. A partition of unity
subordinate to U is a collection of continuous nonnegative functions φi : X → R≥0
such that

∑
i∈I φi(x) = 1 for every x ∈ X, and the support of φi is contained in Ui

for every i ∈ I. Assuming a geometric realization of the nerve in which vi denotes
the vertex that represents the subset Ui ∈ U , we introduce the map

r : X→ |N(U)| defined by r(x) =
∑
i∈I

φi(x) · vi.(20)

The Nerve Theorem as stated in [9] asserts that r is a homotopy equivalence pro-
vided U is a good cover that has a subordinate partition of unity. Such a partition
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exists for example if U is open and X is paracompact, which includes X ⊆ Rn. We
expand on the Nerve Theorem, using the map r from (20) to relate a continuous
map with a corresponding simplicial map between nerves.

Lemma 3. Let U = (Ui)i∈I and V = (Vj)j∈J be open covers of spaces X and Y
with corresponding subordinate partitions of unity. Let f : X→ Y be continuous, let
g : I → J be such that f(Ui) ⊆ Vg(i) for every i ∈ I, and write h : |N(U)| → |N(V)|
for the linear simplicial map induced by g. Then the diagram

(21)
X Y

|N(U)| |N(V)|

f

r s

h

commutes up to homotopy, in which r and s are constructed as in (20).

Proof. Let x ∈ X, and let τ(x) = conv{wj ∈ J | f(x) ∈ Vj}, where wj denotes
the vertex corresponding to the subset Vj ∈ V. Note that we have s(f(x)) ∈ τ(x)
by construction of s. Similarly let σ(x) = conv{vi ∈ I | x ∈ Ui} and note that
r(x) ∈ σ(x) by construction of r. By assumption on the map g, x ∈ Ui implies
f(x) ∈ Vg(i). Equivalently, if vi is a vertex of σ(x), then h(vi) = wg(i) is a vertex
of τ(x). This implies that h(r(x)) ∈ τ(x). Hence, s ◦ f ' h ◦ r by a straight-line
homotopy between s(f(x)) and h(r(x)) within τ(x). �

We note that the commutativity up to homotopy of the diagram (21) does not
require the covers of X and Y to be good.

4.3. Inference. We now relate the eigenspace Et(f) of the self-map f with a gener-
alized eigenspace obtained from the sample g. The value of this comparison derives
from the assumption that f remains unknown, beyond g, so its eigenspace can be
approached only indirectly, through the properties of g. We begin by recalling the
assumptions:

• f : M→M is a continuous self-map with Lipschitz constant λ;
• g : X → X is a finite sample of f with approximation constant ρ;
• the Hausdorff distance between X and M is δ = dM (X,M).

Note that this implies ‖g(x) − f(y)‖ ≤ ρ + λ‖x − y‖ since the left-hand side is at
most ‖g(x)− f(x)‖+ ‖f(x)− f(y)‖. Setting η = ρ+ λδ, we note that

f(Bδ(x)) ⊆ Bη(g(x))(22)

for all x ∈ X. Hence g defines a simplicial map from Čechδ(X) to Čechη(X), and
we get two maps in homology,

γ,  : H(Čechδ(X))→ H(Čechη(X)),(23)
in which γ is induced by g and  is induced by inclusion.

We now consider the generalized eigenspace of the two maps for an eigenvalue t:
Et(γ, ) = ker(γ − t · )/(ker γ ∩ ker ),(24)

noting that this is a special case of the setting considered in Section 4.1. We show
that under appropriate conditions this generalized eigenspace is isomorphic to Et(f).
We need some definitions to prepare the first step. Recall that Bδ(x) is the closed
ball with radius δ centered at x ∈ Rn. For M ⊆ Rn, we call Mδ =

⋃
x∈MBδ(x) the

δ-neighborhood of M. By the Kirszbraun Extension Property [11, 12], f : M → M
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extends to a map fδ : Mδ → Mδ with the same Lipschitz constant. Similarly, f
extends to a map fθ : Mθ →Mη, again with the same Lipschitz constant, in which
θ = max(η, 2δ), with η = ρ + λδ as before. The following diagram organizes the
homology groups of the spaces relevant to our argument. Apart from f∗, fδ∗, and
fθ∗, any map in the diagram is induced by inclusion.

(25)

H(Xδ) H(Xθ)

H(M) H(Mδ) H(Mθ)

H(M) H(Mδ) H(Mθ)

H(Xδ) H(Xθ)

a

ι

f∗

b

fδ∗ fθ∗

ba

ι

Consider ι : H(Xδ)→ H(Xθ), let ι = b◦a with a : H(Xδ)→ H(Mδ) and b : H(Mδ)→
H(Xθ), and define φ = b ◦ fδ∗ ◦ a : H(Xδ) → H(Xθ). To compare φ with ι, we
consider their eigenspace,

Et(φ, ι) = ker(φ− t · ι)/(kerφ ∩ ker ι).(26)

We claim that this eigenspace is isomorphic to the one considered in (24).

Lemma 4. Et(φ, ι) ∼= Et(γ, ).

Proof. By finiteness of X, there is ε > 0 such that the inclusion of Xδ in the interior
of Xδ+ε is a homotopy equivalence and Čechδ(X) is isomorphic to the nerve of the
cover of Xδ+ε by open balls of radius δ + ε. We can thus apply (20) and get two
commutative diagrams via Lemma 3:

(27)

H(Xδ) H(Xθ)

H(Čechδ(X)) H(Čechθ(X))

φ

∼= ∼=

γ

H(Xδ) H(Xθ)

H(Čechδ(X)) H(Čechθ(X))

ι

∼= ∼=



The diagrams imply φ ∼= γ and ι ∼= , so the eigenspaces are also isomorphic, as
claimed. �

For the second step, we add two assumptions: that the map from H(M)→ H(Mδ)
is an isomorphism, and that the map from H(Mδ) → H(Mθ) is a monomorphism.
This implies that a is surjective and that b is injective; see (25). We claim that under
the combined assumptions, the eigenspace of f : M→M for t ∈ F is isomorphic to
the eigenspace considered in Lemma 4.

Lemma 5. Et(f) ∼= Et(φ, ι).
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Proof. We have ker a ⊆ kerφ simply because φ = b◦fδ∗◦a, and we have ker a = ker ι
because ι = b ◦ a with b injective. This implies kerφ ∩ ker ι = ker a. Hence,

Et(φ, ι) = ker(φ− t · ι)/(kerφ ∩ ker ι)(28)
= ker(b ◦ fδ∗ ◦ a− t · b ◦ a)/ ker a(29)
∼= ker(b ◦ fδ∗ − t · b).(30)

Since b is injective, the kernel in (30) is isomorphic to Et(fδ∗). This concludes the
proof since H(M) ∼= H(Mδ), by assumption, and therefore Et(fδ∗) ∼= Et(f). �

Summarizing Lemmas 4 and 5, we have a connection between the eigenspace of
the given self-map and the eigenspace module (18).

Theorem 6. Let f : M→ M be a self-map with Lipschitz constant λ and g : X →
X a finite sample of f with approximation error ρ and Hausdorff distance δ =
dH(X,M). Let θ = max(2δ, ρ+λδ) and suppose the Kirszbraun extensions fδ : Mδ →
Mδ and fθ : Mθ →Mθ induce an isomorphism and a monomorphism on homology,
respectively. Then the dimension of the eigenspace Et(f) can be inferred from the
generalized eigenspace Et(γ, ).

5. Computational Experiments

In this section, we analyze the performance of our algorithm experimentally and
compare the results with those reported in [3]. For ease of reference, we call the
algorithm in [3] the Vietoris–Rips or VR-method and the algorithm in this paper
the Delaunay–Čech or DČ-method. We begin with the introduction of the case-
studies — self-maps on a circle and a torus — and end with statistics collected
during our experiments.

5.1. Expanding Circle Map. The first case-study is an expanding map from the
circle to itself. To add noise, we extend it to a self-map on the plane, f : C → C
defined by f(z) = z2. While traversing the circle once, the image under f travels
around the circle twice. To generate the data, we randomly chose N points on the
unit circle, and letting zi be the i-th such point, we pick a point xi from an isotropic
Gaussian distribution with center zi and width σ = 0.1. Note that while the noise
from a Gaussian distribution is unbounded, for large enough N and sufficiently
small σ (in dependence on N), a random sample noisy still has a high probability
of satisfying the sampling conditions from Section 4. Write X for the set of points
xi, and let the image of xi be the point g(xi) ∈ X that is closest to x2

i . As
explained earlier, we construct the filtration of Delaunay–Čech complexes of X and
compute eigenspace diagrams for all eigenvalues in a sufficiently large finite field
to avoid aliasing effects. Our choice is F = Z1009. Recall that the definition of the
eigenspace module in Section 4.1 required a choice of q ≥ 0. For our computations,
we always chose the smallest admissible value.

Drawing N = 100 points, we compare the DČ-method of this paper with the
VR-method in [3]. For eigenvalue t = 2, both methods give a non-empty eigenspace
diagram consisting of a single point. Figure 3 illustrates the results by showing the
generating cycle computed with the DČ-method on the left and its image on the
right.
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Figure 3: Left: The most persistent cycle in the Delaunay–Čech complex for points sam-
pled near the unit circle. Right: The image of the cycle after following the discrete flow
from the Čech complex back to a Delaunay–Čech complex. As expected, the map doubles
the winding number.

5.2. Torus Maps. The second case-study consists of three self-maps on the torus,
which we construct as a quotient of the Cartesian plane; see Figure 4. For i = 1, 2, 3,
the map fi : [0, 1)2 → [0, 1)2 sends a point x = (x1, x2)T to fi(x) = Aix, in which

A1 =
[
2 0
0 2

]
, A2 =

[
0 1
1 0

]
, A3 =

[
1 1
0 1

]
.

The 1-dimensional homology group of the torus has only two generating cycles.
Letting one wrap around the torus in meridian direction and the other in longitudi-
nal direction, we see that f1 doubles both generators, f2 exchanges the generators,
and f3 adds them but also preserves the first generator. Correspondingly, f1 has

Figure 4: The periodic Delaunay triangulation on the left and its embedding in R3 on the
right. The blue cycle wraps around the torus once in meridian and once in longitudinal
direction. It represents an eigenvector of f1 for eigenvalue t = 2. Its image wraps around
the torus twice in meridian and twice in longitudinal direction (not shown).

two eigenvectors for the eigenvalue t = 2, f2 has two distinct eigenvalues t = 1
and t = −1, and f3 has only one eigenvector for t = 1. The input data for our
algorithm, X, consists of 100 points uniformly chosen in [0, 1)2. To define the image
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Figure 5: Top left panel: the superimposed eigenspace diagrams of the expanding circle
map for ten randomly chosen sets of 100 points each. The intervals are plotted as points
whose coordinates are the birth and death values of the corresponding homology classes.
Points for the VR-method are blue and points of the DČ-method are red. The only points
with non-negligible persistence belong to eigenvalue t = 2, and we get exactly one such
point for each eigenspace diagram. Top right panel: the eigenspace diagrams of f1 for a few
eigenvalues. The most persistent classes are represented by points on the upper edge of the
panel, indicating that their intervals last all the way to the last complex in the filtration.
Here we see two such points, which correspond to the intrinsic 1-dimensional homology of
the torus. Bottom left panel: the eigenspace diagrams of f2 for a few eigenvalues. There
are two intervals that exists during most of the filtration, one for eigenvalue t = 1 and
the other for eigenvalue t = −1. They have the same birth and death and are therefore
visible as two identical points on the upper edge of the panel. Bottom right panel: the
eigenspace diagrams of f3 for a few eigenvalues. There is only one significant eigenvector
for t = 1.

of a point x ∈ X, we compute the point Aix and let the image be the nearest point
gi(x) ∈ X. The eigenspace diagrams of f1, f2, f3 for selected eigenvalues are shown
in the last three panels of Figure 5.

5.3. Accuracy. To study how accurate the two methods are, we look at false
positives and false negatives, and the persistence of the recurrent features of the
underlying smooth maps.

Circle map. Repeating the circle map experiment with N = 100 points ten times,
we show the superimposed twenty eigenspace diagrams (ten each for the two meth-
ods) in the upper left panel of Figure 5. Points of the VR-method are marked
blue while points of the DČ-method are marked red. The eigenvector for t = 2 is
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detected each time. However, the DČ-method detects the recurrence consistently
earlier than the VR-method, with smaller birth and death values but also with
smaller average persistence. The shift of the birth values is easy to rationalize:
a cycle arises for the same radius in both filtrations, but remains without image
in the VR-method until the radius is large enough to capture the image of every
edge in the cycle. The shift of the death value is more difficult to explain and
perhaps related to the fact that the DČ-method maps a cycle in one complex, Kr,
to a later complex, Ks with r ≤ s ≤ ρ + λr in the filtration of Delaunay–Čech
complexes. Monitoring r and s in 100 runs for a range of number of points, we
show the average Lipschitz constant and the average ratio s

r in Table 1. There are

N = 100 200 300 400 500
average λ 1.99 2.00 2.05 2.03 2.04

average s/r 1.13 1.14 1.12 1.14 1.16
average λ 2.65 3.54 3.98 4.22 5.42

average s/r 1.33 1.57 1.71 1.64 1.91

Table 1: The average Lipschitz constant, λ, and the average shift, s
r
, for points sampling

the circle map. Top two rows: no noise. Bottom two rows: 2-dimensional Gaussian noise
with standard deviation σ = 0.1 in both directions.

no false negatives in this experiment, but we see a small number of false positives
reported by the VR-method (the points in the upper right corner of the first panel
in Figure 5, all for eigenvalues t 6= 2). This indicates that the VR-method is more
susceptible to noise than the DČ-method. To support our claim, we compute the
eigenspace diagrams using the DČ-method with increased noise, and indeed find no
false positives; see Figure 6.
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Figure 6: The superimposed eigenspace diagrams computed with the DČ-method of the
expanding circle map for randomly chosen sets of 200 points each with isotropic Gaussian
noise with increasing width σ. In each run, the only non-empty eigenspace diagram is for
t = 2, and this diagram contains exactly one point

.
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Torus maps. The situation is similar for the three torus maps, whose eigenspace
diagrams are shown in the next three panels of Figure 5. The eigenvectors of
f1, f2, f3 are represented by points on the upper edges of the panels, indicating that
their corresponding homology classes last until the last complex in the filtration.
This is different in the VR-method because the Vietoris–Rips complex for large radii
is less predictable than the Delaunay–Čech complex. In contrast to the circle map,
we observe false positives also in the DČ-method. They show up as points with small
to moderate persistence in the three diagrams. We also have false positives in the
VR-method, but the results are difficult to compare because for complexity reasons
we could not run the algorithm beyond N = 200 points. As another indication
of improved accuracy of the DČ-method, we note that the eigenspace diagrams
we observe in our experiments do not suffer the problem of abundant eigenvalues
discussed in [3, Section 6.4].

5.4. Runtime Analysis. We analyze the running time of the DČ-method for sets
of N points, with N varying from 100 to 10000. For the persistent homology
computation, we use coefficients in the field Z1009. The time is measured on a
notebook class computer with 2.6GHz Intel Core i7-6600U processor and 16GB
RAM.

Overall running time. We begin with a brief comparison of the two methods, first
of the overall running time for computing eigenspace diagrams; see Table 2. As
mentioned earlier, the VR-method uses Vietoris–Rips complexes, which grow fast
with the number of points and the radius. We could therefore run this method
for N = 100 and 150 points only, terminating the run for N = 200 points after
half an hour. To get a better feeling for the running time of the DČ-method, we

Time [sec] N = 100 150 200 500 1000 1500 2000 2500
VR-method 157.41 986.60 — — — — — —
DČ-method 0.07 0.12 0.21 0.92 3.66 8.36 14.53 22.35

Table 2: Time needed to compute the eigenspace diagram of the expanding circle map for
N points sampled near the unit circle. For N ≥ 200, the VR-method needs more than
half an hour, at which time we terminated the process.

plot the results in Figure 7, adding curves to indicate the asymptotic experimental
performance. The outcome suggests that the computational complexity of the DČ-
method is between quadratic and cubic in the number of points. We note that more
than half of the time is used to compute smallest separating spheres.

Flowing an edge. To gain further insight into the time needed to flow a cycle
from the Čech to the Delaunay–Čech complex, we present statistics for collaps-
ing a random edges in a variety of settings. The edges are constructed from
100, 1000, 10000 points chosen along the unit circle with added Gaussian noise,
and from 100, 1000, 10000 points chosen uniformly in [0, 1)2. For each data set, we
pick two points at random and monitor the effort it takes to flow this edge from the
Čech complex to the Delaunay–Čech complex. Specifically, we iterate Φ on each
edge individually until the result stabilizes. The statistics in Table 3 shows how
many times Φ is iterated and how many points are tested inside each call to com-
pute the discrete gradient. The statistics for the circle and the square are similar,
with consistently larger numbers when we pick the edges in the square.
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2000 4000 6000 8000 10000 12000 14000 16000

Number of sampled points

0

500

1000

1500

2000

2500

3000

T
im

e
 [

se
c]

Overall running time
1.5e-08*x^2.66
Computing spheres
5e-09*x^2.71

103 104

Number of sampled points

100

101

102

103

T
im

e
 [

se
c]

Overall running time
Computing spheres

Figure 7: The time needed to compute the eigenspace diagram of the expanding circle map
with the DČ-method as a function of the number of sampled points. We also show the
amount of time spent to compute separating spheres, which is more than half the overall
running time. The time for computing the Delaunay–Čech complexes and the persistence
diagrams is less than 0.5 seconds in all cases and therefore not shown. To estimate the
asymptotic behavior, we use the least squares technique to fit lines to the log-log data
points; see the right panel. Excluding the results for data with less than N = 5000 points
we get slopes 2.66 and 2.71, which suggests that the experimental running time of our
algorithm is between quadratic and cubic in the input size.

Circle Square
N = 100 1000 10000 100 1000 10000

#iterations: avg 5.27 9.09 14.70 5.47 11.98 14.60
max 9.00 13.00 19.00 9.00 16.00 17.00

#tests: avg 1.23 1.17 1.21 1.60 1.32 1.20
max 8.00 5.00 4.00 15.00 16.00 5.00

Table 3: Statistics for flowing 1000 randomly chosen edges from the Čech to the Delaunay–
Čech complex. Top two rows: the average and maximum number of iterations of Φ to flow
an edge from the Čech to the Delaunay–Čech complex. Bottom two rows: the average
and maximum number of points tested to find a set for which the separating sphere does
not exists.

Smallest separating spheres. Our analysis shows that the DČ-method spends most
of the time computing smallest separating spheres. For this reason, we compare the
straightforward implementation (function Separate), with the heuristic improve-
ment (function MoveToFront). We generate the points in [0, 1)2 as described
above. For both functions, we randomly pick 10000 edges from the Čech complex
and another 10000 edges from the Delaunay–Čech complex, and we test for each
edge whether or not there exists a sphere that separates the edge from the rest of
the points. Figure 8 shows that the running time of both functions depends linearly
on the number of points, which is to be expected. The best-fit linear functions sug-
gest that the move-to-front heuristic is faster than the more naive extension of the
miniball algorithm to finding smallest separating spheres. The difference is more
pronounced for edges of the Čech complex (left panel) for which we expect more
points inside the circumscribed spheres and an early contradiction to the existence
of a separating sphere. In contrast, the difference in performance is negligible for
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edges sampled from the Delaunay–Čech complex, for which separating spheres exist
by construction.
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Figure 8: Left: the time needed to compute 10000 smallest separating spheres for randomly
chosen edges from the Čech complex constructed on points sampled uniformly from [0, 1)2.
Right: the time needed to compute 10000 smallest separating spheres for edges of the
Delaunay–Čech complex constructed on points sampled uniformly from [0, 1)2.

6. Discussion

The main contributions of this paper are the construction of a filtration-preserving
chain map from a Čech filtration to the corresponding Čech–Delaunay filtration,
the construction of a geometrically meaningful chain self-map map on a Delaunay
triangulation from a self map on a point set, and its application to computing
eigenspaces of sampled dynamical systems. Following the proof of collapsibility in
[1], we get an efficient algorithm for the chain map though implicit treatment of
the Čech complex. The reported research raises a number of questions:

• Can we give theoretical upper bounds on the number of individual collapses
needed to flow a cycle to its image under the stabilization map of the Čech–
Delaunay gradient flow?

• Can the computation of smallest separating spheres be further improved
by customizing the procedure to small sets inside the sphere, or by taking
advantage of the coherence between successive calls?

We expect that the fast chain map algorithm has applications beyond this paper,
including to the transport of structural information between meshes, and to the
visualization of topological information shared by related high-dimensional dataset.
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