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Abstract. We introduce combinatorial multivector fields, associate
with them multivalued dynamics and study their topological features.
Our combinatorial multivector fields generalize combinatorial vector fields
of Forman. We define isolated invariant sets, Conley index, attractors,
repellers and Morse decompositions. We provide a topological char-
acterization of attractors and repellers and prove Morse inequalities.
The generalization aims at algorithmic analysis of dynamical systems
through combinatorialization of flows given by differential equations and
through sampling dynamics in physical and numerical experiments. We
provide a prototype algorithm for such applications.

1. Introduction

In the late 90’s of the twentieth century Robin Forman [10] introduced
the concept of a combinatorial vector field and presented a version of Morse
theory for acyclic combinatorial vector fields. In another paper [11] he stud-
ied combinatorial vector fields without acyclicity assumption, extended the
notion of the chain recurrent set to this setting and proved Conley type
generalization of Morse inequalities.

Conley theory [9] is a generalization of Morse theory to the setting of non-
necessarily gradient or gradient-like flows on locally compact metric spaces.
In this theory the concepts of a non-degenerate critical point and its Morse
index are replaced by the more general concept of an isolated invariant set
and its Conley index. The Conley theory reduces to the Morse theory in
the case of a flow on a smooth manifold defined by a smooth gradient vector
field with non-degenerate critical points.

Recently, T. Kaczynski, M. Mrozek and Th. Wanner [16] defined the
concept of an isolated invariant set and the Conley index in the case of
a combinatorial vector field on the collection of simplices of a simplicial
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Figure 1. An averaging of a smooth vector field (small ar-
rows) along the one-dimensional faces of a cubical grid. Un-
fortunately, the resulting collection of combinatorial vectors
(large arrows) does not satisfy the partition requirement of
the combinatorial vector field of Forman.

complex and observed that such a combinatorial field has a counterpart on
the polytope of the simplicial complex in the form of a multivalued, upper
semicontinuous, acyclic valued and homotopic to identity map.

The aim of this paper is to combine the ideas of Forman with some clas-
sical concepts of topological dynamics in order to obtain an algorithmic tool
for studying sampled dynamics, that is dynamics known only via a finite set
of samples obtained from a physical or numerical experiment. The method
to achieve this aim is the combinatorialization of classical dynamics. By
this we mean constructing an analogue of classical topological dynamics set
up in finite combinatorial spaces: simplicial complexes, cubical sets (also
called cubical complexes) or more generally cellular complexes. Such spaces
are equipped with a natural but non-Hausdorff topology via the Alexandroff
Theorem [1] and the partial order given by the face relation. Simplicial com-
plexes in the form of triangular meshes are typically used in visualization of
vector fields sampled from data and the use of topological methods in this
field increases [8],[24],[31]. In gene regulatory networks a frequent method
used to analyse the associated dynamics is Thomas’ formalism [28] leading
to the study of dynamics on cubical grids [3]. The proposed combinato-
rialization may also serve as a very concise description of the qualitative
features of classical dynamics.
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Forman’s combinatorial vector fields seem to be a natural tool for a con-
cise approximation and description of the dynamics of differential equations
and more generally flows. For instance, given a cubical grid in Rd and a
vector field, it is natural to set up arrows in the combinatorial setting of the
grid by taking averages of the vectors in the vector field along the codimen-
sion one faces of the grid. Unfortunately, in most cases such a procedure
does not lead to a well defined combinatorial vector field in the sense of
Forman. This is because in the Forman theory the combinatorial vectors
together with the critical cells have to constitute a partition. In particu-
lar, each non-critical, top-dimensional cell has to be paired with precisely
one cell in its boundary. Such a requirement is not satisfied by a typical
space discretization of a vector field (see Figure 1). In order to overcome
these limitations we introduce and study combinatorial multivector fields,
a generalization of Forman’s combinatorial vector fields. Similar but differ-
ent generalizations of Forman’s combinatorial vector fields are proposed by
Wisniewski and Larsen [32] in the study of piecewise affine control systems
and by Freij [13] in the combinatorial study of equivariant discrete Morse
theory.

We extend the concepts of isolated invariant set and Conley index intro-
duced in [16] to combinatorial multivector fields. We also define attractors,
repellers, attractor-repeller pairs and Morse decompositions and provide a
topological characterization of attractors and repellers. These ideas are
novel not only for combinatorial multivector fields but also for combina-
torial vector fields. Furthermore, we prove the Morse equation for Morse
decompositions. We deduce from it Morse inequalities. They generalize the
Morse inequalities proved by Forman in [11] for the Morse decomposition
consisting of basic sets of a combinatorial vector field to the case of general
Morse decompositions for combinatorial multivector fields.

The construction of the chain complex, an algebraic structure needed in
our study, is complicated in the case of a general cellular complex. This is in
contrast to the case of a simplicial complex or a cubical set. To keep things
simple but general, in this paper we work in the algebraic setting of chain
complexes with a distinguished basis, an abstraction of the chain complex
of a simplicial, cubical or cellular complex already studied by S. Lefschetz
[19]. It is elementary to see simplicial and cubical complexes as examples
of Lefschetz complex. A version of Forman theory for combinatorial vector
fields on chain complexes with a distinguished basis was recently proposed
by a few authors [14],[18],[27]. Related work concerns Forman theory on
finite topological spaces [21].

The organization of the paper is as follows. In Section 2 we provide an
informal overview of the main results of the paper. In Section 3 we illustrate
the new concepts and results with several examples. In Section 4 we gather
preliminary definitions and results. In Section 5 we introduce Lefschetz com-
plexes, define combinatorial multivector fields and prove their basic features.
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In Section 6 we define solutions and invariant sets of combinatorial multi-
vector fields. In Section 7 we study isolated invariant sets of combinatorial
multivector fields and their Conley index. In Section 8 we investigate at-
tractors, repellers and attractor-repeller pairs. In Section 9 we define Morse
decompositions and prove Morse equation and Morse inequalities. In Sec-
tion 10 we discuss an algorithm constructing combinatorial multivector fields
from clouds of vectors on the planar integer lattice. In Section 11 we show a
few possible extensions of the theory presented in this paper. In Section 12
we present conclusions and directions of future research.

2. Main results.

In this section we informally present the main ideas and results of the
paper. Precise definitions, statements and proofs will be given in the sequel.

2.1. Lefschetz complexes. In principle, a Lefschetz complex may be viewed
as a finitely generated free chain complex with a distinguished basis. How-
ever, in this paper we follow the original definition given by Lefschetz [19].
In this definition the elements of the basis are the primary objects and the
algebraic structure is given on top of them. Such a reversed approach is nat-
ural in the algorithmic context, because a computer may store and process
only finite sets. Thus, a Lefschetz complex consists of a finite collection of
cells X graded by dimension and the incidence coefficient κ(x, y) encoding
the incidence relation between cells x, y ∈ X (see Section 5.1 for a precise
definition). A non-zero value of κ(x, y) indicates that the cell y is in the
boundary of the cell x and the dimension of y is one less than the dimension
of x. The cell y is then called a facet of x. The family K of all simplices of a
simplicial complex [15, Definition 11.8], all elementary cubes in a cubical set
[15, Definition 2.9] or, more generally, cells of a cellular complex (finite CW
complex, see [20, Section IX.3]) are examples of Lefschetz complexes. In this
case the incidence coefficient is obtained from the boundary homomorphism
of the associated simplicial, cubical or cellular chain complex. A sample Lef-
schetz complex is presented in Figure 2. It consists of eight vertices (0-cells
or cells of dimension zero), ten edges (1-cells) and three squares (2-cells).

Condition (3) presented in Section 5.1 guarantees that the free group
spanned by X together with the linear map given by ∂x :=

∑
y∈X κ(x, y)y

is a free chain complex with X as a basis. By the Lefschetz homology of
X we mean the homology of this chain complex. We denote it by Hκ(X).
In the case of a Lefschetz complex given as a cellular complex condition
(3) is satisfied and the resulting chain complex and homology is precisely
the cellular chain complex and the cellular homology. Given a Lefschetz
complex X we denote by βi(X) := rankHκ

i (X) the ith Betti number of X
and write pX for the respective Poincaré polynomial, that is,

pX(t) :=
∞∑
i=0

βi(X)ti.
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Figure 2. A Lefschetz complex consisting of the collection
K of cells of a cubical complex with eight vertices (0-cells or
cells of dimension zero), ten edges (1-cells) and three squares
(2-cells). Individual cells are marked by a small circle in
the center of mass of each cell. Four Lefschetz complexes
obtained as proper subsets of K are indicated by solid ovals.
The collection of three cells marked by a dashed oval is not
a Lefschetz complex, because it is not proper.

The closure of A ⊆ X, denoted clA, is obtained by recursively adding
to A the facets of cells in A, the facets of the facets of cells in A and so
on. The set A is closed if clA = A and it is open if X \ A is closed. The
terminology is justified, because the open sets indeed form a T0 topology on
X. We say that A is proper if moA := clA \A, which we call the mouth of
A, is closed. Proper sets are important for us, because every proper subset
of a Lefschetz complex with incidence coefficients restricted to this subset is
also a Lefschetz complex. Four Lefschetz complexes being proper subsets of
a bigger Lefschetz complex are indicated in Figure 2 by solid ovals. In the
case of a proper subset X of a cellular complex K the Lefschetz homology of
X is isomorphic to the relative cellular homology H(clX,moX). However,
from the algorithmic point of view the direct use of Lefschetz homology is
preferred, because it minimizes the amount of information which needs to
be encoded.

2.2. Multivector fields. A multivector is a proper V ⊆ K such that
V ⊆ clV ? for a unique V ? ∈ V . Out of the four examples of Lefschetz
complexes in Figure 2 only the one enclosing vertex C is not a multivector.
A multivector is critical if Hκ(V ) 6= 0. Otherwise it is regular. The only
example of a regular multivector in Figure 2 is the one enclosing vertex B.
Roughly speaking, a regular multivector indicates that clV , the closure of
V , may be collapsed to moV , the mouth of V . In the dynamical sense this
means that one can set up a flow which eventually leaves V through moV .
A critical multivector indicates the contrary: clV may not be collapsed to
moV and, in the dynamical sense, something must stay inside V .

A combinatorial multivector field is a partition V of X into multivectors.
We associate dynamics with V via a directed graphGV with vertices inX and
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three types of arrows: up-arrows, down-arrows and loops. Up-arrows have
heads in V ? and tails in all the other cells of V . Down-arrows have tails in
V ? and heads in moV . Loops join V ? with itself for all critical multivectors
V . A sample multivector field is presented in Figure 3(top) together with the
associated directed graph GV (bottom). The terminology ’up-arrows’ and
’down-arrows’ comes from the fact that the dimensions of cells are increasing
along up-arrows and decreasing along down-arrows. Notice that the up-
arrows sharing the same head uniquely determine a multivector. Therefore,
it is convenient to draw a multivector field not as a partition but by marking
all up-arrows. For convenience, we also mark the loops, but the down-arrows
are implicit and are usually omitted to keep the drawings simple.

A multivector may consist of one, two or more cells. If there are no more
than two cells, we say that the multivector is a vector. Otherwise we call it a
strict multivector. Note that the combinatorial multivector field in Figure 3
has three strict multivectors:

{ABFE,AB,AE,A}, {BCGF,BC,FG}, {CDHG,CD,DH,GH,D,H}.

Observe that a combinatorial multivector field with no strict multivectors
corresponds to the combinatorial vector field in the sense of Forman [11].

A cell x ∈ X is critical with respect to V if x = V ? for a critical multivector
V ∈ V. A critical cell x is non-degenerate if the Lefschetz homology of its
multivector is zero in all dimensions except one in which it is isomorphic to
the ring of coefficients. This dimension is then the Morse index of the critical
cell. The combinatorial multivector field in Figure 3 has three critical cells:
F , C and BCGF . They are all non-degenerate. The cells F and C have
Morse index equal zero. The cell BCGF has Morse index equal one.

A solution of V (also called a trajectory or a walk) is a bi-infinite, back-
ward infinite, forward infinite, or finite sequence of cells such that any two
consecutive cells in the sequence form an arrow in the graph GV . The solu-
tion is full if it is bi-infinite. A finite solution is also called a path. The full
solution is periodic if the sequence is periodic. It is stationary if the sequence
is constant. By the dynamics of V we mean the collection of all solutions.
The dynamics is multivalued in the sense that there may be many different
solutions going through a given cell.

2.3. Isolated invariant sets. Let X be a Lefschetz complex and let V be
a combinatorial multivector field on X. Assume S ⊆ X is V-compatible,
that is, S equals the union of multivectors contained in it. We say that S is
invariant if for every multivector V ⊆ S there is a full solution through V ?

in S. The invariant part of a subset A ⊆ X is the maximal, V-compatible
invariant subset of A. A path in clS is an internal tangency to S if the
values at the endpoints of the path are in S but one of the values is not in
S. The set S is isolated invariant if it is invariant and admits no internal
tangencies.
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Figure 3. A generalized multivector field as a partition of
a Lefschetz complex (top) and the associated directed graph
GV (bottom). The up-arrows and loops are marked by thick
solid lines. The down-arrows are marked by thin dashed lines.
The critical multivectors are {F}, {C} and
{BC,FG,BCGF}.

An isolated invariant set is an attractor, respectively a repeller, if there is
no full solution crossing it which goes away from it in forward, respectively
backward, time. The attractors and repellers have the following topolog-
ical characterization in terms of the T0 topology of X (see Sec. 8, Theo-
rems 8.1 and 8.3).

Theorem 2.1. An isolated invariant set S ⊆ X is an attractor, respectively
a repeller, if and only if it is closed, respectively open, in X.

2.4. Morse inequalities. Given a family {Mr}r∈P of mutually disjoint,
non-empty, isolated invariant sets, we write r ≤ r′ for r, r′ ∈ P if there exists
a full solution such that all its sufficiently far terms belong to Mr and all suf-
ficiently early terms belong to Mr′ . Such a full solution is called a connection
running from Mr′ to Mr. The connection is heteroclinic if r 6= r′. Otherwise
it is called homoclinic. We say that {Mr}r∈P is a Morse decomposition of
X if the relation ≤ induces a partial order in P. The Hasse diagram of this
partial order with vertices labelled by the Poincaré polynomials pMr(t) is
called the Conley-Morse graph of the Morse decomposition (comp. [7, Def.
2.11]).

The Poincaré polynomials pMr(t) are related to the Poincaré polynomial
pX(t) via the following theorem (see Section 9.3 Theorems 9.11 and 9.12).
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Figure 4. A Morse decomposition of a combinatorial mul-
tivector field (left) and its Conley-Morse graph (right). The
decomposition consists of six isolated invariant sets. Cells in
the same sets share the same mark.

Theorem 2.2. (Morse equation and Morse inequalities) If {Mr}r∈P is a
Morse decomposition of X, then∑

r∈P
pMr(t) = pX(t) + (1 + t)q(t)

for some polynomial q(t) with nonnegative coefficients. In particular, for
any natural number k we have∑

r∈P
rankHκ

k (Mr) ≥ rankHκ
k (X).

We say that a combinatorial multivector field V on X is gradient-like if
there exists a real valued function f on X which is non-increasing along
each solution of V and constant only if the cells along the solution belong
to the same multivector (see Section 9.5). The following theorem extends
the results of Forman [10, Cor. 3.6] to the case of combinatorial multivector
fields (see Section 9.5 Theorems 9.14 and 9.15).

Theorem 2.3. Assume V is a gradient-like combinatorial multivector field
on X such that each critical cell of V is non-degenerate. Let nk denote
the number of critical cells of Morse index k. Then the family of critical
multivectors of V is a Morse decomposition of X. Moreover, for any non-
negative integer k we have

nk − nk−1 + · · · ± n0 ≥ βk(X)− βk−1(X) + · · · ± β0(X),

and
nk ≥ βk(X).

�
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3. Examples.

In this section we present a few examples of combinatorial multivector
fields and some of its Morse decompositions. We begin with the example
in Figure 4. Then, we present an example illustrating the differences be-
tween the combinatorial multivector fields and combinatorial vector fields.
We complete this section with examples of combinatorial multivector fields
constructed by algorithm CMVF presented in Section 10. Two of these ex-
amples are derived from a planar smooth vector field and one is derived from
a cloud of random vectors on an integer lattice.

3.1. Attractors and repellers. Consider the planar regular cellular com-
plex in Figure 4(left). It consists of 11 quadrilaterals and its faces. A proper
subcollection of its 55 faces, marked by a circle in the center of mass, forms
a Lefschetz complex X. It consists of all cells of the cellular complex except
vertices A, B, D and edges AB, AD. A combinatorial multivector field V on
X is marked by up-arrows and loops. The invariant part of X with respect
to V consists of all cells of X but the cells marked in white. The Lefschetz
homology Hκ(X) ∼= H(K,A) where A is the cellular complex consisting of
vertices A,B,D and edges AB, AD. Thus, this is the homology of a pointed
annulus. Therefore, pX(t) = t.

Consider the family of six isolated invariant sets

M = {M•,M	,M◦,M×,M4,M♦ },

marked in Figure 4 with the respective symbols. The family M is a Morse
decomposition of X. The respective Poincaré polynomials are: p•(t) = 1,
p	(t) = t, p◦(t) = t2, p×(t) = 2t, p4(t) = t2 + t, p♦(t) = t+ 1.

There are two attractors: stationary M• and periodic M♦. There are
also two repellers: stationary M◦ and periodic M4. The other two isolated
invariant sets are neither attractors nor repellers. The Morse equation takes
the form

2t2 + 5t+ 2 = t+ (1 + t)(2 + 2t).

3.2. Refinements of multivector fields. A multivector field W is a re-
finement of V if each multivector in V is W-compatible. The refinement is
proper if the invariant part with respect to W of each regular multivector in
V is empty. A Forman refinement of a multivector field V is a vector fieldW
which is a proper refinement of V such that each multivector of V contains
at most one critical vector of W. Then W has precisely one critical cell in
any critical multivector of V.

The concept of Forman refinement raises two natural questions. The first
question is whether a combinatorial multivector field always admits a For-
man refinement. The second question is whether the study of the dynamics
of a combinatorial multivector field which admits a Forman refinement may
be reduced to the study of the dynamics of the refinement.
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Figure 5. A cellular complex with edges AD and A′D iden-
tified. The collection of five triangles and five edges marked
with a circle in the center of mass is proper, thus forms
a Lefschetz complex X. A direct computation shows that
Hκ(X) = 0, hence X is a zero space. However, it is easy to
see that any combinatorial vector field V on X either has a
critical cell or a periodic solution, thus the invariant part of
X is never empty.

Figure 6. A multivector field (left) and its two different
Forman refinements (middle and right).

We do not know what the answer to the first question is. If the answer is
negative, then there exists a multivector field V on a Lefschetz complex X
such that at least one multivector of V cannot be partitioned into vectors
with at most one critical vector in the partition. There are examples of zero
spaces (Lefschetz complexes with zero homology) which do not admit a com-
binatorial vector field with empty invariant part. They may be constructed
by adapting examples of contractible but not collapsible cellular complexes
such as Bing’s house [4] or dunce hat [33]. One such example is presented
in Figure 5. This example fulfills all requirements of a multivector except
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Figure 7. A combinatorial multivector field with homo-
clinic connections and chaotic dynamics (top) and one of its
two Forman refinements (bottom). Both refinements are de-
prived of such features.

the requirement that a multivector has precisely one top-dimensional cell,
because it has five top-dimensional cells.

Regardless of what is the answer to the first question, even if a given com-
binatorial multivector field does have a Forman refinement, in general it is
not unique. Figure 6 shows a combinatorial multivector field V (left) and its
two different Forman refinements: V1 (middle) and V2 (right). The critical
cells of all three combinatorial multivector fields are the same: AB, B, C,
DF and F . However, in the case of V there are heteroclinic connections
running from the critical cell DF to the critical cells AB, B and C. In the
case of V1 there is a heteroclinic connection running from DF to B but not
to AB nor C. In the case of V2 there is a heteroclinic connection running
from DF to C but not to AB nor B. Our next example shows that the
differences may be even deeper. Thus, the answer to the second question is
clearly negative.

3.3. Homoclinic connections and chaotic dynamics. Figure 7 presents
a combinatorial multivector field V on a Lefschetz complex X (top) and one
of its two Forman refinements V1 (bottom). The combinatorial multivector
field V has homoclinic connections to the cell BEIF . Moreover, it admits
chaotic dynamics in the sense that for each bi-infinite sequence of two sym-
bols marking the two edges BF and EI, there is a full trajectory whose
sequence of passing through the edges BF and EI is precisely the given
one. The two Forman refinements of V have neither homoclinic connections
nor chaotic dynamics.
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Figure 8. A combinatorial multivector field modelling the
dynamics of the differential equation (1). The critical cell
in the middle of the grid, marked with a dot, captures the
repelling stationary point of (1). The isolated invariant set
marked with triangles captures the attracting periodic tra-
jectory of (1). The isolated invariant set marked with crosses
captures the repelling periodic trajectory of (1). The Conley-
Morse graphs of (1) and the combinatorial model coincide.

3.4. A combinatorial multivector field constructed from a smooth
vector field. In section 10 we present algorithm CMVF. Its input consists
of a collection of classical vectors on an integer, planar lattice. These may
be vectors of a smooth planar vector field evaluated at the lattice points.
However, the algorithm accepts any collection of vectors, also vectors chosen
randomly. It constructs a combinatorial multivector field based on the di-
rections of the classical vectors, with varying number of strict multivectors:
from many to none, depending on a control parameter.
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Figure 9. A combinatorial vector field modelling the dy-
namics of the differential equation (1). Only the attracting
cycle is captured.

As our first example consider the vector field of the differential equation

(1) ẋ1 = −x2 + x1(x2
1 + x2

2 − 4)(x2
1 + x2

2 − 1)
ẋ2 = x1 + x2(x2

1 + x2
2 − 4)(x2

1 + x2
2 − 1)

restricted to the 10× 10 lattice of points in the square [−3, 3]× [−3, 3]. The
equation has three minimal invariant sets: a repelling stationary point at
the origin and two invariant circles: an attracting periodic orbit of radius 1
and a repelling periodic orbit of radius 2. The outcome of algorithm CMVF
maximizing the number of strict multivectors is presented in Figure 8. It
captures all three minimal invariant sets of (1). The variant forbidding strict
multivectors is presented in Figure 9. It captures only the attracting periodic
orbit, whereas the repelling fixed point and repelling periodic trajectory
degenerate into a collection of critical cells.
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Figure 10. A combinatorial multivector field constructed
from a random collection of vectors at the lattice points.

3.5. A combinatorial multivector field constructed from a random
collection of vectors. Figure 10 presents a combinatorial multivector field
constructed by algorithm CMVF from a randomly selected collection of vec-
tors at the lattice points. To ensure that the boundary of the selected region
does not divide multivectors, all the vectors at the boundary are not random
but point inwards. The resulting Morse decomposition consists of 102 iso-
lated invariant sets out of which three consist of more than one multivector.

4. Preliminaries

In this section we introduce the notation, recall the definitions and gather
results used in the sequel.

4.1. Sets and maps. We denote the sets of reals, integers, non-negative
integers and non-positive integers respectively by R,Z, Z+, Z−. We also
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write Z≥n, Z≤n respectively for integers greater or equal n and less or equal
n. Given a set X, we write cardX for the number of elements of X and we
denote by P(X) the family of all subsets of X. We write f : X9Y for a
partial map from X to Y , that is a map defined on a subset dom f ⊆ X,
called the domain of f , and such that the set of values of f , denoted im f ,
is contained in Y .

4.2. Relations, multivalued maps and digraphs. Given a set X and a
binary relation R ⊆ X ×X, we use the shorthand xRy for (x, y) ∈ R. By
the transitive closure of R we mean the relation R̄ ⊆ X×X given by xR̄y if
there exists a sequence x = x0, x1, . . . , xn = y such that n ≥ 1 and xi−1Rxi
for i = 1, 2, . . . , n. Note that R̄ is transitive but need not be reflexive. The
relation R̄∪ idX , where idX stands for the identity relation on X, is reflexive
and transitive. Hence, it is a preorder, called the preorder induced by R. A
y ∈ X covers an x ∈ X in the relation R if xRy but there is no z ∈ X such
that x 6= z 6= y and xRz, zRy.

A multivalued map F : X −→→Y is a map F : X → P(Y ). For A ⊆ X
we define the image of A by F (A) :=

⋃
{F (x) | x ∈ A } and for B ⊆ Y we

define the preimage of B by F−1(B) := {x ∈ X | F (x) ∩B 6= ∅ }.
Given a relation R, we associate with it a multivalued map FR : X −→→X,

by FR(x) := R(x), where R(x) := { y ∈ X | xRy } is the image of x ∈ X
in R. Obviously R 7→ FR is a one-to-one correspondence between binary
relations in X and multivalued maps from X to X. Often, it will be conve-
nient to interpret the relation R as a directed graph whose set of vertices is
X and a directed arrow joins x with y whenever xRy. The three concepts
relation, multivalued map and directed graph are equivalent on the formal
level and the distinction is used only to emphasize different directions of re-
search. However, in this paper it will be convenient to use all these concepts
interchangeably.

4.3. Partial orders. Assume (X,≤) is a poset. Thus, ≤ is a partial order,
that is a reflexive, antisymmetric and transitive relation in X. As usual,
we denote the inverse of this relation by ≥. We also write < and > for the
associated strict partial orders, that is relations ≤ and ≥ excluding identity.
By an interval in X we mean a subset of X which has one of the following
four forms

[x, y] := { z ∈ X | x ≤ z ≤ y }
(−∞, y] := { z ∈ X | z ≤ y }

[x,∞) := { z ∈ X | x ≤ z }
(−∞,∞) := X.

In the first case we speak about a closed interval. The elements x, y are
the endpoints of the interval. We recall that A ⊆ X is convex if for any
x, y ∈ A the closed interval [x, y] is contained in A. Note that every interval
is convex but there may exists convex subsets of X which are not intervals.
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A set A ⊆ X is an upper set if for any x ∈ X we have [x,∞) ⊆ A. Also,
A ⊆ X is a lower set if for any x ∈ X we have (−∞, x] ⊆ A. Sometimes
a lower set is called an attracting interval and an upper set a repelling
interval. However, one has to be careful, because in general lower and upper
sets need not be intervals at all. For A ⊆ X we also use the notation
A≤ := {x ∈ X | ∃a∈A x ≤ a } and A< := A≤ \A.
Proposition 4.1. If I is convex, then I≤ and I< are lower sets (attracting
intervals).

Proof: The verification that I≤ is a lower set is straightforward. To see
that I< is a lower set take x ∈ I<. Hence, we have x 6∈ I but x < z for some
z ∈ I. Let y ≤ x. Then y ∈ I≤. Since I is convex, we cannot have y ∈ I. It
follows that y ∈ I<. �

Proposition 4.2. Let I = { 1, 2, . . . n } and let ≤ denote the linear order
of natural numbers. Then for any i ∈ I we have {i}≤ = { 1, 2, . . . i } and
{i}< = { 1, 2, . . . i− 1 }. �

4.4. Topology of finite sets. For a topological space X and A ⊆ X we
write clA for the closure of A. We also define the mouth of A by

moA := clA \A.
Note that A is closed if and only if its mouth is empty. We say that A is
proper if moA is closed. Note that open and closed subsets of X are proper.
In the case of finite topological spaces proper sets have a special structure.
To explain it we first recall some properties of finite topological spaces based
on the following fundamental result which goes back to P.S. Alexandroff [1].
Theorem 4.3. For a finite poset (X,≤) the family T ≤ of upper sets of ≤
is a T0 topology on X. For a finite T0 topological space (X, T ) the relation
x ≤T y defined by x ∈ cl{y} is a partial order on X. Moreover, the two
associations relating T0 topologies and partial orders are mutually inverse.

Let (X, T ) be a finite topological space. For x ∈ X we write cl x := cl{x},
opn x :=

⋂
{U ∈ T | x ∈ U }. The following proposition may be easily veri-

fied.
Proposition 4.4. Let (X, T ) be a finite topological space and let x, y ∈ X.
The operations cl and opn have the following properties.

(i) clx is the smallest closed set containing x,
(ii) opn x is the smallest open set containing x,
(iii) clA =

⋃
x∈A cl x for any A ⊆ X,

(iv) A ⊆ X is closed if and only if cl x ⊆ A for any x ∈ A,
(v) A ⊆ X is open if and only if opn x ⊆ A for any x ∈ A,
(vi) y ∈ cl x if and only if x ∈ opn y. �

In the sequel we will particularly often use property (iii) of Proposition 4.4.
In particular, it is needed in the following characterization of proper sets in
finite topological spaces.
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Proposition 4.5. Let X be a finite topological space. Then A ⊆ X is proper
if and only if

(2) ∀x,z∈A∀y∈X x ∈ cl y, y ∈ cl z ⇒ y ∈ A.

Proof: Let A ⊆ X be proper, x, z ∈ A, y ∈ X, x ∈ cl y, y ∈ cl z and
assume y 6∈ A. Then y ∈ moA and x ∈ cl moA = moA. Therefore, x 6∈ A,
a contradiction proving (2). Assume in turn that (2) holds and moA is not
closed. Then there exists an x ∈ cl moA \moA. Thus, x ∈ A, x ∈ cl y for
some y ∈ moA and y ∈ cl z for some z ∈ A. It follows from (2) that y ∈ A,
which contradicts y ∈ moA. �

Proposition 4.5 means that in the setting of finite topological spaces
proper sets correspond to convex sets in the language of the associated
partial order.

4.5. Graded modules and chain complexes. Let R be a fixed ring with
unity. Given a set X we denote by R(X) the free module over R spanned
by X. Given a graded, finitely generated module E = (Ek)k∈Z+ over R, we
write

pE(t) :=
∞∑
k=0

rank(Ek)tk,

for the Poincaré formal power series of E. We have the following theorem
(see [26])

Theorem 4.6. Assume E,F,G are graded, finitely generated modules and
we have an exact sequence

. . . Ei Fi Gi . . . E0 F0 G0 0.-
γi+1 -αi -βi -γi -γ1 -α0 -β0 -γ0

Then
pE(t) + pG(t) = pF (t) + (1 + t)Q(t),

where

Q(t) :=
∞∑
k=0

rank(im γk+1)tk

is a polynomial with non-negative coefficients. Moreover, if F = E⊕G, then
Q = 0. �

5. Multivector fields and multivector dynamics.

In this section we define Lefschetz complexes and introduce the concepts
of the combinatorial multivector and the combinatorial vector field on a
Lefschetz complex. Given a combinatorial multivector field, we associate
with it a graph and a multivalued map allowing us to study its dynamics.
We also prove a crucial theorem about acyclic combinatorial multivector
fields.
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5.1. Lefschetz complexes. The following definition goes back to S. Lef-
schetz (see [19, Chpt. III, Sec. 1, Def. 1.1]).

Definition 5.1. We say that (X,κ) is a Lefschetz complex if X = (Xq)q∈Z+

is a finite set with gradation, κ : X ×X → R is a map such that κ(x, y) 6= 0
implies x ∈ Xq, y ∈ Xq−1 and and for any x, z ∈ X we have

(3)
∑
y∈X

κ(x, y)κ(y, z) = 0.

We refer to the elements of X as cells and to κ(x, y) as the incidence coef-
ficient of x, y.

The family of cells of a simplicial complex [15, Definition 11.8] and the
family of elementary cubes of a cubical set [15, Definition 2.9] provide sim-
ple but important examples of Lefschetz complexes. In these two cases the
respective formulas for the incident coefficients are explicit and elementary
(see [23]). Also a general regular cellular complex (regular finite CW com-
plex, see [20, Section IX.3]) is an example of a Lefschetz complex. In this
case the incident coefficients may be obtained from a system of equations
(see [20, Section IX.5]).

The Lefschetz complex (X,κ) is called regular if for any x, y ∈ X the inci-
dence coefficient κ(x, y) is either zero or is invertible in R. One easily verifies
that condition (3) implies that we have a free chain complex (R(X), ∂κ) with
∂κ : R(X) → R(X) defined on generators by ∂κ(x) :=

∑
y∈X κ(x, y)y. The

Lefschetz homology of (X,κ), denoted Hκ(X), is the homology of this chain
complex. By a zero space we mean a Lefschetz complex whose Lefschetz
homology is zero. Since X is finite, (R(X), ∂κ) is finitely generated. In con-
sequence, the Poincaré formal power series pHκ(X)(t) is a polynomial. We
denote it briefly by pX(t).

Given x, y ∈ X we say that y is a facet of x and write y ≺κ x if κ(x, y) 6= 0.
It is easily seen that the relation ≺κ extends uniquely to a minimal partial
order. We denote this partial order by ≤κ and the associated strict order
by <κ. We say that y is a face of x if y ≤κ x. The T0 topology defined via
Theorem 4.3 by the partial order ≤κ will be called the Lefschetz topology of
(X,κ). Observe that the closure of a set A ⊆ X in this topology consists of
all faces of all cells in A. The Lefschetz complex via its Lefschetz topology is
related to the abstract cell complex in the sense of [17] and [29, Section III]).
In principle, the definition in the sequel using Lefschetz topology could be
restated in terms of the partial order≤κ. We prefer to use Lefschetz topology
to emphasize that several definitions, in particular the definition of an index
pair, are analogous to their counterparts in the classical Conley theory.

Proposition 5.2. If X = {a} is a singleton, then Hκ(X) ∼= R(X) 6= 0. If
X = {a, b} and κ(b, a) is invertible, then Hκ(X) = 0.

Proof: If X = {a}, then ∂κ is zero. If X = {a, b} and κ(b, a) is invertible,
then the only non-zero component of ∂κ is an isomorphism. �
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Proposition 5.2 shows that a Lefschetz complex consisting of just two cells
may have zero Lefschetz homology. At the same time the singular homology
of this two point space with Lefschetz topology is non-zero, because the
singular homology of a non-empty space is never zero. Thus, the singular
homology H(X) of a Lefschetz complex (X,κ) considered as a topological
space with its Lefschetz topology need not be the same as the Lefschetz
homology Hκ(X). Some situations when the two homologies are isomorphic
may be deduced from the results in [2]. However, this is irrelevant from the
point of view of the needs of this paper.

A set A ⊆ X is a κ-subcomplex of X if (A, κ|A×A) is a Lefschetz complex.
Lefschetz complexes, under the name of S-complexes, are discussed in [23].
In particular, the following proposition follows from the observation that
a proper subset of a Lefschetz complex X satisfies the assumptions of [23,
Theorem 3.1].
Proposition 5.3. Every proper A ⊆ X is a κ-subcomplex of X. In partic-
ular, open and closed subsets of X are κ-subcomplexes of X. �

Note that a κ-subcomplexA ofX does not guarantee that (R(A), ∂κ|R(A)) is
a chain subcomplex of (R(X), ∂κ). However, we have the following theorem
(see [23, Theorem 3.5]).
Theorem 5.4. Assume A is closed in X. Then (R(A), ∂κ|R(A)) is a chain
subcomplex of (R(X), ∂κ). Moreover, the homomorphisms ∂κ|A×A : R(A)→
R(A) and ∂κ|R(A) : R(A) → R(A) coincide. In particular, the homology of
the quotient chain complex (R(X)/R(A), [∂κ]), denoted Hκ(X,A), is well
defined and isomorphic to Hκ(X \A). �

The following proposition is straightforward to verify.
Proposition 5.5. Assume X = X1 ∪ X2, where X1 and X2 are disjoint,
closed subset of X. Then X1 and X2 are κ-subcomplexes and Hκ(X) =
Hκ(X1)⊕Hκ(X2). �

We also need the following theorem which follows from [23, Theorems 3.3
and 3.4]
Theorem 5.6. Assume X ′ ⊆ X is closed in X and X ′′ := X \ X ′. Then
there is a long exact sequence of homology modules
(4) . . . −→ Hκ

i (X ′) −→ Hκ
i (X) −→ Hκ

i (X ′′) −→ Hκ
i−1(X ′) −→ . . . .

5.2. Multivectors. Let (X,κ) be a fixed Lefschetz complex.
Definition 5.7. A combinatorial multivector or briefly a multivector is a
proper subset V ⊆ X admitting a unique maximal element with respect to
the partial order ≤κ. We call this element the dominant cell of V and denote
it V ?.

Note that we do not require the existence of a unique minimal element in a
multivector but if such an element exists, we denote it by V?. Multivectors
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admitting a unique minimal element are studied in [13] in the context of
equivariant discrete Morse theory. A concept similar to our multivector
appears also in [32].
Proposition 5.8. For a multivector V we have V 6= ∅ and clV = clV ?. �

A multivector is regular if V is a zero space. Otherwise it is called critical.
A combinatorial multivector V is a combinatorial vector or briefly a vector
if cardV ≤ 2. A vector always has a unique minimal element.
Proposition 5.9. Assume X is a regular Lefschetz complex and let V ⊆ X
be a vector. Then cardV = 1 if and only if V is critical and cardV = 2 if
and only if V is regular. Moreover, if cardV = 2, then V? ≺κ V ?.

Proof: If V is a singleton, then by Proposition 5.2 we have Hκ(V ) 6= 0,
hence V is critical. If cardV = 2, then V? 6= V ?. First, we will show that
V? ≺κ V ?. Indeed, if not, then V? <κ x <κ V

? for some x ∈ X. But then
x ∈ moV and V? ∈ cl moV \moV , which contradicts the assumption that
V is proper. Thus, V? is a facet of V ?, κ(V ?, V?) 6= 0 and by the assumed
regularity of X it is invertible. Therefore, again by Proposition 5.2, we have
Hκ(V ) = 0. It follows that V is regular. �

5.3. Multivector fields. The following definition introduces the main new
concept of this paper.
Definition 5.10. A combinatorial multivector field on X, or briefly a mul-
tivector field, is a partition V of X into multivectors. A combinatorial vector
field on X, or briefly a vector field, is a combinatorial multivector field whose
each multivector is a vector.

Proposition 5.9 implies that our concept of a vector field on the Lefschetz
complex of a cellular complex is in one-to-one correspondence with Forman’s
combinatorial vector field (see [11]). It also corresponds to the concept of
partial matching [18, Definition 11.22]. Thus, the combinatorial multivector
field is a generalization of the earlier definitions in which vectors were used
instead of multivectors.

For each cell x ∈ X we denote by [x]V the unique multivector in V to
which x belongs. If the multivector field V is clear from the context, we
write briefly [x] := [x]V and x? := [x]?V . We refer to a cell x as dominant
with respect to V, or briefly as dominant, if x? = x.

The map which sends x to x? determines the combinatorial multivector
field. More precisely, we have the following theorem.
Theorem 5.11. The map θ : X 3 x 7→ x? ∈ X has the following properties

(i) for each x ∈ X we have x ∈ cl θ(x),
(ii) θ2 = θ,
(iii) for each y ∈ im θ if x ∈ θ−1(y), then opn x ∩ cl y ⊆ θ−1(y).

Conversely, if a map θ : X → X satisfies properties (i)-(iii), then
Vθ := { θ−1(y) | y ∈ im θ }
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is a combinatorial multivector field on X.

Proof: Properties (i)-(iii) of θ : X 3 x 7→ x? ∈ X follow immediately
from the definition of a multivector. To prove the converse assertion assume
θ : X → X satisfies properties (i)-(iii). Obviously Vθ is a partition. To
see that each element of Vθ is a multivector take y ∈ im θ. Then by (i)
θ−1(y) ⊆ cl y and by (iii) θ−1(y) is open in cl y. This proves that θ−1(y)
is proper. By (ii) the unique maximal element in θ−1(y) is y. Therefore,
θ−1(y) is a multivector. �

5.4. The graph and multivalued map of a multivector field. Given
a combinatorial multivector field V on X we associate with it the graph GV
with vertices in X and an arrow from x to y if one of the following conditions
is satisfied

x 6= y = x? (an up-arrow),(5)
x = x? and y ∈ cl x \ [x]V (a down-arrow),(6)
x = x? = y and [y] is critical (a loop).(7)

We write y ≺V x if there is an arrow from x to y in GV . This lets us interpret
≺V as a relation in X. We denote by ≤V the preorder induced by ≺V . In
order to study the dynamics of V, we interpret ≺V as a multivalued map
ΠV : X −→→X, which sends a cell x to the set of cells covered by x in ≺V , that
is

(8) ΠV(x) := { y ∈ X | y ≺V x }.

We say that a cell x ∈ X is critical with respect to V if the multivector
[x]V is critical and x is dominant in [x]V . A cell is regular if it is not critical.
We denote by 〈x〉V the set of regular cells in [x]V . It is straightforward to
observe that

(9) 〈x〉V =
{

[x]V if [x]V is regular,
[x]V \ {x?} otherwise.

As an immediate consequence of the definition (8) and formula (9) we get
the following proposition.

Proposition 5.12. For each x ∈ X we have

ΠV(x) =
{
{x?} if x 6= x?,

cl x \ 〈x〉V otherwise. �

We extend the relation ≤V to multivectors V,W ∈ V by assuming that
V ≤V W if and only if V ? ≤V W ?.

Proposition 5.13. If ≤V is a partial order on X, then the extension of ≤V
to multivectors is a partial order on V. �
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5.5. Acyclic multivector fields. We say that V is acyclic if ≤V is a partial
order on X.

Theorem 5.14. Assume X admits an acyclic multivector field whose each
multivector is regular. Then X is a zero space.

Proof: Let V be an acyclic multivector field on X whose each multivector
is regular. We will proceed by induction on cardV. If cardV = 0, that is if X
is empty, the conclusion is obvious. Assume cardV > 0. By Proposition 5.13
we know that ≤V is a partial order on V. Let V be a maximal element of
V with respect to ≤V . We claim that X ′ := X \ V is closed in X. To prove
the claim, assume the contrary. Then there exists an x ∈ clX ′ ∩ V . Let
y ∈ X ′ be such that x ∈ cl y ⊆ cl y?. Since x ∈ V and y 6∈ V , we have
[x]V 6= [y]V = [y?]V . It follows that x ≤V y? and consequently V = [x]V ≤V
[y?]V . Hence, V is not maximal, because V 6= [y?]V , a contradiction proving
that X ′ is closed. In particular X ′ is proper. Obviously, V ′ := V \ {V } is
an acyclic multivector field on X ′ whose each multivector is regular. Thus,
by induction assumption, X ′ is a zero space. Since also V is a zero space,
it follows from Theorem 5.6 applied to the pair (X,X ′) that X is a zero
space. �

6. Solutions and invariant sets

In this section we first define the solution of a combinatorial multivector
field, an analogue of a solution of an ordinary differential equation. Then,
we use it to define the fundamental concept of the invariant set of a combi-
natorial multivector field.

6.1. Solutions. A partial map ϕ : Z9X is a solution of V if domϕ is
an interval in Z and ϕ(i + 1) ∈ ΠV(ϕ(i)) for i, i + 1 ∈ domϕ. A solution
ϕ is in A ⊆ X if imϕ ⊆ A. We call ϕ a full (respectively forward or
backward) solution if domϕ is Z (respectively Z≥n or Z≤n for some n ∈ Z).
We say that ϕ is a solution through x ∈ X if x ∈ imϕ. We denote the
set of full (respectively forward, backward) solutions in A through x by
Sol(x,A) (respectively Sol+(x,A), Sol−(x,A)). We drop A in this notation
if A is the whole Lefschetz complex X. As an immediate consequence of
Proposition 5.12 we get the following proposition.

Proposition 6.1. If ϕ is a solution of V and i, i + 1 ∈ domϕ then either
ϕ(i)? = ϕ(i) or ϕ(i)? = ϕ(i+ 1). �

Given n ∈ Z, let τn : Z 3 i 7→ i + n ∈ Z denote the n-translation map.
Let ϕ be a solution in A such that n ∈ Z is the right endpoint of domϕ and
let ψ be a solution in A such that m ∈ Z is the left endpoint of domψ. We
define ϕ · ψ : τ−1

n (domϕ) ∪ τ−1
m−1(domψ) → A, the concatenation of ϕ and

ψ by

(ϕ · ψ)(i) :=
{
ϕ(i+ n) if i ≤ 0
ψ(i+m− 1) if i > 0.
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It is straightforward to observe that if ψ(m) ∈ ΠV(ϕ(n)) then the concate-
nation ϕ · ψ is also a solution in A.

Let ϕ ∈ Sol+(x,A) and let domϕ = Z≥n for some n ∈ Z. We define σ+ϕ :
Z≥n → A, the right shift of ϕ, by σ+ϕ(i) := ϕ(i + 1). Let ψ ∈ Sol−(x,A)
and let domψ = Z≤n for some n ∈ Z. We define σ−ψ : Z≤n → A, the left
shift of ψ, by σ−ψ(i) := ψ(i− 1). It is easily seen that for k ∈ Z+ we have
σk+ϕ ∈ Sol+(ϕ(n+ k), A) and σk−ψ ∈ Sol−(ψ(n− k), A). For a full solution
ϕ we denote respectively by ϕ+, ϕ− the restrictions ϕ|Z+ , ϕ|Z− .

Obviously, if ϕ is a solution in A then ϕ ◦ τn is also a solution in A. We
say that solutions ϕ and ϕ′ are equivalent if ϕ′ = ϕ ◦ τn or ϕ = ϕ′ ◦ τn for
some n ∈ Z. It is straightforward to verify that this is indeed an equiva-
lence relation. It preserves forward, backward and full solutions through x.
Moreover, it is not difficult to verify that the concatenation extends to an
associative operation on equivalence classes of solutions. In the sequel we
identify solutions in the same equivalence class. This allows us to treat the
solutions as finite or infinite words over the alphabet consisting of cells in X.
In the sequel, whenever we pick up a representative of a forward (backward)
solution, we assume its domain is respectively Z+, (Z−).

6.2. Paths. A solution ϕ such that domϕ is a finite interval is called a path
joining the value of ϕ at the left end of the domain with the value at the
right end. The cardinality of domϕ is called the length of the path. In the
special case when ϕ has length one we identify ϕ with its unique value. We
also admit the trivial path of length zero (empty set). In particular, it acts
as the neutral element of concatenation. For every x ∈ X there is a unique
path joining x with x?, denoted ν(x) and given by

ν(x) :=
{
x if x = x?,
x · x? otherwise.

Note that the concatenation x · x? is a solution, because x? ∈ ΠV(x). We
also define

ν−(x) :=
{
∅ if x = x?,
x otherwise.

Note that ν(x) = ν−(x) · x?.

6.3. V-compatibility. We say that A ⊆ X is V-compatible if x ∈ A implies
[x]V ⊆ A for x ∈ X. We denote by [A]−V the maximal V-compatible subset
of A and by [A]+V the minimal V-compatible superset of A. The following
proposition is straightforward.

Proposition 6.2. For any A,B ⊆ X we have
(i) [A]−V ⊆ A ⊆ [A]+V ,

(ii) if A,B are V-compatible, then also A∩B and A∪B are V-compatible,
(iii) [A]−V and [A]+V are V-compatible,
(iv) A ⊆ B implies [A]±V ⊆ [B]±V . �
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A B

C

Figure 11. A multivector field on a triangle. The invariant
part of the collection of cells {AB,AC,ABC,B,BC} marked
in black is {AB,AC,ABC,B}.

Observe that if A ⊆ X is a V-compatible κ-subcomplex of X then V ′ :=
{V ∈ V | V ⊆ A } is a multivector field on A. We call it the restriction of V
to A and denote it V |A.

6.4. Invariant parts and invariant sets. We define the invariant part
of A, the positive invariant part of A and the negative invariant part of A
respectively by

InvA := {x ∈ A | Sol(x?, [A]−V ) 6= ∅ },
Inv+A := {x ∈ A | Sol+(x?, [A]−V ) 6= ∅ },
Inv−A := {x ∈ A | Sol−(x?, [A]−V ) 6= ∅ }.

Note that by replacing x? by x or [A]−V by A in the definition of the
invariant part of A we may not obtain the invariant part of A. Indeed,
consider the set {AB,AC,ABC,B,BC} marked in black in Figure 11. Its
invariant part is {AB,AC,ABC,B}. But, by replacing x? by x in the
definition of the invariant part we obtain {ABC,B}. And by replacing [A]−V
by A we obtain {AB,AC,ABC,B,BC}.

Proposition 6.3. For any A ⊆ X we have
[InvA]−V = InvA,(10)

InvA ⊆ A,(11)
A ⊆ B ⇒ InvA ⊆ InvB,(12)
InvA = Inv−A ∩ Inv+A.(13)
InvA = Inv InvA.(14)

Proof: Equations (10), (11), (12), (13) and the right-to-left inclusion in
(14) are straightforward. To prove the left-to-right inclusion in (14) take
x ∈ InvA and let ϕ ∈ Sol(x?, [InvA]−V ). Fix an i ∈ Z. Obviously,

ϕ ∈ Sol(ϕ(i), [A]−V ) ∩ Sol(ϕ(i+ 1), [A]−V ).
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Hence, by Proposition 6.1 we have ϕ ∈ Sol(ϕ(i)?, [A]−V ), which means that
ϕ(i) ∈ InvA. It follows from (10) that ϕ(i) ∈ [InvA]−V and since i ∈ Z
is arbitrarily fixed we conclude that ϕ ∈ Sol(x?, [InvA]−V ) 6= ∅. Therefore,
x ∈ Inv InvA. �

We say that A is invariant with respect to V if InvA = A.

Proposition 6.4. Assume A ⊆ X is invariant. Then A is V-compatible.
Moreover, for any x ∈ A we have Sol+(x, [A]−V ) 6= ∅ and for any dominant
x ∈ A we have Sol−(x, [A]−V ) 6= ∅.

Proof: It follows from (10) that the invariant part of any set is V-
compatible. In particular, an invariant set, as the invariant part of itself
is V-compatible. Let x ∈ A and ϕ ∈ Sol(x?, [A]−V ). Then ν−(x) · ϕ+ ∈
Sol+(x, [A]−V ). Obviously, ϕ− ∈ Sol−(x, [A]−V ) when x = x?. �

7. Isolated invariant sets and the Conley index

In this section we introduce the concept of an isolated invariant set of
a combinatorial multivector field and its homological invariant, the Conley
index. Both are analogues of the classical concepts for flows [9]. From now
on we fix a combinatorial multivector field V on a Lefschetz complex X and
we assume that X is invariant with respect to V.

7.1. Isolated invariant sets. Assume A ⊆ X is invariant. We say that a
path ϕ from x ∈ A to y ∈ A is an internal tangency of A, if imϕ ⊆ clA and
imϕ ∩ moA 6= ∅. We say that S ⊆ X is an isolated invariant set if it is
invariant and admits no internal tangencies.

Theorem 7.1. Let S ⊆ X be invariant. Then S is an isolated invariant set
if and only if S is proper.

Proof: Assume S ⊆ X is an isolated invariant set. By Proposition 6.4 it
is V-compatible. Assume to the contrary that S is not proper. Then there
exists an x ∈ cl moS \moS. Hence, x ∈ cl z for a z ∈ moS and z ∈ cl y for
a y ∈ S. In particular, x ∈ S and z 6∈ S. It follows from the V-compatibility
of S that [x] 6= [z] 6= [y]. Hence, x ∈ ΠV(z) and z ∈ ΠV(y). Thus, y · z · x is
an internal tangency, a contradiction proving that S is proper.

To prove the opposite implication, take S ⊆ X which is invariant and
proper and assume to the contrary that ϕ is an internal tangency of S.
Then the values x, y of ϕ at the endpoints of domϕ belong to S and there
is a k ∈ domϕ such that ϕ(k) ∈ moS. Thus, we can choose an m ∈ domϕ
satisfying ϕ(m) 6∈ S and ϕ(m + 1) ∈ S. In particular, ϕ(m) ∈ moS and
ϕ(m + 1) 6∈ moS. Proposition 6.1 and V-compatibility of S imply that
ϕ(m)? = ϕ(m). It follows that ϕ(m+ 1) ∈ clϕ(m) ⊆ cl moS. However, this
is a contradiction, because S is proper. �

Proposition 7.2. Every critical multivector is an isolated invariant set.



26 MARIAN MROZEK

Figure 12. The singleton {HM} is a simple exam-
ple of an isolated invariant set. Taking P1 =
{DH,H,HM,M,MN,N} and P2 = {DH,H,N} we ob-
tain a sample index pair P = (P1, P2). This is not a sat-
urated index pair. An example of a saturated index pair is
P ′ = (P ′1, P ′2) with P ′1 = P1 and P ′2 = P2 ∪ {M,MN}.

Proof: Let V be a critical multivector of V. Observe that V is invariant,
because [V ]−V = V and Z 3 n 7→ V ? ∈ V is a full solution. Since V , as a
multivector, is proper, the conclusion follows from Theorem 7.1. �

7.2. Index pairs. A pair P = (P1, P2) of closed subsets of X such that
P2 ⊆ P1 is an index pair for S if the following three conditions are satisfied

P1 ∩ΠV(P2) ⊆ P2,(15)
P1 ∩Π−1

V (X \ P1) ⊆ P2,(16)
S = Inv(P1 \ P2).(17)

We say that the index pair P is saturated if P1 \ P2 = S.
A sample isolated invariant set together with an index pair is presented

in Figure 12.

Proposition 7.3. If (P1, P2) is an index pair and x ∈ P1 \ P2 then x? ∈
P1 \ P2.

Proof: Assume to the contrary that x? 6∈ P1 \P2. Then either x? 6∈ P1 or
x? ∈ P2. Since x? ∈ ΠV(x), the first case contradicts (15). Since x ∈ cl x?,
the second case contradicts the fact that P2 is closed. �

Proposition 7.4. For any index pair (P1, P2) the set P1\P2 is V-compatible.

Proof: Assume to the contrary that x ∈ P1 \ P2 but [x] 6⊆ P1 \ P2. By
Proposition 7.3 we may assume without loss of generality that x = x?. Then



CONLEY-MORSE-FORMAN THEORY 27

y 6∈ P1 \ P2 for some y ∈ [x?]. Since y ∈ cl x? ⊆ P1, we see that y ∈ P2. But
x? ∈ ΠV(y), therefore we get from (15) that x? ∈ P2, a contradiction. �

The following proposition follows immediately from the definition of index
pair.

Proposition 7.5. Assume P = (P1, P2) is an index pair, x ∈ P1 and ϕ ∈
Sol+(x). Then either ϕ ∈ Sol+(x, P1) or ϕ(i) ∈ P2 for some i ∈ Z+. �

Given an index pair P , consider the set

P̂ := {x ∈ P1 | ∀ϕ∈Sol+(x) ∃i∈domϕ ϕ(i) ∈ P2 }

of cells in P1 whose every forward solution intersects P2.

Proposition 7.6. If y ∈ P̂ \ P2, then y? ∈ P̂ .

Proof: If y = y?, then the conclusion is obvious. Therefore, we may
assume that y 6= y?. Then y? = ΠV(y) and since y 6∈ P2 we get from (16)
that y? ∈ P1. Let ϕ ∈ Sol+(y?). Then ϕ′ := y ·ϕ ∈ Sol+(y). The assumption
y ∈ P̂ implies that ϕ′(i) ∈ P2 for some i ∈ Z+. Since y 6∈ P2 we have i > 0.
It follows that ϕ(i− 1) = ϕ′(i) ∈ P2 and consequently y? ∈ P̂ . �

In the following lemma, given an index pair P we first shrink P1 and then
grow P2 to saturate P .

Lemma 7.7. If P is an index pair for an isolated invariant set S, then
P ∗ := (S∪ P̂ , P2) is an index pair for S and P ∗∗ := (S∪ P̂ , P̂ ) is a saturated
index pair for S.

Proof: First, we will show that the sets P̂ and S ∪ P̂ are closed. Take
x ∈ cl P̂ and assume x 6∈ P̂ . Since P̂ ⊆ P1 and P1 is closed, we have x ∈ P1.
Choose y ∈ P̂ such that x ∈ cl y. If y ∈ P2, then x ∈ P2 ⊆ P̂ . Hence, assume
that y 6∈ P2. Then, by Proposition 7.6, y? ∈ P̂ . Moreover, x ∈ cl y ⊆ cl y?.
Since x 6∈ P̂ , there exists a ϕ ∈ Sol+(x,X \ P2). But x ∈ P1, hence it
follows from Proposition 7.5 that ϕ ∈ Sol+(x, P1 \ P2). Note that x 6= y?,
because x ∈ P̂ and x ≤κ y ≤κ y?. Thus, we cannot have [x] = [y?], because
otherwise ϕ(1) = y? and σ(ϕ) ∈ Sol+(y?, P1 \P2), which contradicts y? ∈ P̂ .
Hence, we have [x] 6= [y?]. Then x ∈ ΠV(y?) and y? · ϕ ∈ Sol+(y?, P1 \ P2)
which again contradicts y? ∈ P̂ . It follows that x ∈ P̂ . Therefore, P̂ is
closed.

To show that S ∪ P̂ is closed it is enough to prove that

(18) clS \ S ⊆ P̂ .

Assume the contrary. Then there exists an x ∈ clS \ S such that x 6∈ P̂ .
Let y ∈ S be such that x ∈ cl y. Without loss of generality we may assume
that y = y?. By the V-consistency of S we have x 6∈ [y?]. Thus, x ∈ ΠV(y?).
Since y? ∈ S ⊆ Inv−(P1 \ P2), we can take ϕ ∈ Sol−(y?, P1 \ P2). Since
x 6∈ P̂ and x ∈ clS ⊆ P1, we may take ψ ∈ Sol+(x, P1 \ P2). Then ϕ · ψ ∈
Sol(x, P1\P2). By Proposition 7.4 the set P1\P2 is V-compatible. Therefore,
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x ∈ Inv(P1 \ P2) = S, a contradiction again. It follows that S ∪ P̂ is also
closed.

In turn, we will show that P ∗ satisfies properties (15)–(17). Property
(15) follows immediately from the same property of index pair P , because
S ∪ P̂ ⊆ P1. To see (16) take x ∈ S ∪ P̂ and assume there exists a y ∈
ΠV(x) \ (S ∪ P̂ ). We will show first that x 6∈ S. Assume to the contrary
that x ∈ S. It cannot be y = x?, because then y ∈ S by the V-compatibility
of S. Hence, y ∈ cl x. It follows that y ∈ clS \ S and by (18) y ∈ P̂ , a
contradiction which proves that x 6∈ S and consequently x ∈ P̂ . Since y 6∈ P̂ ,
we can choose a solution ϕ ∈ Sol+(y,X \P2). It follows that x ·ϕ ∈ Sol+(x).
But, x ∈ P̂ , therefore there exists an i ∈ Z+ such that (x · ϕ)(i) ∈ P2. It
must be i = 0, because for i > 0 we have (x · ϕ)(i) = ϕ(i − 1) 6∈ P2. Thus,
x = (x · ϕ)(0) ∈ P2, which proves (16).

Now, since S ⊆ S ∪ P̂ ⊆ P1 and S ∩ P2 = ∅, we have

S = InvS ⊆ Inv(S ∪ P̂ \ P2) ⊆ Inv(P1 \ P2) = S.

This proves (17) for P ∗.
We still need to prove that P ∗∗ satisfies properties (15)-(17). Let x ∈ P̂

and y ∈ ΠV(x) ∩ (S ∪ P̂ ). Then y ∈ P1. Let ϕ ∈ Sol+(y). Then x · ϕ ∈
Sol+(x). Since x ∈ P̂ , it follows that (x · ϕ)(i) ∈ P2 for some i ∈ Z+. If
i > 0, then ϕ(i − 1) = (x · ϕ)(i) ∈ P2 which implies y ∈ P̂ . If i = 0, then
x ∈ P2 and by (15) applied to index pair P we get y ∈ P2 ⊆ P̂ . This
proves (15) for P ∗∗. Consider in turn x ∈ S ∪ P̂ and assume there exists a
y ∈ ΠV(x)\ (S∪ P̂ ). If x ∈ S then the V-compatibility of S excludes y = x?.
Therefore, we have y ∈ cl x ⊆ clS and by (18) y ∈ P̂ , a contradiction. This
shows that x ∈ P̂ and proves (16) for P ∗∗. Now, observe that S ∩ P̂ = ∅ or
equivalently (S∪ P̂ )\ P̂ = S, which proves (17) and the saturation property
for P ∗∗. �

7.3. Semi-equal index pairs. We write P ⊆ Q for index pairs P , Q mean-
ing Pi ⊆ Qi for i = 1, 2. We say that index pairs P , Q of S are semi-equal if
P ⊆ Q and either P1 = Q1 or P2 = Q2. For semi-equal pairs P , Q, we write

A(P,Q) :=
{
Q1 \ P1 if P2 = Q2,
Q2 \ P2 if P1 = Q1.

Lemma 7.8. If P ⊆ Q are semi-equal index pairs of S, then A(P,Q) is
V-compatible.

Proof: Assume first that P1 = Q1. Let V ∈ V and let x ∈ V . It is enough
to show that x ∈ Q2 \P2 if and only if x? ∈ Q2 \P2. Let x ∈ Q2 \P2. Since
x? ∈ ΠV(x), we get from (15) applied to P that x? ∈ P1 = Q1. Thus, by
applying (15) to Q we get x? ∈ Q2. Since x ∈ cl x?, we get x? 6∈ P2, because
otherwise x ∈ P2. Hence, we proved that x ∈ Q2 \ P2 implies x? ∈ Q2 \ P2.
Let now x? ∈ Q2 \ P2. Then x ∈ cl x? ⊆ Q2. Since x? ∈ Q2 ⊆ Q1 = P1
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and x? 6∈ P2 we get from (15) that x? ∈ P2. Hence, we also proved that
x? ∈ Q2 \ P2 implies x ∈ Q2 \ P2.

Consider in turn the case P2 = Q2. Again, it is enough to show that
x ∈ Q1 \ P1 if and only if x? ∈ Q1 \ P1. Let x ∈ Q1 \ P1. Then x 6∈ P2 = Q2
and by (15) we get x? ∈ Q1. Also x? 6∈ P1, because otherwise x ∈ cl x? ⊆ P1.
Hence, x ∈ Q1 \ P1 implies x? ∈ Q1 \ P1. Finally, let x? ∈ Q1 \ P1. We have
x ∈ cl x? ⊆ Q1. We cannot have x ∈ P1. Indeed, since x? 6∈ P1, assumption
x ∈ P1 implies x ∈ P2 = Q2. But then x? ∈ Q2 = P2 ⊆ P1, a contradiction.
Thus, x? ∈ Q1 \ P1 implies x ∈ Q1 \ P1. �

Lemma 7.9. Assume A ⊆ X is proper, V-compatible and InvA = ∅. Then
A is a zero space.

Proof: First we will show that V |A is acyclic. Assume to the contrary
that the preorder ≤V is not a partial order. Then we can cnostruct a cycle
xn ≺V xn−1 ≺V · · · ≺V x0 = xn in A for some n ≥ 1. It follows that
ϕ : Z 3 i 7→ xi mod n ∈ A is a solution in A. In consequence, InvA 6= ∅,
a contradiction. Thus, V ′ := V |A is acyclic. Also, if V ⊆ A is a critical
multivector, then ψ : Z 3 i 7→ V ? ∈ A is a solution in A, again contradicting
InvA = ∅. Thus, every multivector in V ′ is regular. The thesis follows now
from Theorem 5.14. �

Lemma 7.10. If P ⊆ Q are semi-equal index pairs of S, then Hκ(P1 \ P2)
and Hκ(Q1 \Q2) are isomorphic.

Proof: Assume P ⊆ Q. If P2 = Q2, then A(P,Q) = Q1 \ P1. Since Q1
is closed, it is proper. Hence, since A(P,Q) is open in Q1, it is also proper.
Similarly we prove that A(P,Q) is proper if P1 = Q1.

Thus, A(P,Q) is a Lefschetz complex and it follows from Lemma 7.8 that
the restriction V ′ := V |A(P,Q) is a multivector field on A(P,Q).

Observe that
S ∩ (Q1 \ P1) ⊆ P1 ∩ (X \ P1) = ∅,
S ∩ (Q2 \ P2) ⊆ (X \Q2) ∩Q2 = ∅.

Hence, S ∩A(P,Q) = ∅ and InvA(P,Q) ⊆ X \ S. We also have
P1 = Q1 ⇒ Inv(Q2 \ P2) ⊆ Inv(P1 \ P2) = S,

P2 = Q2 ⇒ Inv(Q1 \ P1) ⊆ Inv(Q1 \Q2) = S.

Therefore, InvA(P,Q) ⊆ S ∩ (X \ S) = ∅. Thus, V ′ is acyclic and from
Lemma 7.9 we conclude that A(P,Q) is a zero space.

It is an elementary computation to check the following two observations.
If P2 = Q2, then P1 \ P2 ⊆ Q1 \ Q2, Q1 \ Q2 = A(P,Q) ∪ P1 \ P2 and
P1\P2 = P1∩(Q1\Q2) is closed in Q1\Q2. If P1 = Q1, then Q1\Q2 ⊆ P1\P2,
P1 \P2 = A(P,Q)∪Q1 \Q2 and A(P,Q) = Q2 \P2 = Q2∩ (P1 \P2) is closed
in P1 \ P2. Hence, by Theorem 5.6 applied to the pair (Q1 \Q2, P1 \ P2) in
the case P2 = Q2 and (P1 \ P2, Q2 \ P2) in the case P1 = Q1 and the fact
that A(P,Q) is a zero space we conclude that Hκ(Q1 \Q2) and Hκ(P1 \P2)
are isomorphic. �
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7.4. Conley index. The following theorem, an analogue of a classical re-
sults in the Conley index theory, allows us to define the homology Conley
index of an isolated invariant set S as Hκ(P1, P2) = Hκ(P1 \ P2) for any
index pair P of S. We denote it Con(S).

Theorem 7.11. Given an isolated invariant set S, the pair (clS,moS) is a
saturated index pair for S. If P and Q are index pairs for S, then Hκ(P1\P2)
and Hκ(Q1 \Q2) are isomorphic.

Proof: Obviously clS is closed and moS is closed by Theorem 7.1. Thus,
to show that (clS,moS) is an index pair we need to prove properties (15)-
(17) of the definition of index pair. Let x ∈ moS and y ∈ ΠV(x) ∩ clS.
Assume y 6∈ moS. Then y ∈ S and the V-compatibility of S implies that
[x] 6= [y]. It follows that y ∈ cl x ⊆ cl moS = moS, a contradiction, which
shows that y ∈ moS and proves (15).

Consider in turn x ∈ clS such that there exists a y ∈ ΠV(x) \ clS.
Obviously, x 6= y. It must be [x] = [y], because otherwise y ∈ cl x ⊆ clS.
Since y 6∈ S, the V-compatibility of S implies that [y] ∩ S = ∅. But,
x ∈ [x] = [y], therefore x 6∈ S and consequently x ∈ moS, which proves
(16). Obviously, S = clS \moS, therefore (17) and the saturation property
also are satisfied. This completes the proof of the first part of the theorem.

To prove the remaining assertion first observe that it is obviously satisfied
if both pairs are saturated. Thus, it is sufficient to prove the assertion in the
caseQ = P ∗∗, because by Lemma 7.7 the pair P ∗∗ is saturated. We obviously
have P ∗ ⊆ P and P ∗ ⊆ P ∗∗ and each inclusion is a semi-equality. Therefore,
both inclusions induce an isomorphism in homology by Lemma 7.10. �

In the case of an isolated invariant set S we call the polynomial pS(t) the
Conley polynomial of S and βi(S) the ith Conley coefficient of S.

We call the index pair (clS,moS) canonical, because it minimizes both
P1 and P1\P2. Indeed, for any index pair clS ⊆ P1, because P1 is closed and
by (17) S ⊆ P1 \ P2. In the case of the canonical index pair both inclusions
are equalities. Note that in the case of the classical Conley index there is
no natural choice of a canonical index pair. Since S = clS \ moS, we see
that Con(S) ∼= Hκ(S). Thus, in our combinatorial setting Theorem 7.11 is
actually not needed to define the Conley index. However, the importance
of Theorem 7.11 will become clear in the proof of Morse inequalities via the
following corollary.

Corollary 7.12. If (P1, P2) is an index pair of an isolated invariant set S,
then

(19) pS(t) + pP2(t) = pP1(t) + (1 + t)q(t),

where q(t) is a polynomial with non-negative coefficients. Moreover, if

Hκ(P1) = Hκ(P2)⊕Hκ(S),

then q(t) = 0.
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Proof: By applying Theorem 5.6 to the pair P2 ⊆ P1 of closed subsets of
X and Theorem 4.6 to the resulting exact sequence we obtain

pP1\P2(t) + pP2(t) = pP1(t) + (1 + t)q(t)
for some polynomial q with non-negative coefficients. The conclusion follows
now from Theorem 7.11 by observing that Hκ(P1 \ P2) = Hκ(S). �

7.5. Additivity of the Conley index. Let S be an isolated invariant set
and assume S1, S2 ⊆ S are also isolated invariant sets. We say that S
decomposes into S1 and S2 if S1 ∩ S2 = ∅ and every full solution % in S is
either a solution in S1 or in S2.

Theorem 7.13. Assume an isolated invariant set S decomposes into the
union of two its isolated invariant subsets S1 and S2. Then Con(S) =
Con(S1)⊕ Con(S2).

Proof: First observe that the assumptions imply that S = S1∪S2. We will
show that S1 is closed in S. Let x ∈ clS S1 and assume x 6∈ S1. Then x ∈ S2.
Choose y ∈ S1 such that x ∈ clS y. The V-compatibility of S1 implies that
[x] 6= [y], hence x ∈ ΠV(y). Select γ ∈ Sol(y, S1) and % ∈ Sol(x, S2).
Then ϕ := γ− · %+ is a solution in S but neither in S1 nor in S2, which
contradicts the assumption that S decomposes into S1 and S2. Hence, S1
is closed. Similarly we prove that S2 is closed. The conclusion follows now
from Proposition 5.5. �

8. Attractors and repellers.

In this section we define attractors and repellers and study attractor-
repeller pairs needed to prove Morse equation and Morse inequalities.

8.1. Attractors. We say that a V-compatible N ⊆ X is a trapping region
if ΠV(N) ⊆ N . This is easily seen to be equivalent to the requirement that
N is V-compatible and for any x ∈ N
(20) Sol+(x,X) = Sol+(x,N).
We say that A is an attractor if there exists a trapping region N such that
A = InvN .

Theorem 8.1. The following conditions are equivalent:
(i) A is an attractor,
(ii) A is invariant and closed,
(iii) A is isolated invariant and closed,
(iv) A is isolated invariant, closed and a trapping region.

Proof: Assume (i). Let N be a trapping region such that A = InvN . By
(14) we have InvA = Inv InvN = InvN = A, hence A is invariant. To see
that A is closed take x ∈ clA and y ∈ A such that x ∈ cl y ⊆ cl y?. Note that
y? ∈ A, because by Proposition 6.4 the set A, as invariant, is V-compatible.
If [x] = [y], then for the same reason x ∈ A. Hence, assume [x] 6= [y] = [y?].
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Then x ∈ ΠV(y?) ⊆ ΠV(N) ⊆ N . From the V-compatibility of N we get
that also x? ∈ N . Let ϕ ∈ Sol+(x?). Since N is a trapping region, we see
that ϕ ∈ Sol+(x?, N). It follows that x ∈ Inv+N . Since y? ∈ A = InvN ⊆
Inv−N , we can take ψ ∈ Sol−(y?, N). Then ψ · ν(x) ∈ Sol−(x?, N). This
shows that x ∈ Inv−N . By (13) we have x ∈ InvN = A. This proves that A
is closed and shows that (i) implies (ii). If (ii) is satisfied, then A, as closed,
is proper. Hence, we get from Theorem 7.1 that (ii) implies (iii). Assume
in turn (iii). Let x ∈ A and let y ∈ ΠV(x). If [y] = [x], then y ∈ A by the
V-compatibility of A. If [y] 6= [x], then x = x?, y ∈ cl x? ⊆ clA = A. Hence
ΠV(A) ⊆ A, which proves (iv). Finally, observe that (i) follows immediately
from (iv). �

8.2. Repellers. We say that a V-compatible N ⊆ X is a backward trapping
region if Π−1

V (N) ⊆ N . This is easily seen to be equivalent to the requirement
that N is V-compatible and for any x ∈ N

(21) Sol−(x,X) = Sol−(x,N).

We say that R is a repeller if there exists a backward trapping region N
such that R = InvN . The following proposition is straightforward.

Proposition 8.2. A subset N ⊆ X is a trapping region if and only if X \N
is a backward trapping region. �

Theorem 8.3. The following conditions are equivalent:
(i) R is a repeller,
(ii) R is invariant and open,
(iii) R is isolated invariant and open,
(iv) R is isolated invariant, open and a backward trapping region.

Proof: Assume (i). Let N be a backward trapping region such that
R = InvN . By (14) we have InvR = Inv InvN = InvN = R, hence R is
invariant. To see that R is open we will prove that X \ R is closed. For
this end take x ∈ cl(X \ R) and y ∈ X \ R such that x ∈ cl y ⊆ cl y?. Note
that y? ∈ X \ R, because the set X \ R is V-compatible as a complement
of an invariant set which, by Proposition 6.4, is V-compatible. If [x] = [y],
then for the same reason x ∈ X \ R. Hence, assume [x] 6= [y] = [y?]. Then
x ∈ ΠV(y?). Let ψ ∈ Sol+(x?) and ϕ ∈ Sol−(y?). Then γ := ϕ · ν−(x) · ψ ∈
Sol(y?). Since y? 6∈ R, there exists an i ∈ Z such that γ(i) 6∈ N . By
Proposition 8.2 we see that X \ N is a trapping region. Hence, γ(j) 6∈ N
for all j ≥ i. In particular, ψ(j) 6∈ N for large j. Since ψ ∈ Sol+(x?)
is arbitrary, it follows that x 6∈ Inv+N and consequently x 6∈ InvN = R.
Hence, X \R is closed, that is R is open. This proves (ii). If (ii) is satisfied,
then R, as open, is proper. Hence, we get from Theorem 7.1 that (ii) implies
(iii). Assume (iii). Let x ∈ R and let y ∈ Π−1

V (x). If [y] = [x], then y ∈ R
by the V-compatibility of R. If [y] 6= [x], then y = y? and x ∈ cl y?. It
follows from Proposition 4.4 that y = y? ∈ opn x ⊆ R, because x ∈ R and
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R is open. Hence, Π−1
V (R) ⊆ R, which proves (iv). Finally, observe that (i)

follows immediately from (iv). �

8.3. Recurrence and basic sets. Let A ⊆ X be V-compatible. We write
x

A→V y if there exists a path of V in A from x? to y? of length at least two.
We write x A↔V y if x A→V y and y A→V x. We drop V in this notation if V is
clear from the context. Also, we drop A if A = X. We say that A is weakly
recurrent if for every x ∈ A we have x A↔ x. It is strongly recurrent if for
any x, y ∈ A we have x A→ y, or equivalently for any x, y ∈ A there is x A↔ y.
Obviously, every strongly recurrent set is also weakly recurrent.

The chain recurrent set of X, denoted CR(X), is the maximal weakly
recurrent subset of X. It is straightforward to verify that

CR(X) := {x ∈ X | x↔V x }.
Obviously, the relation ↔V restricted to CR(X) is an equivalence relation.
By a basic set of V we mean an equivalence class of↔V restricted to CR(X).

Theorem 8.4. Every basic set is a strongly recurrent isolated invariant set.

Proof: Let B be a basic set. Obviously, it is V-compatible and invariant.
By its very definition it is also strongly recurrent. Thus, by Theorem 7.1 we
only need to prove that B is proper. For this end we will verify condition (2)
of Proposition 4.5. Take x, z ∈ B, y ∈ X and assume x ∈ cl y and y ∈ cl z.
Then also x ∈ cl y? and y ∈ cl z?. If [x] = [y?] or [y] = [z?], then y ∈ B by
the V-compatibility of B. Thus, assume [x] 6= [y?] and [y] 6= [z?]. It follows
that x ∈ ΠV(y?) and y ∈ ΠV(z?) and consequently y?

B→ x? and z?
B→ y?.

By the definition of the basic set also x? B→ z?. It follows that the basic sets
of x, y and z coincide and consequently y ∈ B. �

8.4. Limit sets. Let % : Z→ X be a full solution. Recall that [A]+V denotes
the intersection of V-compatible sets containing A. We define the α and ω
limit sets of % by

α(%) :=
⋂
k≥0

Inv[im σk−%
−]+V ,

ω(%) :=
⋂
k≥0

Inv[im σk+%
+]+V .

Proposition 8.5. The sets α(%) and ω(%) are invariant, V-compatible and
strongly recurrent. Moreover, α(%) ∩ im % 6= ∅ 6= ω(%) ∩ im %.

Proof: Let ϕk := σk+%
+ and Ak := Inv[imϕk]+V . Obviously, the sets

Ak are invariant and V-compatible. It is straightforward to observe that
Ak+1 ⊆ Ak. Hence, since X is finite, there exists a p ∈ Z+ such that
Ap =

⋂
k≥0Ak = ω(%). This proves that ω(%) is invariant and V-compatible.

To see that ω(%) is strongly recurrent, take x, y ∈ ω(%) = Ap. Then x?, y? ∈
imϕp ∩Ap. Let m,n ≥ p be such that x? = ϕ(m) and y? = ϕ(n). If n < m,
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then ϕ|[n,m] is a path in Ap from x? to y?. Thus, assume m ≤ n and take
q > m. Since Aq = Ap, we see that y? ∈ Aq. It follows that there exists a
k ≥ q such that y? = ϕ(k). Hence, ϕ|[m,k] is a path in Ap from x? to y?.
Therefore, Ap = ω(%) is strongly recurrent.

To see that α(%) ∩ im % 6= ∅ observe that there exist m,n ∈ Z+, m < n,
such that ϕp(m) = ϕp(n). By Proposition 6.1 we may assume without loss
of generality that ϕp(m) = ϕp(m)?. Consider

ψ : Z 3 i 7→ ϕp(m+ i mod m− n) ∈ imϕp.

We have ψ ∈ Sol(ϕp(m)?, [imϕp]+V ), therefore ϕp(m) ∈ Inv[imϕp]+V = Ap =
ω(%). Obviously, ϕp(m) ∈ imϕ, which proves that ω(%) ∩ im % 6= ∅. The
proof concerning α(%) is analogous. �

8.5. Attractor-repeller pairs. Since by Theorem 8.1 an attractor is in
particular a trapping region, it follows from Proposition 8.2 that if A is an
attractor, then Inv(X \ A) is a repeller. It is called the dual repeller of A
and is denoted by A?. Similarly, if R is a repeller, then Inv(X \ R) is an
attractor, called the dual attractor of R and denoted by R?.

For A,A′ ⊆ X define
C(A′, A) := {x ∈ X | ∃%∈Sol(x?) α(%) ⊆ A′, ω(%) ⊆ A }.

Proposition 8.6. Assume A is an attractor. Then there is no heteroclinic
connection running from A to A?, that is C(A,A?) = ∅. �

The pair (A,R) of subsets of X is said to be an attractor-repeller pair in
X if A is an attractor, R is a repeller, A = R? and R = A?.

Theorem 8.7. The pair (A,R) is an attractor-repeller pair in X if and
only if the following four conditions are satisfied:

(i) A is an attractor and R is a repeller,
(ii) A ∩R = ∅,
(iii) for every x 6∈ A and % ∈ Sol(x) we have α(%) ⊆ R,
(iv) for every x 6∈ R and % ∈ Sol(x) we have ω(%) ⊆ A.

Proof: First assume that (A,R) is an attractor-repeller pair. Then, ob-
viously, (i) is satisfied. Since R = A? = Inv(X \ A) ⊆ X \ A, we see
that (ii) holds. In order to prove (iii) take x 6∈ A and % ∈ Sol(x). Since
X \A is a backward trapping region, we see that im %− ⊆ X \A. Moreover,
[im %−]+V ⊆ X \ A, because X \ A, as a backwards trapping region, is V-
compatible. Hence, α(%) ⊆ Inv[im %−]+V ⊆ Inv(X \ A) = A? = R. Similarly
we prove (iv).

Assume in turn that (i)-(iv) hold. We will show that R = A?. Indeed, by
(ii) R ⊆ X \A, hence R = InvR ⊆ Inv(X \A) = A?. To show the opposite
inclusion take x ∈ A? and assume x 6∈ R. Let % ∈ Sol(x?, X \ A). By (iv)
we have ω(%) ⊆ A. By Proposition 8.5 we can select a y ∈ ω(%) ∩ im %. It
follows that y ∈ A ∩ im %. This contradicts % ∈ Sol(x?, X \ A) and proves
that R = A?. Similarly we prove that A = R?. �
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The following corollary is an immediate consequence of Theorem 8.7.

Corollary 8.8. Assume A is an attractor. Then (A,A?) is an attractor-
repeller pair. In particular, A∗∗ = A. �

9. Morse decompositions, Morse equation and Morse
inequalities

In this section we define Morse decompositions and we prove the Morse
equation and Morse inequalities for Morse decompositions. We recall that
the poset related terminology and notation is introduced in Section 4.3.

9.1. Morse decompositions. Let P be a finite set. The collection M =
{Mr | r ∈ P } is called a Morse decomposition of X if there exists a partial
order ≤ on P such that the following three conditions are satisfied:

(i) M is a family of mutually disjoint, isolated invariant subsets of X,
(ii) for every full solution ϕ in X there exist r, r′ ∈ P, r ≤ r′, such that

α(ϕ) ⊆Mr′ , ω(ϕ) ⊆Mr,
(iii) if for a full solution ϕ and r ∈ P we have α(ϕ) ∪ ω(ϕ) ⊆ Mr, then

imϕ ⊆Mr.
Note that since the sets inM are mutually disjoint, the indices r, r′ in (ii) are
determined uniquely. A partial order on P which makesM = {Mr | r ∈ P }
a Morse decomposition of X is called an admissible order. Observe that the
intersection of admissible orders is an admissible order and any extension of
an admissible order is an admissible order. In particular, every Morse de-
composition has a unique minimal admissible order as well as an admissible
linear order.

The following proposition is straightforward.

Proposition 9.1. Let M = {Mr | r ∈ P } be a Morse decomposition of X
and let r, r′ ∈ P. Then

(i) C(Mr′ ,Mr) is V-compatible,
(ii) C(Mr,Mr) = Mr,
(iii) r′ < r implies C(Mr′ ,Mr) = ∅.

�

Let B be the family of all basic sets of M. For B1, B2 ∈ B we write
B1 ≤V B2 if there exists a solution % such that α(%) ⊆ B2 and ω(%) ⊆ B1. It
follows easily from the definition of the basic set that ≤V is a partial order
on B.

Theorem 9.2. The family B of all basic sets of V is a Morse decomposition
of X.

Proof: Obviously, two different basic sets are always disjoint. By Theo-
rem 8.4 each element of B is an isolated invariant set. Thus, condition (i)
of the definition of Morse decomposition is satisfied. To prove (ii) consider
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a full solution %. By Proposition 8.5 both α(%) and ω(%) are strongly recur-
rent. Thus, each is contained in a basic set, which proves (ii). Assume in
turn that both α(%) and ω(%) are contained in the same basic set B. Fix
y ∈ im % and choose x ∈ α(%) and z ∈ ω(%). Then x→V y and y →V z. But
also z →V x, because x, z ∈ B and B is strongly recurrent. Thus, x ↔V y
and consequently y ∈ B. This shows that im % ⊆ B and proves (iii). Finally,
observe that ≤V is obviously and admissible partial order on B. Therefore,
B is a Morse decomposition of X. �

Given two Morse decompositions M, M′ of X, we write M′ @M if for
each M ′ ∈ M′ there exists an M ∈ M such that M ′ ⊆ M . Then, we say
thatM′ is finer thanM. The relation @ is easily seen to be a partial order
on the collection of all Morse decompositions of X.

Theorem 9.3. For any Morse decomposition M = {Mr | r ∈ P} of X we
have B @ M. Thus, the family of basic sets is the unique, finest Morse
decomposition of X.

Proof: Let B be a basic set and let x ∈ B. Since B is invariant, we may
choose a % ∈ Sol(x?, B) and an r ∈ P such that α(%) ⊆Mr. Since α(%) ⊆ B,
we may choose a y = y? ∈ im % ∩ B ∩Mr. We will show that B ⊆ Mr. For
this end take a z ∈ B. Since B is strongly recurrent, we may construct a
path ϕ from y to y through z. Then γ := σ−%

− · ϕ · σ+%
+ is a full solution

through z and obviously α(γ) = α(%) ⊆ Mr and ω(γ) = ω(%) ⊆ Mr. It
follows that z ∈ im γ ⊆Mr. This proves our claim. �

9.2. Morse sets. Given I ⊆ P define the Morse set of I by

(22) M(I) :=
⋃

r,r′∈I
C(Mr′ ,Mr).

Theorem 9.4. The set M(I) is an isolated invariant set.

Proof: To prove that M(I) is invariant take x ∈ M(I) and let r, r′ ∈ P
be such that x ∈ C(Mr′ ,Mr). Choose % ∈ Sol(x?) such that α(%) ⊆Mr′ and
ω(%) ⊆ Mr. Let k ∈ Z and let y := %(k). Since either y? = %(k) or y? =
%(k + 1), we see that ρ ∈ Sol(y?). It follows that y ∈ C(Mr′ ,Mr) ⊆ M(I).
Therefore, ρ ∈ Sol(x?,M(I)) and x ∈ InvM(I).

By Theorem 7.1 it suffices to prove that M(I) is proper. For this end we
will verify condition (2) in Proposition 4.5. Take x, z ∈ M(I) and assume
y ∈ X is such that x ∈ cl y and y ∈ cl z. If [x] = [y] or [y] = [z], then y ∈
M(I), because by Proposition 6.4 the set M(I) as invariant is V-compatible.
Hence, consider the case [x] 6= [y] and [y] 6= [z]. It follows that x ∈ ΠV(y?)
and y ∈ ΠV(z?). Let γ ∈ Sol(x?) be such that ω(γ) ⊆ Mr for some r ∈ I.
Similarly, let % ∈ Sol(z?) be such that α(%) ⊆ Ms for some s ∈ I. Let
χ := %− · ν(y) · ν−(x) · γ+. We easily verify that α(χ) = α(%) ⊆ Ms and
ω(χ) = ω(γ) ⊆Mr. This shows that y ∈M(I). Thus, M(I) is proper. �

Theorem 9.5. If I is a lower set in P, then M(I) is an attractor in X.
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Proof: In view of Theorem 8.1 and Theorem 9.4 we only need to prove
that M(I) is closed. Hence, take x ∈ clM(I). We need to show that
x ∈M(I). Let y ∈M(I) be such that x ∈ cl y. If [x] = [y], then x ∈M(I),
because M(I) as invariant is V compatible. Thus, assume [x] 6= [y]. Then
x ∈ ΠV(y?). Let γ ∈ Sol(y?) be such that α(γ) ⊆ Mr for some r ∈ I.
Choose also a % ∈ Sol(x?) and let s ∈ P be such that ω(%) ⊆ Ms. Then
χ := γ− ·ν−(x) ·%+ ∈ Sol(x?) and α(χ) = α(γ) ⊆Mr, ω(χ) = ω(%) ⊆Ms. It
follows from the definition of Morse decomposition that s ≤ r. Since r ∈ I
and I is a lower set, we get s ∈ I. This implies that x ∈M(I). �

We also have a dual statement. We skip the proof, because it is similar
to the proof of Theorem 9.5.

Theorem 9.6. If I is an upper set in P, then M(I) is a repeller in X.

Proposition 9.7. If N is a trapping region and N ′ is a backward trapping
region, then Inv(N ∩N ′) = InvN ∩ InvN ′.

Proof: Obviously, the left-hand-side is contained in the right-hand-side.
To prove the opposite inclusion take x ∈ InvN∩InvN ′. By the V-compatibi-
lity of invariant sets also x? ∈ InvN ∩ InvN ′. Let % ∈ Sol(x?, N ′). Since N
is a trapping region we have %+ ∈ Sol+(x?, N). Hence, x ∈ Inv+(N ∩ N ′).
Similarly we prove that x ∈ Inv−(N ∩ N ′). It follows that x ∈ Inv(N ∩
N ′). �

For a lower set I in P set

N(I) := X \M(I)?.

Observe that by Corollary 8.8 we have

(23) InvN(I) = M(I).

Theorem 9.8. If I ⊆ P is convex, then (N(I≤), N(I<)) is an index pair
for M(I).

Proof: The sets M(I≤)?, M(I<)? are repellers. Hence, by Theorem 8.3
they are open. It follows that N(I≤), N(I<) are closed. To verify property
(15) take x ∈ N(I<), y ∈ ΠV(x) ∩ N(I≤) and assume that y 6∈ N(I<).
Then y ∈M(I<)?. It follows that x ∈ Π−1

V (M(I<)?) ⊆M(I<)?, because by
Theorem 8.3 the set M(I<)?, as a repeller, is a backwards trapping region.
Thus, x 6∈ N(I<), a contradiction which proves (15). To prove (16) take
x ∈ N(I≤) such that ΠV(x) \ N(I≤) 6= ∅ and assume that x 6∈ N(I<).
Then x ∈ M(I<)?. Let y ∈ ΠV(x) \ N(I≤). Then y ∈ ΠV(x) ∩M(I≤)?.
Since M(I≤)? is a repeller, it follows that x ∈ M(I≤)?. This contradicts
x ∈ N(I≤) and proves (16).

Finally, to prove (17) first observe that

(24) N(I≤) \N(I<) = M(I<)? \M(I≤)? = M(I<)? ∩N(I≤).
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SinceM(I<)? is a backward trapping region andN(I≤) is a forward trapping
region, we have by (24) and Proposition 9.7

Inv(N(I≤) \N(I<)) = InvM(I<)? ∩ InvN(I≤) =
M(I<)? ∩M(I≤) =
InvM(I≤) ∩ Inv(X \M(I<)) =
Inv(M(I≤) \M(I<)) = M(I).

�
The following corollary is an immediate consequence of Theorem 9.8 and

the definition of the lower set.

Corollary 9.9. If I is a lower set (an attracting interval) in P, then I≤ = I,
I< = ∅, (N(I),∅) is an index pair for M(I), Hκ(N(I)) = Hκ(M(I)) and
pM(I)(t) = pN(I)(t). �

Theorem 9.10. Assume A ⊆ X is an attractor and A? is the dual repeller.
Then

(25) pA(t) + pA?(t) = pX(t) + (1 + t)q(t)

for a polynomial q(t) with non-negative coefficients. Moreover, if q 6= 0,
then C(A?, A) 6= ∅.

Proof: Take P := {1, 2}, M2 := A?, M1 := A. Then M := {M1,M2} is
a Morse decomposition of X. Take I := {2}. By Proposition 4.2 we have
I≤ = {1, 2}, I< = {1}. It follows that M(I≤) = X, M(I<) = M({1}) = A,
N(I≤) = X \X? = X. Thus, we get from Corollary 9.9 that

(26) pN(I≤)(t) = pX(t), pN(I<)(t) = pM(I<)(t) = pA(t).

By Theorem 9.8 the pair (N(I≤), N(I<)) is an index pair for M(I) = A?.
Thus, by substituting P1 := N(I≤), P2 := N(I<), S := A? into (19) in
Corollary 7.12 we get (25) from (26). By Proposition 8.6 we have C(A,A?) =
∅. If also C(A?, A) = ∅, then X decomposes into A, A? and by Theo-
rem 7.13 we get

Hκ(P1) = Con(X) = Con(A)⊕ Con(A?) = Hκ(P2)⊕Hκ(A?).

Thus, q = 0 by Corollary 7.12. It follows that q 6= 0 implies C(A?, A) 6=
∅. �

9.3. Morse equation. We begin by the observation that an isolated in-
variant set S as a proper and V-compatible subset of X in itself may be
considered a Lefschetz complex with a combinatorial multivector field being
the restriction V |S . In particular, it makes sense to consider attractors, re-
pellers and Morse decompositions of S with respect to V |S and the results
of the preceding sections apply.
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Theorem 9.11. Assume P = { 1, 2, . . . n } is ordered by the linear order
of natural numbers. Let M := {Mp | p ∈ P } be a Morse decomposition of
an isolated invariant set S and let Ai := M({i}≤) and A0 := ∅. Then
(Ai−1,Mi) is an attractor-repeller pair in Ai. Moreover,

(27)
n∑
i=1

pMi(t) = pS(t) + (1 + t)
n∑
i=1

qi(t)

for some polynomials qi(t) with non-negative coefficients and such that qi(t) 6=
0 implies C(Mi, Ai−1) 6= ∅ for i = 2, 3, . . . n.

Proof: Fix i ∈ P. Obviously, Ai−1 ⊆ Ai. The set Ai−1, as an attractor
in S, is closed in S. Thus, it is closed in Ai. It follows that Ai−1 is an
attractor in Ai. The verification that Mi is the dual repeller of Ai−1 in Ai
is straightforward. By applying Theorem 9.10 to the attractor-repeller pair
(Ai−1,Mi) in Ai we get

(28) pMi(t) + pAi−1(t) = pAi(t) + (1 + t)qi(t)

for a polynomial qi with non-negative coefficients. Since pA0(t) = 0 and
An = S, summing (28) over i ∈ P and substituting q :=

∑n
i=1 qi, we get

(27). The rest of the assertion follows from Theorem 9.10. �

9.4. Morse inequalities. Recall that for a proper S ⊆ X we write βk(S) :=
rankHκ

k (S).

Theorem 9.12. For a Morse decomposition M of an isolated invariant set
S define

mk(M) :=
∑
r∈P

βk(Mr).

Then for any k ∈ Z+ we have the following inequalities
(i) (the strong Morse inequalities)

mk(M)−mk−1(M) + · · · ±m0(M) ≥ βk(S)− βk−1(S) + · · · ± β0(S),

(ii) (the weak Morse inequalities)

mk(M) ≥ βk(S).

Proof: Since M is a Morse decomposition of X also with respect to
a linear extension of an admissible order, by a suitable renaming of the
elements of P we may assume that P = {1, 2, . . . n} with the order given by
the order of integers. Thus, we can apply Theorem 9.11. Multiplying the
equation (27) by the formal power series

(1 + t)−1 = 1− t+ t2 − t3 + · · ·

and comparing the coefficients of both sides we obtain the strong Morse
inequalities, because the polynomial q is non-negative. The weak Morse
inequalities follow immediately from the strong Morse inequalities. �
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9.5. Gradient-like combinatorial multivector fields. We say that V is
gradient-like if there exists an f : X → R such that for any solution ρ : Z9X
of V and n, n+ 1 ∈ dom ρ the following two conditions hold

f(ρ(n+ 1)) ≤ f(ρ(n)),(29)
f(ρ(n+ 1)) = f(ρ(n)) ⇒ [ρ(n)]V = [ρ(n+ 1)]V .(30)

Proposition 9.13. Assume V is gradient-like and ρ : Z → X is a full
solution. Then α(ρ) and ω(ρ) are critical multivectors.

Proof: Let f : X → R be such that (29) and (30) are satisfied. Since
X is finite, it follows from (29) that f(ρ(n)) does not depend on n if n is
sufficiently large. Hence, by (30) and the definition of the solution we see
that there exists an n0 ∈ Z such that ρ(n) = ρ(n0) for n ≥ n0. In particular,
ρ(n0) is critical and for k ≥ n0 we have

[im σk+%
+]+V = [{ρ(n0)}]+V = [ρ(n0)]V

and consequently ω(ρ) = [ρ(n0)]V . It follows that [ρ(n0)]V is a critical
multivector. The proof for α(ρ) is analogous. �

Theorem 9.14. Assume V is a gradient-like combinatorial multivector field
on X and let C denote the set of critical cells of V. Then the family C :=
{ [c]V | c ∈ C } coincides with the family B of basic sets of V. In particular,
it is a Morse decomposition of X.

Proof: Let B ∈ B and let x, y ∈ B. Then, there is a path ρ from x? to
x? through y? of length at least three. It follows from (29) that f must be
constant along ρ and from (30) that [x]V = [y]V . Consequently, x? = y?.
Therefore, B = [x]V = [x?]V and x? ∈ C, because path ρ must consist of
loops. Hence, B ∈ C and B ⊆ C. To see the opposite inclusion take a c ∈ C.
Obviously, c ∈ CR(X). Let B be the basic set to which c belongs. We
already know that B = [c′]V for a c′ ∈ C. Then c ∈ B = [c′]V , hence [c]V =
[c′]V = B ∈ B. The remaining assertion follows from Theorem 9.2. �

Let c be a critical cell of V. It follows from Proposition 7.2 that the critical
vector [c]V is an isolated invariant set. We say that c is non-degenerate if
there is a k ∈ Z+ such that the ith Conley coefficient of [c]V satisfies

(31) βi([c]V) =
{

1 if i = k,
0 otherwise.

We say that the number k is the Morse index of c.

Theorem 9.15. Assume V is a gradient-like combinatorial multivector field
on X and all critical cells of V are non-degenerate. Let nk denote the number
of critical cells of Morse index k. Then for any non-negative integer k we
have

(i) (the strong Morse inequalities)
nk − nk−1 + · · · ± n0 ≥ βk(X)− βk−1(X) + · · · ± β0(X),
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(ii) (the weak Morse inequalities)

nk ≥ βk(X).

Proof: Let C be the set of critical cells of V and denote by C the Morse
decomposition given by Theorem 9.14. Since all critical cells of V are non-
degenerate, we see from (31) that

mk(C) =
∑
c∈C

βk([c]V) = nk.

Thus, the result follows immediately from Theorem 9.12. �

10. Constructing combinatorial multivector fields from a
cloud of vectors.

In this section we present the algorithm used to generate some of the
examples discussed in Section 3. It is a prototype algorithm intended to show
the potential of the theory presented in this paper in the algorithmic analysis
of sampled dynamical systems and in combinatorialization of flows given
by differential equations. The algorithm may be generalized to arbitrary
polyhedral cellular complexes in Rn. However, it is not necessarily optimal.
The question how to construct combinatorial multivector fields from sampled
flows in order to obtain a possibly best description of the dynamics as well
as how to compute the associated topological invariants efficiently is left for
future investigation.

Consider Z := { 0, 2, . . . 2n }2. Let E denote the set of open segments of
length two with endpoints in Z and let S be the set of open squares of area
four with vertices in Z. Then X := Z ∪E ∪S is the collection of cells which
makes the square [0, 2n]2 a cellular complex. We identify each cell with
the coordinates of its center of mass. Thus, vertices have even coordinates,
squares have odd coordinates and edges have one coordinate even and one
odd. For an edge e in X we denote by e−, e+ its two vertices and we write
i⊥(e) ∈ {1, 2} for the index of the axis orthogonal to the edge.

Assume that we have a map v := (v1, v2) : Z → R2 which sends every
vertex of X to a planar, classical vector. This may be a map which assigns
to each point of Z a vector in R2 obtained from sampling a planar smooth
vector field. This may be also a map obtained from a physical experiment
or even selected randomly.

Let sgn : R → {−1, 0, 1} denote the sign function. Consider the map
arg : R2 \ {0} → [−π, π) given by

arg (x1, x2) :=


arccos x1√

x2
1+x2

2
if x2 ≥ 0,

− arccos x1√
x2

1+x2
2

if x2 < 0.



42 MARIAN MROZEK

Figure 13. The normalization of the planar vectors via the
division of the plane into nine regions: a disk around the
origin, four cones along the four half-axes and four cones in
the four quadrants of the plane. By a cone we mean here a
cone excluding the disk at the origin.

and the planar map Dµ,ε : R2 → R2 given by

Dµ,ε(x1, x2) :=



0 if x2
1 + x2

2 ≤ ε2,
(sgn x1, 0) if |arg x| ≤ µ or |arg x| ≥ π − µ,
(0, sgn x2) if |arg x− π/2| ≤ µ

or |arg x+ π/2| ≤ µ,
(sgn x1, sgn x2) otherwise.

The map Dµ,ε normalizes the vectors in the plane in the sense that it sends
each planar vector v to one of the nine vectors with coordinates in {−1, 0, 1}
depending on the location of v in one of the nine regions marked in Figure 13.

The algorithm is presented in Table 1. Its rough description is as follows.
It accepts on input a triple (v, µ, ε), where v : Z → R2 is a map, µ ∈ [0, π/4]
and ε > 0. The map v is normalized to v̄ by applying the map Dµ,ε. The
algorithm defines a map θ : X → X such that Vθ := { θ−1(y) | y ∈ im θ } en-
codes a combinatorial multivector field via Theorem 5.11. The construction
proceeds in three steps. In the first step the map is initialized to iden-
tity. This corresponds to a combinatorial multivector field consisting only
of singletons. In the second step each edge is tested whether the normalized
vectors at its endpoints projected to the axis perpendicular to the edge co-
incide. If this is the case, the edge is paired with the square pointed by both
projections. In the third step each vertex z ∈ Z is analysed. If the normal-
ized vector in v̄(z) is parallel to one of the axes, the vertex z is paired with
the corresponding edge. Otherwise, it is combined into one multivector with
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function CMVF(v, µ, ε)
v̄ := Dµ,ε ◦ v;
foreach x ∈ X do θ(x) := x enddo;
foreach x ∈ E do

i := i⊥(x); s− := v̄(x−); s+ := v̄(x+);
if s−i ∗ s

+
i > 0 then

θ(x) :=if s−1 6= 0 then x+ (s−1 , 0) else x+ (0, s−2 ) endif;
endif;

enddo;
foreach x ∈ Z do

s := v̄(x); if s = 0 continue;
if s1 ∗ s2 = 0 then θ(x) := x+ s
else

x1 := x+ (s1, 0); x2 := x+ (0, s2);
t1 := (θ(x1) = x1); t2 := (θ(x2) = x2);
c1 := t1 and v̄1(x1 + s1) ∗ s1 < 0;
c2 := t2 and v̄2(x2 + s2) ∗ s2 < 0;

if c1 and c2 then continue;
if not c1 and not c2 then

θ(x1) := θ(x2) := θ(x) := x+ s ;
else

if c1 and t2 then θ(x) := x1 endif;
if c2 and t1 then θ(x) := x2 endif;

endif;
endif;

enddo;
return θ;

endfunction;

Table 1. Algorithm CMVF constructing a combinatorial
multivector field from a collection of vectors on an integer
lattice in the plane.

the corresponding square and adjacent edges unless this would generate a
conflict with one of the neighbouring vertices.

Note that the only case when strict multivectors may be generated is in
the third step when the normalized vector is not parallel to any axis. The
chances that this happens decrease when the parameter µ is increased. The
normalized vector is always parallel to one of the axes when µ ≥ π/4. Thus,
if µ ≥ π/4, then the algorithm returns a combinatorial vector field, that is
a combinatorial multivector field with no strict multivectors.

Theorem 10.1. Consider the algorithm in Table 1. When applied to a map
v and numbers µ > 0, ε > 0 it always stops returning a map θ : X → X
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A B C D E

F G H I J

K L M N O

A B C D E

F G H I J

K L M N O

Figure 14. A generalized multivector field as a partition of
a Lefschetz complex (top) and the associated directed graph
GV (bottom). The up-arrows and loops are marked by thick
solid lines. The down-arrows are marked by thin dashed lines.
Only one loop for each critical vector is marked. Multivectors
in the upper row of squares are regular. Multivectors in the
lower row of squares are critical.

which satisfies conditions (i)-(iii) of Theorem 5.11. Thus, the collection
{ θ−1(y) | y ∈ im θ } is a combinatorial multivector field on X.

Proof: After completing the first foreach loop the map θ, as the identity,
trivially satisfies conditions (i)-(iii) of Theorem 5.11. Thus, it suffices to
observe that each modification of θ in the subsequent loops preserves theses
properties. One can easily check that this is indeed the case. �

11. Extensions.

In this section we briefly indicate the possibilities of some extensions of
the theory presented in this paper. The details will be presented elsewhere.

11.1. Generalized multivector fields. The requirement that a multivec-
tor has a unique maximal element with respect to the partial order ≤κ is
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convenient. It simplifies the analysis of combinatorial multivector fields,
because every non-dominant cell x admits precisely one arrow in GV origi-
nating in x, namely the up-arrow from x to x?. It is also not very restrictive
in combinatorial modelling of a dynamical system. But, in some situations
the requirement may be inconvenient. For instance, if sampling is performed
near a hyperbolic or repelling fixed point, it may happen that the sampled
vectors point into different top dimensional cells. Or, when a parameterized
family of dynamical systems is studied (see Section 11.2), it may be natu-
ral to model a collection of nearby dynamical systems by one combinatorial
multivector field. In such a situation the uniqueness requirement will not
be satisfied in places where neighbouring systems point into different cells.

Taking these limitations into account it is reasonable to consider the fol-
lowing extension of the concept of a combinatorial multivector field. A
generalized multivector in a Lefschetz complex (X,κ) is a proper collection
of cells in X. A generalized multivector V is critical if Hκ(V ) 6= 0. A gen-
eralized multivector field V is a partition of X into generalized multivectors.
For a cell x ∈ X we denote by [x] the unique generalized multivector in V to
which x belongs. The associated generalized directed graph GV has vertices
in X and an arrow from x to y if one of the following conditions is satisfied

dim x < dim y and y ∈ [x] (an up-arrow),(32)
dim x > dim y and y ∈ mo[x] (a down-arrow),(33)
x = y and [y] is critical (a loop).(34)

We write y ≺V x if there is an arrow from x to y in GV , denote by ≤V the
preorder induced by ≺V , interpret ≺V as a multivalued map ΠV : X −→→X
and study the associated dynamics. An example of a generalized multivector
field together with the associated up-arrows is presented in Figure 14.

The main ideas of the theory presented in this paper extend to this gener-
alized case. The proofs get more complicated, because there are more cases
to analyse. This is caused by the fact that more than one up-arrow may
originate from a given cell.

It is tempting to simplify the analysis by gluing vertices of GV belonging
to the same multivector. But, when proceeding this way, the original phase
space is lost. And, the concept of index pair makes sense only in the original
space, because in general the sets P1, P2 in an index pair P = (P1, P2) are
not V-compatible. Also, since in the gluing process two different combina-
torial multivector fields would modify the space in a different way, it would
not be possible to compare their dynamics. In consequence, the concepts
of perturbation and continuation briefly explained in the following section
would not make sense.

11.2. Perturbations and continuation. Among the fundamental features
of the classical Conley index theory is the continuation property [9, Chapter
IV]. An analogous property may be formulated in the combinatorial case.
Let V, V̄ be two combinatorial multivector fields on a Lefschetz complex
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Figure 15. Two parameterized families of combinatorial
multivector fields: V1, V2, V3, V4, V5 (top from left to right)
and W1, W2, W3, W4, W5, W6, W7 (bottom from left to
right). Note that

X. We say that V̄ is a perturbation of V if V̄ is a refinement of V or V is a
refinement of V̄. A parameterized family of combinatorial multivector fields
is a sequence V1,V2, . . . ,Vn of combinatorial multivector fields on X such
that V i+1 is a perturbation of V i. Assume S is an isolated invariant set of V
and S̄ is an isolated invariant set of V̄. We say that S and S̄ are related by
a direct continuation if there is a pair P = (P1, P2) of closed sets in X such
that P is an index pair for S with respect to V and for S̄ with respect to
V̄. We say that S and S̄ are related by continuation along a parameterized
family V = V1,V2, . . . ,Vn = V̄ if there exists isolated invariant sets Si of V i
such that S1 = S, Sn = S̄ and Si, Si+1 are related by a direct continuation.
In a similar way one can define continuation of Morse decompositions of
isolated invariant sets.

Figure 15 presents two parameterized families of combinatorial multivec-
tor fields: V1, V2, V3, V4, V5 in the top row andW1,W2,W3,W4,W5,W6,
W7 in the bottom row. Note that V1 = W1 and V5 = W7. The singleton
{AB} is an isolated invariant set of V1. The set {A,AB,AC} is an isolated
invariant set of V2. These two sets are related by a direct continuation, be-
cause the pair ({A,B,C,AB,AC}, {B,C}) is an index pair for {AB} with
respect to V1 and for {A,AB,AC} with respect to V2. Note that {AB} is
also an isolated invariant set of V5 but it is not related by continuation along
V1, V2, V3, V4, V5 to {AB} as an isolated invariant set of V1. But {AB} as
an isolated invariant set for W1 is related by continuation along W1, W2,
W3, W4, W5, W6, W7 to {CD} as an isolated invariant set for W7. Ac-
tually, the Morse decomposition of W1 consisting of Morse sets {ABCD},
{AB}, {CD}, {B}, {C} is related by continuation along W1, W2, W3, W4,
W5, W6, W7 to the Morse decomposition of W7 consisting of Morse sets
{ABCD}, {CD}, {AB}, {C}, {B}. In particular, the isolated invariant
sets {ABCD}, {AB}, {CD}, {B}, {C} of W1 are related by continuation
respectively to the isolated invariant sets {ABCD}, {CD}, {AB}, {C}, {B}
of W7.
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11.3. Homotopy Conley index for combinatorial multivector fields
on CW complexes. Consider a finite regular CW complex X with the
collection of cells K. We say that V ⊆ K is a multivector if |V |, the union
of all cells in V , is a proper subset of X. We say that a multivector V
is regular if mo |V | := cl |V | \ |V | is a deformation retract of cl |V | ⊆ X.
Otherwise we call V critical. We define the generalized multivector field V
on X as a partition of K into generalized multivectors. Using the modified
concepts of regular and critical multivectors as in the case of Lefschetz com-
plexes we introduce the directed graph GV and the associated dynamics.
This lets us introduce the concept of an isolated invariant set S and the
associated Conley index defined as the homotopy type of P1/P2 for an index
pair (P1, P2) isolating S. The proofs rely on gluing the homotopies provided
by the deformation retractions of the individual regular multivectors.

11.4. Discrete Morse theory for combinatorial multivector fields.
The main result of discrete Morse theory [10, Cor 3.5] establishes a homotopy
equivalence between the original complex X and a complex X ′ with the
number of k-dimensional cells equal to the number of critical points of the
Morse function whose Morse index is k. A natural question is whether
one can use multivectors instead of vectors to obtain a similar result under
the additional assumption that all the critical cells are non-degenerate. It
seems that the collapsing approach to discrete Morse theory presented in
[6] extends to the case of combinatorial multivector fields on CW complexes
defined in the preceding section. In the algebraic case of Lefschetz complexes
one needs an extra assumption that the closure of every regular multivector
is chain homotopy equivalent to its mouth.

12. Conclusions and future research.

The presented theory shows that combinatorialization of dynamics, started
by Forman’s paper [11], may be extended to cover such concepts as isolated
invariant set, Conley index, attractor, repeller, attractor-repeller pair and
Morse decomposition. Moreover, the broader concept of a combinatorial
multivector field introduced in the present paper seems to be more flexible
than the original Forman’s concept of combinatorial vector field and shall
serve better the needs of the combinatorialization of classical topological
dynamics. In particular, some classical concepts in dynamics, for instance
the homoclinic connection, do not have counterparts in the theory of com-
binatorial vector fields but do have in the case of combinatorial multivector
fields.

The theory proposed in this paper is far from being completed. Besides
the extensions discussed in the previous section there are several directions
of research to be undertaken. For instance, connection matrices constitute
an essential part of the Conley index theory. It is natural to expect that
they have some counterpart in the combinatorial setting. Several authors
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proposed a generalization of the Conley index theory to the case of time-
discrete dynamical systems (iterates of maps) [25],[22],[30],[12]. A challeng-
ing question is what is a combinatorial analogue of a time-discrete dynamical
system and how to construct Conley index theory for such systems. Poincaré
maps for combinatorial multivector fields may be a natural place to start
investigations in this direction. Also, it would be interesting to understand
the relation between the dynamics of a combinatorial multivector field and
its Forman refinements.

The real significance of combinatorial multivector fields will be seen only
after constructing bridges between combinatorial and classical dynamics.
Some work towards a bridge from combinatorial to classical dynamics has
been undertaken in [16]. However, from the point of view of applications a
reverse approach is more important: constructing a combinatorial multivec-
tor field modelling a classical flow. The algorithm presented in this paper is
only a hint that such constructions are possible. Obviously, finite resolution
of the combinatorial setting prohibits any one-to-one correspondence, but
approximation schemes representing the classical flow up to the resolution
controlled by the size of the cells in the approximation should be possible.
Depending on the goal, there are at least two options. If the goal is the
rigourous description of the classical dynamics by means of a combinatorial
multivector field, the techniques developed in [5] might be of interest. If
rigour is not necessary, the use of a piecewise constant approximation of a
vector field [31] to construct a combinatorial multivector field is an interest-
ing option.
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