
Noname manuscript No.
(will be inserted by the editor)

Distributed computation of coverage in sensor
networks by homological methods

P. D lotko · R. Ghrist · M. Juda · M.
Mrozek

Received: date / Accepted: date

Abstract Recent work on algebraic-topological methods for verifying cover-
age in planar sensor networks relied exclusively on centralized computation:
a limiting constraint for large networks. This paper presents a distributed
algorithm for homology computation over a sensor network, for purposes of
verifying coverage. The techniques involve reduction and coreduction of sim-
plicial complexes, and are of independent interest. Verification of the ensuing
algorithms is proved, and simulations detail the improved network efficiency
and performance.

Keywords homology · sensor network · coverage · distributed computation

Mathematics Subject Classification (2000) 55-04 · 55N99 · 52B99

1 Introduction

Sensors — devices which return data tied to a location — are ubiquitous [13].
Although many sensors commonly used are stand-alone or global devices, there

The first, third and fourth author are partially supported by Polish MNiSW, Grant N201
037 31/3151 and N N201 419639. The first author is partially supported by Polish MNiSW
Grant N N206 625439. The second author is supported by the ONR and by DARPA SToMP
# HR0011-07-1-0002.

P. D lotko & M. Juda
Institute of Computer Science, Jagiellonian University, Kraków, Poland
E-mail: Pawel.Dlotko@uj.edu.pl ; E-mail: Mateusz.Juda@ii.uj.edu.pl

R. Ghrist
Departments of Mathematics and Electrical & Systems Engineering, University of Pennsyl-
vania, Philadelphia, PA
E-mail: ghrist@math.upenn.edu

M. Mrozek
Institute of Computer Science, Jagiellonian University, Kraków, Poland; and Division of
Computational Mathematics, WSB-NLU, Nowy Sa̧cz, Poland
E-mail: Marian.Mrozek@ii.uj.edu.pl



2 D lotko, Ghrist, Juda & Mrozek

is an increasing push to network multiple local sensors, thanks to progress in
miniaturization and wireless communications. The problem of collating dis-
tributed pieces of sensor data over a communications network is a substantial
engineering challenge for which mathematical tools of a wide variety are rele-
vant.

One simple-to-state problem of direct relevance is that of coverage, or how
well a region is monitored by sensors. For concreteness, fix a domain D ⊂ R2

and consider a finite collection N of sensors in D. The nodes have two func-
tions: they (1) sense a neighborhood of their locale in R2; and (2) they com-
municate with other nearby sensors. Both of these actions are assumed to be
local in the sense that individual nodes cannot extract sensing data from or
communicate data over all of D. The problem of coverage, or more precisely,
blanket coverage, is the question of whether there are holes in the sensor net-
work — are there any regions in D which are not sensed? Other important
coverage problems include barrier coverage, in which one wants to determine
whether the region covered by a sensor network separates D or surrounds a
critical region, and sweeping coverage, the time-dependent coverage problem
familiar to users of robotic vacuum sweepers.

Coverage problems in sensor networks have received extensive attention
with a literature whose tools derive from computational geometry [21,22,31,
32], graph-theory [14], dynamical systems [7], and stochastic geometry [19].
Optimal coverage forms a distinct class of art gallery problems, with heavy
representation in the computer science and complexity literature. Recently,
several authors have turned to methods which are coordinate-free, inspired
by problems involving non-localized ad hoc networks. In this class of cover-
age problems — where coordinates of sensor nodes cannot be assumed —
available tools are less geometric. Among the techniques used in non-localized
problems, algebraic topology has been recently seen to be both applicable and
powerful [1,9,11,25,29,30]. Specifically, the tool used is simplicial homology,
an algebraic-topological construct that determines global features (e.g., holes)
in a simplicial complex (e.g., generated by nodes and communication links)
utilizing local connectivity data (e.g., communications protocols). Homology
theory is outlined in Appendix A; homological coverage criteria are reviewed
in §3.

The problem this paper solves is as follows: in all the initial work on ho-
mological criteria for sensor coverage [9], the computations were centralized.
All sensor nodes were required to upload connectivity data to a central server
for the crucial homology computation. Although there are no fundamental ob-
structions to a decentralized computation of homology [26], specific methods
for doing so are nontrivial.

Our contributions are as follows:

1. We provide a provably correct algorithm for distributed computation of
homological coverage criteria.

2. The algorithm can recover specific generators, for use in building minimal
or power-reducing covers.



Distributed computation of coverage in sensor networks by homological methods 3

3. Most crucially, the algorithm computes homology in an arbitrary coefficient
system. This allows for computations over finite fields, which avoids the
roundoff errors present in R-coefficients.

4. Simulations seem to indicate that for a unit-disc graph network of points in
the plane, all complexes are completely reducible, indicating that homology
computation is of linear algorithmic complexity.

The last point leads us to the following:

Conjecture 1 For a Vietoris-Rips complex of points N in the plane R2, the
S-complex Kf remaining after applying Algorithm 8 is always boundaryless.

If this conjecture is true, there is no need for any additional computations to
ascertain the homology. This would be beneficial as regards theoretical com-
plexity bounds, since the reduction algorithm in a non-distributed setting and
bounded amount of neighbors has complexity O(N), where N is the number
of simplices (see [23]). However, even if in some situations the conjecture fails,
in practice the size of the remaining complex is very small: one node would
easily compute the homology of the remaining complex.

Our work compares most closely to the recent approach of Jadbabaie and
Tahbaz-Salehi [29]. They also derive a distributed algorithm for homology
computation with the goal of satisfying the homological coverage criterion,
determining the existence/location of holes, and generating optimal coverage.
Their methods involve passing to homology with R coefficients and setting up
the problem as a dynamical system — in essence, they use simplicial Lapla-
cians and their connection to homology via Hodge theory [12] to solve a heat
equation over the network. This can be done in a distributed manner, using
message-passing and gossip algorithms [18]. The paper [29] is very creative
in that they also apply compressive-sensing perspectives to the problem of
provably and quickly determining optimal generators for homology classes.

The reduction/coreduction scheme of this paper has several advantages.

1. It greatly reduces the communication complexity demanded by a dynami-
cal systems approach as in [29]: waiting for a large network to asymptoti-
cally converge to a solution is nontrivial in time and in energy drain from
communication.

2. It is applicable to arbitrary coefficient systems. The Hodge-theoretic ap-
proach of [29] cannot avoid the use of R coefficients and the ensuing round-
off errors, which can accumulate to obscure answers in settings where ho-
mology generators are not well-separated. Our approach works well with
finite field coefficients (e.g., mod-2 arithmetic) or integer coefficients, avoid-
ing roundoff altogether.

Moreover, the methods developed in this paper may be adapted to speed up
general-purpose homology computations in the context of parallel architecture,
in particular in multi-core processors and GPU’s (work in progress). Finally,
more flexible local coefficient systems (as in [15]) may be adaptable; if so, the
techniques of this paper may be extended to give a distributed computation of



4 D lotko, Ghrist, Juda & Mrozek

the cohomology of simplicial sheaves, a problem whose relevance to networks
is emerging [16,27,28].

We understand that an independent method for distributed homology com-
putation is being investigated by Carlsson, de Silva, and Morozov, using the
technique of zigzag persistence, as initiated in [4] and [5].

2 Sensor and network assumptions

For our applications of distributed homology computation to coverage prob-
lems, we operate under the following assumptions.

1. Sensors are modeled as a collection of nodes N ⊂ R2.
2. Each sensor is assumed to have a unique identification which it broadcasts;

certain neighbors detect the transmission and establish a communication
link.

3. Communication links are symmetric, stable, and generate a well-defined
communications graph G on N .

4. Sensor coverage regions are correlated to communications: the convex hull
of any subset of sensors S ⊂ N which pairwise communicate is contained
in the union of coverage regions of S.

5. One fixes a cycle C ⊂ G whose image in R2 is a simple closed curve bounding
a simply connected domain D ⊂ R2.

Under these assumptions, one wants to know whether D is contained in
the coverage region of the network. These assumptions are chosen to be weak
enough to be applicable in realistic systems; however, some important con-
siderations — e.g., time-variability, node failure, false echoes, communications
errors — are not modeled.

3 Homological coverage

This paper builds on a homological criterion for coverage in sensor networks
described and explored in [9,11]. This section reviews that criterion. The reader
for whom homology is foreign will want to make a brief excursion to Appendix
A.

3.1 Simplicial complexes for networks

This paper uses as its basic data structure simplicial complexes based on a set
of nodes (sensors) N . A finite family X of nonempty finite subsets of N is an
(abstract) simplicial complex if for every σ ∈ X and τ ⊂ σ we have τ ∈ X. The
elements σ ∈ X are simplices whose dimension equals the cardinality minus
one: dim σ = |σ|− 1. The 0-simplices of X are vertices and the 1-simplices are
edges, as in graph theory. A face of a simplex σ in a simplicial complex X is
a simplex τ ⊂ σ with dim τ = dim σ − 1. For τ a face of σ one says that σ is



Distributed computation of coverage in sensor networks by homological methods 5

Fig. 1 The geometric realization of a simplicial complex.

a coface of τ . Every simplicial complex has a natural geometric realization —
also denoted X — as a topological space obtained by gluing disjoint copies of
the standard k-simplex, ∆k, along faces, as in Figure 1.

Simplicial complexes are natural to networks. Any communications net-
work on nodes N has the structure of a simplicial complex with all simplices
of dimension zero or one. In several applied contexts, higher dimensional sim-
plicial complexes are natural data structures. Examples include the following.
Assume a set of nodes N in Euclidean Rn:
1. The size ϵ Čech complex is the simplicial complex Cϵ onN whose k-simplices

are generated by k + 1 nodes about which the diameter ϵ balls have a
mutually nonempty intersection.

2. The size ϵ Vietoris-Rips complex is the simplicial complex Rϵ on N whose
k-simplices are generated by k+ 1 nodes about which the diameter ϵ balls
have pairwise nonempty intersections. Namely, simplices are tuples of nodes
with pairwise distance less than or equal to ϵ.

3. Given a network of edges based on N , the flag complex of the network
is the simplicial complex F whose k simplices are generated by pairwise-
connected (k + 1)-tuples of nodes in the network.

Thus, the Vietoris-Rips complex Rϵ is the flag complex of the size ϵ unit
disc graph. This simple model of connectivity for a sensor or communications
network is widely used [14,22,32] and widely disparaged [3,8,20]. Our results
hold in the context of more general flag complexes associated to network com-
munication graphs, whether they are unit disc graphs or not.

In this paper, we restrict attention to simplicial complexes. There is a
broader notion of a cell complex having as building blocks not merely simplices,
but cubes or other polyhedral cells. These can sometimes be useful in modeling
the geometry underlying a sensor network. The methods described in this
paper extend to these as well but are not detailed explicitly.

3.2 The homological coverage criterion

Recall our standing assumption linking coverage to communication: any triple
of nodes in pairwise communication has its convex hull in R2 contained in



6 D lotko, Ghrist, Juda & Mrozek

Fig. 2 Coverage regions are assumed to be correlated to communication distances: the
convex hull of a triple of communicating nodes is assumed covered.

the coverage region, as in Figure 2. We emphasize that this neither assumes
localization nor an unrealistic assumption about round balls, symmetry, or
the like: this is a very flexible model. As stated, it is explicitly simplicial, and
motivates the use of the flag complex F of the communications graph G to
model the topology of the sensed region.

The second important assumption is that a cycle C in the network is chosen
whose image in R2 is a simple closed curve bounding a polygonal domain D.
This cycle acts as a fence for the coverage problem. (Criteria for guaranteeing
that a cycle in a non-localized network has simple image in the plane are simple
to derive [6,9] — it suffices to have no ‘shortcuts’ between cycle nodes.) The
following theorem gives a criterion for coverage based on (relative) homology
of the flag complex F of the communications network modulo the fence cycle
C. It is a slight modification of Theorem 3.3 of [9].

Theorem 1 (Homological coverage criterion [9]) Given a planar sensor net-
work with G, C, and D as above, then all of D is completely covered by the
sensors if, equivalently:

1. [C] = 0 ∈ H1(F).
2. There exists [ζ] ∈ H2(F , C) with ∂ζ = C.

In practice, the second form of the criterion is more useful, since, if an
explicit relative cycle ζ ∈ Z2(F , C) is computed, then it provides a guarantee
of coverage even when the nodes not implicated in ζ are removed (or ‘powered
down’ for conservation reasons), cf. [9].

4 S-complexes and reduction algorithms.

Our algorithm for a distributed homology computation that suffices to check
the criterion of Theorem 1 necessitates a modification of the relevant chain



Distributed computation of coverage in sensor networks by homological methods 7

complexes. Our approach is explicitly simplicial and uses reductions and core-
ductions to simplify a simplicial complex. Recalling (Appendix A) that in
homology theory, a simplicial complex (a fundamentally topological object) is
replaced with a chain complex (a fundamentally algebraic device), we simplify
the simplicial and chain complexes simultaneously.

4.1 S-complexes

We review the concept of an S-complex introduced in [23] as a reformulation
of a chain complex, convenient for algorithmic purposes. Let K = (Kq)q∈Z be
a finite graded set, whose grading is called dimension, denoted dim. Let R[K]
be the graded free module over the unitary ring R of chains, generated by the
graded set K, with inner product ⟨·, ·⟩ induced by K. We refer to the generators
of R[K] as elementary chains. Let κ : K×K → R be a map for which κ(σ, τ) ̸= 0
only if dim σ = dim τ + 1. This induces a morphism ∂κ : R[K]→ R[K] via

∂κ(σ) :=
∑
τ∈K

κ(σ, τ)τ σ ∈ K.

This is well-defined and of degree −1. We say that (K, κ) is an S-complex if
(R[K], ∂κ) is a chain complex. The homology of an S-complex (K, κ), denoted
H(K), is defined as the homology of the chain complex (R[K], ∂κ). In the sequel
we will drop the superscript κ in ∂κ whenever κ is clear from the context. We
also refer to R[K] as a chain complex if ∂κ is clear from the context.

Every simplicial complex gives rise to an S-complex. Indeed, every simpli-
cial complex K has a natural gradation (Kq)q∈Z, whereKq consists of simplices
of dimension q. Assume an ordering of the vertices of K is given and every sim-
plex σ inKq is coded as [v0, v1, . . . , vq], where v0, v1, . . . , vq are listed according
to the prescribed ordering. By putting

κ(σ, τ) :=


(−1)i if σ = [v0, v1, . . . , vi−1, vi, vi+1, . . . , vq]

and τ = [v0, v1, . . . , vi−1, vi+1, . . . , vq]

0 otherwise.

we obtain an S-complex (K, κ).
We say that (K, κ) is boundaryless if ∂κ = 0. Note that if (K, κ) is bound-

aryless, then there is no computation involved in determining homology, as
H(K) = R[K]. A boundaryless complex is highly desirable from the point of
view of algorithms, as no further computation is necessary. Our strategy is
to incrementally and asynchronously modify S-complexes so as to achieve a
boundaryless complex.

Given an elementary chain σ ∈ K of an S-complex, we define its boundary
and coboundary sets as:

bdK(σ) := { τ ∈ K | κ(σ, τ) ̸= 0 },
cbdK(σ) := {σ ∈ K | κ(σ, τ) ̸= 0 }.



8 D lotko, Ghrist, Juda & Mrozek

We say that K′ ⊂ K is closed in K if bdKK′ ⊂ K′. Note that if K′ is
closed in K, then ∂κ(R[K′]) ⊂ R[K′]; therefore, there is a well defined re-
striction ∂κ|R[K′] : R[K′] → R[K′], which gives rise to a chain subcomplex
(R[K′], ∂κ|R[K′]) of the chain complex (R[K], ∂κ).

We say that K′ ⊂ K is open in K if the complement K \ K′ is closed.
Note that if K′ is open in K, then there is a well defined quotient complex
(R[K]/R[K\K′], ∂′) with the boundary map ∂′ taken as the respective quotient
map of ∂κ.

A subset K′ ⊂ K is an S-subcomplex of the S-complex K if (K′, κ′), with
κ′ := κ|K′×K′ , the restriction of κ to K′ × K′, is itself an S-complex, i.e. if
(R[K′], ∂κ

′
) is a chain complex.

One can easily verify that if K′ is closed in K, then ∂κ
′
coincides with

∂κ|R[K′]. In consequence, K′ is an S-subcomplex of K and the homology of K′

coincides with the homology of the chain subcomplex (R[K′], ∂κ|R[K′]).

A lengthier but easy argument shows that if K′ is open in K, then ∂κ′
is

conjugate to the boundary map ∂′ in the quotient complex (R[K]/R[K\K′], ∂′).
Thus, also in this case K′ is an S-subcomplex of K and the homology of K′ is
isomorphic to the homology of the quotient complex (R[K]/R[K \ K′], ∂′).

Therefore, we have the following theorem (see also [23, Theorem 3.2]).

Theorem 2 If K′ is closed or open in K, then K′ is an S-subcomplex of K.
Moreover, if K′ is closed in K, then H(K′) coincides with the homology of
the chain subcomplex (R[K′], ∂κ|R[K′]) and if K′ is open in K, then H(K′) is
isomorphic to the homology of the quotient complex (R[K]/R[K \ K′], ∂′).

However, the concept of an S-subcomplex is broader than the concepts of
closed and open subsets, because, as the following example shows, there are
S-subcomplexes which are neither open nor closed.

Example 1 Take a simplicial complex K which consists of four vertices A, B,
C, D, four edges AB, AC, BC, CD and one triangle ABC. Consider the
following subsets:

K′ := K \ {D},
K′′ := K′ \ {CD,C},
K′′′ := K′′ \ {ABC,AB}.

One easily verifies that K′ is open in K, K′′ is open in K′ and K′′′ is closed
in K′′. Therefore, R[K′] is a quotient complex of R[K], R[K′′] is a quotient
complex of R[K′] and R[K′′′] is a chain subcomplex of R[K′′]. However, R[K′′′]
is neither a subcomplex nor a quotient complex of R[K′] or R[K]. But K′′′ is
an S-subcomplex of K′′, K′ and K.

The following proposition is straightforward.

Proposition 1 Assume K′ is an S-subcomplex of an S-complex K and A ⊂
K′. Then

bdK′(A) = bdK(A) ∩ K′,

cbdK′(A) = cbdK(A) ∩ K′.



Distributed computation of coverage in sensor networks by homological methods 9

Fig. 3 Simplification of a complex [center] performed via elementary coreduction [left] and
reduction [right] pairs.

The following is an easy consequence of Theorem 2 and standard homo-
logical algebra (see Appendix A).

Theorem 3 [23, Theorem 3.4] For K′ closed and K′′ the complementary open
subset of K, the short exact sequence

0→ R[K′]
ι−→ R[K] π−→ R[K′′]→ 0

with inclusion ι and projection π induces the following long exact sequence of
homology modules:

· · · δ−→ Hq(K′)
H(ι)−→ Hq(K)

H(π)−→ Hq(K′′)
δ−→ Hq−1(K′) · · · (1)

4.2 Reduction, coreduction, and sequences.

The parallelized simplification of an S-complex K consists of removing certain
pairs of elements of K while leaving the homology of the complex intact. Given
a pair α = (τ, σ) ∈ K2, we refer to the doubleton {τ, σ} as the support of the
pair α and denote it |α|. We extend the concept and notation of support to
collections B = {β1, β2, . . . , βn } ⊂ K2 of pairs by unions: |B| := ∪ni=1|βi|.

A pair α = (τ, σ) ∈ K2 is an elementary reduction pair in K if cbdK{τ} =
{σ} and κ(σ, τ) is invertible in R. It is called an elementary coreduction pair in
K if bdK{σ} = {τ} and again κ(σ, τ) is invertible in R. For a fixed S-complex
K, an S-reduction pair is a pair which is either an elementary reduction pair
or an elementary coreduction pair in K. Sample reductions of an S-complex
performed by removing the support of an S-reduction pair are presented in
Figure 3.

Lemma 1 Given α an S-reduction pair in an S-complex K, we have the fol-
lowing properties

(i) If α is an elementary reduction (resp. coreduction) pair, then |α| is open
(resp. closed) in K.



10 D lotko, Ghrist, Juda & Mrozek

(ii) The support |α| is an S-subcomplex of K and H(|α|) = 0.
(iii) There is a well defined chain map

R[K \ |α|] ∋ c 7→ c− ⟨∂c, τ⟩
⟨∂σ, τ⟩

σ ∈ R[K] (2)

inducing an isomorphism

γα : H(K \ |α|) ∼= H(K). (3)

(iv) If α is an elementary reduction pair, then γα coincides with the isomor-
phism induced by the inclusion ια : R[K \ |α|]→ R[K].

(v) If α is an elementary coreduction pair, then γα coincides with the inverse
of the isomorphism induced by the projection πα : R[K|]→ R[K \ |α|].

Proof Properties (i) and (ii) are direct (and follow from [23, Theorem 4.1] and
Theorem 2). Properties (iii), (iv) and (v) use the long exact sequence of the
pair (and follow from [24, Corollary 2.7], [24, Theorem 2.8], [24, Theorem 2.9]
and Theorem 3). ⊓⊔

Note that a pair α ∈ K2 which is not necessarily an S-reduction pair
in K may be an S-reduction pair in a S-subcomplex of K. We call such an
S-reduction pair a potential S-reduction pair in K. Whenever potential S-
reduction pairs exist, the reduction process may be self-feeding: removing some
S-reduction pairs may give rise to new S-reduction pairs. On the other hand,
if the supports of two S-reduction pairs in a given S-complex have non-empty
intersection, performing one of these reductions eliminates the other reduc-
tion as a possibility. For disjoint supports, both reductions may be performed
independently, in parallel. We say that a collection B = {β1, β2, . . . , βn} of
potential S-reduction pairs in K is free in an S-subcomplex L of K if all ele-
ments of B are S-reduction pairs in L and any two distinct elements of B have
disjoint supports. We say that B is free if it is free in some S-subcomplex of
K.

Let L be an S-subcomplex of K. We say that an ordered sequence φ =
(φ1, φ2, . . . , φn) of potential S-reduction pairs in K is a reduction sequence in

L if for each j = 1, 2, . . . , n the pair φj is an S-reduction pair in L \
∪j−1
i=1 |φi|.

Note that a straightforward recursive argument shows that the definition is
meaningful, i.e., L \

∪j−1
i=1 |φi| is an S-complex. A reduction sequence is said

to be free if the elements of the sequence form a free collection of S-reduction
pairs.

We use S-reduction pairs to selectively simplify an S-complex. A reduction
sequence φ in an S-subcomplex L of K yields an isomorphism

Iφ : H(L \ |φ|)→ H(L) : Iφ := γφ1 ◦ γφ2 ◦ · · · ◦ γφn , (4)

given by the composition of the isomorphisms γφi of Equation (3). The fol-
lowing result is crucial in proving correctness of our algorithms:



Distributed computation of coverage in sensor networks by homological methods 11

Theorem 4 Let L be an S-subcomplex of K. Free collections and reduction
sequences have the following properties.

(i) Any total ordering of a free collection B of S-reduction pairs in L forms a
reduction sequence.

(ii) The set L \ |B| is an S-subcomplex of K for any free collection B in L.
(iii) Two free reduction sequences φ, φ′ which differ by a permutation give rise

to the same isomorphism Iφ = Iφ′ .

Proof The proof of property (i) proceeds by induction in m, the size of the
free collection B. If m = 1, the conclusion is obvious. For m > 1 the conclu-
sion follows immediately from Proposition 1 and the induction assumption.
Property (ii) follows immediately from (i) and the definition of the reduction
sequence. The proof of property (iii) proceeds by induction in n, the common
length of the free reduction sequences φ and φ′. If n = 1, the conclusion is
obvious. If n = 2, then φ = (φ1, φ2) and φ

′ = (φ2, φ1) unless φ = φ′ when the
conclusion is obvious. There are three cases to be considered: either both φ1

and φ2 are elementary reduction pairs or they are both elementary coreduction
pairs or one is an elementary reduction pair and the other is an elementary
coreduction pair. In the first case we have the following commutative diagram
of chain maps induced by inclusions

R[K \ |φ1|] ←−−−− R[K \ (|φ1| ∪ |φ2|)]y y
R[K] ←−−−− R[K \ |φ2|]

which induces a commutative diagram in homology. By Lemma 1(iv), we ob-
tain Iφ = Iφ′ . An analogous argument based on a diagram with projections
and a diagram with inclusions combined with projections bring us to the same
conclusion in the other two cases. There remains to consider the case n > 2.
Since φ and φ′ differ only by a permutation, there exists an i ∈ {1, . . . , n}
such that φ′

i = φn. Let

φ̄ := (φ1, φ2, . . . , φn−1)

ψ̄ := (φ′
1, φ

′
2, . . . , φ

′
i−1, φ

′
i+1, . . . φ

′
n)

ψ := (φ′
1, φ

′
2, . . . , φ

′
i−1, φ

′
i+1, . . . φ

′
n, φ

′
i)

Obviously, φ̄ and ψ̄ are free reduction sequences. By the induction assumption
Iφ̄ = Iψ̄, therefore

Iφ = Iφ̄ ◦ γφn = Iψ̄ ◦ γφ′
i
= Iψ.

However, by the case n = 2 applied n − i times to ψ we get Iψ = Iφ′ . This
proves that Iφ = Iφ′ . ⊓⊔

Theorem 4 makes a distributed reduction process possible: the reductions
in a free reduction sequence may be performed independently, so in parallel,
independent of order.



12 D lotko, Ghrist, Juda & Mrozek

A B C D

E

F

G H I

Fig. 4 From top left, to bottom right, following the arrows: a collection of sensors and
the associated S-complex, the S-complex after removing the fence, the fence complex after
removing the consecutive free collections of S-reduction pairs, the final reduced S-complex.

Example 2 Consider the set of nine sensors {A,B,C,D,E, F,G,H, I} whose
communication graph consists of eighteen edges (see Figure 4)

{ AB,AE,AG,BC,BE,BF,CD,CE,CF,
DF,DI,EF,EG,EH,FH,FI,GH,HI}.

After removing the fence consisting of edges {AB,BC,DI,HI,GH,AG}, we
obtain an S-complex composed of two vertices, eleven 1-simplices, eleven 2-
simplices and one 3-simplex. A search for S-reduction pairs reveals elementary
coreduction pairs (F,DF ) and (E,CE). These form a free collection and may
be removed in parallel. Continuing, we obtain the following reduction sequence,
in which free collections are written in separate lines.

(F,DF ) (E,CE)

(FI,DFI) (CF,CDF ) (BE,BCE)

(EF,CEF ) (BF,BCF ) (AE,ABE) (FH,FHI)

(BEF,BCEF ) (EG,AEG) (EH,EFH).

In the case of this reduction sequence the resulting S-complex is boundaryless.
It consists only of the (open) 2-simplex EFH, which becomes the generator
of the second homology group of the S-complex.

5 Construction of the Flag Complex

In this section we describe the distributed algorithms for the construction of
the flag complex as a simplicial approximation of the sensor network. Hence-
forth we assume a fixed enumerative ordering of the sensor nodes N , as per
unique identification numbers. We denote the total order by ▹. Moreover, we



Distributed computation of coverage in sensor networks by homological methods 13

Algorithm 1 newSimplex(V, N)

1. σ := new simplex object.
2. σ. vert := V .
3. σ. neighb := N .
4. σ. locked := σ. deleted := false.
5. return σ.

assume that all algorithms described in this section are executed separately
on every node.

Following the conventions of object oriented programming, we write s. alg()
to indicate that node s is requested to execute alg(). In every algorithm we
denote the node running the algorithm by the word this. We drop the prefix
“this” in this. alg(), assuming that by default the node supposed to execute
the called algorithm is the node making the call. We assume that every node
stores the set of its neighbors in variable neighbors.

To store simplex σ of the flag complex F associated with sensor network
N we use a data structure Simplex with the following fields and methods:

- σ. vert - the set of the vertices (nodes) in σ,
- σ. neighb - the set of the neighbors of σ,
- σ. faces() - returns the set of the faces of σ,
- σ. cofaces() - returns the set of the cofaces of σ.

In course of running the reduction algorithm we also need some auxiliary
fields. In particular, when a simplex is removed by the reduction algorithm,
instead of deleting it from the data structure we only mark a flag indicating
that the simplex is to be treated as deleted. We use another flag to lock a
simplex when a node is negotiating its removal with its neighbors. Here is the
list of all auxiliary fields:

- σ. deleted - a boolean variable marking that σ is deleted,
- σ. locked - a boolean variable marking that σ is locked.

In order to construct a simplex we use Algorithm 1. It returns a simplex
with vertex set V and the neighbors set N .

Algorithm 2 is the algorithm for building the flag complex F of the net-
work as expressed locally in terms of vertex-neighbor data. The algorithm is
executed on each node. In the sequel, by s. Simp we mean the set of simplices
created by node s in the course of running Algorithm 2. The subset of s. Simp
consisting of simplices of dimension i is denoted by s. Simp[i]. We say that node
s controls simplex σ if simplex σ is created in course of running Algorithm 2
on node s.

Theorem 5 Assume Algorithm 2 has been initiated on each node. Then it
terminates on each node. Moreover, once the algorithm has completed on all
nodes, the following properties hold true.



14 D lotko, Ghrist, Juda & Mrozek

Algorithm 2 createLocalFlagComplex

1. τ0 := newSimplex({ this }, neighbors).
2. Simp[0] := {τ0}.
3. i := max{j ∈ N | Simp[j] ̸= ∅}.
4. for each τ ∈ Simp[i]
(a) next τ if min(τ. vert) ̸= this.
(b) for each t ∈ τ. neighb

i. next t if min(τ. vert)E tEmax(τ. vert).
ii. V := τ. vert∪{t},
iii. N := τ. neighb∩t. neighbors,
iv. σ := newSimplex(V,N).
v. Simp[i+ 1] := Simp[i+ 1] ∪ {σ}.

5. if Simp[i+ 1] ̸= ∅, then go to step 3.

1. For every node s and every simplex

σ ∈ s. Simp

variables σ. vert and σ. neighb store respectively, as expected, the vertices
and neighbors of simplex σ.

2. Every σ ∈ F is controlled by at least one and at most two nodes. It is
controlled by exactly two nodes if and only if dim σ > 0. Moreover, these
two nodes are the two minimal elements of σ. vert.

3. The only simplices created by Algorithm 2 are simplices in F .

Since every simplex σ is controlled by at least one and most two nodes,
in the sequel we speak about the lower and the upper node controlling σ,
assuming that the lower equals the upper if only one node controls σ. We omit
the definitions of σ. faces() and σ. cofaces(). They may be computed by a
node using Simp stored in the lower and in the upper node controlling σ.

Proof To see that the algorithm always terminates, first observe that the loop
in line (4) always completes, because S is finite. The only other loop in the
algorithm is formed by the conditional jump from line (5) to line (3). Note that
whenever the jump takes place, the variable i is increased. However, the value
of i may not exceed the number of nodes. Therefore, the jump in line (5) may
be performed only a finite number of times and consequently the algorithm
terminates.

The fact that variable σ. vert stores the vertices of σ is an immediate
consequence of Algorithm 1. Let σ ∈ s. Simp be a simplex and let d be its
dimension. We will prove by induction on d that variable σ. neighb contains
the neighbors of σ. If d = 0, the conclusion is obvious from the construction.
Thus, assume that the conclusion holds for all simplices of dimension not



Distributed computation of coverage in sensor networks by homological methods 15

exceeding d. The simplex σ is created from a simplex τ and its neighbor t at
line (4.b.iii) of Algorithm 2. In particular, we see from the construction that

σ. neighb = τ. neighb∩{u ∈ V | {u, t} ∈ E}.

However, by the induction assumption

τ. neighb = {u ∈ V | ∀v∈τ. vert{v, u} ∈ E}

and the conclusion follows from elementary set arithmetic. This proves prop-
erty (1).

Let us now demonstrate property (2). First consider the case when dim σ =
0. Observe that the only line of the algorithm which contains the construction
of a zero dimensional simplex is line (1) of the algorithm. Moreover, it is
straightforward to check that this line is executed exactly once in each node.
Therefore, a zero dimensional simplex τ0 is constructed by node s and only
by node s. There remains to consider the case dim σ > 0. Let

σ. vert = {v0, v1, . . . , vn}.

Observe that the only line of Algorithm 2 which contains a construction of
a simplex of dimension greater than zero is line (4.b.iv). Let τ denote the
simplex selected in line (4) just before the execution of line (4.b.iv). Since line
(4.b.iv) is executed, the test in line (4.a) fails, which implies that

min(τ. vert) = this . (5)

The execution of lines (4.b.ii) and (4.b.iii) implies that the difference

σ. vert \τ. vert

contains exactly one element t and, by the execution of line (4.b.i), we know
that either t▹min(τ. vert) or t◃max(τ. vert). The first case happens when t =
v0, τ = { v1, v2, . . . , vn } and the other case when t = vn, τ = { v0, v1, . . . , vn−1 }.
Therefore, by (5), the node running the algorithm is either v0 or v1. It follows
that if dim σ > 0, then σ is represented in the memory of the two minimal
elements of σ. vert.

To prove property (3) suppose by contrary, that there exists a simplex
σ ∈ F which has not been created by the algorithm in any node. From line (2)
of the algorithm it follows that dim σ > 0. Let σ be the simplex of minimal
dimension with the described property. It follows that all the faces τ of σ have
been created by the algorithm. From line (4) of the algorithm, it follows that
σ must have been created by the algorithm: a contradiction.

In a similar way one can show that if σ ̸∈ F then it cannot be created by
the algorithm. Suppose by contrary, that such a σ has been created and σ is of
minimal dimension among such simplices. Therefore, σ has been constructed in
line (4.b.iv) of the algorithm from a simplex τ by adding a vertex t ∈ τ. vert.
By the minimality assumption, τ ∈ F , and since t ∈ τ. vert, we get σ ∈ F , a
contradiction. ⊓⊔



16 D lotko, Ghrist, Juda & Mrozek

Algorithm 3 canDelete(σ)

1. return this = min(σ. vert) and not σ. deleted
and not σ. locked.

Algorithm 4 delete(σ)

1. if σ ∈ Simp and not σ. deleted, then
(a) σ. deleted := σ. locked := true.
(b) for each node u controlling σ

u. delete(σ).

The following Lemma is used in the Algorithm 6.

Lemma 2 For all simplices σ created by nodes s and t each face τ ∈ σ. faces()
is created by node s or t.

Proof By Theorem 5 we have s, t ∈ σ. vert. For each face τ of σ, we have
card(σ. vert \τ. vert) = 1, therefore t ∈ τ. vert or s ∈ τ. vert. Since τ. vert ⊂
σ. vert, we have min(τ. vert) ∈ {s, t} and by Theorem 5 simplex τ is created
by node s or t. ⊓⊔

6 Reductions

The parallel reduction procedures used in the algorithm will now be presented.

6.1 Fence reduction

We assume that Algorithm 5 is executed on each node. Definitions of the
auxiliary procedures delete and canDelete are presented as Algorithm 3 and
Algorithm 4.

Lemma 3 Algorithm 5 deletes all simplices in C and no other simplices.

Proof A zero-dimensional simplex τ0 is deleted at line (3) of the algorithm and
line (1) guarantees that only 0-simplices in C can be deleted there. A 1-simplex
of C is deleted at line (4.a) and (5.a) of Algorithm 5. Since at this stage the
only deleted 0-simplices belong to C, it is clear that at line (4.a) and (5.a) only
1-simplices from C can be deleted. From the definition of the fence as a simple
cycle it is clear that in the points (4.a) and (5.a) all the 1-simplices in C are
deleted. Since lines (3), (4.a) and (5.a) are the only lines where the reduction
of a simplex takes place, no other simplices can be removed. ⊓⊔



Distributed computation of coverage in sensor networks by homological methods 17

Algorithm 5 removeFence

1. if this /∈ F then exit.
2. τ0 := the unique simplex in Simp[0].
3. delete(τ0).
4. for each s’ ∈ neighbors and for each σ ∈

s’. Simp[1] s.t.
card { τ ∈ σ. faces() | not τ. deleted } = 0
and s’. canDelete(σ)
(a) s’. delete(σ).

5. for each σ ∈ Simp[1] s.t.
card { τ ∈ σ. faces() | not τ. deleted } = 0
and canDelete(σ)
(a) delete(σ).

Since C is a closed subset of F in the sense of the definition in Section 4,
it follows that F \ C, together with the usual boundary map, is an S-complex.

6.2 Distributed S-reductions

From Lemma 1, S-reduction pairs may be removed from an S-complex without
changing the homology groups of the complex. We present now how the reduc-
tions may be performed in a distributed manner. We perform the reduction
process in such a way that simplex σ may be reduced only by the lower node
controlling it.

6.2.1 Elementary coreduction

On each node Algorithm 6 is executed to find and delete elementary coreduc-
tion pairs.

6.2.2 Elementary reduction

On each node Algorithm 7 is executed to find and delete an S-reduction pair.

6.2.3 Parallel reduction algorithm.

Algorithm 8 is executed in a loop on every node. The algorithm terminates
when no node in the network is able to find an S-reduction pair. The stop
criterion of Algorithm 8 requires global information from the network. In con-
sequence, the criterion cannot be implemented on the basis of purely local
information as in the case of the other algorithms presented in the paper.
However, the stop criterion may be easily implemented via broadcasts.



18 D lotko, Ghrist, Juda & Mrozek

Algorithm 6 elementaryCoreduction

1. if there exists a simplex σ ∈ Simp s.t.
card { τ ∈ σ. faces() | not τ. deleted } = 1
and canDelete(σ), then proceed, otherwise
return false.

2. σ. locked := true.
3. if there exists a simplex τ ∈ σ. faces() s.t.

canDelete(τ) then
(a) delete(τ).
(b) delete(σ).
(c) return true.

4. otherwise
(a) s′ := the other node controlling σ.
(b) τ := the unique simplex in σ. faces() s.t. not

τ. deleted.
(c) if s’. canDelete(τ) (see Lemma 2) then

i. s’. delete(τ).
ii. delete(σ).
iii. return true.

(d) else σ. locked := false.
5. return false.

7 Correctness

In this section we prove that the algorithm presented in the previous section
correctly reduces the flag complex in the sense that the homology of the origi-
nal flag complex considered as an S-complex and the homology of the reduced
S-complex are the same.

Let A be the set of all S-reduction pairs reduced by Algorithm 8 in all
nodes and let

Ar := {α ∈ A | α is removed as a reduction pair },
Ac := {α ∈ A | α is removed as a coreduction pair }.

For A′ ⊂ A set |A′| :=
∪
α∈A′ |α|, and let

K := F \ C, (6)

Gr := |Ar|, (7)

Gc := |Ac|, (8)

Kf := K \ Gr \ Gc. (9)

In other words, K = F \ C is the S-complex resulting from removing the
fence cycle from the flag complex of the sensor network, Gr is the subset



Distributed computation of coverage in sensor networks by homological methods 19

Algorithm 7 elementaryReduction

1. if there exists a simplex τ ∈ Simp s.t.
card {σ ∈ τ. cofaces() | not σ. deleted } = 1
and canDelete(τ), then proceed, otherwise
return false.

2. τ. locked := true.
3. σ := the unique simplex in τ. cofaces() s.t. not
σ. deleted.

4. if canDelete(σ)
(a) delete(τ).
(b) delete(σ).
(c) return true.

5. else if not σ. locked.
(a) s′ := the other node controlling σ.
(b) if s’. canDelete(σ) then

i. s’. delete(σ).
ii. delete(τ).
iii. return true.

(c) else τ. locked := false.
6. return false.

Algorithm 8 reductionAlgorithm

1. Run createLocalFlagComplex followed by
removeFence.

2. Run the following code as long as there ex-
ists a node in the whole sensor network which
returns true from elementaryCoreduction or
elementaryReduction algorithm.
(a) Run the elementaryCoreduction algorithm as

long as there exists a node that returns true.
(b) Run the elementaryReduction algorithm as

long as there exists a node that returns true.

of K consisting of generators removed from K in elementary reductions, Gc
is the subset of K consisting of generators removed from K in elementary
coreductions and Kf is the S-complex resulting from K after applying all S-
reductions reduced by Algorithm 8 in all nodes.

Theorem 6 Given a network communication graph with simple cycle C, Al-
gorithm 8 terminates in every node. When all copies of the algorithm complete



20 D lotko, Ghrist, Juda & Mrozek

in all nodes, the S-complex Kf satisfies

H(F , C) ∼= H(Kf ).

Proof Since the number of nodes is finite, also the number of all possible
reductions is finite. It is clear, that in Algorithm 6 and Algorithm 7 either an
S-reduction pair is reduced, or false is returned. Consequently either some
S-reduction pair is reduced in the sensor network, or, according to point (2) of
Algorithm 8, the algorithm terminates in the whole sensor network. Therefore
the algorithm must terminate. Observe:

H(F , C) ∼= H(F/C) ∼= H(F \ C) = H(K),

where the first isomorphism uses excision and the second uses Theorem 3. We
need to prove that

H(K) ∼= H(Kf ). (10)

For α = (τ, σ) ∈ A set

A(α) :=

{
{ ᾱ ∈ A | (bdK σ \ τ) ∩ |ᾱ| ̸= ∅ } if α ∈ Ac,
{ ᾱ ∈ A | (cbdK τ \ σ) ∩ |ᾱ| ̸= ∅ } if α ∈ Ar.

In the course of running the reduction calls throughout the network a
function λ : A → N is defined recursively as follows. The value λ(α) is 1 for
α ∈ A such that A(α) = ∅. Such pairs are S-reduction pairs in the original
complex, form a free collection and may be reduced immediately. However, if
A(α) ̸= ∅, then the reduction of α may be performed only after all elements
in A(α) have already been reduced. This, in particular, means that the value
of λ is already assigned to all elements of A(α). Therefore, for any α ∈ A we
may set

λ(α) := 1 +max {λ(ᾱ) | ᾱ ∈ A(α) }.

Now, define

An := {α ∈ A | λ(α) = n }, Arn := Ar ∩ An, Acn := Ac ∩ An,
K0 := K, Kn := Kn−1 \ |An|.

We claim that for each n ∈ N

(i) An is a free collection of S-reduction pairs in Kn−1,
(ii) Kn is an S-complex.

We will prove both properties by induction on n. Since A0 = ∅ and K0 = K,
both (i) and (ii) are obvious for n = 0. Thus assume that the properties
are satisfied for all n < k. To prove that property (i) holds for n = k take
α = (τ, σ) ∈ Ak. Then, λ(α) = k. It follows from the definition of λ that
A(α) ⊂ A1 ∪ A2 ∪ . . . ∪ Ak−1. Therefore, we have

bdK σ ⊂ {τ} ∪ |A1 ∪ A2 ∪ . . . ∪ Ak−1| if (τ, σ) ∈ Ack, (11)

cbdK τ ⊂ {σ} ∪ |A1 ∪ A2 ∪ . . . ∪ Ak−1| if (τ, σ) ∈ Ark. (12)



Distributed computation of coverage in sensor networks by homological methods 21

Algorithm 9 checkIfBoundaryless

1. for every σ ∈ Simp

(a) if σ. deleted == false then
i. for every τ ∈ σ. faces()

if τ. deleted == false then return false;
2. return true;

Thus, from Proposition 1 and (11-12) we get

bdKk−1 σ = bdK σ ∩ Kk−1 = {τ},
cbdKk−1 τ = cbdK σ ∩ Kk−1 = {σ},

which proves that α = (σ, τ) is and S-reduction pair in Kk−1. Thus (i) holds
for n = k and we obtain (ii) for n = k as an immediate consequence of
Theorem 4(ii).

Now, let φn be any sequence ordering the S-reduction pairs in An. Since
by (i) An is free, it follows from Theorem 4(iii) that we have a well defined
isomorphism Iφn : H(Kn−1)→ H(Kn) and the composition of all the isomor-
phism Iφn gives the isomorphism required in (10). ⊓⊔

To check if the S-complex resulting from the reduction process is boundary-
less, one can use Algorithm 9. One easily verifies that if the resulting S-complex
is boundaryless, then all sensors return a value of true from this algorithm.

In case Conjecture 1 does not hold and the final complex is not boundary-
less, we expect it to be very small so that we can easily transfer it to a single
selected sensor via the communication channels available in the network. For
this, we first create a spanning tree of the network using standard techniques
for a distributed setting as in [2]. This may be achieved in O(V 1.6+E), where
V is a number of sensors, E is a number of edges in the flag complex. Then,
we move the information along the spanning tree to its root and use the root
sensor to compute the generators of the homology of the remaining complex,
for instance using homology algorithm available in [33] or [34]. Finally, we use
the spanning tree again to send the homology generators back to the respective
simplices.

8 Verifying coverage

In this section we present an algorithm verifying the assumptions of Theo-
rem 1. For the sake of simplicity, we assume that Conjecture 1 holds and that
after applying Algorithm 8 there is left only one boundaryless 2-simplex ω. Let
ω̂ denote the associated elementary chain which sends ω to one and everything
else to zero. The nodes need to verify whether there exists a homology class



22 D lotko, Ghrist, Juda & Mrozek

[c] ∈ H(F , C) whose boundary is nonzero. By applying Algorithm 8 the nodes
know the homology of H(F , C) but only via the isomorphic homology of Kf ,
where Kf is given by (9). Therefore, it is necessary to find the isomorphic
counterpart of [ω̂] in H(F , C). To achieve this it is sufficient to apply formula
(2) repeatedly in proper order, for every S-reduction pair reduced by Algo-
rithm 8. The respective algorithm is Algorithm 10. We make the following two
assumptions concerning this algorithm:

- To store the resulting chain an extra field coef is added to the data struc-
ture Simplex and the field is initially set to undefined.

- The nodes remember not only simplices which were reduced but also whether
they were reduced in an elementary reduction or coreduction.

In the sequel we use the natural pairing of the elements of Gr and Gc coming
from S-reduction pairs in the form of a bijection

Gr ∪ Gc ∋ σ 7→ σ∗ ∈ Gr ∪ Gc

which sends an element σ ∈ Gr ∪ Gc to its companion in the respective S-
reduction pair.

Algorithm 10 verifyCoverage

1. for each σ ∈ Simp[2]
(a) if σ ∈ Kf set σ. coef := 1;
(b) if σ ∈ Gr set σ. coef := 0;
(c) if σ ∈ Gc and dim σ∗ ̸= 1 set σ. coef := 0;

2. Let L := { τ ∈ Simp[1] ∩ Gc | dim τ∗ = 2 };
3. while (L ̸= ∅)
(a) for each τ ∈ L

i. if σ. coef is set for each σ ∈ cbd τ \ τ∗
A. s := 0;
B. for each σ ∈ cbd τ \ τ∗ do

s+= σ. coef /κ(σ, τ);
C. τ∗. coef := s;
D. L := L \ τ ;

4. for each τ ∈ Simp[1] such that τ is a fence edge
(a) s := 0;
(b) for each σ ∈ cbd τ do s+= σ. coef ∗κ(σ, τ);
(c) if s ̸= 0 report “coverage verified” and exit;

The following proposition is straightforward.

Proposition 2 If for some σ ∈ Simp[2] the value of σ. coef is not set after
completing loop (1) of Algorithm 10, then σ ∈ Gc and dim σ∗ = 1.



Distributed computation of coverage in sensor networks by homological methods 23

Lemma 4 Assume that given an n ∈ N Algorithm 10 sets the value σ. coef
for every σ ∈ Simp[2] such that (σ∗, σ) ∈ Gc and λ(σ∗, σ) > n. Then σ. coef
is set for every σ ∈ Simp[2] such that (σ∗, σ) ∈ Gc and λ(σ∗, σ) = n.

Proof Assume σ0 ∈ Simp[2] is such that

(σ∗
0 , σ0) ∈ G

c and λ(σ∗
0 , σ0) = n.

Then τ0 := σ∗
0 ∈ L. Let σ ∈ cbd τ0 \ σ0. If σ ∈ Gr ∪ Kf or σ ∈ Gc and

dim σ∗ ̸= 1, then by Proposition 2 σ. coef is set already in loop (1). Consider
the other case when σ ∈ Gc and dim σ∗ = 1. Then bdσ \ σ∗ ⊂ |A(σ∗, σ)|.
Since τ0 ∈ bdσ and τ0 ̸= σ∗, we get (σ∗

0 , σ0) ∈ A(σ∗, σ). Therefore λ(σ∗, σ) >
λ(σ∗

0 , σ0) = n and by the assumption σ0. coef is set also in this case. It follows
that when τ0 is considered in line (3.a), the condition in line (3.a.i) is satisfied
and consequently σ. coef = τ∗0 . coef is set in line (3.a.i.C). ⊓⊔

Theorem 7 Algorithm 10 terminates in all nodes. Moreover, the assumptions
of Theorem 1 are satisfied if and only if at least one node exits the algorithm
with the report “coverage verified”.

Proof First we will show that the algorithm sets σ. coef for each σ ∈ Simp[2].
By Proposition 2 we need to consider only the case when σ ∈ Gc and dim σ∗ =
1. However, this case follows immediately from Lemma 4 by induction with
respect to n := N − λ(σ∗, σ), where

N := max {λ(α) | α ∈ A}.

Observe that whenever σ. coef is set in line (3.a.i.C), then σ∗ is removed
from L in line (3.a.i.D). Therefore, the loop in line (3) completes and conse-
quently also Algorithm 10 completes in every node.

It is now straightforward to verify that after completing loop (3), the fields
σ. coef for σ ∈ Simp[2] store a chain cω ∈ K whose homology is the image of
[ω̂] under the isomorphism established in Theorem 6.

Now, the variable s evaluated in loop (4) stores ⟨∂cω, τ⟩ for some 1−simplex
τ of the fence. Therefore, if at least one node reports “coverage verified”,
then the assumptions of Theorem 1 are satisfied and the coverage is indeed
archived. If the assumptions are not satisfied, then obviously no node can
report “coverage verified.” ⊓⊔

In case, when there is more then one boundaryless 2-simplex left at the
end of the reduction process, the described algorithm may be called for each
of the remaining 2-simplices and if at least one of the nodes reports “cover-
age verified” for at least one of the remaining 2-simplices, the assumptions of
Theorem 1 are satisfied. The adaptation of Algorithm 10 to the case when
Conjecture 1 does not hold is only slightly more complicated. It requires find-
ing the homology generators of H(Kf ) by some algebraic means, for instance
by applying the algorithm described in [1] and then starting Algorithm 10
with the chains representing the homology generators of H(Kf ) instead of the
elementary chain ω̂. Therefore, the extra assumptions from the beginning of
the section are not restrictive.



24 D lotko, Ghrist, Juda & Mrozek

9 On complexity

The full complexity analysis of the presented algorithms is not possible; in this
paper we consider neither a concrete communication model nor the synchro-
nization methods needed to collate algorithm phases. However, even at the
level of generality with which our analysis is performed, some basic remarks
toward a more complete analysis are possible. The details of a full complexity
analysis, given length and technicality, are to be published elsewhere.

We make the following simplifying assumptions:

1. Every sensor can send an integer to its neighbors without error and in one
time unit.

2. A global synchronization method which may be used to synchronize in
constant time the consecutive steps of the algorithms in the sensors is
available.

3. The implementation of the algorithm is based on best performing data
structures for finding simplices, queues for reduction candidates etc.

One can show that under these assumptions the algorithm constructing the
flag complex (Algorithm 2) and the algorithm reducing it (Algorithm 8) may
be implemented in such a way that the complexity for one sensor (compare
network time defined in Section 10) is O(n2 +K(n logK + n2)), where:

1. n is the upper bound for the number of sensors in the neighborhood of a
given sensor.

2. K is the upper bound for the number of simplices which have the given
sensor as a vertex.

In other words, the complexity depends only on the local size of the net-
work, and not on the size of the whole network as in the case of centralized
computations. This justifies the utility of the presented algorithms in the con-
text of large-scale sensor networks of bounded density. The analysis depends on
the Conjecture 1, because the estimate does not include the potential postpro-
cessing of the final S-complex which is not boundaryless, although we expect
this cost to be negligible even if nonzero.

10 Simulations

The parallel reduction algorithms presented in the paper have been imple-
mented in Java programming language [35]. The code executes the algorithms
on each node in a separate thread, so that simulations may be performed with
only a few or even one processor unit. The real time of the network is also
simulated.

In this section we present the experimental results showing the advantages
of the distributed homology computation. In the presented series of experi-
ments, the following configuration, referred to as the base test will be used.
The base test is a small network of 23 nodes randomly placed on a 4× 4 units



Distributed computation of coverage in sensor networks by homological methods 25

Fig. 5 Network Time and Running Time for the family L53 of networks.

Fig. 6 Efficiency of the network for the family L53 of networks.

rectangle with the communication radius fixed at 2 units. This base test will
be copied and shifted and new fence cycles created. This process is performed
to obtain a reasonably uniform distribution of the nodes on larger networks
and to avoid excessive local clustering which results in high dimensional flag
complexes.

We first define a family Ln of networks on a sequence of ‘linear’ domains,
Ln = {Li }ni=0, where Li is defined recursively as follows:

1. L0 is the base test case with a rectangular fence cycle C around the network;
and



26 D lotko, Ghrist, Juda & Mrozek

Fig. 7 Network Time and Running Time for the family S10 of networks.

Fig. 8 Efficiency of the network for the family S10 of networks.

2. Li is created from Li−1 by placing a new copy of the base test on the right
side of Li−1 with a new rectangular fence cycle C around the network.

Another family Sn = {Si }ni=0 of ‘square’ networks is defined recursively as
follows:

1. S0 is the base test case with a rectangular fence cycle C around the network;
and



Distributed computation of coverage in sensor networks by homological methods 27

2. Si is created from Si−1 by placing new copies of the base test: i-copies on
the right, i-copies on the bottom side, and one on the bottom-right. A new
rectangular fence C around the network is created.

Let Cs denote the CPU time used by node s during the simulation and
let Rs be the real time used by node s, i.e., the world time passing from the
moment the node starts the computations until the moment it completes. We
define the network time as maxs∈S Rs and the running time as

∑
s∈S Cs. In

other words, the network time is the time required by the real network to do
the computation. In the case of simulations performed on a single machine with
a single CPU, the running time is the CPU usage for the whole simulation.
We define the network efficiency as the ratio

Network Efficiency :=
Network Time

Running Time
· 100%.

For the families L53 and S10 we ran simulations and measured network time,
running time and network efficiency. Figure 5 presents the network and running
time as the functions of the size of the network for the family L53. The network
efficiency for the same data is presented in Figure 6. Analogous results for the
family S10 are in Figure 7 and Figure 8. The outcome of the experiments
clearly indicates the advantage gained through distributed computation.

Appendix

A Primer on homology theory

This abbreviated introduction to homological tools assumes a knowledge of
basics from algebra and topology. From algebra, the notions of rings (alge-
braic generalizations of Z) and modules (algebraic generalizations of vector
spaces) are assumed, as are homomorphisms (algebraic generalizations of lin-
ear transformations), kernels, and the like. From topology, only basic notions
of simplicial complexes are needed.

A.1 Chain complexes

Homology counts objects with cancellation to provide a topological invariant
in algebraic terms. The simplest version of homology is simplicial homology of
a simplicial complex. Fix a finite simplicial complex X. The building blocks
of a rudimentary homology for X are as follows.

1. Fix a coefficient ring R.
2. Grade the simplices of X by dimension.
3. Define q-chains Cq as the R-module with basis the (oriented) q-simplices

of X.



28 D lotko, Ghrist, Juda & Mrozek

4. Consider the boundary maps — the linear transformations ∂ : Cq → Cq−1

which send a basis q-simplex to its boundary faces (as an abstract sum of
basis (q− 1)-simplices, each with coefficient ±1 depending on orientation).

The sequence of chains and boundary maps are assembled into a chain complex
— a sequence C of R-modules Cq and homomorphism ∂q : Cq → Cq−1 with
∂q ◦ ∂q+1 = 0 for all q. A chain complex may be written out as a diagram,

· · · // Cq
∂q // Cq−1

∂q−1 // · · · ∂2 // C1
∂1 // C0

∂0 // 0 . (13)

or as a single object C = (C∗, ∂∗) and to write ∂ for the boundary opera-
tor acting on any chain of unspecified grading. Chain complexes need not be
generated by simplices of a simplicial complex: they are decidedly algebraic
devices. The key requirement for a chain complex is that the boundary of a
boundary is null: ∂q ◦ ∂q+1 = 0 for all q.

A.2 Homology

Homology counts equivalence classes of certain chains with regards to the
boundary maps. A cycle of C is a chain with empty boundary, i.e., an element
of ker ∂. Homology is an equivalence relation on cycles of C. Two cycles in
Zq := ker ∂q are homologous if they differ by an element of Bq := im ∂q+1.
The homology of C is the sequence of quotient modules Hq(C), for q ∈ N, given
by:

Hq(C) := Zq/Bq = ker ∂q/ im ∂q+1. (14)

Elements of Hq(C) are homology classes. We write H(C) to denote the full
module of graded homologies Hq(C). When C is the chain complex generated
by a simplicial complex X, we write H(X) for its homology: it is an invariant
of the space X up to homotopy.

A.3 Relative homology

Homology is defined for any chain complex C = (Cq, ∂q). Although taking Cq
to be a module generated by q-dimensional simplices is common, it is by no
means exclusive. Many of the constructs of this paper rely on a modified chain
complex giving rise to reduced homology relative to a subcomplex. Let A ⊂ X
be a (necessarily closed) subcomplex of a simplicial complex X. Then both X
and A define simplicial chain complexes, with the result that Cq(A) ⊂ Cq(X)
is a submodule for all q. Thus, one can take the quotient module Cq(X,A) :=
Cq(X)/Cq(A), so that a relative chain is an equivalence class of chains relative
to simplices in A. The boundary map ∂q extends naturally to ∂q : Cq(X,A)→
Cq−1(X,A) in a manner that preserves the ∂2 = 0 condition. Therefore, the
relative homology Hq(X,A) is well-defined and measures relative cycles (chains
in X whose boundaries lie in A) modulo relative boundaries.



Distributed computation of coverage in sensor networks by homological methods 29

A.4 Functoriality

A chain map is a map φ : C → C′ between chain complexes that is a homo-
morphism on chains respecting the grading and commuting with the boundary
maps. This is best expressed in the form of a commutative diagram:

· · · −−−−→ Cq+1 −−−−→
∂

Cq −−−−→
∂

Cq−1 −−−−→ · · ·yφ yφ yφ yφ yφ
· · · −−−−→ C ′

q+1 −−−−→
∂′

C ′
q −−−−→

∂′
C ′
q−1 −−−−→ · · ·

(15)

Commutativity means that homomorphisms are path-independent in the dia-
gram; e.g., φ ◦ ∂ = ∂′ ◦ φ. Chain maps are the analogues of continuous maps,
given their respect for the boundary operators: neighbors are sent to neighbors.

A chain map φ induces homomorphisms on homology groups, written
H(φ) : H(C) → H(C′), sending [ζ] ∈ Hq(C) to [φ(ζ)] ∈ Hq(C′). The reader
may check that this is a well-defined homomorphism. We denote by H(φ)
the full sequence of induced homomorphisms on homology. Homology is func-
torial, meaning that induced homomorphisms respect composition of chain
maps. Specifically,

1. The identity chain map induces the identity isomorphism on homology,
id : H(C)→ H(C).

2. Composable chain maps φ and ψ satisfy H(ψ ◦ φ) = H(ψ) ◦H(φ).

A.5 Exact sequences

Homology computations are greatly aided by a theoretical tool called an exact
sequence. Any chain complex C = (Cq, ϕq) of R-modules and homomorphism
is exact when its homology vanishes: ker ϕq = im ϕq+1 for all q. An exact chain
complex is the chain analogue of a nullhomologous space. Exact sequences are
most often used to prove isomorphisms between various homologies by means
of zeroing out terms in an exact sequence. For example, if some subsequence
of an exact sequence reads as:

· · · // 0 // G
ϕ // H // 0 // · · ·

then it follows that ϕ : G→ H is an isomorphism. More generally, the kernel
and cokernel of a homomorphism ϕ : G→ H fit into an short exact sequence:

0 // ker ϕ // G
ϕ // H // coker ϕ // 0

The most important examples of exact sequences are those relating ho-
mologies of various spaces and subspaces. These almost always derive from
the following result in homological algebra:



30 D lotko, Ghrist, Juda & Mrozek

Theorem 8 (Snake Lemma) Any short exact sequence of chain complexes

0 // A i // B
j // C // 0

induces the long exact sequence:

// Hq(A)
H(i) // Hq(B)

H(j) // Hq(C) δ // Hq−1(A)
H(i) // . (16)

Moreover, the long exact sequence is functorial: a commutative diagram of
short exact sequences and chain maps

0 // A //

f

��

B //

g

��

C //

h

��

0

0 // Ã // B̃ // C̃ // 0

induces a commutative diagram of long exact sequences

// Hq(A) //

H(f)

��

Hq(B) //

H(g)

��

Hq(C) δ //

H(h)

��

Hq−1(A) //

H(f)

��
// Hq(Ã) // Hq(B̃) // Hq(C̃)

δ // Hq−1(Ã) //

. (17)

An exact sequence of chain complexes means that there is a short exact
sequence in each grading, and these short exact sequences fit into a commuta-
tive diagram with respect to the boundary operators. The induced connecting
homomorphism δ : Hq(C)→ Hq−1(A) comes from the boundary map in C.

Given A ⊂ X a subcomplex, the following short sequence is exact:

0 // C(A) i // C(X)
j // C(X,A) // 0 ,

where i : A ↪→ X is inclusion and j : (X,∅) ↪→ (X,A) is an inclusion of pairs.
This yields the long exact sequence of the pair (X,A):

// Hq(A)
H(i) // Hq(X)

H(j) // Hq(X,A)
δ // Hq−1(A) // . (18)

The connecting homomorphism δ takes a relative homology class [α] ∈
Hq(X,A) to the homology class [∂α] ∈ Hq−1(A).



Distributed computation of coverage in sensor networks by homological methods 31

References

1. Z. Arai, K. Hayashi, and Y. Hiraoka. Mayer-Vietoris sequences and coverage problems
in sensor networks, preprint 2009.

2. B. Awerbuch, R. Gallager, ”A new distributed algorithm to find breadth first search
trees”, IEEE Transactions on Information Theory, Vol. 33 Issue: 3, pp. 315 - 322, 1987.

3. L. Barrière, P. Fraigniaud, and L. Narayanan, “Robust position-based routing in wireless
ad hoc networks with unstable transmission ranges,” In Proc. Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications, 2001.

4. G. Carlsson and V. de Silva. Zigzag Persistence, in Proc. Found. of Computational
Mathematics, Jan 2009.

5. G. Carlsson, V. de Silva, and D. Morozov. Zigzag Persistent Homology and Real-valued
Functions, in Proc. Symp. on Comput. Geometry., June 2009.

6. E. Chambers, V. de Silva, J. Erickson, and R. Ghrist. Rips complexes of planar point
sets, Discrete Computat. Geom., 44(1), 75-90, 2010.

7. J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile sensing
networks, Proc. IEEE Int. Conf. Robot. Autom., Washington, DC, 2002, vol. 2, pp.
13271332.

8. M. Damian, S. Pandit, and S. Pemmaraju, “Local approximation schemes for topology
control.” In Proc. ACM Symp. on Prin. of Dist. Comput. (PODC) 2006, 208–217.

9. V. de Silva and R. Ghrist. Coordinate-free coverage in sensor networks with controlled
boundaries via homology, Intl. J. Robotics Research 25(2006), 1205–1222.

10. V. de Silva and R. Ghrist. Coverage in sensor networks via persistent homology, Alg. &
Geom. Top., 7, (2007), 339–358.

11. V. de Silva and R. Ghrist. Homological sensor networks, Notices Amer. Math. Soc.,
54(1), 10-17, 2007.

12. B. Eckmann, Harmonische funktionen und randwertaufgaben einem komplex, Commen-
tarii Math. Helvetici, vol. 17, pp. 240245, 1945.

13. D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting the physical world with
pervasive networks, IEEE Pervasive Computing, 1(1), (2002), 59–69.

14. S. Fekete, A. Kröller, D. Pfisterer, and S. Fischer, “Deterministic boundary recongnition
and topology extraction for large sensor networks,” in Algorithmic Aspects of Large and
Complex Networks, 2006.

15. S. Gelfand and Y. Manin, Methods of Homological Algebra, 2nd ed., Springer-Verlag,
2003.

16. R. Ghrist and Y. Hiraoka. Applications of sheaf cohomology and exact sequences to
network coding, preprint, 2011.

17. A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
18. D. Kempe, A. Dobra, and J. Gehrke, Computing aggregate information using gossip, in

Proc. Foundations of Computer Science, Cambridge, MA, Oct. 2003.
19. H. Koskinen, “On the coverage of a random sensor network in a bounded domain,” in

Proceedings of 16th ITC Specialist Seminar, pp. 11-18, 2004.
20. F. Kuhn, R. Wattenhofer, and A. Zollinger, “Ad-hoc networks beyond unit disk graphs,”

Wirel. Netw. 14, 5 (2008), 715-729.
21. X.-Y. Li, P.-J. Wan, and O. Frieder, “Coverage in wireless ad-hoc sensor networks”

IEEE Transaction on Computers, Vol. 52, No. 6, pp. 753-763, 2003.
22. S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava. Coverage problems

in wireless ad-hoc sensor networks, IEEE INFOCOM (2001) 13801387.
23. M. Mrozek and B. Batko, Coreduction homology algorithm, Discrete and Computational

Geometry, 41(2009), 96–118.
24. M. Mrozek, Th. Wanner, Coreduction homology algorithm for inclusions and persis-

tent homology, Computers and Mathematics with Applications, 60.10(2010), 2812-2833.
DOI: 10.1016/j.camwa.2010.09.036.

25. A. Muhammad and M. Egerstedt. Control using higher order Laplacians in network
topologies, in Proc. of the 17th International Symposium on Mathematical Theory of
Networks and Systems, (2006) 10241038.

26. A. Muhammad and A. Jadbabaie. Decentralized computation of homology groups in
networks by gossip, in Proc. of American Control Conference (2007), 34383443.



32 D lotko, Ghrist, Juda & Mrozek

27. M. Robinson, Inverse problems in geometric graphs using internal measurements,
arXiv:1008.2933v1, August 2010.

28. M. Robinson, Asynchronous logic circuits and sheaf obstructions, arXiv:1008.2729v1,
August 2010.

29. A. Tahbaz Salehi and A. Jadbabaie. Distributed coverage verification in sensor networks
without location information. IEEE Transactions on Automatic Control, 55(8), August
2010.

30. A. Tahbaz Salehi and A. Jadbabaie. Distributed coverage verification in sensor networks
without location information IEEE Conference on Decision and Control, December
2008.

31. F. Xue and P. R. Kumar, “The number of neighbors needed for connectivity of wireless
networks,” Wireless Networks, pp. 169-181, vol. 10, no. 2, March 2004.

32. H. Zhang and J. Hou, ”Maintaining Coverage and Connectivity in Large Sensor Net-
works,” in International Workshop on Theoretical and Algorithmic Aspects of Sensor,
Ad hoc Wireless and Peer-to-Peer Networks, Florida, Feb. 2004

33. The RedHom homology algorithms library : http://redhom.ii.uj.edu.pl
34. Computational Homology Project: http://chomp.rutgers.edu
35. Sensor Network Simulator: http://redhom.ii.uj.edu.pl/sensors/


