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Abstract. We show that the problem of extracting linear fea-
tures from a noisy image and counting the number of branching
points may be successfully solved by homological methods applied
directly to the image without the need of skeletonization and the
analysis of the resulting graph. The method is based on the su-
perimposition of a mask set over the original image and works
even when the homology of the feature is trivial and in arbitrary
dimension. We tested the method on computer-generated data,
2D images of blood vessels, 2D satellite images and 3D images of
collagen fibers.

1. Introduction

Topology, a 100 years old theory oriented on the fundamental charac-
teristics of shape, recently starts playing an important role in computer
science. This happens mainly via homological methods, in part because
such methods provide substantial reduction of the amount of analysed
data [7]. Although the classical metric tools remain in the mainstream
of the image analysis, the importance of topology in the field becomes
significant too [10, 33, 35]. For instance, the simplest topological tech-
nique commonly used in image segmentation is the extraction of the
connected components of a black and white image treated as a subset
of Rd. Such extraction may be performed in linear time and in the case
of images stored as bitmaps the algorithm is extremely fast [29]. The
process of extracting the connected components of the image may be
viewed as constructing the zeroth homology group of the image. In this
interpretation every connected component corresponds to a generator

2000 Mathematics Subject Classification. Primary 68U10; Secondary 55N99.
Key words and phrases. linear feature, feature extraction, homological method,

blood vessels image, collagen fibrils image, medical imaging, satellite image, branch-
ing point.

Supported by Polish MNSzW, Grant N201 037 31/3151 and N N201 419639.
1
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of the zeroth homology group. Higher homology groups, which mea-
sure the presence of tunnels, cavities and higher dimensional holes in
the image, also may be used in computer vision and image processing
[1, 15, 25, 37, 36].

In this paper we develop the concept of feature extraction of multi-
dimensional images by homological tools, introduced in [24]. Our aim
is to show that higher homology groups may be successfully applied to
image analysis even if there are no holes in the image itself and/or in the
features to be extracted. This is because the superimposition of some
pattern (mask) over the original image may form holes and the appear-
ance (or lack of appearance) of holes may be used to analyse certain
features of the image via the study of homology generators. Unfortu-
nately, until recently there were no homology algorithms fast enough
for such applications and very few homology algorithms constructing
homology generators. This is in part because the classical homology al-
gorithms are based on Smith diagonalization of integer matrices, which
is super cubical. However, the recently developed reduction homology
algorithms [23, 22] (with implementations available from [21], see also
[5, 4]) offer speed comparable to the speed of the algorithms construct-
ing connected components. Moreover, these algorithms offer not only
homology groups but also homology generators. For another recent al-
gorithm for homology groups and generators oriented on image analysis
see [26].

a) b)

Figure 1. a) A sample colonoscope 2D picture of blood
vessels in mucosa. b) A projection of a 3D image of
collagen fibrils.
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Although we are convinced that the method of the superimposition of
masks over the image to facilitate the use of homological methods will
find several applications in the future, in this paper we concentrate on
a sample problem, which consists in the extraction of linear structures
from the image under the presence of other features and noise. By a
linear structure we understand a feature of a binary image consisting
of thin threads which may branch. In images of varying origin such
features are very common. For example, linear structures are formed
by rivers and roads in satellite images of earth ([13, 32]) or blood vessels
in medical imaging where the problem of extracting linear features is
very important from the point of view of medical diagnostics ([16, 3, 9]).

Although the examples we have studied so far are only two and three
dimensional, the techniques presented in this paper apply to images in
any dimension. The image dimension is denoted throughout the paper
by d. The sets of integers, positive integers and reals are denoted
respectively by Z,Z+ and R.

The organization of the paper is as follows. We begin with Section 2,
where we present our original motivation, the reconstruction of blood
vessels and collagen fibrils and the model problem of the extraction of
linear features from a noisy image. In Section 3 we present our model
example, used in the following sections to explain our algorithm. In the
next sections we introduce cubical sets, which form the bridge between
the discrete concept of a raster image and the topology of subsets of Rd.
Section 5 is devoted to a brief, intuitive and very informal presentation
of the homology of cubical sets. The following section is the main sec-
tion of the paper and consists of three subsections. The first subsection
describes our extraction algorithm based on the homology generators
of the image superimposed with masks. The following subsection con-
tains sample results of the algorithm for computer-generated data, 2D
endoscopic images of mucosa microcirculation and 3D images of colla-
gen fibers. The last subsection contains a comparison of our algorithm
with the common methods based on skeletonization and pruning. An
algorithm counting branching points, based on another set of masks
and homology is presented in Section 7. In the last section we present
conclusions and some final remarks.

2. The motivation and the formulation of the problem

Our sample problem arises from two independent concrete issues:
the analysis of 2D colonoscope images of blood vessels in colon mu-
cosa (see Figure 1a) and the analysis of 3D reconstituted confocal mi-
croscopy images of type I collagen fibrils (see Figure 1b). The patterns
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of blood vessels in colon mucosa have been tested in animals via histo-
logic specimens and proved to differentiate pathology. However, to see
the patterns animals had to be killed and specimens properly extracted
[6, 17, 19, 34]. In theory, the patterns can be discerned by analysing
colon mucosa images and measuring some characteristics, for instance
the number of branching points. In practice, this is difficult because of
the presence of noise and interference of other tissues. We found that
the techniques presented in this paper provide a good method to get
rid of noise, extract the vessels and count some valuable characteristics,
in particular the number of branching points.

Counting of branching points is also important in the case of collagen
fibrils. Type I collagen is the major matrix protein of skin, bone, tendon
and other tissue. The normal form of type I collagen is a heterotrimer
composed of two α1(I) and one α2(I) chains. In fetal tissues, tumors,
and several heritable disorders, α1(I)3 homotrimers have been found as
well [14, 18, 27]. Structurally, the homotrimer and heterotrimer fibrils
are similar, but they lead to different mechanical properties, e.g., resis-
tance of tendons to tensile stress [20]. Recently, confocal microscopy
images revealed that heterotrimers form entangled networks of flexi-
ble, thread-like fibers while homotrimers form spikes emanating from a
common center [11]. The homotrimers clearly play a special role which
still remains unclear. To understand how homotrimers cause patholo-
gies, it is important to investigate morphological characteristics, e.g.,
the number of branching points of type I collagen fibrils. As in the case
of blood vessels, this is complicated by the presence of noise. We found
that the homological methods presented in this paper are very useful
in understanding the structure of entangled 3D networks of collagen
fibrils.

Common to the two problems is the separation of the noisy linear
features (blood vessels and collagen fibrils) from the background and
the knowledge of the number and location of branching points together
with the length of branches. Such an analysis performed directly by hu-
man eye is difficult in 3D images even with the use of the best available
visualization techniques. But also in 2 dimensions the analysis is not
straightforward because of the presence of other features in the image
both of natural (for example other tissues) and artifactual (for example
unevenly distributed light) character. Therefore, an automated analy-
sis is highly desirable. The typical technique applied to such problems
begins with skeletonization, usually obtained by means of morpholog-
ical openings. The process of skeletonization is usually complicated
by the presence of noise and deficiencies of low level processing of the



EXTRACTION OF LINEAR FEATURES BY HOMOLOGICAL METHODS 5

a) b)

d)

c)

Figure 2. a) Sample image. b) Noisy version of the
image. c) Contour (marked green) and skeleton (marked
red) found by the method proposed in [2] in the image
(b) after morphological closing. d) Result after trimming
short branches.

image, in particular the process of binarization. Immediate skeletoniza-
tion does not make sense because of the presence of noise dividing the
linear structure into many pieces. Instead, some kind of gluing should
be applied first, for example wrapping, dilation or morphological clos-
ing [28, Chpt. 7]. However, after this step some artifacts may be
glued to linear structures which do not belong to them. Sometimes
such artifacts may be later removed by trimming the short branches
of the skeleton and removing the features which do not intersect the
trimmed skeleton. Unfortunately, this strategy, for example based on
the algorithm presented in [2], often leads to improper results even in
simple cases, as we can see in Figure 2d. After applying closing to the
noisy image in Figure 2b in order to glue together the pieces of the lin-
ear structure, both rectangular artifacts are also attached to the linear
structure. In Figure 2c the contour and skeleton of the resulting image
obtained by applying the method described in [2] are presented. The
analysis of the length of branches in order to remove artifacts is not
a satisfactory strategy in this case. After removing only the shortest
branches which do not branch themselves, the trimmed skeleton still
intersects both artifacts. On the other hand, if we trim all the branches
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leaving the skeleton consisting of one line only, we get rid only of the
artifact in region 2, because the trimmed skeleton still intersects the
artifact in region 1. Consequently, the standard method applied to this
problem may always leave some undesired features in the extracted im-
age. In the case of the noisy image in Figure 2b the best result we can
hope for is presented in Figure 2d. Obviously, in this oversimplified
example it is easy to detect the rectangular artifacts directly. How-
ever, in the more realistic problems this is a serious obstacle. We will
discuss the problem related to skeletonization methods in more detail
in Section 6.3.

In many situations the understanding of the global structure of the
image is needed to get rid of the artifacts. There are not many tools
which can analyze the image globally. Among the few is the geometry
of the graph resulting from the skeletonization (see [31] for an example
of such an approach). The drawback is the need to construct such a
graph. This is in contrast to our approach. We do not need neither a
skeletonization nor a graph. Instead, we analyse directly the homology
of the binarized image superimposed with masks. The approach suc-
ceeds, because the information captured by homology is global, despite
the fact that the homology computation is a purely local process.

3. A model example

Consider the binary image in Figure 3a and the problem of extracting
from this image the linear structure visible in Figure 3b consisting of
four threads glued at three branching points.

The segmentation by the size of the connected components of the
image fails. This is because the noise together with the applied bina-
rization techniques disconnect the branches into several components.
Figure 4a shows the connected components of the original image in
various shades of gray depending on the cardinality of the component.
Clearly, there is no way to select a good threshold level. On the other
hand, the image in Figure 4b resulting from the standard gluing tech-
nique based on morphological closing is not satisfactory either, because
it attaches some nearby components, not belonging to the branches.
The same happens when the path closing technique [12] is applied.

The human brain has no problem in extracting the desired feature.
This is because the brain performs the analysis of the mutual loca-
tion of the connected components searching for pieces which form long
threads. Such analysis is global in nature, so it cannot be achieved by
local tools, such as dilation and erosion. The standard procedure is to
build the skeleton of the desired feature (see Figure 5), code it as a
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a) b)

Figure 3. a) Sample binary image. b) The linear struc-
ture which needs to be extracted with the three branch-
ing points marked with rectangles.

a) b)

Figure 4. a) Connected components of the original im-
age in various shades of gray. b) The result of segmenta-
tion by component size processed by morphological clos-
ing. The undesired features attached to the image are
marked with rectangles.

graph and perform the global analysis of the graph. In the approach
proposed in this paper the extra levels of processing (construction of
graph, graph analysis) are avoided by applying homological methods,
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which are computationally local but provide global information. More-
over, unlike the standard case, they are straightforward to apply in
higher dimensional images.

a) b)

Figure 5. a) Skeleton of the image in Figure 4a. b)
Skeleton of the image in Figure 4b.

4. Cubical sets.

We view a raster image as a finite array of pixels with a color as-
sociated to each pixel. Each pixel is indexed by its coordinate vector
q ∈ Zd. Since in the case of a binary raster image only two colors are
allowed, the image may be identified with a subset of all pixels sharing
the same color, for instance black.

In order to tie some topology to a raster binary image, we identify
every pixel of coordinates q ∈ Zd with the pixel cube

(1) Qq = [q1, q1 + 1]× [q2, q2 + 1]× · · · [qd, qd + 1].

We denote the set of all pixel cubes in Rd by K. This convention allows
us to think about a raster binary image as a finite subfamily X ⊂ K.
Given a raster pixel image X , we consider the set

|X | :=
⋃
{Q | Q ∈ X } ⊂ Rd,

i.e. union of all cubes corresponding to black pixels in the image. The
union is a subset of Rd, called a cubical set. A cubical set, as a subset of
Rd has some induced topology. This is the topology we are interested
in, often referred to as image topology. Conversly, given a cubical set
X in Rd, the family of all pixel cubes contained in a X, denoted by
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K(X), may be thought of as a raster image associated to the cubical
set X.

Two simple examples of cubical sets in Rd needed in the sequel are
the cubical ball and cubical sphere centered at a point a ∈ Zd and of
radius s ∈ Z+ defined as follows

Bd
a,s :=

⋃
{Qq | |qi − ai| ≤ s for i = 1, 2, . . . d },

Sd−1
a,s :=

⋃
{Qq | |qi − ai| = s for i = 1, 2, . . . d }.

Cubical sets, unlike the subsets of Zd, may have nontrivial topology.
For instance, Figure 6 represents a 3-dimensional cubical set with a
hole going from the top to the bottom.

Figure 6. An example of a cubical set in R3.

Given a cubical sets X and a point x ∈ X, by cc(X, x) we denote the
connected component of X which contains x. We extend this notation
to a set A ⊂ X by

cc(X, A) :=
⋃
x∈A

cc(X, x).

The standard operation of dilation and erosion in the context of a
cubical set X are defined as

dil(X) : =
⋃
{Q ∈ K | Q ∩X 6= ∅ }

ero(X) : =
⋃
{Q ∈ K(X) | P ∈ K and P ∩Q 6= ∅ implies P ⊂ X }

and the 1-step closing operation is a dilation followed by erosion

clo(X) := ero(dil(X)).
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5. Overview of cubical homology.

Homology groups constitute a relatively simple means of studying
the topology of cubical sets by algebraic methods. We briefly present
an intuitive approach to homology groups of cubical sets. For a formal
treatment of this subject we refer the reader to [15].

The concept of homology requires not only cubes of the form (1),
later on referred to as full cubes, but also faces of cube Q of the form

(2) P = [q1, r1]× [q2, r2]× · · · [qd, rd],

where ri = qi or ri = qi + 1. We call such cubes elementary cubes. The
dimension of P is the number

dim P := card { i | qi 6= ri }.
The faces of dimension zero are called vertices and the faces of dimen-
sion one are called edges. Given a cubical set X, by an n-chain in X
we mean a linear combination of n-dimensional elementary cubes con-
tained in X of the form

∑k
i=1 αiPi. The coefficients αi may be taken

from an arbitrary ring R, although the typical choices are the field of
integers modulo two Z2 = Z/2Z (the simplest choice) and the ring of
integers Z (the most general choice). In particular every elementary
cube P in X may be viewed as an n-chain 1 ·P , where n is the dimen-
sion of P . The support a chain c, denoted |c|, is the minimal cubical
set containing all the elementary cubes appearing in the chain with a
non-zero coefficient.

a) b)

Figure 7. a) Boundaries of a vertex, an edge and a
two dimensional elementary cube. b) A 1-chain and its
boundary. Coefficients are not visualised. Vertices and
edges are fattened for better visualization.

All n-chains in X form a group called the group of n-dimensional
chains of X, denoted Cn(X). There is a well defined homomorphism
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of groups ∂X
n : Cn(X) → Cn−1(X) which sends every n-chain 1 ·P to a

certain linear combination of its (n− 1)-dimensional faces representing
its boundary (see Figure 7a).

Figure 8. A cubical set X (orange and green, individ-
ual cubes are not marked), 1-cycles p, q, r, s (black) and
2-chains v, w, z (green).

The boundary operator is defined in such a way, that in the case of
a 1-chain in Figure 7b the vertices shared by two edges cancel out.

Chains whose boundary is zero, i.e. chains for which all faces in
the boundary cancel out, are called cycles. They form a subgroup of
Cn(X), denoted Zn(X). Cycles are important, because they may be
used to detect holes. Figure 8 shows a cubical set X with some 1-
chains and 2-chains. The supports of 1-chains a and p surround the
same whole in X. This is reflected algebraically by the fact that the
difference p − a is the boundary of the 2-chain v. The support of the
chain s does not surround a hole. Again, this is seen algebraically,
because s is the boundary of the 2-chain z. The n-chains which are
boundaries of (n+1)-chains form a subgroup of Zn(X) denoted Bn(X).
The nth homology group of X is the quotient group

Hn(X) := Zn(X)/Bn(X).

The elements of this group are equivalence classes, called homology
classes. Roughly speaking, each hole in the space X corresponds to a
generator of a homology group of X. In the case of cubical sets con-
tained in Rd for d not exceeding three or in the case of coefficients in
Z2 the structure of this group is very simple: it is a free group gener-
ated by a finite number of homology classes. In this case the number
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of generators in Hn(X) is called the nth Betti number of X and de-
noted βn(X). In the general case the definition of Betti number is
slightly more complicated, because the group may contain cyclic ele-
ments. These elements detect torsions in the set and must be factored
out before one can define the Betti number. However in this paper we
will not consider such a situation.

In the case of the cubical set X in Figure 8 the first homology group
is generated by the homology classes of the 1-chains p, q and r, so
β1(X) = 3.

6. Extracting linear features

6.1. The algorithm. After the brief introduction to homology theory
we proceed with the analysis of the image in Figure 3a. As we men-
tioned in Section 3, we need a global tool to extract the linear feature.
The tool we choose is based on the detection of one dimensional holes
in a modified image. First, the morphological closing X ′ of the orig-
inal image X is constructed in order to glue all the nearby connected
components. Next, the generators of the relative homology H(X ′, X)
are computed and their supports are added to X. Now a mask consist-
ing of a collection of parallel hyperplanes (lines in the case of a two-
dimensional image) is added to detect holes formed by the branching
points and the one-dimensional homology generators of the resulting
set are computed (see Figure 9a). The mask itself has no holes, but the
superimposition of the mask over the original image forms holes. These
holes are surrounded by generators having non-empty intersection with
the hyperplanes in the mask. Thus, the parts of the generators disjoint
from the mask must extend along the threads and branching points in
the image. Nonetheless, they are unlikely to intersect the other features
of the image which may have been glued to the set in the closing pro-
cess. In the next step the support of the selected generators is added
to the original image (see Figure 9b). Finally, we select the connected
components of the resulting image which have non-empty intersection
with the selected generators (see Figure 9c). At this stage the linear
features are extracted. The standard techniques consisting in remov-
ing the remaining small components and applying smoothing based on
the closing process may be still applied to obtain the final image (see
Figure 9d). This procedure is summarized in Algorithm 1 presented in
Table 1.

Notice that this algorithm works in every dimension.
Some artifacts may be perceived as very short branches (see Fig-

ure 4b). The size of branches detected by the algorithm is controlled
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a) b)

c) d)

Figure 9. a) The image in Figure 3a after applying one
cycle of closing process (fill-in marked in violet), adding
masks (marked in cyan) and computing 1-homology gen-
erators (marked yellow). b) The union of the original
image and the trace of generators on the closed image
(marked green). c) Components of the union which have
nonempty intersection with the trace (marked blue) and
the remaining components (marked cyan). d) The ex-
tracted feature after discarding small components and
smoothing via the closing process.

by the parameter m. The larger m, the larger are the branches re-
moved by the algorithm. Sometimes a short branch coming from an
artifact may be left by the algorithm even if m is large. This situation
may occur when a hyperplane of the mask passes close to the artifact.
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Algorithm 1.

1. Input:
- raster binary image represented as a cubical set X,
- integer m

2. X ′ := clo(X)
3. A := homology generators of H1(X

′, X)
4. G :=

⋃
a∈A |a|

5. Y := X ∪G
6. M := union of parallel hyperplanes

separated by distance m
7. C := homology generators of H1(Y ∪M)
8. D := ∅
9. for each c ∈ C if |c| ∩M \X 6= ∅ then D := D ∪ (|c| \M)
10. W := cc(D ∪X, D)
11. Output:

⋃W

Table 1. The algorithm extracting the linear structure

However, the chances of this situation are small and may be further
minimized by running the algorithm a few times with shifted location
of the hyperplanes and taking the intersection of the outputs. The
proper value of the parameter m for a concrete input image can be es-
timated and chosen automatically on the basis of the sizes of connected
components in the image.

The quality of the output may be dependent on the direction of
the hyperplanes. In the case of the lack of any natural choice of the
direction, one can run the algorithm for several choices of the direction
and take the union of the outputs.

6.2. Sample results. In order to validate Algorithm 1, several com-
puter-generated linear structures in 2D images were produced (see Fig-
ure 10a,b). These linear structures were broken randomly and random
artifacts were added (see Figure 10c,d where computer-generated arti-
facts are marked by red color). The processed noisy images are shown
in Figure 10e,f. Red artifacts removed by the algorithm are marked by
blue color.

Other 2D examples are presented in Figure 11. Red artifacts, which
were not removed, are marked by yellow color (see Figure 11f where a
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a) c) e)

b) d) f)

Figure 10. a,b) Sample computer-generated 2D im-
ages. c,d) The images with computer-generated random
noise. e,f) The noisy images (c,d) processed by Algo-
rithm 1 and smoothed (colors are explained in the text).

longer artifact was classified as a broken linear branch because it was
too similar to linear structures and was localized too close to them).

The algorithm was also tested on 3D images generated in the same
way (see Figure 12). The meaning of colors is the same as in the 2D
examples.

Other 3D examples consisting of bending fibers are presented in Fig-
ure 13 and Figure 14. A yellow artifact in Figure 14d were classified
improperly because of the same reasons as previously mentioned (sim-
ilarity to linear structures and their closeness).

Figure 15 shows the results of the presented algorithm for real endo-
scopic images of colon mucosa. Unequal endoscopic illumination and
some colon mucosa features cause that in original input images many
vessels are broken or partially visible. Thereofore, color images (Fig-
ure 15a,b) were binarized (Figure 15c,d) by a special strategy which
is based on the observation that vessels are narrow and vessel pixels
are always darker than background pixels in the nearest neighborhood
of the vessel (details will be presented in a future paper). Next, the
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a) c) e)

b) d) f)

Figure 11. a,b) Next sample computer-generated 2D
images. c,d) The images with computer-generated ran-
dom noise. e,f) The noisy images (c,d) processed by Al-
gorithm 1 and smoothed (colors are explained in the
text).

binarized images were processed by Algorithm 1 in order to extract and
reconstruct the microcirculation architecture (see Figure 15e,f).

The presented algorithm can also be applied to the extraction of
other linear structures like rivers and roads in satellite and aerial im-
ages of earth. Figure 17 shows the river extracted from a sample noisy
binarization of a satellite image. In this case the noisy image has many
artifacts which are glued to the linear structure and cannot be removed
in any step. The improved version of Algorithm 1 applies morpholog-
ical opening before the first step in order to disconnect such artifacts.
Therefore, in the next steps disconnected artifacts are classified prop-
erly and removed. Obviously opening may also disconnect some parts
of the linear structure, but they will be glued again by the algorithm
during the reconstruction process.

6.3. Comparison with other methods. The algorithm of extract-
ing linear structures presented in this paper was compared to methods
based on skeletonization and pruning (see [2, 30]). As we mentioned
earlier, immediate skeletonization does not make sense because of the
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a) b) c)

d) e)

Figure 12. a) Sample computer-generated 3D image.
b,c) The image with computer-generated random noise
and its enlargement. d,e) The noisy image (b) processed
by Algorithm 1 and smoothed and its enlargement (colors
are explained in the text).

presence of noisy cuts separating the linear structure into many pieces.
Before skeletonizing morphological closing or another gluing process
such as wrapping or dilation should be applied to the input image in
order to connect (reconstruct) partially visible broken vessels. After
skeletonizing short branches of the obtained skeleton may be for ex-
ample trimmed by iterative deleting simple points from the set of end
points (a simple point is a point whose deletion does not alter the topol-
ogy of the skeleton and an end point is a point with only one neighbour
in the skeleton). Finally, connected components of the input image
which do not intersect the trimmed skeleton may be classified as arti-
facts and removed. Unfortunately, the analysis of the length of skeleton
branches often leads to improper extraction (see Figure 2). Another
result of such strategy based on the method described in [2] (skeleton
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a) b) c)

d) e)

Figure 13. a) Next sample computer-generated 3D im-
age. b,c) The image with computer-generated random
noise and its enlargement. d,e) The noisy image (b) pro-
cessed by Algorithm 1 and smoothed and its enlargement
(colors are explained in the text).

pruning by the contour partitioning with the Discrete Curve Evolution
technique) is presented in the more realistic problem in Figure 16a.
Observe that some glued artifacts do not generate any branches and
change significantly the skeleton. For example, the main line of the
skeleton is modified because of the presence of the artifact in region 1.
In consequence, this artifact intersects the main skeleton line (see Fig-
ure 16b) and is classified as a part of the vessels. Moreover, some glued
artifacts generate longer or similar skeleton branches than branches
connected with proper linear structures (compare the branch in region
2 with the branches in regions 3, 4, 5 and the branch in region 6 with
the branches in region 4). Shorter branches may be connected with the
components of the main vessel and should not be trimmed. Deleting
simple points from the whole skeleton trims skeleton parts connected
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a) b) c)

d) e)

Figure 14. a) Next sample computer-generated 3D im-
age. b,c) The image with computer-generated random
noise and its enlargement. d,e) The noisy image (b) pro-
cessed by Algorithm 1 and smoothed and its enlargement
(colors are explained in the text).

with components of vessels (see regions 3, 4, 5) and these components
will be later removed as artifacts. It is not obvious how to improve
this strategy, because it is difficult or impossible to decide, how long
we should repeat the procedure of trimming simple points and which
branches should be trimmed. If we trim only the shortest branches, we
do not get rid of the artifact in region 2. Selecting proper branches to
trim is not easy, because we are not always sure where the main line of
the skeleton leads and consequently vessel components may be removed
instead of artifacts. For example, if we decide to trim a shorter branch
which is a natural choice, we finally remove the vessel component in
region 3 (marked black in Figure 16b) instead of the artifact in region
2 because the branch in region 3 is shorter than the branch in region 2.
In region 4 every choice of a branch to be trimmed is bad because both
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a) c) e)

b) d) f)

Figure 15. a,b) Sample endoscopic images of colon mu-
cosa. c,d) The binarized endoscopic images. e,f) The
binarized images (c,d) processed by Algorithm 1 and
smoothed.

branches are connected with vessel components. This approach cannot
properly identify artifacts without branches like the artifact in region
1 and all possible final results are unsatisfactory (see Figure 16c).

In Figure 18 one can see that the applied skeletonization method
cannot detect all parts of linear structures even in the oversimplified
regular shape without any noise where interior lines are not skeletonized
(Figure 18a). Isolated components of linear structures without skeleton
are classified as noise and the reconstruction is not effective. This also
is a serious limitation in the applications we are interested in.

The strong advantage of Algorithm 1 is that it applies to images
in any dimension (without any change) as opposed to skeletonization
and pruning methods which work in 3 dimensions ([30]) or only in 2
dimensions and their extension to 3D space is not obvious ([2]).

7. Counting the branching points

Among the main features characterizing a linear structure is the
number of branching points. A branching point is not a hole, so it is
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a) b)

c)

Figure 16. a) Contour (marked green) and skeleton
(marked red) found by the method proposed in [2] in
the image in Figure 3a after closing. b) The skeleton in
a noisy input image with distinguished connected com-
ponents. c) Sample result after trimming branches. The
undesired features are marked with rectangles. Missing
vessel components are marked by light gray.

not automatically reflected in the topology of a linear structure. How-
ever, intersecting the image around a branching point with a cubical
ball Bd

a,s and adding a cubical sphere Sd−1
a,s to the intersection, we may

differentiate the branching point from a single thread by counting the
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a) b)

c)

Figure 17. a) Satellite image of a river (source: geoser-
wer.pl). b) Sample binarization. c) The binarized image
processed by Algorithm 1 and smoothed.

first Betti number of the union. In the case when only a single thread
crosses the sphere, we see two holes: the first one is (d−1)-dimensional,
generated by the sphere itself and the other one is 1-dimensional and
comes from the thread. However, if the thread branches, we see addi-
tional 1-dimensional holes (see Figure 19).

Therefore, the number of extra 1-dimensional holes given by

(3) bd(X, a, s) := max{0, β1(X ∩Bd
a,s ∪ Sd−1

a,s )− β1(S
d−1
a,s )− 1}
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a) b)

Figure 18. a,b) Contour (marked green) and skeleton
(marked red) found by the method proposed in [2] in:
a) a simple image with regular linear structures, b) the
image in Figure 15d after closing.

a) b)

Figure 19. a) Sample vessels covered by estimating
boxes (red). b) An estimating box with 3 holes num-
bered 1,2,3.

may be used as an estimate of the number of branching points inside
the ball Bd

a,s. This leads to Algorithm 2 presented in Table 2.
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Algorithm 2.

1. Input: image X, an integer s
2. A := { q ∈ X | s|q[i] for i = 1, 2, . . . d }
3. t := 0
4. for every a ∈ A do t := t + bd(X, a, s)
5. Output: t

Table 2. The algorithm estimating the number of
branching points

The parameter s in this algorithm controls the size of the branches
which should be captured. The extreme values of s cannot give reason-
able results. If s is too small, of the order of magnitude of the thickness
of threads, then obviously no branching points may be captured. The
same happens when s is too large, of the order of magnitude of the size
of the image. However, for the intermediate values of s, the algorithm
counts only these branching points whose lengths of branches are at
least s. When the length of the threads between the branching points
does not vary significantly, then the outcome of Algorithm 2 is approx-
imately constant for the intermediate values of s. This is the case for
the images of blood vessels presented in the left column of Figure 20.
This feature may be used to estimate the length of the threads between
the branching points. The situation is different in the case of collagen
fibers (see Figure 21). In this case the number of detected branching
points decreases with s, which indicates that the length of branches
varies.

Of course, Algorithm 2 gives only a rough measure of the number
of branching points and its accuracy depends on several factors. First
of all, we need to assume that the algorithm is applied to a linear
feature. If not, then the 1-dimensional holes in the set will distort the
results. If this is the case, then one can modify formula 3 by subtracting
the number of holes contained entirely inside the cubical sphere. The
number of such holes may be obtained as β1(X ∩Ba,s). Moreover, the
threads cannot be broken by noise. As we showed in Section 6 this may
be achieved by Algorithm 1.

There may happen that two independent threads are captured in the
same box. This will also result in an extra hole, although not coming
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a) b)

Figure 20. a) Sample endoscopic images of blood ves-
sels b) The respective number of branches as a function
of different estimating box sizes.

from a branching point. One can discard such a case by looking at the
generators: at least one generator will intersect the cubical sphere Sa,s

in at least to components. However, such a situation is relatively rare
in the case of a linear feature.

Some branching points may fail to fall inside a box and will not be
counted. To avoid such a situation one can do the computations a few
times, each time shifting the grid by a fraction of the grid size and
average the results.

Finally let us mention an important advantage of the presented
method: it is straightforward to adapt Algorithm 2 so that it not only
counts the number of branching points, but also gives their locations.
This is particularly easy, because the algorithms operate on the origi-
nal image, whereas the algorithms operating on graphs require special
data structures which bind the graph with the original image.
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a) b)

Figure 21. a) A projection of the 3D image of collagen
fibrils b) The respective number of branching points in
dependency on different estimating box sizes.

8. Conclusions and final remarks.

We presented the method of extracting linear features from noisy
images in arbitrary dimension and counting the number of branching
points. The algorithms work directly on the binarized image and do not
require any intermediate data structures such as graphs. We overcame
the problem of noise which makes the linear structure visible only via
a global look by applying homological methods and masks. The algo-
rithms have been implemented and tested on computer-generated data
and concrete problems and proved to be useful in medical diagnostics.
Details will be presented in separate papers, in specialistic journals.

The techniques presented in this paper apply directly only to binary
images. Since we concentrate on homological methods, we do not dis-
cuss here the thresholding techniques used in the examples to obtain
binary images. They will be presented in the future papers.

Let us mention that apart from thresholding, a more sophisticated
method is possible to analyse gray scale and color images by topological
methods, namely the gray scale or color image may be decomposed into
a filtration of black and white images and investigated via studying the
homology of the inclusion maps and/or persistent homology (cf. [8]).
This is left for future investigation.
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