
Discrete Morse Theoretic Algorithms for Computing

Homology of Complexes and Maps

Shaun Harker∗ Konstantin Mischaikow† Marian Mrozek‡ Vidit Nanda§

Communicated by Gunnar Carlsson.

Abstract

We provide explicit and efficient reduction algorithms based on discrete Morse theory to simplify homol-
ogy computation for a very general class of complexes. A set-valued map of top-dimensional cells between
such complexes is a natural discrete approximation of an underlying (and possibly unknown) continuous
function, especially when the evaluation of that function is subject to measurement errors. We introduce
a new Morse theoretic pre-processing framework for deriving chain maps from such set-valued maps, and
hence provide an effective scheme for computing the morphism induced on homology by the approximated
continuous function.

Keywords: Computational homology, discrete Morse theory.

Mathematics Subject Classification: 55-04, 55N35, 57-04.

1 Introduction

The last two decades have witnessed a rapid growth in the range of applications of algebraic topology
including sensor networks, image analysis, data analysis, material science and nonlinear dynamics [20, 13,
5, 12, 16, 15, 28, 10, 9, 29].

Recall that given a topological space X, algebraic topology provides mechanisms to compute associated
homology groups Hk(X) for k ∈ {0, 1, 2, . . .} and furthermore, the same mechanisms construct abelian group
homomorphisms f∗ : H∗(X) → H∗(Y) for a given continuous map f : X → Y . Perhaps the best-known
technique is that of simplicial homology. In this case, the topological spaces X and Y are represented in
terms of simplicial complexes X and Y and the continuous map f is approximated via a simplicial map
f#. This generates a map of chain complexes consisting of the graded free modules C∗(X) and C∗(Y) with
respective bases X and Y along with corresponding boundary operators. Recall that the homology groups
of X and Y are obtained via the Smith normal form diagonalization of the boundary operators [18, 20].
The Smith normal form is also used to explicitly determine the induced images of homology classes under
f∗ from f#.

The starting point for the aforementioned modern applications is different. One begins with finite
complexes X and Y which are chosen according to the particular problem. Point cloud data is typically
topologized via Rips or Čech complexes which leads to an abstract simplicial complex. Digital image
data naturally leads to cubical complexes. Similarly, it is rare that a given numerical representation of a
continuous function can be efficiently approximated via a simplicial map. Another important characteristic
of modern applications is that the data sets – and consequently the associated complexes – are often large
and high-dimensional.1

This disparity between the classical framework of algebraic topology and the modern applications has
driven the development of efficient algorithms by which to compute the homology groups and the induced
maps on homology. There are a variety of strategies that have been adopted. The most fundamental is to

∗Department of Mathematics, Rutgers University
†Department of Mathematics and BioMaPS Institute, Rutgers University
‡Division of Computational Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University
§Department of Mathematics, University of Pennsylvania
1See [5] for a description of a complex in R8 with approximately 4.5×106 vertices that arises from the study of natural images.

1

view Smith diagonalization as a purely algebraic problem and then to seek an optimal algorithm [11, 31].
The worst case analysis of such algorithms suggests a supercubical complexity with respect to the size of the
complex, which is prohibitive for large datasets. An alternative strategy is to develop efficient algorithms
for restricted problems, for example by restricting the dimension of the complex [8] or restricting the
computation to that of Betti numbers [14]. The approach adopted in this paper is to pre-process the data
by exploiting the geometry and the face relations associated with the input complex X , thereby producing
a smaller complex on which an algebraic Smith normal form computation can be performed.2 Clearly, this
is advantageous as long as the cost of preprocessing is low. This approach has proven to be effective in the
past [22, 19, 20, 21, 26, 27, 28, 10].

The preprocessing proposed in this paper is based on the discrete Morse theory for finite complexes
developed by Forman [14]. For our purposes, the central result of Forman’s work is that given a complex
(C∗(X), ∂) it is possible to produce an alternative chain complex (C∗(M),∆), called the Morse complex
where M ⊂ X such that H∗(M) ∼= H∗(X). Furthermore, in general the size of the complex M is signifi-
cantly smaller than that of X . With this in mind, the focus of this paper is threefold:

1. Provide a framework for describing the complexes on which the pre-processing operations are performed.
This is done in Section 2 and makes use of complexes as developed by Tucker [33] and Lefschetz [24],
along with more recent work on algebraic Morse theory (see [23] and references therein) and most
closely related [26] where the focus is on incidence numbers that relate neighboring cells. In the con-
texts of data analysis and computational dynamics which motivate this work, this local information is
often natural to the input whereas the associated boundary operator must be derived from this infor-
mation. The explicit construction of this boundary operator, which can be costly for large complexes,
is unnecessary in our approach.

2. Present algorithms for efficiently computing Morse complexes. This is the subject of Section 3. The
chains of the Morse complex are obtained using an extension of the co-reduction algorithm introduced
in [26]. The associated boundary operator agrees with that of [14], but the construction is done in
terms of a more explicit algorithm.

3. Use Morse complexes to efficiently compute the induced maps on homology. This is presented in
Section 4 and is similar in spirit to the approach taken by Allili and Kaczynski [1] and Mischaikow,
Mrozek and Pilarczyk [25]. The fundamental difference is in employing the Morse complex to choose
representations of homology generators used to define the induced map on homology.

The basic outline of our method for computing the map induced on homology by a relation F : X −→→Y
between complexes is as follows. We first apply discrete Morse theory to produce Morse complexesMX and
MY of the domain X and codomain Y respectively. For each homology generator in MX , we compute a
representative cycle m and consider an equivalent cycle x in X . We then lift x to a corresponding cycle g in
the graph Γ of F which is a subcomplex of the product X ×Y. More precisely, the X -projection of g equals
x and its construction involves solving the a preboundary problem in the fibers of F lying in Γ. Again,
discrete Morse theory can provide an efficient method for computing these preboundaries. Projecting g
to a cycle y in the codomain Y, we perform traditional algebraic operations to express the counterpart
m′ of y in the Morse complex MY as a linear combination of homology generators. Here is a schematic
representation of this construction:

MX X Γ Y MYoo //'
m → x

//lift

x → g
//

project

g → y
oo //'

y → m′

As in the case of the method of homology models introduced in [28, Section 3.3], the central computational
advantage of this technique is that all the expensive algebraic operations are performed over chains in the
much smaller Morse complexes MX and MY .

An outline of the paper is as follows. Section 2 provides fundamental definitions, notation and con-
structions that are used throughout the paper. The algorithms for computing homology are presented in
Section 3 and the algorithms for computing the maps on homology are described in Section 4. We conclude
in Section 5 with a discussion concerning the complexity in time and memory of our approach.

Before turning to the details, a final comment is in order. We have purposely chosen to present our algo-
rithms on a fairly high level. We provide both proofs that the algorithms perform as expected and arguments
concerning the complexity of our approach. At present there are at least three different implementations

2Since as indicated earlier, homology is computed via Smith normal form all these preprocessing algorithms can be interpreted
algebraically. The difference is that the chain complex is constructed as late as possible and the algebraic operations are often
motivated by geometric and combinatorial considerations.

2

of these algorithms [7, 4, 30]. The efficiency of these algorithms is studied in [17] where experimentation
shows that the different implementations have different run times. Which implementation is more favorable
depends on the type of problems being considered. Thus, we suspect that there is considerable room for
improvement, and that variance on the implementation level is desirable.

2 Complexes and Maps

We present a framework for describing the complexes on which the preprocessing steps are performed.
Section 2.1 discusses elementary properties of complexes and reviews important facts about the homology
of these complexes from [26]. Section 2.2 provides the framework by which maps are represented. This
framework is used in Section 2.3 to construct graph complexes which, as described in Section 2.4, play an
essential role in the computation of the induced maps on homology.

2.1 Cell Complexes

Let N be the set of natural numbers (including zero). Throughout this paper, R denotes a principal ideal
domain. The following definition of complex is based on [24] and is a straightforward reformulation of the
definition of S-complex in [26, Section 2].

Definition 2.1. Consider a finite graded set X =
⊔
q∈N Xq along with a function κ : X × X → R. An

element ξ ∈ Xq is called a cell of dimension q. We write dim ξ to denote the dimension of ξ. The pair (X , κ)
is called a complex if the following properties are satisfied:

(i) For each ξ and ξ′ ∈ X , κ(ξ, ξ′) 6= 0 implies dim ξ = dim ξ′ + 1, and

(ii) For each ξ and ξ′′ ∈ X , the sum
∑
ξ′∈X κ(ξ, ξ′) · κ(ξ′, ξ′′) equals 0 ∈ R.

Here κ is called the incidence function of the complex (X , κ).

We denote κ(ξ, ξ′) 6= 0 by ξ′ ≺ ξ and call ξ′ a facet of ξ. The transitive closure � of ≺ generates the
face partial order on X , and we often write ξ′ is a face of ξ to denote ξ′ � ξ.
Definition 2.2. Let (X , κ) be a complex. The associated chain complex consists of the free modules
Cq(X) := R(Xq), where the basis elements are the cells ξ ∈ Xq, and the boundary operator is generated by
the maps

∂X (ξ) :=
∑
ξ′∈X

κ(ξ, ξ′)ξ′. (1)

It follows from Definition 2.1(i) that ∂Xq : Cq(X)→ Cq−1(X) and from Definition 2.1(ii) that ∂X ◦∂X = 0.

The q-cycles and q-boundaries are defined as Zq(X) = ker ∂Xq and Bq(X) = img ∂Xq+1 respectively. The
associated homology groups of this chain complex are defined as the quotient Hq(X ; R) = Zq/Bq. Since
the coefficient ring R remains fixed throughout, we will omit it from the notation and denote homology
groups by H∗(X). Given complexes X and Y, a chain map from C∗(X) to C∗(Y) is an R-module morphism
φ : C∗(X) → C∗(Y) satisfying φ ◦ ∂X ≡ ∂Y ◦ φ. Chain maps induce well-defined morphisms of homology
groups.

Given A ⊂ X , let ιA and πA denote the inclusion and projection maps between chains C∗(X) and
C∗(A). Define ∂A on C∗(A) by ∂A = πA ◦ ∂X ◦ ιA. If ∂A ◦ ∂A ≡ 0 then A is called a subcomplex of (X , κ).
Note that a subcomplex, as we define it, need not be a subcomplex in the sense of chain complexes. The
following notation provides convenient local information that can be used to study or modify the complex
(X , κ). Given any subset A ⊂ X , define

bdX A := {ξ ∈ X | ξ ≺ α for some α ∈ A} .

The following result provides additional conditions, depending only on κ, which guarantee that A is a
subcomplex of X . Define A ⊂ X to be combinatorially closed if⋃

α∈A
bdX α ⊂ A.

Henceforth, we will say that a subcomplex is closed if it is combinatorially closed and in this case it is easy
to see that ∂A is just the restriction of ∂X to the chains C∗(A). We say that A is open in X if X \ A is
closed in X . Similarly, the closure of a subset X ′ ⊂ X is defined to be the smallest closed subcomplex of X
which contains X ′ and is denoted by X ′.

3

Proposition 2.3. [26, Theorem 3.2] Let (X , κ) be a complex. If A ⊂ X is closed, then both (A, κ) and
(X \ A, κ) are subcomplexes of X .

Observe that if A ⊂ X is closed then we can define the relative chain complex

C∗(X ,A) :=
C∗(X)

C∗(A)

with the boundary operator ∂(X ,A) induced by the quotient map. The associated relative homology groups
are denoted by H∗(X ,A). From a computational perspective, an important consequence of Proposition 2.3
is the following.

Proposition 2.4. [26, Theorem 3.5] Let (X , κ) be a complex and let A ⊂ X be closed, then

H∗(X \ A) ∼= H∗(X ,A).

The following proposition establishes that chain maps descend to closed and open subcomplexes as
expected.

Proposition 2.5. Let µ : C∗(X) → C∗(Y) be a chain map between complexes and assume that A ⊂ X is
a closed subcomplex. Then,

1. the restriction µ|C∗(A) is a chain map from C∗(A) to C∗(Y), and

2. if µ(C∗(A)) ⊂ C∗(B) for some closed subcomplex B ⊂ Y, then µ|C∗(X\A) descends to a chain map
from C∗(X \ A) to C∗(Y \ B).

Proof. If A ⊂ X is a closed subcomplex, then for any chain a ∈ C∗(A) we have

µ ◦ ∂A(a) = µ ◦ ∂X (a) = ∂Y ◦ µ(a)

where the first equality follows from the fact that A is closed and the second from the fact that µ is a
chain map from X to Y. On the other hand, if µ(C∗(A)) ⊂ C∗(B) then µ descends to a well-defined chain
map µ′ : C∗(X ,A)→ C∗(Y,B) on relative homology from which the desired result follows by choosing the
canonical representative chains in C∗(X \A) and C∗(Y \B) for the relative chains in the domain and range
respectively.

Definition 2.6. Let (X , κ) and (Y, τ) be complexes. Their product complex denoted by (X×Y, κ×) consists
of elements ξ × η where

dim(ξ × η) = dim ξ + dim η

and the product incidence function is given by

κ× (ξ × η, ξ′ × η′) :=

κ(ξ, ξ′) if η = η′,

(−1)dim ξτ(η, η′) if ξ = ξ′,

0 otherwise.

(2)

As is demonstrated in [24, IV.1.1], a product complex is a complex. It is convenient to identify the
associated chain complex C∗(X ×Y) with the tensor product C∗(X)⊗R C∗(Y). The explicit bases for this
identification are given by ξ × η ∼ ξ ⊗ η for ξ ∈ X and η ∈ Y. The product boundary operator takes the
form

∂×(ξ ⊗ η) = ∂X ξ ⊗ η + (−1)dim ξξ ⊗ ∂Yη.

The canonical projection maps πX : Ck(X × Y)→ Ck(X) and πY : Ck(X × Y)→ Ck(Y) are defined on
the basis elements as follows and extended via R-bilinearity:

πX (ξ ⊗ η) :=

{
ξ if dim η = 0

0 otherwise
and πY(ξ ⊗ η) :=

{
η if dim ξ = 0

0 otherwise

As is to be expected, we use these projection maps to relate subcomplexes of (X ×Y, κ×) to subcomplexes
of (X , κ) and (Y, τ). However, to do this on the level of homology requires that the projection maps induce
chain maps. The following example indicates that this need not be true for general complexes.

4

Example 2.7. Let X be a complex containing a single cell ξ with dim ξ = 1, so that the incidence function κ
is trivial. Consider Y = {η1, η0} where dim ηi = i and τ(η1, η0) = 1. Then, (X , κ) and (Y, τ) are complexes.
Furthermore, X × Y = {ξ × η1, ξ × η0} and κ×(ξ × η1, ξ × η0) = −τ(η1, η0). Thus ∂×(ξ ⊗ η1) = −ξ ⊗ η0.
Observe that

πX ◦ ∂×(ξ ⊗ η1) = −ξ 6= 0 = ∂X ◦ πX (ξ ⊗ η1).

Hence, πX : C∗(X × Y)→ C∗(X) is not a chain map.

Definition 2.8. Let ε : C0(X) → R be the standard augmentation map defined by ε(
∑
i riξi) =

∑
i ri,

ri ∈ R. The complex X is augmentable if ε ◦ ∂X1 = 0.

A direct computation leads to the following proposition which is our primary use of the augmentability
condition.

Proposition 2.9. If X and Y are augmentable, then the canonical projection maps πX and πY are chain
maps.

2.2 Combinatorial Maps

In this section we describe the representations of maps which we employ. It should be noted that [33, 24]
provide a framework for set transformations that – from the perspective of the applications that we envision
– appears to be more general than necessary.

Definition 2.10. Let (X , κ) and (Y, τ) be complexes. A combinatorial map from X to Y is a multi-valued
map F : X −→→Y so that the set {ξ × η | ξ ∈ X , η ∈ F(ξ)} is a closed subcomplex of the product X × Y.

Our preferred method of generating combinatorial maps on complexes is to focus on transformations
that are specified by their action on top-cells as defined below.

Definition 2.11. Given a complex (X , κ), ξ ∈ X is a top-cell if it is maximal with respect to �. The set
of top-cells is denoted by X+ ⊂ X .

Definition 2.12. Let (X , κ) and (Y, τ) be complexes. A toplex map T : X+−→→Y+ is a multi-valued map
which takes top-cells of X to nonempty sets of top-cells of Y.

Our motivation for choosing to work with toplex maps comes from two sources:

1. they are compact representations for a map since they only involve top-cells, and

2. they arise naturally in problems involving numerical computations or the analysis of experimental
data that involve error bounds.

The following construction generates a combinatorial map from a toplex map.

Definition 2.13. Given a toplex map T : X+−→→Y+, the associated combinatorial map F : X −→→Y is defined
inductively on � as follows:

F(ξ) :=

{
T (ξ) if ξ ∈ X+⋃
ξ≺ξ′ F(ξ′) otherwise.

Many applications make use of maps on pairs. Again, we wish to encode the information via the top-
cells. Given a closed subcomplex X0 ⊂ X , we say that X0 is full if X+

0 ⊂ X+, and we say that (X ,X0) is a
full pair of complexes whenever X0 is a full subcomplex of X .

Definition 2.14. Let (X , κ) and (Y, τ) be complexes with full subcomplexes X0 ⊂ X and Y0 ⊂ Y. A
toplex pair map

T : (X+,X+
0)−→→ (Y+,Y+

0)

is a toplex map T : X+−→→Y+ such that T (X+
0) ⊂ Y+

0 .

We may construct combinatorial pair maps from toplex pair maps.

Definition 2.15. Let T : (X+,X+
0)−→→ (Y+,Y+

0) be a relative toplex map of full pairs. The associated
combinatorial pair map is a pair (F ,F0) of combinatorial maps F : X −→→Y, and F0 : X0

−→→Y0 which are
derived from T and T |X+

0
respectively via Definition 2.13.

5

2.3 Graph Complexes

As is indicated in the Introduction, our approach to computing the induced map on homology is based on
the techniques of [25]. The essential idea is as follows: given topological spaces X, Y and a continuous map
f : X → Y , let G ⊂ X × Y denote the graph of f . Let πX : G → X and πY : G → Y denote the canonical
projection maps. Observe that f = πY ◦ π−1

X and hence f∗ = πY ∗ ◦ π−1
X∗.

The data for our problem is fundamentally different. We work with complexes and combinatorial maps
rather than topological spaces and continuous maps.3 Throughout this section, we consider augmentable
complexes (X , κ) and (Y, τ) along with a combinatorial map F : X −→→Y derived from a toplex map T :
X+−→→Y+. Nevertheless, we adopt a similar strategy: consider the graph generated by F as a subcomplex
of X × Y and use the composition of the projection maps to determine F∗.

Definition 2.16. The graph complex of F : X −→→Y consists of the cells

Γ := {ξ × η | ξ ∈ X , η ∈ F(ξ)} ⊂ X × Y

and the graph incidence function is given by the restriction of the product incidence function κ× : (X ×Y)×
(X × Y)→ R.

Given A ⊂ X , we consider the set

ΓA := {ξ × η | ξ ∈ A, η ∈ F(ξ)} ⊂ Γ

with incidence function defined by the restriction of κ×. In particular, when A is a single cell ξ ∈ X , we
have

Γξ := Γ{ξ} = {ξ × η | η ∈ F(ξ)} ⊂ Γ.

Observe that in this case the incidence function can be viewed as either the restriction of κ× or the restriction
of τ since the restrictions are identical.

By Definition 2.10, we know that the graph Γ of F is closed in X × Y. Here is a stronger statement:

Proposition 2.17. For each closed subcomplex A ⊂ X , the associated fiber complex ΓA is a closed sub-
complex of the product (X × Y, κ×).

Proof. Let ξ × η ∈ bdX×Y ΓA. Then, there exists ξ′ × η′ ∈ ΓA such that either ξ = ξ′ and η ≺ η′ in
F (ξ) ⊂ Y, or η = η′ and ξ ≺ ξ′ in X . In the first case, we have η ∈ bdY F(ξ′) ⊂ F(ξ′) = F(ξ), hence
ξ × η ∈ ΓA because ξ = ξ′ ∈ A. Alternately, we have ξ ∈ bdX ξ

′ ⊂ bdX A ⊂ A and η = η′ ∈ F(ξ′) ⊂ F(ξ),
hence ξ × η ∈ ΓA.

As a consequence of this proposition, the restriction of ∂× to Γ produces a chain complex (C∗(Γ), ∂×|Γ).
Restricting further to a closed subcomplex A ⊂ X gives rise to a chain complex (C∗(Γ

A), ∂×|ΓA).
The following proposition follows directly from Propositions 2.9 and 2.5 once we recall that the graph

of a combinatorial map is closed by Definition 2.10.

Proposition 2.18. Let F : X −→→Y be a combinatorial map of augmentable complexes and let (Γ, κ×) be its
graph complex. If X and Y are augmentable, then the restriction of the canonical projection maps πX and
πY to C∗(Γ) are chain maps to C∗(X) and C∗(Y) respectively.

To work with maps on pairs we need the following.

Definition 2.19. Let (F ,F0) : (X ,X0)−→→ (Y,Y0) be a combinatorial pair map. The associated graph is
defined to be the subcomplex (Γ \ Γ0, κ

×) of X × Y consisting of cells in the graph complex (Γ, κ×) of F
which do not lie in the graph complex (Γ0, κ

×) of F0.

Given a closed subcomplex A ⊂ X , the associated graph is (ΓA \ ΓX0∩A
0) and in particular for each

ξ ∈ X the associated fiber is (Γξ \ Γξ0) where Γξ0 = ∅ if ξ 6∈ X0. Direct applications of Propositions 2.18 and
2.5(2) give rise to the following result.

Proposition 2.20. Let (F ,F0) : (X ,X0)−→→ (Y,Y0) be a combinatorial pair map with associated graph
complex (Γ \ Γ0). If X and Y are augmentable, then the restrictions of the canonical projection maps πX
and πY to C∗(Γ \ Γ0) are chain maps to C∗(X \ X0) and C∗(Y \ Y0) respectively.

3As is shown in [25], there are relationships between these two settings.

6

Definition 2.21. A combinatorial map F : X → Y is acyclic if for each ξ ∈ X the subcomplex F(ξ) ⊂ Y
is acyclic; that is,

Hq(F(ξ)) =

{
R if q = 0

0 otherwise.

A relative combinatorial map (F ,F0) is acyclic if both F and F0 are acyclic.

Recall that we have already assumed the augmentability of (X , κ) and (Y, τ) throughout. Henceforth
we will also require that the combinatorial maps F : X −→→Y be acyclic. In all situations dealing with
relative homology, we similarly require (F ,F0) : (X ,X0)−→→ (Y,Y0) to be acyclic. For each cell ξ ∈ X , define
{ξ} ⊂ X to be the complex consisting of the single cell ξ. Note that its combinatorial closure {ξ} is the
closed subcomplex of X consisting of all ξ′ � ξ.

Proposition 2.22. If ξ ∈ X , then

Hq(Γ
ξ) ∼=

{
R if q = dim ξ

0 otherwise

and πX restricted to C∗(Γ
ξ) induces an isomorphism from H∗(Γ

{ξ}) to H∗({ξ}).

Proof. Observe that

Hq({ξ}) ∼=

{
R if q = dim ξ

0 otherwise.

Since F(ξ) is acyclic and Γξ = {ξ} × F(ξ), the result follows from the Künneth theorem.

Proposition 2.23. Let (F ,F0) : (X ,X0)−→→ (Y,Y0) be an acyclic combinatorial pair map with the associated
graph (Γ \ Γ0), where X and Y are augmentable complexes. If ξ ∈ X \ X0, then

Hq(Γ
ξ \ Γξ0) ∼=

{
R if q = dim ξ

0 otherwise.

And for each ξ ∈ X0

H∗(Γ
ξ \ Γξ0) = 0.

Proof. Observe that if ξ ∈ X \ X0, then Γξ0 = ∅ and the result follows from Proposition 2.22. If ξ ∈ X0,

then Γξ0 ⊂ Γξ is a closed subcomplex and both satisfy Proposition 2.22. Thus by the exact sequence of a

pair, we have H∗(Γ
ξ,Γξ0) = 0. Using Proposition 2.4 concludes the argument.

The goal for the remainder of this subsection is the proof of the following result which is a special case
of the Vietoris-Begle Theorem [32, Theorem 6.9.15].

Theorem 2.24. Let (F ,F0) : (X ,X0)−→→ (Y,Y0) be an acyclic combinatorial pair map with graph (Γ \ Γ0)
where X and Y are augmentable complexes. Then, the restriction of the canonical projection map πX to
C∗(Γ \ Γ0) induces an isomorphism from H∗(Γ \ Γ0) to H∗(X \ X0).

We begin with some simple lemmas.

Lemma 2.25. Let U ,V ⊂ X be closed subcomplexes. Assume that the restrictions of the canonical projec-
tions πX to C∗(Γ

Z) induce isomorphisms H∗(Γ
Z) ' H∗(Z) for Z ∈ {U ,V,U ∩ V}. Then,

πX |C∗(ΓU∪V) : C∗(Γ
U∪V)→ C∗(U ∪ V)

also induces an isomorphism on homology.

Proof. The assumption that U and V are closed implies that U ∩ V and U ∪ V are closed in the complex
(X , κ). The proof now follows from the Five Lemma and the Mayer-Vietoris sequence.

The following result is essentially a restatement of Proposition 2.22 once one observes that if dim ξ = 0
then {ξ} = {ξ}.

7

Lemma 2.26. Let ξ ∈ X be a cell of dimension 0. Then the restriction of πX to C∗(Γ
{ξ}) induces an

isomorphism

H∗(Γ
{ξ}) ' H∗({ξ})

We will prove the following proposition and theorem simultaneously.

Proposition 2.27. For every ξ ∈ X , the restriction of πX to C∗(Γ
{ξ}) induces an isomorphism

H∗(Γ
{ξ}) ' H∗({ξ})

Theorem 2.28. Let F : X −→→Y be an acyclic combinatorial map with graph complex (Γ, κ×), where (X , κ)
and (Y, τ) are augmentable complexes. If A ⊂ X is closed, then

πX |C∗(ΓA) : C∗(Γ
A)→ C∗(A)

induces an isomorphism on homology.

Proof of Proposition 2.27 and Theorem 2.28. Given A ⊂ X set dimA := max{dim ξ | ξ ∈ A}. Observe
that it is enough to prove that for every n the following statements are satisfied:

A(n): For every ξ ∈ X such that dim ξ ≤ n, the restriction of πX to C∗(Γ
{ξ}) induces an isomorphism

H∗(Γ
{ξ}) ' H∗({ξ}).

B(n): If A ⊂ X is closed and dimA ≤ n, then

πX |C∗(ΓA) : C∗(Γ
A)→ C∗(A)

induces an isomorphism on homology.

In the proof we will use the following induction scheme:

(i) A(0) holds true,

(ii) A(n) =⇒ B(n),

(iii) B(n) =⇒ A(n+ 1).

Property (i) follows immediately from Lemma 2.26.
To prove property (ii) assume that A(n) holds. Let A+ be the set of �-maximal cells in A. By A(n),

πX : Γ{ξ} → {ξ} induces an isomorphism on homology for each ξ ∈ A. By Lemma 2.25, if ζ is another cell
in A+ then

πX : Γ{ξ} ∪ Γ{ζ} → {ξ} ∪ {ζ}
induces an isomorphism on homology. Since A is closed, A =

⋃
ξ∈A {ξ}, which implies that repeating this

argument inductively gives the result.
To prove property (iii) assume that B(n) holds. Given ξ ∈ X with dim ξ ≤ n+ 1, define

S := {ξ} \ {ξ} = {ξ′ ∈ X | ξ 6= ξ′ � ξ}

and observe that S and ΓS are closed in X and Γ respectively. By Proposition 2.3 we have the following
isomorphisms

Hk(Γ{ξ},ΓS) ∼= Hk(Γ{ξ})

and
Hk({ξ},S) ∼= Hk({ξ}).

Combining this with the long exact sequence of a pair leads to the following commutative diagram

· · · Hk(ΓS) Hk(Γ{ξ}) Hk(Γ{ξ}) · · ·

· · · Hk(S) Hk({ξ}) Hk({ξ}) · · ·

//

��
πX∗

//

��
πX∗

//

��
πX∗

//

// // // //

By Proposition 2.22, πX∗ : H∗(Γ
{ξ}) → H∗({ξ}) is an isomorphism. Furthermore, since dimS ≤ n, the

inductive hypothesis B(n) implies that πX∗ : H∗(Γ
S)→ H∗(S) is an isomorphism. Thus by the five lemma,

πX∗ : H∗(Γ
{ξ})→ H∗({ξ}) is an isomorphism as desired.

Proof of Theorem 2.24. The result follows from applying Theorem 2.28 to the exact sequence for the pair
(X ,X0) and then using Proposition 2.4.

8

2.4 The induced map on homology

Theorem 2.24 allows us to define the morphism on homology induced by a toplex map.

Definition 2.29. Let Let (F ,F0) : (X ,X0)−→→ (Y,Y0) be an acyclic combinatorial pair map and assume
that X and Y are augmentable. Denote the associated graph by (Γ \ Γ0). The induced map on homology
F∗ : H∗(X \ X0)→ H∗(Y \ Y0) is defined by

F∗ := π′Y∗ ◦ π′−1
X∗ ,

where π′Y∗ and π′X∗ denote respectively the maps in homology induced by the restrictions of πY and πX to
(Γ \ Γ0).

As is indicated earlier, one of the justifications for use of toplex maps is that they provide readily
computable approximations for continuous functions. The following result indicates that under reasonably
mild conditions different approximations induce the same map on homology.

Proposition 2.30. Let T , T ′ : X+−→→Y+ be toplex maps where X and Y are augmentable complexes. As-
sume that the associated relative combinatorial maps F and F ′ are acyclic. If for all ξ ∈ X+,

T (ξ) ⊂ T ′(ξ)

then
F∗ = F ′∗

Proof. Observe that F(ξ) ⊂ F ′(ξ) for all ξ ∈ X+. Thus, if Γ and Γ′ denote the respective graph complexes
then Γ ⊂ Γ′. The conclusion follows from the commutative diagram

Γ′

X Γ Y
�� ��

OO

oo //

in which the vertical arrow denotes inclusion and all other arrows denote respective projections.

3 Discrete Morse Theory

As indicated in the Introduction, the goal of this section is an algorithm that constructs a Morse complex
starting with an arbitrary complex X satisfying Definition 2.1. In Section 3.1 we provide an algorithm for
producing the cells for the desired Morse complex. The underlying structure follows the reformulation of
Forman’s work by Chari [6] and Kozlov [23].

Given the cells to produce a Morse complex requires construction of the boundary operator.An algorithm
for this is presented in Section 3.2 along with a proof that the homology of the resulting Morse complex
agrees with that of the original complex. In Section 3.3 an algorithm for computing homology groups and
its generators is presented. We conclude in Section 3.4 with an application of the discrete Morse homology
to computing pre-images of boundaries.

3.1 Acyclic Matchings via Coreduction

Let (X , κ) be a complex over the PID R.

Definition 3.1. A matching of (X , κ) consists of a partition of X into three sets A, K, and Q along with
a bijection w : Q → K, such that for each Q ∈ Q there exists a unit u ∈ R satisfying

κ(w(Q), Q) = u, (3)

We denote this decomposition by (A, w : Q → K).

Observe that by Definition 2.1(ii) and (3) we have dimw(Q) = dimQ+ 1 for each Q ∈ Q.

9

Remark 3.2. The definition of a matching (A, w : Q → K) is clearly related to earlier presentations of
combinatorial Morse theory. See for example the work of Forman [14], Chari [6], and in particular Kozlov
[23]. The elements of A are typically referred to a critical cells in analogy to classical Morse theory. The
elements of K and Q are often not explicitly labelled since from a purely Morse theoretic perspective they
are unimportant objects, it is only the pairing w that plays an essential role. However, our interest is
in using combinatorial Morse theory to develop algorithms that are designed to be applied to complexes
arising from experimental or numerical data sets. In particular, as is made explicit in Algorithm 3.19 we
can iteratively apply the preprocessing algorithm of this paper to the resulting Morse complex. This has no
analogue in the classical Morse theory and in particular the critical cells of one complex cease to be critical
cells in the next iterate of the algorithm. Similarly, in our computation of the induced maps on homology
in Section 4, it is essential to be able to recover homology generators in the original complex. For this we
need to keep track of the individual elements of A, K and Q and find it useful to have different monikers
for the different elements of the pairing.

Given a matching of X we define by transitivity a relation ≤ on Q as follows. Consider distinct elements
Q,Q′ ∈ Q;

if κ(w(Q), Q′) 6= 0 then Q′ < Q. (4)

Definition 3.3. A matching of X is acyclic if ≤ defines a partial order on Q.

We now turn to the issue of constructing an acyclic matching on a complex X . This is done in an
essentially sequential manner: a cell in X is identified as being either in A, K, or Q and then excised from
the complex until the complex is exhausted. Observe that the only significant constraint in the definition
is the bijection w : Q → K which must be compatible with (3). This leads to the following definition.

Definition 3.4. (comp. [26, Section 4]) Given a subcomplex X ′ ⊂ X , a pair of cells (ξ, ξ′) ∈ X ′ × X ′ is a
coreduction pair in X ′ if κ(ξ, ξ′) is a unit in R and bdX ′ ξ = {ξ′}.

Definition 3.5. Given a subcomplex X ′ ⊂ X , a cell ξ ∈ X ′ is free in X ′ if bdX ′ ξ = ∅.

Algorithm 3.6. Coreduction-Based Matching

Given X .
X ′ ← X .
while X ′ is not empty do

while X ′ admits a coreduction pair (K,Q) do
Excise the pair (K,Q) from X ′.
Insert K ∈ K, and Q ∈ Q.
Set w(Q) := K.

end while
while X ′ does not admit a coreduction pair do

Excise a free cell A from X ′.
Insert A ∈ A.

end while
end while
return (A, w : Q → K)

Theorem 3.7. Given a complex X , Algorithm 3.6 produces an acyclic matching (A, w : Q → K).

Proof. We begin by showing that the algorithm halts. Each of the secondary while statements results in a
reduction in the size of the complex X ′. Notice that at each stage X ′ remains a subcomplex of X because
excising a coreduction pair or a free cell results in a subcomplex. Thus it is sufficient to show that as long as
X ′ 6= ∅ one or the other body of these while statements can be carried out. If a coreduction pair exists then
the first while statement is performed. Otherwise, by finiteness X ′ contains a cell ξ of minimal dimension
and hence ξ is free. Therefore the algorithm outputs a partion A, K, Q of X . This is a matching since the
definition of a coreduction pair implies (3). It remains to be shown that the matching is acyclic, that is, it
must be shown that (4) defines a partial order on Q.

Since excising a free cell A does not affect the partial order on Q, we restrict our attention to the stages
where we excise a coreduction pair (K,Q). Observe that adding a new maximal element to a partially
ordered set does not invalidate the partial order property. Accordingly, we show that Q will be maximal in
Q immediately after (K,Q) is excised. Otherwise, there must exist a previously excised coreduction pair
(K ′, Q′) with Q ∈ bdX ′ K

′. But this is impossible, since at that stage X ′′ the boundary bdX ′′ K
′ of K ′

must have contained both Q and Q′, thus violating the coreduction pair property of (K ′, Q′) in X ′′.

10

3.2 Constructing the Morse Chain Complex

Given an acyclic matching (A, w : Q → K) of X we detail the construction of a new chain complex whose
basis elements are generated by the cells in A. Throughout this section, we use idX to denote the identity
map on the chains C∗(X) and 〈·, ·〉 to denote the R-valued inner product on C∗(X) obtained by treating
the cells as an orthonormal basis.

Definition 3.8. The K-chains and canonical chains in C∗(X) are the submodules C∗(K) and C∗(A) ⊕
C∗(K), respectively.

The following proposition is fundamental to our construction of the boundary operator for the Morse
complex.

Proposition 3.9. There exists a unique module homomorphism γ∗ : C∗(X)→ C∗+1(X) such that the image
of idX + ∂γ is canonical and γ(x) is a K-chain for each x ∈ C∗(X). Furthermore, ker γ ⊂ C∗(X) is the
canonical submodule C∗(A)⊕ C∗(K).

The proof of this proposition follows from Algorithm 3.12 given below. Let ιA : C∗(A) → C∗(X) and
πA : C∗(X) → C∗(A) be the usual inclusion and projection morphisms of modules. Define ψ : C∗(X) →
C∗(A) and φ : C∗(A)→ C∗(X) by

ψ := πA ◦ (idX +∂γ) and φ := (idX +γ∂) ◦ ιA. (5)

Finally, define ∆: C∗(A)→ C∗−1(A) by
∆ := ψ ◦ ∂ ◦ φ. (6)

Theorem 3.10. (C∗(A),∆) is a chain complex. Furthermore, ψ : C∗(X)→ C∗(A) and φ : C∗(A)→ C∗(X)
are chain equivalences.

The following corollary is an immediate conclusion of this theorem.

Corollary 3.11. The homology of the chain complex (C∗(X), ∂) is isomorphic to the homology of the chain
complex (C∗(A),∆).

Clearly the proof of Theorem 3.10 depends on Proposition 3.9. For applications we need an explicit
representation of ∆ and hence a means of constructing γ from an acyclic matching of the original chain
complex (C∗(X), ∂). This is done using the following algorithm.

Algorithm 3.12. Gamma Algorithm

Given xin ∈ C∗(X)
x← xin

c← 0 ∈ C∗(X)
while x 6∈ C∗(A)⊕ C∗(K) do

Choose a ≤-maximal Q ∈ Q so that 〈x, Q〉 6= 0.
K ← w(Q)
ω ← −〈x,Q〉/κ(K,Q)

c← c + ωK
x← x + ω∂K

end while
return c

Proposition 3.13. If Algorithm 3.12 is called with an arbitrary chain x ∈ C∗(X), then it returns a K-chain
c such that x + ∂c is canonical. Furthermore, if x is canonical then c = 0.

Proof. Let
{
xi
}

and
{
ci
}

be the sequences of values of x and c produced by Algorithm 3.12. An inductive
argument shows that

xi = xin + ∂ci.

We now show that the algorithm halts. Let Qi denote the maximal element chosen from xi. More pre-
cisely, let Qi be a ≤-maximal element from the set

{
Q ∈ Q |

〈
xi, Q

〉
6= 0
}

. A direct calculation shows that〈
xi+1, Qi

〉
= 0. Furthermore, the maximality of Qi implies that

〈
xi+j , Qi

〉
= 0, for all j ≥ 1.

Since the set {Q ∈ Q | 〈x, Q〉 6= 0} is finite, there exists j such that{
Q ∈ Q |

〈
xj , Q

〉
6= 0
}

= ∅,

in which case xj is canonical and the algorithm halts.

11

The following result is used to show that γ is uniquely defined.

Proposition 3.14. Consider a K-chain x. If ∂x is canonical, then x = 0.

Proof. Assume x 6= 0. Choose K ∈ K such that Q = w−1(K) is ≤-maximal in the set{
w−1(K ′) ∈ Q | 〈x,K ′〉 6= 0

}
.

By (3), κ(K,Q) 6= 0. However, by assumption ∂x is canonical and so 〈∂x, Q〉 = 0. Since the coefficient ring
R has no zero divisors, there exists K ′ ∈ K such that K 6= K ′, 〈x,K ′〉 6= 0 and κ(K ′, Q) 6= 0. But now
Q ≤ w−1(K ′), contradicting the maximality of Q.

Proof of Proposition 3.9. Proposition 3.13 proves the existence of γ. It remains to be shown that γ is unique.
So assume that given x ∈ C∗(X) there exist K-chains c1, c2 such that x + ∂ci is canonical for i ∈ {1, 2}.
Then, c1 − c2 is a K-chain and ∂(c1 − c2) is canonical, and hence by Proposition 3.14 c1 = c2.

Before turning the proof of Theorem 3.10 we state an important property of γ.

Proposition 3.15. The following sequence is exact:

C∗(X)
idX +∂γ

−−−−−→ C∗(X)
γ

−−−−−→ C∗+1(X)
idX +γ∂

−−−−−→ C∗+1(X)

In particular, ker γ = img (idX +∂γ) is the canonical submodule and img γ = ker(idX +γ∂) is the submodule
of K-chains.

Proof. Both ker γ and img (idX +∂γ) consist precisely of canonical chains by Proposition 3.9, and so it
suffices to check that ker (idX +γ∂) = img γ is the set of K-chains. Let x be a K-chain. By Proposition 3.9,
γ(∂x) is the unique K-chain such that

∂x + ∂γ(∂x) is canonical.

Since 0 is a canonical chain and −x is a K-chain, it follows that γ(∂x) = −x. There are two immediate
consequences: first, x lies in the image of γ, and second (idX +γ∂)x = 0 as desired. Conversely, if x ∈
ker(idX +γ∂), then x + k = 0 for some K-chain k and thus x is a K-chain.

Lemma 3.16. φ ◦ ψ = idX +∂γ + γ∂ on C∗(X).

Proof. By definition, we have φ ◦ ψ = (idX +γ∂) ◦ ιA ◦ πA ◦ (idX +∂γ). Since img (idX +∂γ) is canonical
by Proposition 3.15, ιA ◦ πA ◦ (idX +∂γ) differs from (idX +∂γ) only by a K-chain k which gets projected
to 0 by πA. However, since k lies in ker(idX +γ∂) again by Proposition 3.15, we have:

φ ◦ ψ = (idX +γ∂) ◦ (idX +∂γ),

from which the desired result follows by using ∂ ◦ ∂ ≡ 0.

Corollary 3.17. (C∗(A),∆) is a chain complex.

Proof. It suffices to show that ∆ ◦∆ ≡ 0 on C∗(A). By definition,

∆ ◦∆ = (ψ ◦ ∂ ◦ φ) ◦ (ψ ◦ ∂ ◦ φ)

But by Lemma 3.16, the inner composition φ◦ψ equals (idX +∂γ+γ∂). Using ∂◦∂ ≡ 0, we get ∂◦(φ◦ψ)◦∂ ≡
0 as desired.

Proposition 3.18. The morphisms ψ : C∗(X)→ C∗(A) and φ : C∗(A)→ C∗(X) are chain maps.

Proof. To see that ψ is a chain map, consider ∆ ◦ ψ = (ψ ◦ ∂ ◦ φ) ◦ ψ. By Lemma 3.16, this composition
equals ψ ◦ ∂ ◦ (idX +∂γ + γ∂). Using ∂ ◦ ∂ ≡ 0, we have

∆ ◦ ψ = ψ ◦ ∂ ◦ (idX +γ∂) = ψ ◦ (idX +∂γ) ◦ ∂.

Since ψ = πA◦(idX +∂γ) by definition, we have ∆◦ψ = πA◦(idX +∂γ)◦(idX +∂γ)◦∂. By Proposition 3.15,
γ ◦ (idX +∂γ) is trivial, and so ∆ ◦ ψ = πA ◦ (idX +∂γ) ◦ ∂ = ψ ◦ ∂ as desired. A very similar argument
establishes that φ ◦∆ = ∂ ◦ φ; we leave this to the reader.

12

Finally, we are ready to prove Theorem 3.10.

Proof of Theorem 3.10. It suffices to check that ψ and φ are chain equivalences. On one hand, γ provides
a chain homotopy on C∗(X) between φ ◦ ψ and the identity 1X by Lemma 3.16. On the other hand, we
claim that ψ ◦ φ equals the identity map 1A on C∗(A). To see this, observe that

ψ ◦ φ = πA ◦ (idX +∂γ) ◦ (idX +γ∂) ◦ ιM.

Since img γ = C∗(K) ⊂ C∗(K)⊕C∗(A) = ker γ by Propositions 3.15 and 3.9, we have γ ◦ γ = 0, πA ◦ γ = 0
and γ ◦ ιA = 0. Therefore,

ψ ◦ φ = πA ◦ idX ◦ιA = idA

as desired.

3.3 Computing Homology of Complexes

We conclude this section by presenting Algorithm 3.19 which computes both the homology of a complex
and a set of generators of the homology.

We begin with the observation that with regard to the presentation in this paper there are two natural
inputs: the complex and the incidence number (X , κ), or the complex and the boundary operator (X , ∂). The
particular choice of input should be thought of as being problem dependent. Recall that in Definition 2.1
the boundary operator is explicitly given in terms of the incidence number. Similarly, if the boundary
operator is defined in terms of the basis X of C∗(X), then the incidence number can be derived explicitly
from the boundary operator. For simplicity of presentation we choose the input (X , ∂).

Algorithm 3.19. Homology Generators Algorithm

given (X , ∂)
Using Algorithm 3.6 produce an acyclic matching (A, w : Q → K).
for all A ∈ A do

compute and store ∆A using Algorithm 3.12 and definition of ∆.
end for
if A = X then

Use Smith Normal Form to compute homology generators {gi} of (C∗(A),∆).
end if
return {φ(gi)} (or optionally {gi}, (A, ∆), φ, and ψ.)

Note that by Theorem 3.10 the output (A,∆) is a complex. Thus we may call this routine iteratively
with the output of a previous iteration becoming the input to a current iteration until eventually the size
of the complex stabilizes.

Theorem 3.20. If Algorithm 3.19 is called with a chain complex (X , ∂), then it returns H∗(X) and a set
of cycles {φ(gi)} ⊂ Z∗(X) which generates H∗(X).

Proof. The proof follows from Theorem 3.7, Proposition 3.9 and Theorem 3.10. The only question is
whether it halts. Observe that if A = X , then a Smith Normal Form algorithm is called and produces the
desired output. If A 6= X , then by Algorithm 3.6, A ⊂ X . Since X is finite, eventually A = X .

If one applies Algorithm 3.19 to a complex (X , ∂), then at the end of the for all loop one can extract
an associated Morse complex which consists of the cell complex (M,∆) and the homomorphisms {γ, ψ, φ}.

3.4 Computing Preboundaries

Let (X , κ) be a complex with associated boundary operator ∂. Recall that B∗(X) = img ∂ is the submodule
of C∗(X) consisting of boundaries. In this section we indicate how the Morse preprocessing methods can
be used to solve the following problem. Given b ∈ B∗(X) find its preboundary c, that is, solve

∂c = b. (7)

It is a classical result that Smith Normal Form can be used to find a solution (see [20, Algorithm 3.54] for
an explicit algorithm). In the same spirit as the rest of the paper, we expect that it is more efficient to
apply the Smith Normal Form algorithm on the smaller Morse complex. To be more precise, assume an

13

algorithm (such as [20, Algorithm 3.54]) has been chosen to find preboundaries. This implies the existence
of a well defined map

PX : B∗(X)→ C∗+1(X), (8)

such that ∂PX (c) = b.

Theorem 3.21. Let (X , ∂) be a complex with an associated Morse complex (A,∆) and homomorphisms
{γ, ψ, φ}. Let b ∈ B∗(X). If

c := φ ◦ PA ◦ ψ(b)− γ(b),

then ∂c = b.

Proof. This can be shown by a direct computation. Define c as above. Then

∂c = ∂ [φ ◦ PA ◦ ψ(b)− γ(b)] .

Since φ is a chain map, we may write ∂ ◦ φ = φ ◦∆, and so we have

∂c = φ ◦∆ ◦ PA ◦ ψ(b)− ∂ ◦ γ(b).

Since ψ is a chain map, ψ(b) is again a boundary, and we have ∆ ◦ PA ◦ ψ(b) = ψ(b). Hence, one obtains

∂c = φ ◦ ψ(b)− ∂ ◦ γ(b).

Since γ is a chain homotopy (by Lemma 3.16), we have ∂ ◦ γ = φ ◦ ψ − 1X − γ ◦ ∂.

∂c = φ ◦ ψ(b)− [φ ◦ ψ − 1X − γ ◦ ∂] (b) = b + γ ◦ ∂(b).

Finally, since b ∈ B∗(X) we have ∂b = 0. Thus,

∂c = b.

Remark 3.22. As in the computation of homology, one can attempt to minimize the cost of computing
PM by using this formula iteratively, that is, one can iterate the application of Algorithm 3.19 to produce
a Morse complex of minimal size.

4 Computing the Induced Map on Homology

Throughout this section, (F ,F0) : (X ,X0)−→→ (Y,Y0) denotes an acyclic combinatorial pair map where (X , κ)
and (Y, τ) are augmentable complexes. This section provides an algorithm for computing the induced map
on relative homology

F∗ : H∗(X ,X0)→ H∗(Y,Y0).

The computation makes use of the graph complex (Γ \ Γ0) of (F ,F0) and therefore in what follows we
assume that (F ,F0) is acyclic. We use d to denote the boundary operator on the chains C∗(Γ \ Γ0) of the
graph. Note that we have the relation

d = πΓ\Γ0
◦ ∂× ◦ ιΓ\Γ0

,

where πΓ\Γ0
and ιΓ\Γ0

are the projection and inclusion maps between C∗((X ×Y)\(X0×Y0)) and C∗(Γ\Γ0)

and ∂× is the boundary operator on the product complex. As usual, the fiber (Γξ \ Γξ0) associated to each
cell ξ ∈ X is a subcomplex of the graph, and we will denote boundary operator of this complex by dξ

throughout this section. Note that projection maps of the type πξΓ\Γ0
: C∗(Γ \ Γ0) → C∗(Γ

ξ \ Γξ0) are not

chain maps in general, since Γξ need not be a closed subcomplex of Γ. However, for each g ∈ C∗(Γξ \ Γξ0)
we have

dξ(g) = πξΓ\Γ0
◦ d(g).

14

4.1 Lifting Cycles to the Graph

Definition 4.1. Given a cycle x ∈ Z∗(X \ X0), we say that g ∈ Ck(Γ \ Γ0) is a graph cycle corresponding
to x if g ∈ Z∗(Γ \ Γ0) and πX (g) = x.

To make use of Definition 2.29, for each cycle x ∈ C∗(X \ X0) we need to construct a corresponding
graph cycle g. Since πX∗ is an isomorphism, the requirement that πX (g) equal x suffices to establish the
well-definedness on homology of such a construction. Thus, the remainder of this section is devoted to
building a graph cycle via Algorithms 4.2 and 4.5 which are based on the acyclicity of the combinatorial
pair map (F ,F0).

Algorithm 4.2. Chain Lift

Given x ∈ Ck(X \ X0), (F ,F0) : (X ,X0)→ (Y,Y0)
g0 ← 0
for all ξ ∈ X \ X0 with dim ξ = k do

if 〈x, ξ〉 6= 0 then
Choose η ∈ F(ξ) such that dim η = 0
g0 ← g0 + 〈x, ξ〉 ξ ⊗ η

end if
end for
return g0

Proposition 4.3. If Algorithm 4.2 is applied to x ∈ Ck(X \ X0), then the output is of the form

g0 =
∑
ξj∈Xk

rj (ξj ⊗ ηj) ∈ Ck(Γ \ Γ0),

where ξj ∈ X \ X0 have dimension k, ηj ∈ Y \ Y0 have dimension zero, and rj ∈ R. Furthermore,

πX (g0) = x.

Proof. Since x ∈ Ck(X \X0) there is a unique representation x =
∑
rjξj where ξ ∈ X \X0 and rj ∈ R. By

Proposition 2.23 each (Γξj \Γξj0) has the homology of a k-cell, and hence there exists some ηj ∈ F(ξj)\F0(ξj)
of dimension zero. Clearly, g0 =

∑
rj(ξj ⊗ ηj) projects to x under πX .

While applying Algorithm 4.2 to a cycle x ∈ Z∗(X \X0) will produce a chain g0 ∈ C∗(Γ \Γ0) projecting
to x via πX , in general g0 6∈ Z∗(Γ \ Γ0) so g0 is not a graph cycle corresponding to x. The following
algorithm modifies g0 on the fibers of (F ,F0) to produce a graph cycle.

Remark 4.4. As is suggested above and made explicit in the following algorithm our approach to computing
the induced map on homology requires that we solve the preboundary problem (7) on fibers. Thus the
particular implementation, e.g. (8), Theorem 3.21 combined with (8), or an alternative geometric method
such as that of Allili and Kaczynski [2], will have a significant effect on run time depending on the structure
and/or size of (Γ\Γ0). With this in mind, we do not include a specific algorithm for solving the preboundary
problem in the following algorithm.

Algorithm 4.5. Cycle Lift

Given x ∈ Z∗(X \ X0), (F ,F0) : (X ,X0)−→→ (Y,Y0)
k ← dim x
g0 ← Apply Algorithm 4.2 to x.
for i = 0 to k − 1 do
j ← k − i− 1
for all cells ξ ∈ X with dim ξ = j do

bξi ← πξΓ\Γ0
◦ d(gi)

Choose cξi ∈ Ck(Γξ \ Γξ0) so that dξ(cξi) = bξi (i.e. solve the preboundary problem.)
end for
gi+1 ← gi −

∑
dim ξ=j cξi

end for
return gk

15

4.2 Verification

The goal of this section is to prove the following theorem:

Theorem 4.6. If Algorithm 4.5 is applied to a cycle x ∈ Z∗(X \ X0), then the output gk is a graph cycle
corresponding to x.

In order to prove Theorem 4.6 we must first show that Algorithm 4.12 executes, and the only non-trivial
part lies in the preboundary step. That is, we must establish that each bξi is a boundary in the fiber Γξ \Γξ0.
To achieve this, we modify slightly Algorithm 4.5 without changing its behaviour. First, we assume that the
algorithm stops immediately and declares failure whenever the preboundary problem has no solution. With
this change, our goal may be reformulated as proving that the algorithm never declares failure. Moreover,
we let the outer loop range over i ∈ {0, 1, . . . , k}, noting that the final k-th iteration does nothing of value.
Also, we will let the inner loop range over all ξ ∈ X , rather than just those ξ with dim ξ = j(i). Again,

this does nothing of value since all the extra bξi and cξi variables calculated will all be zero, as we shall see.

Finally, we split the inner loop into two loops: one evaluating all the bξi for all ξ ∈ X and the other solving
the respective preboundary problems. Our strategy is to show that for each i ∈ {0, 1, · · · , k} the following
three propositions are true:

P (i) : The algorithm does not fail before entering the ith pass of the outer loop, and for all ξ ∈ X such that
dim ξ 6= j(i),

bξi = 0.

Q(i) : The algorithm does not fail before entering ith pass of the outer loop, and

d(gi) =
∑

dim ξ=j(i)

bξi .

R(i) : The algorithm does not fail before entering ith pass of the outer loop, and for all ξ ∈ X , we have

bξi ∈ Bk−1(Γξ \ Γξ0).

The proposition R(i) is of particular importance as it could easily be rewritten as:

R(i) : The algorithm does not fail before completing the ith pass of the outer loop.

This is because the only possible obstacle to executing Step i is the failure of a preboundary to exist, but
R(i) guarantees that it does.

We will prove these statements in a round-robin inductive fashion over i ∈ {0, . . . , k} as follows. As a
base step, we establish that P (0) holds in Proposition 4.7. For the inductive step, we have R(i− 1) and P (i− 1) imply P (i) Proposition 4.9

P (i) implies Q(i) Proposition 4.10, and
Q(i) implies R(i) Proposition 4.11.

We postpone the proofs of these Propositions. Assuming their truth for the moment, we prove the main
result of this section.

Proof of Theorem 4.6. From R(k), we conclude that Algorithm 4.5 indeed executes and produces gk. By
Q(k), we have

d(gk) =
∑

dim ξ=−1

bξk = 0,

which proves that the output gk is indeed a cycle in the graph Γ \ Γ0. It remains only to show that gk is a
graph cycle corresponding to x. That is, we must show that πX (gk) = x. We prove by induction on i that
πX (gi) = x. As a base step, πX (g0) = x by Proposition 4.3. For the inductive step, consider the hypothesis
true for some i > 0 and observe that

πX (gi+1) = πX (gi)−
∑

dim ξ=j(i)

πX (cξi).

But each summand πX (cξi) on the right side vanishes because dim ξ = j(i) = k − i− 1 6= k = dim cξi .

πX (gi+1) = πX (gi) = x,

where the second equality comes from the inductive hypothesis. This concludes the proof, modulo proofs
of Propositions 4.7, 4.9, 4.10, and 4.11.

16

The following proposition provides the base case for the inductive process outlined above.

Proposition 4.7. P (0) holds. That is, bξ0 = 0 for all cells ξ ∈ X with dim ξ 6= j(0) = k − 1.

Proof. Note by Proposition 4.3 that g0 is an R-linear combination of cells of the type ζ⊗η where dim ζ = k
and dim η = 0. Therefore, the boundary d(g0) in the graph is a combination of cells of the type ζ ′ ⊗ η
where ζ ′ has dimension k − 1 and η has dimension 0. Since dim ξ 6= k − 1 by assumption, 〈ξ, ζ ′〉 = 0 for all

such ζ ′. Thus, bξ0 = πξΓ\Γ0
◦ d(g0) is trivial as desired.

The following lemma facilitates proofs of the three subsequent propositions which comprise the inductive
step of our argument.

Lemma 4.8. Let ξ, ζ ∈ X be distinct cells such that ξ 6≺ ζ, i.e. κ(ζ, ξ) = 0. Then

πξΓ\Γ0
◦ d ≡ 0 on C∗(Γ

ζ \ Γζ0).

Proof. Without loss of generality Γζ \ Γζ0 is non-empty, so pick any η ∈ F(ζ) \ F0(ζ). We will show that

πξ(Γ\Γ0) ◦ d(ζ ⊗ η) is trivial and extend bilinearly to chains in C∗(Γ
ζ \ Γζ0). By definition,

d(ζ ⊗ η) = πΓ\Γ0

(
∂X ζ ⊗ η + (−1)dim ζζ ⊗ ∂Yη

)
.

Projecting to the fiber of ξ, we have

πξΓ\Γ0
◦ d(ζ ⊗ η) = πξΓ\Γ0

◦ πΓ\Γ0
(∂X ζ ⊗ η + (−1)dim ζζ ⊗ ∂Yη).

Since the fiber Γξ \Γξ0 is a subcomplex of the graph Γ \Γ0, the projections satisfy πξΓ\Γ0
◦ πΓ\Γ0

≡ πξΓ\Γ0
on

the chains of the product complex (X × Y) \ (X0 × Y0). Therefore,

πξΓ\Γ0
◦ d(ζ ⊗ η) = πξΓ\Γ0

(
∂X ζ ⊗ η + (−1)dim ζζ ⊗ ∂Yη

)
=
〈
ξ, ∂X ζ

〉
ξ ⊗ η + (−1)dim ζ 〈ξ, ζ〉 ξ ⊗ ∂Yη,

since ξ 6= ζ the second term vanishes, and since ξ 6≺ ζ the first term also vanishes.

An immediate consequence of this lemma is the following: if dim ζ − dim ξ 6= 1 for cells ζ, ξ ∈ X then
πξΓ\Γ0

◦ d ≡ 0 on C∗(Γ
ζ \ Γζ0). We use this fact frequently in the following proposition.

Proposition 4.9. For each i ∈ {1, . . . , k}, R(i− 1) and P (i− 1) imply P (i).

Proof. For some i > 0, assume R(i − 1) and P (i − 1). From R(i − 1) we know that the the algorithm

executes Step (i− 1). Let ξ ∈ X satisfy dim ξ 6= j(i). We show bξi = 0. By the definition of bξi , we need to

show πξΓ\Γ0
◦ d(gi) = 0. From the definition of gi, we obtain

πξΓ\Γ0
◦ d(gi) = πξΓ\Γ0

◦ d(gi−1)−
∑

dim ζ=j(i)+1

πξΓ\Γ0
◦ d(cζi−1). (9)

To show P (i), we must show that the right side of Equation 9 vanishes. To this end we consider two
cases which exhaust the possibilities, and show in both cases that the right side of Equation 9 vanishes.

1. dim ξ < j(i) or dim ξ > j(i) + 1.

In this case, πξΓ\Γ0
◦ d(gi−1) = 0 by the inductive hypothesis P (i − 1) since dim ξ 6= j(i − 1) =

j(i) + 1. In addition, each summand πξΓ\Γ0
◦ d(cζi−1) vanishes by Lemma 4.8, as cζi−1 ∈ C∗(Γζ \ Γζ0)

and dim ζ − dim ξ 6= 1.

2. dim ξ = j(i) + 1.

By Lemma 4.8, each summand of the type πξΓ\Γ0
◦d(cζi−1) on the right side of (9) vanishes when ζ 6= ξ.

The single surviving term of the sum is πξΓ\Γ0
◦ ∂(cξi−1) = ∂ξ(cξi−1) = bξi−1, where the last equality

follows from R(i− 1) and the definition of cξi−1.

Thus, we may rewrite the right hand side of (9) as:

πξΓ\Γ0
◦ d(gi−1)− bξi−1.

This vanishes by the definition of bξi−1.

17

Proposition 4.10. For each i ∈ {0, . . . , k}, P (i) implies Q(i).

Proof. Let i ∈ {0, . . . , k} and assume P (i). We show Q(i). By P (i), we know the algorithm must execute

Step (i− 1). Since the fibers
{

Γξ \ Γξ0 | ξ ∈ X
}

partition the graph Γ \ Γ0, we have

d(gi) =
∑
ξ∈X

πξΓ\Γ0
◦ d(gi) =

∑
ξ∈X

bξi .

By Proposition 4.9, only those ξ ∈ X which satisfy dim ξ = j(i) make a non-trivial contribution to this
sum. Accordingly,

d(gi) =
∑

dim ξ=j(i)

bξi ,

and we have shown Q(i).

Proposition 4.11. For each i ∈ {0, . . . , k}, Q(i) implies R(i).

Proof. Let i ∈ {0, 1, · · · , k}. From Q(i) we know the algorithm must execute Step (i− 1). Let ξ ∈ X have

dimension k(i). We show bξi ∈ Bk−1(Γξ \ Γξ0).

To this end, we first show dξ(bξi) = 0, i.e., that bξi is a cycle in the fiber of ξ. From Q(i) we may obtain

dξ ◦ d(gi) =
∑

dim ζ=j(i)

dξ(bζi).

The left side of this expression is zero, since dξ ◦ d ≡ πξΓ\Γ0
◦ d ◦ d and d is a boundary operator. On the

other hand, each summand on the right side equals πξΓ\Γ0
◦ d(bζi) but by Lemma 4.8 this quantity is trivial

when ξ 6= ζ. Thus, the right side equals dξ(bξi) and so bξi is a cycle in the fiber of ξ as desired.

By Proposition 2.23, the homology group Hk−1(Γξ \ Γξ0) is trivial whenever ξ ∈ X0 or if dim ξ 6= k − 1.

In this case every cycle in the associated fiber Γξ \ Γξ0 is a boundary, so without loss of generality we may

assume ξ ∈ X \ X0 and dim ξ = k − 1, i.e., the case when i = 0. Note that Γξ0 = ∅, so Proposition 2.22

applies and Hk−1(Γξ \ Γξ0) possesses a unique non-trivial homology class, any representative of which is
isomorphically projected to a representative of the unique non-trivial homology class of Hk−1({ξ}). Thus,

to show that the cycle bξ0 is in fact a boundary in the fiber, it suffices to show that πX (bξ0) = 0.

By definition, bξ0 = πξΓ\Γ0
◦ d(g0) and by Proposition 4.3, πX (g0) = x. Denote by pξ the canonical

projection map from C∗(X \ X0) to C∗({ξ}):

pξ(c) := 〈ξ, c〉 ξ.

It is straightforward to verify πX ◦ πξΓ\Γ0
≡ pξ ◦ πX on C∗(Γ \ Γ0). Thus,

πX (bξ0) = πX ◦ πξΓ\Γ0
◦ d(g0) = pξ ◦ πX ◦ d(g0).

Since πX is a chain map and πX (g0) = x, we have πX (bξ0) = pξ ◦ ∂X ◦ πX (g0) = pξ ◦ ∂X (x). But since x is
a cycle by assumption, this expression equals zero as desired.

4.3 Algorithm for Combinatorial Maps

The following algorithm computes the induced map on homology beginning with an acyclic combinatorial
map pair.

Algorithm 4.12. Map Homology Algorithm

given (F ,F0) : (X ,X0)−→→ (Y,Y0)
{xi} ← Apply Algorithm 3.19 to (X \ X0).
for all generators xi do

gi ← Apply Algorithm 4.5 to xi, (F ,F0).
end for

18

{γ′, ψ′, φ′} , {yi} ← Apply Algorithm 3.19 to (Y \ Y0).
Store the generators {ψ′(yi)} columnwise in a matrix G.
Store the cycles {ψ′ ◦ πY(gi)} columnwise in a matrix H.
Solve the matrix equation GF = H for F .
return F

Another possible means of computing map homology is to directly compute representative cycles of
homology classes in the relative graph complex and project them to both domain and codomain. However,
Algorithm 4.12, despite its added complexity, can offer significant advantages in both space and time over the
direct computation of the homology of the relative graph complex. We discuss space and time complexities
in the next section.

5 Complexity Analysis and Concluding Remarks

In this section we provide complexity estimates for Algorithms 3.6 and 4.12.

5.1 Complexity of Computing Morse Complexes

In order to provide parameters in terms of which we state the complexity bounds, we first measure the size
of input complexes. Next, we make some assumptions about the complexity of primitive operations.

Complexity Parameters. In graph theory complexity, results are usually stated in terms of vertex
count |V | and edge count |E|. Though it would be perfectly valid to replace |E| with |V |2, the bounds
would not be as good. Indeed, they would be very misleading when applied to graphs where the number of
edges was nearly linear compared to the number of vertices. In a similar vein, we do not wish to state our
complexity results solely in terms of the cell count n of a complex (X , κ), but also in terms of what we call
the complex mass:

m := card {(σ, τ) ∈ X 2 : κ(σ, τ) 6= 0}.

Complex mass tells us the number of pairs of cells which are related by the incidence numbers κ. There
is a clear analogy between the cells of a complex and the vertices in a graph, as well as the incidence
numbers in a complex and the edges of a graph. Accordingly, we will state complexity results in terms of
the cell count n and the complex mass m.

To make the analogy between graphs and cell complexes even clearer define the boundary mass of a cell
ξ to be

mξ := card {ζ ∈ X : κ(ξ, ζ) 6= 0},

and the coboundary mass to be
m̃ξ := card {ζ ∈ X : κ(ζ, ξ) 6= 0}.

Boundary mass and coboundary mass of a cell are analogous to the number of out-edges and number of
in-edges of a vertex in a directed graph, respectively. Considering this analogy, it is straightforward to see
that we have ∑

ξ

mξ =
∑
ξ

m̃ξ = m.

Complexity Assumptions. For what follows, we will consider a complex (X , κ) with cell count n and
complex mass m giving rise to a chain complex (C, ∂). We assume that the underlying ring R is a finite
field, so we can represent chain coefficients in O(1) space and perform ring arithmetic in O(1) time. We
will assume we can represent any chain with t terms in O(t) space, for a maximum of O(n) space. We will
assume that the time complexity of computing ∂(c) for a chain c is

O

 ∑
〈ξ,c〉6=0

mξ

 ,

and the space complexity is O(n). (In fact, we could give a better space complexity bound, but it isn’t
necessary for the result we wish to give.) In particular this means that evaluating ∂ on any chain can be
done in O(m) time and O(n) space. Similarly, we assume we can compute the coboundary ∂T of a chain c
in time bounds

O

 ∑
〈ξ,c〉6=0

m̃ξ

 .

19

Observe that these assumptions allow us to evaluate ∂ or ∂T on each distinct cell in the complex in
succession in O(m) time.

Proposition 5.1. The following complexity bounds hold:

1. Algorithm 3.6 applied to (X , κ) executes in O(m) time and requires O(n) memory.

2. The chain equivalences φ and ψ can be evaluated on any chain in O(m) time and O(n) space.

Proof. We show (1). A straightforward implementation of Algorithm 3.6 keeps track of the number of
boundaries of each cell – in particular, updating them upon excision. Initializing this structure requires

computing the boundary of each cell, which takes O
(∑

ξmξ

)
= O(m) time. The boundary-counting

structure makes it fairly straightforward to manage to control structure of the algorithm – in particular,
when a cell has its boundary count lowered to one, it and its boundary cell become candidates for a
K − Q pair, to be placed in a queue for processing. We omit further details on how to implement the
control structures, pointing out only that the bottleneck cost is updating the boundary-count structure
upon excision. There are O(n) excisions which may take place, and each one requires the computation of
the coboundary to know which cells need their “number of boundaries” count deducted. Since a cell may be

excised at most once, we require O
(∑

ξ m̃ξ

)
= O(m) time. Thus the algorithm is linear time in the number

of non-zero incidence numbers, that is, it is O(m). Now we show (2). Since i, j and ∂ can be computed in
O(m) time, then for both ψ and φ the burden is to establish that γ can be evaluated on an input in O(m)
time. Inspection of Algorithm 3.12 provides this after the following observations: 1) the algorithm is based
on a sequence of deformations based on the boundary of a cell, and (2) the deformations are distinct, so in
the computations of the boundary each incidence number is used at most O(1) times. It follows that the
time complexity is at most O(m). Since at each stage in Algorithm 3.12 we only need to store a chain, the
memory usage is O(n).

Perfect Morse Complexes. It is often the case, in fact, that when we apply discrete Morse theory
we obtain a Morse complex that is perfect ; it has zero mass. In other words, the Morse boundary ∆ is
identically zero. If this happens, there is no algebra required to know the homology of the Morse complex;
the Betti numbers are just the cell counts of each dimension. Another way to say this is that a perfect
Morse complex does not possess non-trivial boundary chains.

Proposition 5.2. Let (X , κ) be a complex with cell count n and complex mass m. Suppose the application
of discrete Morse theory yields k critical cells. Then computing the set of all homology generators in X has
worst-case time complexity O(km + k3). Moreover, if the Morse complex has ∆ = 0, then we can give an
improved worst-case time complexity bound of only O(km).

Proof. The cost of creating the Morse complex is O(km), since we need to determine ∆ on each of the k
critical cells, each which takes worst-case O(m) time. The cost of computing the homology generators in
the Morse complex (for the case of fields) boils down to the cost of some algebra – in particular Gaussian
elimination suffices for the case of fields. That Gaussian elimination can be done in cubic time is well known
– hence we get the O(k3) term. If, on the other hand, the Morse complex is perfect, then no algebra is
necessary and we may omit the O(k3). Once we obtain these homology generators, we lift them (and there
are at most k) to the original complex via the chain equivalence φ. This again takes O(km) time, leaving
us with the stated worst-case time complexity bound.

Worst-Case versus Empirically Observed Times. Worst-case analyses can be extremely mislead-
ing in this context. Worst-case analysis of matrix algorithms on sparse matrices tend to assume we get
maximal fill-in on matrix algebra problems, thus leading to cubic estimates. Worst-case analysis of the
flow step (γ evaluation) in discrete Morse theory assumes a chain must be deformed throughout the entire
complex before it becomes canonical. Indeed, these worst-case scenarios are unrealistic for many practical
problems, for which we empirically observe O(m) time rather than O(km+k3) time. It would seem in order
to find refinements to the method or else prove that these empirical times are guaranteed would require
breakthroughs with significant repercussions for other branches of mathematics, particularly graph theory
and efficient matrix multiplication. Our point of view is that the reason we see better empirical times is
because our examples are topologically much simpler than the pathological worst-cases. We have observed
that discrete Morse theory is efficient at solving the simple, essentially linear part, and reduces the problem
of computing homology to a small algebraic core. We have pursued this method because we have been
motivated by practical performance on test problems [17], rather than by theoretical asymptotic estimates.

20

5.2 Complexity of Computing Relative Map Homology

Though we are unable to state we have improved the complexity of computing homology by applying
discrete Morse theory, we can, at least for an important class of problems, assert that we have improved
the complexity bounds on the homology of maps problem.

The time complexity of the relative map homology algorithm can be broken into two parts. The first
is the computation of chain representatives of the homology generators H∗(X \ X0) and H∗(Y \ Y0). Also,
there is the need to express homology generators in a preferred basis.

The second part analyzes the relative combinatorial map (F ,F0) : (X ,X0) → (Y,Y0) – in particular,
we must perform the Cycle Lift Algorithm, Algorithm 4.5 .

We have already discussed the time complexity of the first part (the preferred basis part consists of
algebra which may be done in the Morse complex via Gaussian Elimination, which was already considered).
It turns out that for the class of maps arising from applications in [3], we can achieve linear time in the
mass of the relative graph complex for the second part. Unfortunately, this would be absorbed into the first
term. Yet the first part has, as already discussed, a very misleading worst-case behavior. For this reason
we believe it is more appropriate to consider the worst case time for the first and second parts separately,
since we do not see the worst-case behavior attained in practice for the first part.

Proposition 5.3. If Algorithm 3.6 applied to every one the relative graph fibers yields a perfect Morse
function, then Algorithm 4.5 can be executed in O(N) time, where N is the number of cells in the relative
graph complex.

Proof. By inspection, every step of Algorithm 4.5 can be done in O(N) time except possibly the step of
finding preboundaries in the relative graph fibers. Using the discrete Morse theoretic preboundary formula,
we have

P = φ ◦ PA ◦ ψ − γ.

Since the Morse complexes for the fibers are perfect, the first term drops away. This is because there are
no non-trivial boundary chains in a perfect Morse complex, so ψ(b) = 0 for all boundaries b. We are left
with −γ furnishing the solution directly. Since γ executes in time linear to the mass of the relative fiber,
and the sum of the masses of the relative fibers is bounded by the mass of the relative graph complex, the
result follows.

To analyze the space complexity of the homology of maps algorithm, we again break it into two parts
and ignore the first for largely the same reasons. Thus we are only concerned with the space required to
execute Algorithm 4.5. The space usage comes in the form of storing the chain gi at each stage, as well
as represent the fiber complexes in which we must perform the preboundary-finding step. Since there are
O(N) different terms possible in gi, it appears difficult to obtain a worst-case upper bound any better than
O(N). Yet, intuitively, we’d expect that most cycles occupy only a small fraction of fibers, and within the
fibers only a small fraction of cells. This intuition is what motivated the fiber-wise algorithm, as we felt
it would be quite space-efficient in practice. Indeed, a brute-force approach which computes the homology
of the relative graph which is represented in memory has a lower bound space usage of ω(N); whereas the
minimum requirements of Algorithm 4.5 depend on the size of the domain and codomain, not the size of the
graph. We consider this a significant advantage, since in many important problems the size of the chains
gi are not dominant.

5.3 Concluding Remarks

We have given a presentation of discrete Morse theory geared towards using it in algorithms. We think
it is difficult, if not impossible without some breakthrough, to improve on worst-cast time bounds for the
core algebraic algorithms at the heart of homology computations. Accordingly, we have not attempted to
do this. Instead, we have focussed on discrete Morse theory – which might be considered as “geometrically
inspired algebra” – as a preprocessing step to attempt to efficiently reduce the size of the problem. This
approach has met with success computationally [17].

We have given a new algorithm for the homology of maps. Crucially, this algorithm is based on a fiber-
wise approach on the graph and the primary step asks us to compute a preboundary. We have discussed
how discrete Morse theory may be used to find preboundaries, and in particular, that this may be done in
linear time for an important class of examples which arise in practice. Because of this, we can present for
the first time a map homology algorithm capable of addressing Conley Index computations as in [3] which
has a linear time dependence on the size complexity of the mapping itself. We expect, though our upper

21

bounds on worst-case space usage are too weak to prove this claim, that our fiber-based treatment of the
map homology problem leads to space savings.

Acknowledgements. The work of S.H., K.M., and V.N. was partially supported by NSF grants DMS-
0915019, DMS-1125174, and CBI-0835621 and by contracts from DARPA and AFOSR. The work of M.M.
was partially supported by NCN of Poland, grant N N201 419639.

References

[1] M. Allili and T. Kaczynski. An algorithmic approach to the construction of homomorphisms induced
by maps in homology. Trans. Amer. Math. Soc., 352(5):2261–2281, 2000.

[2] M. Allili and T. Kaczynski. Geometric construction of a coboundary of a cycle. Discrete Comput.
Geom., 25(1):125–140, 2001.

[3] Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka, and P. Pilarczyk. A database schema for the
analysis of global dynamics of multiparameter systems. SIAM J. Applied Dyn Syst, 8:757–789, 2009.

[4] CAPD::RedHom. http://redhom.ii.uj.edu.pl.

[5] G. Carlsson. Topology and data. Bull. Amer. Math. Soc. (N.S.), 46(2):255–308, 2009.

[6] M. K. Chari. On discrete Morse functions and combinatorial decompositions. Discrete Math., 217(1-
3):101–113, 2000. Formal power series and algebraic combinatorics (Vienna, 1997).

[7] CHomP. http://chomp.rutgers.edu.

[8] C. J. A. Delfinado and H. Edelsbrunner. An incremental algorithm for Betti numbers of simplicial
complexes on the 3-sphere. Comput. Aided Geom. Design, 12(7):771–784, 1995. Grid generation, finite
elements, and geometric design.

[9] P. D lotko, R. Ghrist, M. Juda, and M. Mrozek. Distributed computation of coverage in sensor networks
by homological methods. Applicable Algebra in Engineering, Communication and Computing, 23:29–58,
2012.

[10] P. D lotko, T. Kaczynski, M. Mrozek, and T. Wanner. Coreduction homology algorithm for regular
CW-complexes. Discrete and Computational Geometry, 46:361–388, 2011.

[11] J-G Dumas, F. Heckenbach, D. Saunders, and V. Welker. Computing simplicial homology based on
efficient smith normal form algorithms. In M. Joswig and N. Takayama, editors, Algebra, Geometry,
and Software Systems, pages 177–206, 2003.

[12] H. Edelsbrunner and J. Harer. Persistent homology—a survey. In Surveys on discrete and computational
geometry, volume 453 of Contemp. Math., pages 257–282. Amer. Math. Soc., Providence, RI, 2008.

[13] H. Edelsbrunner and J. L. Harer. Computational topology. American Mathematical Society, Providence,
RI, 2010. An introduction.

[14] R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134:90–145, 1998.

[15] R. Ghrist. Barcodes: the persistent topology of data. Bull. Amer. Math. Soc. (N.S.), 45(1):61–75,
2008.

[16] R. Ghrist. Three examples of applied and computational homology. Nieuw Arch. Wiskd. (5), 9(2):122–
125, 2008.

[17] S. Harker, K. Mischaikow, M. Mrozek, V. Nanda, H. Wagner, M. Juda, and P. D lotko. The efficiency
of a homology algorithm based on discrete Morse theory and coreductions. Proceedings of the 3rd
International Workshop on Computational Topology in Image Context, 1:41–47, 2010.

[18] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[19] T. Kaczynski, K. Mischaikow, and M. Mrozek. Computing homology. Homology Homotopy Appl.,
5(2):233–256, 2003. Algebraic topological methods in computer science (Stanford, CA, 2001).

[20] T. Kaczynski, K. Mischaikow, and M. Mrozek. Computational Homology. Applied Mathematical Sci-
ences 157. Springer-Verlag, 2004.

[21] T. Kaczynski, M. Mrozek, and M. Ślusarek. Homology computation by reduction of chain complexes.
Computers & Mathematics with Applications, 35(4):59–70, 1998.

[22] W. D. Kalies, K. Mischaikow, and G. Watson. Cubical approximation and computation of homology.
In Conley index theory (Warsaw, 1997), volume 47 of Banach Center Publ., pages 115–131. Polish
Acad. Sci., Warsaw, 1999.

22

[23] D. Kozlov. Combinatorial Algebraic Topology, volume 21 of Algorithms and Computation in Mathe-
matics. Springer, 2008.

[24] S. Lefschetz. Algebraic Topology. American Mathematical Society Colloquium Publications, v. 27.
American Mathematical Society, New York, 1942.

[25] K. Mischaikow, M. Mrozek, and P. Pilarczyk. Graph approach to the computation of the homology of
continuous maps. Found. Comput. Math., 5(2):199–229, 2005.

[26] M. Mrozek and B. Batko. The coreduction homology algorithm. Discrete and Computational Geometry,
41:96–118, 2009.

[27] M. Mrozek, P. Pilarczyk, and N. Żelazna. Homology algorithm based on acyclic subspace. Computers
and Mathematics with Applications, 55:2395 2412, 2008.

[28] M. Mrozek and T. Wanner. Coreduction homology algorithm for inclusions and persistent homology.
Computers and Mathematics with Applications, 60(10):2812–2833, 2010.

[29] M. Mrozek, M. Żelawski, A. Gryglewski, S. Han, and A. Krajniak. Homological methods for extraction
and analysis of linear features in multidimensional images. Pattern Recognition, 45:285–298, 2012.

[30] Perseus. http://www.math.rutgers.edu/˜vidit/perseus.html.

[31] B. D. Saunders and Z. Wan. Smith normal form of dense integer matrices, fast algorithms into practice.
Internat. Symp. Symbolic Algebraic Comput., pages 274–281, 2004.

[32] E. H. Spanier. Algebraic topology. McGraw-Hill Book Co., New York, 1966.

[33] A. W. Tucker. Cell spaces. Ann. of Math. (2), 37(1):92–100, 1936.

23

	Introduction
	Complexes and Maps
	Cell Complexes
	Combinatorial Maps
	Graph Complexes
	The induced map on homology

	Discrete Morse Theory
	Acyclic Matchings via Coreduction
	Constructing the Morse Chain Complex
	Computing Homology of Complexes
	Computing Preboundaries

	Computing the Induced Map on Homology
	Lifting Cycles to the Graph
	Verification
	Algorithm for Combinatorial Maps

	Complexity Analysis and Concluding Remarks
	Complexity of Computing Morse Complexes
	Complexity of Computing Relative Map Homology
	Concluding Remarks

