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Abstract. Homology computations recently gain vivid attention in sci-
ence. New methods, enabling fast and memory efficient computations
are needed in order to process large simplicial complexes. In this paper
we present the acyclic subspace reduction algorithm adapted to simpli-
cal complexes. It provides fast and memory efficient preprocessing of the
given data. A variant of the method for distributed computations is also
presented.
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1 Introduction

In this paper we describe two variants of the acyclic subspace homology algo-
rithm introduced in [9] for cubical sets. The method presented there is adapted
to simplicial complexes. Moreover, we show how to extend this algorithms for
the purposes of distributed computations.

2 Preliminaries

We recommend [10] as a standard introduction to classical homology theory. In
this paper a finite family of finite sets S is called an abstract simplicial complex if
for every P ∈ S and for every Q ⊂ P we have Q ∈ S. 3 An element P ∈ S is called
a simplex. For P ∈ S and Q ⊂ P Q is called a face of P . A simplex P ∈ S is said
to be maximal if there is no simplex Q ∈ S such that P ( Q. Throughout this
paper Smax(S) denotes the set of maximal simplices of S. The algebraic closure
of a simplex P , denoted by cl(P ) is a family of simplices consisting of P and all
its faces. The closure of a family of simplices K is cl(K) =

⋃
P∈K cl(P ). For a

given simplex Q belonging to simplicial complex S its neighbourhood consists of
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3 One may think here of geometrical simplex being represented as a set of labels of its

vertices.



all maximal simplices from S having nonempty intersection with Q. We denote
this set by:

n(Q) = {P ∈ S | Q ∩ P 6= ∅ and P is a maximal in S}.

Dimension of a simplex P is dim(P ) = card(P )−1. For a simplicial complex S by
S0(S) we denote the set of all the vertices of S (i.e. its 0-dimensional simplices)
and we make a technical assumption that every vertex from S0 has a unique label.
In the sequel we use an extra data structure built upon the simplicial complex,
namely a hash table [1], dentoted by H, whose keys are labels of vertices and
for each key the value is the list of all maximal simplices containg the vertex
labelled with this key. For a survey of cubical homology and cubical complexes
we refer to [5].

In this paper we are extensively using two classical topological concepts -
exact sequence of a pair and Mayer-Vietoris sequence [10]. From the exact se-
quence of a pair is clear, that a subcomplex with trivial homology can be removed
from the initial complex without changing its reduced homology. From Mayer-
Vietoris sequence it follows, that a simplex can be add to the constructed acyclic
subcomplex iff its intersection with the acyclic subcomplex has trivial reduced
homology.

3 Incidence Graph

We say that a graph G = (V,E) is an incidence graph of a simplicial complex
S if V is the set of maximal simplices of S and (S1, S2) ∈ E if S1 ∩ S2 6= ∅.
An augmented incidence graph is a triple (V,E,C) where (V,E) is the incidence
graph and C is the list of connected components of incidence graph, in which
each connected component is represented by a single maximal simplex from this
component. We will use augmented incidence graphs to retrieve all the informa-
tion about neighourhoods in a simplicial complex, necessary in the process of
constructing an acyclic subset.

In this section we show an algorithm constructing such a graph for a given
simplicial complex. The input data for this agorithm is the list of maximal sim-
plices Smax(S) and VertexHash H, described in Section 2. For each vertex v we
consider the list H[v] storing the maximal simplices that contain v. Q denotes
the queue used to store simplices which have not yet been added to the incidence
graph and whose neighbours are already there. Functions Enqueue and Dequeue

are standard operations on queues and their description can be found in [1].

Theorem 3.1 Algorithm 3.1 stops and constructs the incidence graph
G = (V,E,C) for simplicial complex S in O(card(V ) · dim(S) · deg(H)) where
dim(S) = maxP∈S{dim(P )} and deg(H) = maxv{length(H[v])}. Moreover, for
each connected component G′ ⊂ G its set of nodes V (G′) equals to the set of
maximal simplices in the corresponding connected component S ′ ⊂ S.



Algorithm 3.1 IncidenceGraph(MaximalSimplexList Smax(S), VertexHash H)

1: V := ∅; E := ∅; C := ∅; Q := EmptyQueue;
2: for all Simplex P ∈ Smax(S) do
3: if P /∈ V then
4: C := C ∪ {P};
5: Enqueue(Q, P );
6: while Q 6= ∅ do
7: Simplex current := Dequeue(Q);
8: V := V ∪ {current};
9: for all Vertex v ∈ current do

10: for all Simplex neighbour ∈ H[v], neighbour 6= current do
11: if neighbour /∈ V then
12: e := (current, neighbour); E := E ∪ {e};
13: if neighbour /∈ Q then
14: Enqueue(Q, neighbour);
15: return Graph(V,E,C);

Proof Obviously V contais all maximal simplices from Smax(S). Pair
(S1, S2) ∈ E only if S1 and S2 share a vertex. Therefore S1 ∩ S2 6= ∅, satis-
fying incidence graph definition. Simplex P is added to C in line 4 only if P /∈ V
which means P ∩ S = ∅ foreach S ∈ V and P represents new connected compo-
nent G′. Two simplices S1 and S2 belong to the same G′ iff there exist path in
G′ connecting S1 and S2. In that case there exist path connecting S1 and S2 in
S, so they also belong to the same connected component in S ′ ⊂ S. Simplex P
is added to Q only once, so while loop in line 6 always stops. Internal for all
loop in line 9 is performed for every d-dimensional simplex at most d ∗ h times
where h = deg(H) as described above. �

4 Acyclic subset

The classical way of computing homology consists in finding the Smith Normal
Form of the boundary maps [10]. The complexity of the classical algorithm is
supercubical. Among the methods intended to speed up the computations are
the reduction algorithms which aim at finding a smaller complex with the same
homology as the original complex S [6, 8]. We recall that a simplicial complex
A is acyclic if A has the same homology as a single point. The acyclic subspace
algorithm [9] is a reduction algorithm based on the general observation that if
A is an acyclic subcomplex of a connected complex S, then:

Hn(S) ∼=

{
Hn(S,A) for n ≥ 1

Z⊕Hn(S,A) for n = 0

A reduction method presented in this paper relies on a fast algorithm construct-
ing a possibly large acyclic subset A of S and then computing the relative homol-
ogy of the pair (S,A). Relative homology requires knowledge only of elementary



simplices in the neighborhood of S\A thanks to the excision property [10]. Since
the constructed acyclic subset is a closed subset in the sense of [8], we have the
following theorem ([8] Theorem 3.5).

Theorem 4.1 If A is closed in S then:

H(S \ A) ∼= H(S,A).

Therefore, after construction of acyclic subset A ⊂ S it suffices to compute
homology of the S-complex S \A (for definitions and properties of S-complexes
we refer to [8]). Having simplicial complex S represented by list of its maximal
simplices we use them to construct acyclic subcomplex A. Finally we exclude
those simplices from of S that are contained in A. For simplices that left we need
to store information about their intersection with A. We can now compute Betti
numbers for such complex. It is also possible to use this method for cohomology
computations as shown in [2].

5 Constructing acyclic subset

A linear time algorithm constructing acyclic subspace for cubical sets is pro-
posed in [9]. In the following section we present two approaches to contructing
acyclic subset for simplicial complexes. All these algorithms apart from the in-
cidence graph, need a function deciding whether a simplex may be added to the
constructed acyclic set. Such a function, named AcyclicityTest is described in
Section 7.

First algorithm, referenced in the following sections as AccST, is an extension
of algorithm presented in [9]. The main difference lies in the way the neigh-
bourhood is determined. In the case of cubical sets as described in [9] obtaining
this information is trivial but having simplices we need a way of finding neigh-
bours, which in this case will be an incidence graph (described in Section 3).
For given simplex P we denote list of its neighbours by n(P ). Another differ-
ence is that instead of one, we construct several acyclic subsets in S and then
join them with a spanning tree. To do this we need two auxilary functions:
FindSimplexNotInAccSub and CreateSpanningTree. Both of them are stan-
dard graph algorithms of which detailed description can be found in [1]. First
one finds simplex that has no intersection with acyclic subset using breadth-first
search algorithm. It returns NULL if it cannot find such. Second one takes as an
input a list of elements which are simplices representing disjoint parts of con-
structed acyclic subset (the same way as connected components are represented
in the incidence graph). Next it finds the shortest paths connecting subsets.
Each path is a list of one-dimensional simplices. Having graph structure, in
which nodes are disjoint acyclic subsets and edges are paths connecting them,
we use Kruskal algorithm [1] to create spanning tree that joins parts of acyclic
subset. Description of this procedure can be found in the proof of Theorem 5.1.

Theorem 5.1 Algorithm 5.1 stops and creates acyclic subset A for given sim-
plicial complex S represented by incidence graph G = (V,E,C).



Algorithm 5.1 AccST(IncidenceGraph (V,E,C))

1: A := ∅; Q := EmptyQueue;
2: for all Simplex P ∈ C do
3: L :=EmptyList;
4: while P 6= ∅ do
5: A := A ∪ {P};
6: Enqueue(Q, P );
7: while Q 6= ∅ do
8: Simplex Q := Dequeue(Q);
9: for all Simplex S ∈ n(Q) \ A do

10: if AcyclicityTest(A, S) = true then
11: A := A ∪ {S};
12: Enqueue(Q, S);
13: P :=FindSimplexNotInAccSub(V,E, P,A);
14: if P 6= NULL then
15: L := L ∪ {P};
16: A := A∪ CreateSpanningTree(L);
17: return A;

Proof Simplex P is added to Q and to acyclic subset A at the same time in lines
11 and 12. Since P may be added to A only once and we have finite numbers of
simplices inner while loop in line 7 always stops. FindSimplexNotInAccSub and
CreateSpanningTree are respectively BFS and Kruskal algorithms [1] so they
both stop. Every simplex that is found with FindSimplexNotInAccSub in line
13 is added to the acyclic subset. Because of that and finiteness of V while loop
in line 4 stops. Because number of simplices in C is also finite we are sure that
algorithm stops. Every single simplex is acyclic, so starting with the one that
represents a connected component of incidence graph (as described in Section
3) we begin construction of acyclic subset A. As long as we can find another
simplex having acyclic intersection with A we can add it to A without losing
its acyclicity. Once we cannot find such simplex we look in the same connected
component for another one that has no intersection with A and we build acyclic
subset around it as described above. We stop this procedure when there are no
simplices that do not intersect A. Now lets assume, we have few disjoint subsets
of A and we want to connect them into acyclic subset. First we need to find paths
(lists of one-dimensional simplices) joining them. Since all parts of acyclic subset
A are contained in the same connected component we can always find a path
between every two of them. Such paths though can intersect eachother or even
other parts ofA and thus create cycles. To prevent this we need special procedure
while adding them to acyclic subset. During construction of a spanning tree we
consider two types of acyclic subsets - subsets already organized into spanning
tree and subsets that we want to connect. We choose an element of second type
that has a direct connection to an element of first type. Then, we move on path
”towards” spanning tree unless we find a simplex that has intersection with A
(in the worst case it will be last simplex on path). Since paths were minimal,



this part of acyclic subset cannot be the one we started from. Intersection of
path with each part of A is zero-dimensional simplex, which is acyclic. Since
both subsets and path itself are acyclic and intersection of each two of them are
either acyclic or empty we can connect them without losing acyclicity. �

Algorithm 5.2, referenced in the following sections as AccIG, constructs simul-
taneously the incidence graph and an acyclic subset. The vertices of the resulting
graph G are these simplices from Smax(S) which are not in the acyclic subset.
This algorithm requires some auxiliary functions. Among these functions there
are general graph functions AddToGraph and RemoveFromGraph which respec-
tively adds and removes a simplex from a given graph. Another one is EnqNeighb,
which adds to queue all neighbours of given simplex that have not been added
neither to the queue nor to the acyclic subset yet.

Algorithm 5.2 AccIG(MaximalSimplexList Smax(S), VertexHash H)

1: V := ∅; E := ∅; A := ∅; Q := EmptyQueue;
2: for all Simplex P ∈ Smax(S) do
3: if P /∈ V andP /∈ A then
4: A := A ∪ {P};
5: EnqNeighb(P,H,Q);
6: while Q 6= ∅ do
7: Simplex current := Dequeue(Q);
8: if AcyclicityTest(A, current) = true then
9: A := A ∪ {current};

10: EnqNeighb(current,H,Q);
11: if current ∈ V then
12: RemoveFromGraph(current, V,E);
13: else if current /∈ V then
14: AddToGraph(current, V,E,H);
15: EnqNeighb(current,H,Q);
16: return Graph(V,E), A;

Theorem 5.2 Algorithm 5.2 stops and returns an acyclic set A and a graph
G = (V,E), which is the incidence graph whose nodes are the maximal simplices
in Smax(S) \ A.

Proof Simplex can be added to Q only if it is not in acyclic subset and its
neighbour is being added to graph or acyclic subset. Since each simplex can be
added to graph or acyclic subset at most once, the algorithm stops. We start
building acyclic subset by finding first simplex that has not beed added neither
to graph nor to the acyclic subset yet. Having found such we are sure it is
not a neighbour of any simplex already processed. It means it represents new
connected component and we can start build new acyclic subset A. We extend it
only by adding those maximal simplices that have acyclic intersection withA. For
every simplex on Q we either add it to acyclic subset or to the incidence graph,



which means that nodes of created incidence graph are all maximal simplices of
Smax(S) that have not been added to A. �

6 Distributed computations

(a) (b) (c)

(d) (e) (f)

Fig. 1: (a) initial simplicial complex, (b) inital complex splitted into smaller
complexes, (c) boundary simplices in complexes, (d) acyclic subsets in complexes,
(e) combined results, (f) acyclic subsets joined with a spanning forest.

In this section we show how the algorithms that compute an acyclic subset for
a given simplical complex can be used in distributed computations. The idea is to
divide the initial complex into smaller ones, then construct an acyclic subset and
incidence graph for each of them and finally combine the results into an acyclic
subset and incidence graph for the initial complex. However, we need to ensure
that after combining the results from the individual computations the obtained
space is acyclic, i.e. we do not make cycles while connecting the acyclic subsets
from the different packages. Moreover, we need a way to connect individual
incidence graphs into the incidence graph of the initial complex. The whole
procedure is very technical and resembles what we did in Algorithm 5.1 but in
the more global scale. It needs to be emphasized that distributed computations



involve only construction of the incidence graph and acyclic subset for each
package. After combining results from the individual reductions we create one
complex for which we can perform homology computations (i.e. Betti numbers)
just like in non-distributed case.

The first step is to split the initial list of maximal simplices of S (Figure 1a)
into a lists Pi i ∈ {1, 2, ..., n} such that

⋃
i Pi = Smax(S) (Figure 1b). For our

purposes we assume that Pi ∩ Pj = ∅ if i 6= j. For every Pi we defnie two sets:
BVi :=

⋃
i 6=j{S0(Pi) ∩ S0(Pj)} and BSi := {Q |Q ∈ Pi ∧ S0(Q) ∩ BVi 6= ∅}.

The elements of BSi are referred to as the boundary simplices - simplices which
have neighbourhood contained in other packages. (Figure 1c). In the process of
constructing the acyclic subset Ai for each Pi we consider only those simplices
that are not boundary simplices (Figure 1d). To do so, we need to change a little
Algorithms 5.1 and 5.2 so they include such restriction. We will not present them
here, but it is easy for the reader to do such modification. In our example acyclic
subset is constructed from all simplices that are not boundary simplices, but in
general case that is not true. Computations of lists of both incidence graphs
Gi and acyclic subsets Ai may be performed sequentially or in distribution. In
both cases we gain profits from lower memory usage, because list of simplices
for which computations are performed are much smaller than the initial one.
In the second case computations are performed much faster. Moreover, after
constructing acyclic subset Ai we can discard all simplices contained in Ai from
the incidence graph and construct new acyclic subset which is intersection of Ai

with the set of maximal simplices that left in the incidence graph. In the latter
case we save additional memory needed to store redundant simplices. Finally,
after combining results (Figure 1e) into one incidence graph we obtain structure
analogous to the one in Algorithm 5.1. We then create a spanning forest in
which nodes are disjoint parts of the acyclic subset and edges are lists of one-
dimensional simplices connecting them (Figure 1f).

Theorem 6.1 The family of simplices A constructed as above is acyclic subset
of initial simplicial complex S.

Proof By restricting acyclic subset algorithms to those simplices that are not
boundary simplices we are sure that acyclic subsets in individual packages will
not create cycles after combining them. The rest of the proof is analogous to the
proof of Theorem 5.1 but isntead of spanning tree we deal with the spanning
forest. �

7 Acyclicity tests

The AcyclicityTest function is a tool allowing to decide whether we can add
a given cube or a simplex to the constructed acyclic subset. The function takes
two arguments: the already constructed acyclic subset A and a simplex P . We
distinguish two types of acyclicty tests:

– a full test, it returns true if and only if A ∩ cl(P ) is acyclic



– a partial test, it returns true if A ∩ cl(P ) is acyclic and false if it fails to
prove that A ∩ cl(P ) is acyclic

In [9] some tests for testing acyclicity in cubical sets were proposed. Their main
limitation is dimension of the complex. The full tests both in the cubical [9]
and in the simplicial case are based on the idea of tabulated configurations for

boundary elements. The number of configurations is 23
d−1 for a d-dimensional

cube and 22
d+1

for a d-dimensional simplex. This makes the method prohibitive
for d > 3 in the case of a cube [9] and for d > 4 in the case of a simplex [3].
The universal full test that works for every dimension is computation of the
homology of A ∩ cl(P ). However, this method is computationally expensive in
comparision to other tests.

We finish this section by introducing a partial test for the simplicial case.
Given an acyclic subspaceA and a d-dimensional simplex P we set I := A ∩ cl(P ).
The following test is based on the investigation of the maximal simplices of I.
If the number of maximal simplices of dimension d− 1 is less than or equal to d
and there are no maximal simplices of other dimensions then I is acyclic.

Algorithm 7.1 AcyclicityTest(Set A, Simplex P)

1: I := MaximalSimplices(A ∩ cl(P ));
2: d :=Dim(P ); i := 0;
3: for all Simplex Q ∈ I do
4: if Dim(Q) = d− 1 then
5: i++;
6: else
7: return false;
8: if i > 0 and i <= d then
9: return true;

10: else
11: return false;

Theorem 7.1 For a given set A and simplex P algorithm 7.1 returns true if
A ∩ cl(P ) is acyclic and false if it fails to prove that A ∩ cl(P ) is acyclic.

8 Numerical experiments

Algorithms described above were implemented using C++. The code is available
as a part of RedHom [12] library. To provide communication between processes
during distributed computation MPI [4] was used. Both local and distributed ap-
proaches were compared with the coreduction homology algorithm [8], denoted
in the following table by CoRed. AccIG and AccST are the algorithms introduced
in Section 5. Column size denotes the number of maximal simplices used as
input. Running time is the total time needed for building the incidence graph,



performing reductions (which could be either removal or acyclic subset or core-
ductions [8]), creating the simplicial complex from the list of maximal simplices
and computing Betti numbers for such complex [5]. Computing generators after
reduction of acyclic subset is still an open problem.

Running time (s) Memory usage (MB)
Space name Size CoRed AccIG AccST CoRed AccIG AccST

Bjorner 3079k 778 400 438 6167 1447 4880

Dunce Hat 4758k 1264 620 720 9590 2267 7587

Projective Plane 2799k 632 347 379 5580 1305 4404

In the following table we present comparision of running times of local and
distributed algorithms. Columns AccIG and AccST denote the same as above
while DAccIG and DAccST denote the outcome of distributed computations using
AccIG and AccST algorithms respectively for a local construction of an acyclic
subspace. In the last two cases computations were performed on 6 nodes si-
multaneously and running time includes maximal time needed for performing
computations on 1 node.

Space name Size AccIG AccST DAccIG DAccST

Bjorner 3079k 400 438 162 214

Dunce Hat 4758k 620 720 244 377

Projective Plane 2799k 347 379 211 208
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