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Abstract. A new approach to algorithmic computation of the homology of
spaces and maps is presented. The key point of the approach is a change in the

representation of sets. The proposed representation is based on a combinatorial

variant of the Čech homology and the Nerve Theorem. In many situations this
change of the representation of the input may help in bypassing the problems

with the complexity of the standard homology algorithms by reducing the size

of necessary input. We show that the approach is particularly advantageous
in the case of homology map algorithms.

1. Introduction.

Effective algorithms for computing homology of spaces and maps are needed in
computer assisted proofs in dynamics based on topological tools (see [4, 17, 22, 23]
and references therein). Recently, homology algorithms have also been used in ro-
botics [31], material structure analysis [10, 11] and image recognition [3, 37], in
particular in medical imaging [30, 38]. The classical approach to computing homol-
ogy is based on the Smith diagonalization algorithm for integer matrices (see [29]).
Unfortunately, the complexity of this algorithm, which is supercubical [33, 34], is
unsatisfactory for many applications. Therefore, when computing the homology of
space one first tries to reduce the space by some reduction algorithms to a possibly
small space with the same homology [16, 18, 26, 27] and only then one applies the
Smith algorithm. This approach proved to be useful in many applications. It is
particularly strong in the case of cubical homology introduced in [14]. Cubical ho-

mology is defined for cubical sets, i.e. subsets X of Rd which are unions of a finite
family X of cubes of unit size, the so called elementary cubes. Such sets appear
in a natural way in the case of digital imaging. In particular, the book presents
algorithms for computing homology of cubical sets as well as continuous maps of
cubical sets. However, what concerns homology of maps, the situation remains
unsatisfactory.

In this paper we present an entirely different approach to the problem of find-
ing fast algorithms for computing homology of spaces and maps. The standard
approach to the study of the efficiency of algorithms is to use the theory of compu-
tational complexity. One of the goals of the paper is to show that in some situations
there is another factor which may crucially influence the efficiency of algorithms:
the representation, i.e. the way the objects of interest are encoded in the form
acceptable by the algorithms.

To be more precise, observe that the algorithms, by their very nature, deal with
finite amount of data. In particular, an object on input of an algorithm must be
finite. However, we often are interested in solving problems, in which the input data
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is infinite by its very nature, as in the case of topological spaces and continuous
maps. To use an algorithmic approach in such problems we first select a countable
subfamily of all possible input data and some encoding which assigns a finite code
to every object in the family. Then, the code is used as the finite input to the
algorithm. This is what we mean by choosing a representation.

For example, consider the problem of computing homology of a simplicial com-
plex. The number of all simplices is uncountable but when we restrict the coordi-
nates of a simplex to a countable subset of real numbers, for instance to the set
of rational numbers, then we have only a countable number of simplexes and the
sequence of coordinates of vertices of a simplex becomes a natural finite encoding
of the simplex. Since a simplicial complex consists of a finite family of simplices,
we easily obtain a natural encoding of a simplicial complex which may be used as
the input for an algorithm computing homology.

Once a representation is fixed, the computational complexity of the algorithm
may be addressed by relating the amount of computations needed for some given
input to some measure of the size of the encoding of the input. However, in general
there may be many ways of choosing the representation and, as we already men-
tioned, the cost of running an algorithm may depend on the representation chosen.
For instance, when computing the homology of a topological space, among many
choices of a representation there are in particular polyhedra, cubical sets and sub-
analytic sets. The first choice is very natural because it immediately translates the
problem of computing the homology of a space to the problem of computing the
homology of a simplicial complex. However, in high dimensions cubical sets may
turn out to be more efficient. This is because the number of simplices needed to
triangulate a d-dimensional cube is at least (see [32])

6d/2d!

2(d+ 1)(d+1)/2
.

Consequently, the size of the input is reduced at least exponentially with d when
cubes are used. Actually, the problem of finding the minimal triangulation of a
d-dimensional cube is important in applications where the simplicial representation
is necessary, just because of the need to keep the representation small. It has been
studied by many authors. Surprisingly, so far a complete solution of this problem
is know only up to dimension 4 and up to dimension 7 for the special case of the
so called vertex triangulations (see [6] and the references therein for the detailed
study of this problem).

The problem of choosing a good representation is even better visible when deal-
ing with continuous maps. The family of piecewise linear maps, which constitutes
the most natural choice for the case of polyhedra, is poor and not satisfactory for
many applications. The family of cubical maps, i.e. continuous maps which map
elementary cubes to elementary cubes is even poorer. In the case of computer as-
sisted proofs in dynamics the maps studied are neither piecewise linear nor cubical.
Even worse, often all what we know about these maps apart from the fact that
they are well defined and continuous is an algorithm providing numerical approx-
imations of the values of the map on a finite set of arguments. Therefore, this
algorithm must serve as the finite encoding of the map. Since we want to compute
the homology of the map, such encoding is sufficient if only the algorithm can pro-
duce approximations which are good enough. One way to pass from a continuous
map represented by an approximating algorithm to the homology of the map is
to use the algorithm to construct a sufficiently good simplicial approximation of
the map. The advantage of such an approach lies in the ease of passing from the
simplicial map to the chain map needed in the construction of the homology map.
Unfortunately, constructing a simplicial approximation is not straightforward and
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verifying if the approximation is good enough to carry the proper homology leads
to the problem of finding lower estimates of inverse images of simplices under the
map. Unfortunately, no satisfactory solution to this problem seems to be available.
Therefore, the approach in [14] based on [2] uses the so called multivalued represen-
tations. Unlike simplicial approximations, multivalued representations constitute a
natural outcome of the so called enclosure algorithms for dynamical systems and
differential equations [19, 28]. Thus, they are much easier to obtain than simplicial
approximations. However, the problem is then shifted to constructing the associ-
ated chain map, which is not straightforward in this setting. In [2] it is shown that
the problem may be reduced to solving systems of linear equations. Unfortunately,
the number of the systems as well as the systems themselves are large. Therefore,
although the method has been implemented [21], it is difficult to apply in practice.
The algorithm in [24], based on ideas of Górniewicz and Granas [12], reduces the
problem to finding the homology of projections from the graph of the multivalued
representation onto the domain and codomain. This is much easier, especially in the
cubical setting, because projections preserve the cubical structure. Nevertheless,
the algorithm is still far from being satisfactory.

In this paper we introduce a representation of a class of topological spaces and
continuous maps which is based on the Čech approach to homology theory. By
a Čech structure we mean a finite family of compact convex subsets of Rd and
we define a Čech polyhedron as the union of a Čech structure. Čech structures
may serve as an alternative representation of topological spaces in the context of
homology computations because of the Nerve Theorem [7, 35, 36, 20, 5]. In the
simplified setting of our interest the theorem states that every Čech polyhedron is
homotopy equivalent to the nerve of its Čech structure X , i.e. the abstract simplicial
complex whose simplices are the subfamilies of X with nonempty intersection. A
similar approach, but in a different setting, is used in the topological analysis of
point cloud data (see [8]), when the space is known only approximately via a finite
subset of sampling points.

The representation based on Čech structures is particularly helpful in computing
the homology of maps, because the upper estimates of the images of the sets in the
covering under the map may be used to obtain the associated chain map directly
from the nerves. This allows us to bypass the problem of constructing the chain
map from the multivalued approximation by using the fact that the multivalued ap-
proximation acts as a simplicial map on the nerve. Consequently, the computation
of the homology of a continuous map from its multivalued representation becomes
straightforward.

The organisation of the paper is as follows. We begin with preliminaries in Sec-
tion 2. We briefly recall the concept of an abstract simplicial complex in Section 3.
The main concept of the paper, the Čech structures are discussed in Section 4. In
the following section we consider the Čech structures in the context of computing
homology of continuous maps. The main result of the paper, namely the algorithm
for computing the homology of continuous maps, is presented in Section 6. Sections
7, 8 and 9 contain auxiliary, technical material. Section 10 presents Mayer-Vietoris
Theorem for Čech structures. In Section 11 we construct the chain map between
the chain complex of a Čech structure and the singular chain complex of the sup-
port of the Čech structure and as a byproduct we prove Nerve Theorem. The next
section is devoted to showing that the homologies of all Čech structures of a given
Čech polyhedron are isomorphic via a system of natural isomorphisms, the co called
connected simple system. In Section 13 we present the proofs of the main results
of the paper. We finish the paper with some concluding remarks.
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2. Preliminaries.

Throughout the paper N stands for the set of natural numbers and R for the set
of reals. For an integer q ≥ 0 we let Nq := {1, 2, . . . , q}. Note that, in particular,
N0 = ∅. Let

Permq := {σ : Nq → Nq | σ is a bijection }

denote the set of all permutations of Nq. Observe that Permq = {idNq
} for q = 1

and we make it true for q = 0 via considering the empty set as the identity map on
N0.

Recall that there is a unique homomorphism from the group of permutations of
Nq into the multiplicative group {−1, 1} which sends each transposition to −1. We
denote it by

sgn : Permq → {−1, 1}.

In the paper we are interested in the subsets of the Euclidean space Rd for some
fixed natural number d. We assume that

dist : Rd × Rd → R

is a fixed metric in Rd induced by any norm in Rd equivalent to the Euclidean
norm. The associated diameter of a compact set A ⊂ Rd is denoted by diamA. If
X is a family of compact subsets of Rd then diamX stands for the supremum of
the diameters of the elements of X . Given a set A ⊂ Rd and ε > 0 we denote by

Aε := {x ∈ Rd | dist(x,A) ≤ ε }

the closed ball around A in Rd of radius ε, also called the ε-thickening of A.
The family of all nonempty subset of Rd is denoted by P(Rd). The subfamily

of all nonempty, compact, convex subsets of Rd is denoted by Conv(Rd). Given

C ⊂ Rd and X ⊂ P(Rd) we define X (C) := {A ∈ X | C ⊂ A }. For A ⊂ P(Rd) by
A∗ we denote the family of all non-empty intersections of finite subfamilies of A.

For a compact set X ⊂ Rd we denote the augmented complex of singular chains
in X by C#(X) and H∗(X) stands for the associated reduced singular homology.

3. Abstract simplicial homology.

Our basic reference concerning homology theory and homological algebra is [29]
and we refer the reader there for the basic concepts in homology theory not defined
in this paper. Here we recall briefly the homology theory of abstract simplicial
complexes (see [29, Chapter 1.3]), because, as the reader will notice in the sequel,
we slightly deviate from the standard approach. We also recall a few standard
theorems used frequently in the paper for reference.

An abstract simplicial complex is a collection K of finite sets such that if S ∈ K
then every subset of S belongs to K. The elements of K are called simplices.
The dimension of a simplex is one less than the number of its elements. The
subcollection of q-dimensional simplices in K will be denoted by Kq. The elements
of V (K) :=

⋃
K0 are called vertices of K.

Note that we consider the empty set as a simplex of dimension −1. This is
convenient, because, for technical reasons, we prefer to use the reduced homology
theory. However, this is not a limitation, because of the well known one-to-one
correspondence between the standard and reduced homology theories.

Let S be a simplex of dimension q. An ordering of S is a bijection S : Nq+1 → S.
Two orderings S, S′ of S are equivalent if there exists an even permutation σ ∈
Permq+1 such that S = S′σ.
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By a q-chain in K we mean a function defined on all orderings of q-simplices in
K and satisfying

c(Sσ) = sgn(σ)c(S)

for any ordering S of a simplex S and any permutation σ ∈ Permq+1.
The set of all such functions with argumentwise addition is an abelian group.

We denote it by Cq(K).

For every ordering S of a simplex S we define a q-chain Ŝ ∈ Cq(K) by

Ŝ(T ) :=

{
sgn(σ) ∃!σ ∈ Permq+1 : S = Tσ

0 otherwise.

One easily verifies that the q-chains have the following properties

(i) Ŝσ = sgn(σ)Ŝ.

(ii) Ŝ = T̂ iff S = Tσ for some even permutation σ.

(iii) If S ∈ Kq for q ≥ 1, then Ŝ := { Ŝ | S - an ordering of S } consists of
exactly two mutually inverse elements.

Assume that Kq = {Si | i = 1, 2, . . . n} and for every Si an ordering Si is given.

It is straightforward to check that { Ŝi | i = 1, 2, . . . n } is a basis of Cq(K).
Let κqi : Nq−1 → Nq be defined by

κqi (j) :=

{
j j < i

j + 1 j ≥ i.

Define ∂q : Cq(K)→ Cq−1(K) on the basis by

∂q(Ŝ) :=

q∑
i=0

(−1)iŜκqi .

A simple, standard calculation (see [29, Lemma 5.3]) shows that

∂q−1∂q = 0.

Therefore (C#(K), ∂) := (Cq(K), ∂q) is a chain complex. The notation should not be
confused with the similar notation used in this paper for the singular chain complex,
because it is applied to abstract simplicial complexes. Let Zq(K) := ker ∂q denote
the subgroup of q-cycles and Bq(K) := im ∂q+1 the subgroup of q-boundaries. The
qth homology group of K is defined by

Hq(K) := Zq(K)/Bq(K).

Let K and L be two abstract simplicial complexes and let

F : V (K)→ V (L)

be a map. For S ∈ K define

F(S) := {F(S) | S ∈ S }.
We call Fsimplicial if

S ∈ K ⇒ F(S) ∈ L.
If F is simplicial then there is an induced chain map

C#(F) := F# : C#(K)→ C#(L)

and a map induced in homology

H∗(F) := F∗ : H∗(K)→ H∗(L).

Let K1 and K2 be two simplicial complexes and let

ιi : K1 ∩ K2 → Ki
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and
λi : Ki → K1 ∪ K2

denote inclusion maps. We have the following theorem.

Theorem 3.1. (Mayer-Vietoris Theorem for simplicial complexes [29, Theorem
25.1]) The sequence

(1) . . .→ Hq(K1 ∩ K2)
(ι1∗q,−ι2∗q)−−−−−−−−→ Hq(K1)⊕Hq(K2)

λ1∗q+λ2∗q−−−−−−−→
Hq(K1 ∪ K2)→ Hq−1(K1 ∩ K2)→ . . .

is exact. �

We say that an abstract simplicial complex K is acyclic if H∗(K) = 0.
A vertex S∗ ∈ K0 satisfies the cone condition if S ∪ {S∗} ∈ K for every simplex

S ∈ K. We say that K is a cone if there exists a vertex S∗ ∈ V (K) which satisfies
the cone condition.

Theorem 3.2. ([29, Theorem 8.2]) Every cone is acyclic.

If K and L are abstract simplicial complexes, then an acyclic carrier from K to L
is a function Φ that assigns to each simplex S in K an abstract, nonempty, acyclic
simplicial complex Φ(S) ⊂ L such that if T ⊂ S, then Φ(T ) ⊂ Φ(S). A chain map
ϕ : V (K)→ V (L) is carried by Φ if |ϕ(S)| ⊂ Φ(S) for each S ∈ K.

Theorem 3.3. (Acyclic Carrier Theorem, [29, Theorem 13.3]) Let Φ be an acyclic
carrier from K to L. If ϕ,ψ : V (K) → V (L) are chain maps carried by Φ, then
they are chain homotopic. �

4. Čech structures.

Let X be a finite family of sets. We define the support of X , denoted |X |, as the
union of all sets in X , i.e. |X | :=

⋃
X . Note that X is a covering of its support.

Given a finite family of sets X we build an abstract simplicial complex, called the
nerve of X and defined by

N(X ) := { S ⊂ X |
⋂
S 6= ∅ }.

It is straightforward to verify that N(X ) satisfies

(2) V (N(X )) = X .
We denote the subfamily of q-dimensional simplices, the chain complex and the
homology groups of the nerve of X respectively by Nq(X ), C#(X ) and H∗(X ).

If X and Y are two families of sets and

F : X → Y
is a map, then by (2) the map may be viewed as a map acting on the set of vertices
of K(X ). We say that F is simplicial if it is simplicial with respect to N(X ). If F
is simplicial then there is an induced chain map

C#(F) := F# : C#(X )→ C#(Y)

and a map induced in homology

H∗(F) := F∗ : H∗(X )→ H∗(Y).

If X constitutes a family of subsets of a topological space, a natural question
arises if the homology of X is isomorphic to the singular homology of the support
of X . In general, the answer is negative. However, under some assumptions about
X this may happen [7, 35, 36, 20, 5]. Results of this type are usually referred to as
the Nerve Theorem. Among the simplest settings when the Nerve Theorem holds is
the case when all elements of the covering are non-empty, compact, convex subsets
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of Rd. We will call this type of covering a Čech structure. A space which is the
support of a Čech structure will be referred to as a Čech polyhedron. If X is a Čech
structure such that for some Čech polyhedron X we have |X | = X, then we say
that X is a Čech structure on X.

In Section 11 we prove Theorem 11.3 which in particular implies the following
form of Nerve Theorem as a straightforward corollary.

Theorem 4.1. Let X be a Čech structure. There is a well defined chain map
ϕX : C#(X ) → C#(|X |) which induces an isomorphism of the homology H∗(X ) of

the Čech structure X and the singular homology H∗(|X |) of the support of X . �

Figure 1. A planar set with a cubical representation (left) and
Čech representation (right).

The theorem makes Čech structures a valuable alternative for representing sets
whose homology groups have to be computed. Consider the following example. Let

A := [−5,−1]× [1, 3], B := [−1, 1]× [2, 5],
C := [1, 5]× [1, 5], D := [2, 5]× [−1, 1],

E := [1, 4]× [−5,−1], F := [−2, 1]× [−3,−2],
G := [−4,−2]× [−3,−1], H := [−3,−2]× [−1, 1].

Then

(3) X0 := A ∪B ∪ C ∪D ∪ E ∪ F ∪G ∪H.
is a planar set (see Figure 1) with an 8-element Čech structure

(4) X 0 := {A,B,C,D,E, F,G,H}.
Now let us look at the cubical structures of X0, i.e. families of elementary (unit)
cubes whose union is X0. Recall that such structures may also be used to compute
the homology of X0 (see [14]). It is easy to check that among all possible cubical
structures of X0 with various choices of the unit, the minimal representation re-
quires 47 elementary cubes. When we rescale the sets in X 0 by an integer factor
n the situation does not change: we still need 8 elements in the Čech structure
and 47 elements in the cubical structure. This is because we can change the unit
of cubical structure from 1 to n. However, a simple modification of this example
consisting in applying the rescalling to all sets in X 0 except F and rescalling F only
in the horizontal direction, shows that there exists a sequence of Čech polyhedrons
Xn such that the size of the minimal cubical representation of Xn goes to infinity
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with n, whereas the size of the minimal Čech structure of Xn does not depend on
n. Therefore the Čech structures may be really efficient.

The example may seem to be artificial but this is what happens when sets exhibit
nonuniform or fractal structure, a phenomenon often observed in dynamics. In
particular, the nonuniform structure may appear if some parts of the set need some
fine-tuning to guarantee some properties. For instance, consider an asymmetric
ring R, i.e. the difference of a disk and an internally tangent subdisc (see Figure 2).
If we need a representable covering of R whose Hausdorff distance from R is not
greater than a prescribed ε > 0 then it is easy to see that the size of the covering
consisting of cubes of size ε will be proportional to 1

ε2 , whereas the size will be

proportional to 1
ε in the case of a non-uniform Čech structure consisting of cubes

with the smallest cube size ε.

Figure 2. An asymmetric ring with a cubical representation of
2708 cubes(left) and Čech representation of 662 cubes (right).

5. Computing homology of continuous maps.

We now turn our attention to computing homology of maps. Assume X ⊂ Rd

and Y ⊂ Rd
′

are Čech polyhedrons with some fixed Čech structures X and Y and

f : X → Y is a continuous map. Let A ⊂ Conv(Rd
′
) be an arbitrary family, i.e.

not necessarily a Čech structure in Y . We say that a map

(5) F : X → A
is an enclosure of f if

(6) f(A) ⊂ F(A)

for every A ∈ X . If additionally

F(A) ⊂ f(A)ε

for some ε > 0 and every A ∈ X , then we say that F is an ε-enclosure of f . Note
that in (6) the notation f(A) stands for the image of the set A under the map f ,
whereas F(A) denotes the value of the map F at the element A ∈ X .

Of special interest is an enclosure with values in Y, i.e. a map F : X → Y
which is an enclosure of f . It is straightforward to verify that such an enclosure is
a simplicial map and therefore it induces a homomorphism of the homology groups
of the Čech structures X and Y. In Section 7 we will prove that any two such
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enclosures induce the same homomorphism in homology (see Theorem 7.1). This
strongly suggests that the homology of an enclosure of f carries the information
about the homology of f . Indeed, in Section 11 we prove that the singular homology
of f : X → Y and the homology of an enclosure F : X → Y coincide up to an
isomorphism (see Theorem 11.1).

All this suggests that a way to compute the homology of f is to provide an
algorithm constructing an enclosure F : X → Y of f . However, this simple idea
needs some modifications to work in practice. To see why, consider the fundamental
question how a continuos map f can be sent to an algorithm. In most applications,
in particular in applications to dynamical systems, the map f itself is given in the
form of an algorithm. The algorithm takes on input an argument x from the domain

of f and an ε > 0 and returns a y ∈ Rd
′

such that dist(y, f(x)) ≤ ε. Although such
an algorithm may be run only for a finite number of arguments, it is not difficult to
extend it (see [19, 28]) to an algorithm, called the enclosure algorithm which, given

a convex set A ⊂ X, constructs a set B ∈ Conv(Rd
′
) such that

(7) f(A) ⊂ B ⊂ f(A)ε.

Denote the enclosure algorithm by Φεf and let Φεf (A) stand for the output of Φεf
applied to input A. Running the enclosure algorithm on all elements of X we obtain
an enclosure of f . Unfortunately, even though f maps X into Y , the enclosure
algorithm does not have the feature that Φεf (A) ⊂ Y for A ⊂ X, hence the enclosure
need not have its values in Y. This is why we need a modification of our approach.
The point is that by (7) we have

(8) Φεf (A) ⊂ Y ε.

Therefore Φεf may be viewed as a map

Φεf : X → Φεf (X ) ∪ Yε,

where

Yε := {T ε | T ∈ Y }
is a Čech structure on Y ε. Note that property (8) implies that

|Φεf (X ) ∪ Yε| = |Yε|.

Therefore Φεf (X )∪Yε is another Čech structure on Y ε. As we will show in Section 13

(see Theorem 13.1), the map

ιε : Y 3 T 7→ T ε ∈ Φεf (X ) ∪ Yε.

is a simplicial map which induces an isomorphism in homology for sufficiently small
ε > 0. Therefore, the way to get a useful algorithm computing the homology of f
is constructing an ε-enclosure for ε > 0 sufficiently small.

In the case of rational functions the standard method used to obtain enclosures is
via interval arithmetic (see [25]). The idea is very simple. W assume a finite subset

R̂ ⊂ R of the set of real numbers, so called representable numbers, is given. We
consider the set I of all closed intervals with endpoints in R̂. Let � ∈ {+,−, ∗, / }
be an arithmetic operation. Given I, J ∈ I we define I � J as the minimal element
of I which contains a � b for all a ∈ I, b ∈ J . Now, evaluating the rational function
on intervals instead of numbers we obtain the required enclosure.

Consider the following elementary example. Let X = [−4, 4], Y = [− 3
2 , 4] and

let f : X → Y be defined by the formula

X 3 x 7→ f(x) :=
1

60
(3x− 8)(5x+ 8) ∈ Y.
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It is straightforward to verify that f is indeed well defined. Take

X := { [n, n+ 1] | n = −4,−3,−2,−1, 0, 1, 2, 3 },
Y := { [n2 ,

n+1
2 ] | n = −3,−2,−1, 0, 1, 2, 3 }.

Then X is a Čech structure on X and Y is a Čech structure on Y . Now assume
for simplicity that the set of representable numbers consists of all integers in the
interval [−1000, 1000]. We obtain an enclosure F of f by evaluating our polynomial
in our interval arithmetic. The map f and its enclosure F are presented in Figure 3.
For instance, the computations on interval [0, 1] yield

(3 ∗ [0, 1]− 8) ∗ (5 ∗ [0, 1] + 8)/60 = [−8,−5] ∗ [8, 13]/60 = [−104,−40]/60 = [−2, 0],

therefore F([0, 1]) = [−2, 0] 6⊂ Y , which explains the need of considering the Čech
structure Yε. In our example taking ε = 1

2 would suffice.

Figure 3. A polynomial map and its enclosure

The discussion and example lead to the following definition. We say that a
quintuple (X ,Y,Z, E ,F), where X ,Y,Z are Čech structures and E : Y → Z,
F : X → Z, is a representation of f if the following four conditions are satisfied

(i) X is a Čech structure on X and Y is a Čech structure on Y ,
(ii) Y ⊂ |Z|,
(iii) E is an enclosure of the inclusion map i : Y → |Z| which induces an
isomorphism in homology,
(iv) F is an enclosure of f .

Note that the last condition in particular implies that F is simplicial. In the
sequel we will often abuse our terminology and refer to the map F itself as the
representation of f , by assuming that the associated Čech structures X ,Y,Z may
be guessed from the context.

In Section 13 we will prove the following theorem.

Theorem 5.1. A representation of f : X → Y always exists. Moreover, if F is
a representation of f , then the following diagram, in which ϕX and ϕY denote the
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procedure recurse(X ,Φ, ε,var T ,var F)
foreach S ∈ X do

T := Φ(S);
if diamT ≤ ε then

insert T to T ;
insert (S, T ) to F ;

else
recurse(subdivide(S),Φ, ε, T ,F);

endif;
endforeach;

endprocedure;

function homologyMap(X ,Y,Φ, ε)
ιε := { (Y, Y ε) | Y ∈ Y };
while not inverseIsSimplicial(ιε) do ε := ε/2;
F := ∅;
T := ∅;
recurse(X ,Φ, ε, T ,F);
Z := Yε ∪ T ;
ι′ := inclusion map Yε → Z;
E := ι′ιε;
return H∗(E)−1H∗(F);

endfunction;

Table 1. Homology map algorithm.

chain maps mentioned in Theorem 4.1, commutes.

(9)

H∗(X)
H∗(f)−−−−→ H∗(Y )xH∗(ϕX )

xH∗(ϕY)

H∗(X )
H∗(E)−1H∗(F)−−−−−−−−−−→ H∗(Y)

6. Homology map algorithm.

As we will see, the proof of Theorem 5.1 is constructive and it may be turned into
algorithm homologyMap for finding the homology of a continuous map. The algo-
rithm is presented in Table 1. It uses two auxiliary algorithms inverseIsSimplicial
and subdivide. The first verifies if the inverse of the map ιε is simplicial. The
second returns a subdivision of a set in the Čech structure. By a subdivision of
a set S in the Čech structure X we mean a Čech structure W on S such that
diamW ≤ diamS/2. The construction of algorithms inverseIsSimplicial and
subdivide depends on the type of the sets used in the Čech structures. In most
cases the construction is very elementary. We leave the details to the reader.

The algorithm homologyMap accepts on input some Čech structures X in X and
Y in Y , an algorithm Φ approximating a continuous map f : X → Y and an initial
guess of the parameter ε.

We say that an algorithm Φ properly encloses a continuous map f : X → Y on
sets in some family S if for every ε > 0 there exists a δ > 0 such that if S ∈ S
and diamS ≤ δ then the set Φ(S) returned by Φ satisfies diam Φ(S) ≤ ε and
f(S) ⊂ Φ(S).

The following theorem will be proved in Section 13.
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Theorem 6.1. Assume Algorithm homologyMap is started with X , Y, Φ, ε such
that

(i) ε is positive,
(ii) X and Y are Čech structures respectively on X and Y ,
(iii) Φ properly encloses a continuous map f : X → Y on sets in some
family S,
(iv) the elements of X as well as the elements of families produced by ap-
plying the iterates of subdivide to X belong to S.

Then the algorithm always stops and returns a homology map which is conjugate to
the singular homology of f .

As an example consider the quadratic map on the Euclidean space R2 treated
as the complex plane C, given by

C 3 z 7→ z2 ∈ C.

This map, rewritten in Cartesian coordinates (x, y) ∈ R2, where z = x+ iy, is

f0 : R2 3 (x, y) 7→ (x2 − y2, 2xy) ∈ R2.

One can check that f maps the set X0 given by (3) into the set

Y0 := K ∪ L ∪M ∪N,
where

K := [−54, 54]× [2, 52], L := [−54, 54]× [−52,−2],
M := [−32,−2]× [−54, 54], N := [2, 32]× [−54, 54].

Therefore, we have a restricted map

f0|X0
: X0 → Y0.

Treating the elements of the Čech structure X 0 as pairs of intervals and evaluating
the map f0 in interval arithmetic for the elements of X 0 we obtain an algorithm
Φ0 which properly encloses f0 on family S0 of Cartesian products of two intervals.
In particular, for the elements of the Čech structure X 0 given by (4) the algorithm
returns respectively

A′ := [−8, 24]× [−30,−2],

B′ := [−26,−3]× [−10, 10],

C ′ := [−24, 24]× [2, 50],

D′ := [3, 26]× [−10, 10],

E′ := [−24, 15]× [−40,−2],

F ′ := [−11, 0]× [−6, 12],

G′ := [−5, 15]× [4, 24],

H ′ := [3, 10]× [−6, 6].

In particular, we see that Φ0(S) ⊂ Y0 for all S ∈ X 0\{F} and there is no ε > 0 such
that F ′ = Φ0(F ) ⊂ |Y ε0 . Therefore the procedure recurse will call itself recursively
for a subdivision of F . Already the simplest subdivision consisting of F1, F2 given
by

F1 := [−2,−1]× [−3,−2],

F2 := [−1, 1]× [−3,−2]

leads to the respective enclosures

F ′1 := [−8, 0]× [4, 12],

F ′2 := [−10,−3]× [−6, 6],
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Figure 4. Set X0 with Čech structure (top) and its image un-
der z → z2 map (bottom). Curved lines indicate the approximate
images under f0 of the elements in X ′0. The enclosing boxes ob-
tained by evaluating f0 in the interval arithmetic are marked with
a capital character and a prime.

which are contained entirely in Y . The subdivided Čech structure X ′0 := X 0\{F}∪
{F1, F2} together with the enclosures given by Φ0 are presented in Figure 4. It is
straightforward to verify that the resulting homology map is correct: the homology



14 MARIAN MROZEK

generator is multiplied by two. Notice that in this example there is no need to use
the set Y ε0 . This is because the interval computations involved are performed on
integers and no division is performed, so there is no rounding bound introduced.

Proceeding similarly to the example given in Section 4, we may easily extend
this example to the case of a sequence of maps fn such that the cost of finding the
homology of fn by means of the algorithm presented here is constant, whereas the
costs of applying the algorithms in [21] and in [24] is supercubical.

7. Comparing enclosures.

We now address the question of comparing two enclosures of the same continuous
map.

Theorem 7.1. Assume X ,Y are Čech structures and F ,G : X → Y are two
enclosures of a continuous map f : |X | → |Y|. Then

H∗(F) = H∗(G).

In order to prove this result we need the following lemma.

Lemma 7.2. Assume F ,G : X → Y are two maps such that⋂
(F(S) ∪ G(S)) 6= ∅

for every S ∈ N(X ). Then both maps are simplicial and chain homotopic.

Proof: Obviously both maps are simplicial. To prove that they are chain ho-
motopic we will show that the maps F and G are contiguous in the sense that for
every simplex S ∈ N(X ) the simplices F(S) and G(S) are contained in a common
simplex of N(Y). Indeded, defining

Φ(S) := N(F(S) ∪ G(S))

for S ∈ N(X ) we see that Φ(S) is such a simplex. Thus it is a cone and by
Theorem 3.2 it is acyclic. Therefore, it is straightforward to verify that Φ is an
acyclic carrier which carries C#(F) and C#(G) and the thesis follows from Theo-
rem 3.3. �

Proof of Theorem 7.1. We have⋂
(F(S) ∪ G(S)) =

⋂
F(S) ∩

⋂
G(S) ⊃ f

(⋂
S
)
6= ∅.

Therefore, the conclusion follows from Lemma 7.2. �

8. Embeddings.

In this section we introduce the technical concept of an embedding needed in
particular in the proof of Mayer-Vietoris Theorem in Section 10.

Let F : X → Y be a map of Čech structures. We say that F is an embedding
if for every S ∈ X the set F(S) ∈ Y contains S. Obviously every embedding is
simplicial. Observe that if X ⊂ Y then the inclusion map

ι : X 3 S 7→ S ∈ Y
is an embedding.

Lemma 8.1. Assume X ,Y are Čech structures such that |X | ⊂ |Y|. If

F ,G : X → Y
are embeddings then

H∗(F) = H∗(G).
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Proof: Since both F and G are enclosures of the inclusion ι : |X | → |Y|, the
conclusion follows immediately from Theorem 7.1. �

Corollary 8.2. Assume F : X → X is an embedding. Then

H∗(F) = idH∗(X ) .

We say that X is embedded in Y and write X @ Y if there exists an embedding
F : X → Y. This is equivalent to saying that for every S ∈ X there exists a T ∈ Y
such that S ⊂ T .

Lemma 8.3. Assume X ⊂ Y and Y @ X . Then the inclusion ι : X ⊂ Y induces
an isomorphism in homology.

Proof: Let F : Y → X be an embedding. Then also ιF : Y → Y is an
embedding. Redefining F if necessary we may assume that Fι = idX . Then
F∗ι∗ = id and by Corollary 8.2 also ι∗F∗ = (ιF)∗ = id. The conclusion follows. �

9. Order complexes

There is another way of associating an abstract simplicial complex with a Čech
structure. It has some technical advantages which will become clear in the next
section. We define it and study its features in this section.

We say that a family S ⊂ P(Rd) is monotone if S is linearly ordered by inclusion.
Let X be a Čech structure. Put

N̄(X ) := {M ⊂ X | M is monotone }.
Obviously we have

N̄(X ) ⊂ N(X ).

It is straightforward to verify that N̄(X ) is an abstract simplicial complex. It
is called the order complex [1, 5] and may be thought of as the first barycentric
subdivision of N(X ). Obviously, we have

(10) V (N̄(X )) = X .
The respective chain complex and homology groups will be denoted by C̄#(X ) and
H̄∗(X ).

Recall that for A ⊂ P(Rd) by A∗ we denote the family of all non-empty intersec-
tions of finite subfamilies of A. The following theorem shows the relation between
the nerve of a Čech structure X and the order complex of X ∗.

Theorem 9.1. Let X be a Čech structure. There is a unique chain equivalence

ζ : C#(X )→ C̄#(X ∗)
such that ζ(S) ∈ C̄#(S∗) for S ∈ N(X ).

Proof: Recall that for C ⊂ Rd and X ⊂ P(Rd) we use the notation X (C) :=
{A ∈ X | C ⊂ A }. For S ∈ N(X ) we put

Ψ(S) := N(X (
⋂
S))(11)

Λ(S) := N̄(S∗)(12)

and for M∈ N̄(X ∗) we put

Φ(M) := N̄(X (
⋂
M)∗)(13)

Θ(M) := N(X (
⋂
M))(14)

One easily verifies that Ψ,Λ,Φ,Θ are acyclic carriers and Ψ and Φ carry respectively
idC#(X ) and idC̄#(X∗). Let ζ : C#(X ) → C̄#(X ∗) and θ : C̄#(X ∗) → C#(X ) be
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chain maps carried respectively by Λ and Θ. It is easy to verify that ζθ is carried
by Ψ and θζ is carried by Φ. Therefore, by Theorem 3.3, ζθ is chain homotopic to
idC#(X ) and θζ is chain homotopic to idC̄#(X∗). Thus ζ is a chain equivalence. Its

uniqueness follows from the fact that for S ∈ Nq(X ) there are no (q+1)-dimensional
simplices in N̄(S∗). �

Corollary 9.2. The unique chain equivalence ζ : C#(X ) → C̄#(X ∗) induces an
isomorphism ζ∗ : H∗(X )→ H̄∗(X ∗).

Let X and Y be two Čech structures and let

F : X → Y
be a map. By (10) the map F may be viewed as a map acting on the set of vertices
of N̄(X ). We say that F is monotonically simplicial if it is simplicial with respect
to N̄(X ) and N̄(Y). Observe that if X ⊂ Y then the inclusion map

ι : X 3 S 7→ S ∈ Y
is monotonically simplicial.

Proposition 9.3. If X contains a unique minimal element then N̄(X ) is a cone.

�
Assume F ,G : X → Y. We write F ⊂ G if F(S) ⊂ G(S) for each S ∈ X .

Lemma 9.4. Assume F ,G : X → Y are such that F ⊂ G. If they are both
monotonically simplicial then they are monotonically chain homotopic.

Proof: For S ∈ N̄(X ) define

Φ̄(S) := N̄(F(S) ∪ G(S)).

By Theorem 3.2 and Proposition 9.3 the abstract simplicial complex Φ̄(S) is acyclic.
It is straightforward to verify that it is an acyclic carrier which carries C̄#(F) and
C̄#(G). Therefore, the thesis follows from Theorem 3.3. �

Theorem 9.5. If F : X → Y is simplicial then the diagram

H∗(X )
H∗(F)−−−−→ H∗(Y)yζ∗ yζ∗

H̄∗(X ∗)
H̄∗(F∗)−−−−−→ H̄∗(Y∗)

commutes.

Proof: One easily verifies that

Θ(S) := N̄(F(X (
⋂
S))∗)

is an acyclic carrier for both ζ#C#(F) and C̄#(F∗)ζ#. Therefore the conclusion
follows from Theorem 3.3. �

10. Mayer-Vietoris sequence

The aim of this section is to prove the Mayer-Vietoris Theorem for Čech struc-
tures. For A,B ⊂ P(Rd) we define

A ∩̄ B := {A ∩B | A ∈ A, B ∈ B, A ∩B 6= ∅ }.
Let X 1 and X 2 be two Čech structures. Then, obviously, X 1 ∩̄ X 2 is a Čech

structure and X 1 ∩̄ X 2 @ X 1, X 1 ∩̄ X 2 @ X 2. Let

µi : X 1 ∩̄ X 2 → X i
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be embeddings and let

νi : X i → X 1 ∪ X 2

denote inclusion maps.

Theorem 10.1. The sequence

(15) . . .→ Hq(X 1 ∩̄ X 2)
(µ1∗q,−µ2∗q)−−−−−−−−→ Hq(X 1)⊕Hq(X 2)

ν1∗q+ν2∗q−−−−−−→
Hq(X 1 ∪ X 2)→ Hq−1(X 1 ∩̄ X 2)→ . . .

is exact.

Before we present the proof of this theorem we need some auxiliary definitions
and results. For A,B ⊂ P(Rd) we define

AB := (A ∪ (A ∩̄ B))
∗

As we will see in the following proofs, the Čech structures AB and BA may be
considered as refinements of the Čech structures A and B with the same homology
but behaving nicer with respect to the union and intersection operations.

Proposition 10.2. We have the following properties.

(i) If A ⊂ B then A∗ ⊂ B∗.
(ii) AB = {C0 ∩ C1 ∩ C2 ∩ . . . ∩ Ck | C0 ∈ A, Ci ∈ A ∪ B }
(iii) AB ∩ BA = (A ∩̄ B)∗

(iv) AB ∪ BA = (A ∪ B)∗

Proof: Property (i) is straightforward. To prove (ii) assume that C = C0 ∩
C1 ∩ C2 ∩ . . . ∩ Ck is such that C0 ∈ A, Ci ∈ A ∪ B. Without loss of generality we
may assume that for some l ∈ Nk we have Ci ∈ A for i = 0, 1, . . . l and Ci ∈ B for
i = l + 1, l + 2, . . . k. Since

C = C0 ∩ C1 ∩ . . . ∩ Cl ∩ (C0 ∩ Cl+1) ∩ . . . ∩ (C0 ∩ Ck)

we conclude that C ∈ AB. The opposite inclusion is straightforward. Properties
(iii) and (iv) follow easily from (i) and (ii) �

Proposition 10.3. Assume X ,Y are Čech structures. We have the following prop-
erties

(i) If X ⊂ Y then N(X ) ⊂ N(Y) and N̄(X ) ⊂ N̄(Y).
(ii) N̄(XY) ∪ N̄(YX ) = N̄(XY ∪ YX )
(iii) N̄(XY) ∩ N̄(YX ) = N̄((X ∩̄ Y)∗)

�
Assume F : X → Y is simplicial and define F∗ : X ∗ → Y∗ by

F∗(C) :=
⋂
F(X (C)) for C ∈ X ∗.

Proposition 10.4. If F is an embedding then F∗ is an embedding

Proof: Let C ∈ X ∗. Then

F∗(C) =
⋂
F(X (C)) ⊃

⋂
X (C) ⊃ C.

�
Finally we are ready to present the proof of Theorem 10.1.
Proof of Theorem 10.1. For i = 1, 2 put

Yi := (X i)X 3−i = (X i ∪ X 1 ∩̄ X 2)∗

Let

ιi : N̄(X 1) ∩ N̄(X 2)→ N̄(X i)
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and

λi : N̄(X i)→ N̄(X 1) ∪ N̄(X 2)

denote inclusion maps.
By Theorem 3.1 we have the long exact sequence

. . .→ Hq(N̄(Y1) ∩ N̄(Y2))
(ι1∗q,−ι2∗q)−−−−−−−−→ Hq(N̄(Y1))⊕Hq(N̄(Y2))

λ1∗q+λ2∗q−−−−−−−→ Hq(N̄(Y1) ∪ N̄(Y2))→ Hq(N̄(Y1) ∩ N̄(Y2))→ . . .

By Proposition 10.3 the sequence may be rewritten as

. . .→ Hq(N̄((X 1 ∩̄ X 2)∗))
(ι1∗q,−ι2∗q)−−−−−−−−→ Hq(N̄(Y1))⊕Hq(N̄(Y2))

λ1∗q+λ2∗q−−−−−−−→ Hq(N̄((X 1 ∪ X 2)∗))→ Hq(N̄((X 1 ∩̄ X 2)∗))→ . . .

or using our shorthand notation as

. . .→ H̄q((X 1 ∩̄ X 2)∗)
(ι1∗q,−ι2∗q)−−−−−−−−→ H̄q(Y1)⊕ H̄q(Y2)

λ1∗q+λ2∗q−−−−−−−→
H̄q((X 1 ∪ X 2)∗)→ Hq−1(X 1 ∩ X 2)→ . . .

Let

ρi : X 1 ∩̄ X 2 → X i ∪ X 1 ∩̄ X 2

denote inclusions and let

χi : X i ∪ X 1 ∩̄ X 2 → X 1 ∪ X 2

be any embeddings such that χi|X i
= idX i

. It follows from Proposition 10.4 and
Lemma 9.4 that (ρ∗i )∗ = ι∗ and (θ∗i )∗ = λ∗. Therefore we get from Theorem 9.5
that

(16) . . .→ Hq(X 1 ∩̄ X 2)
(ρ1∗q,−ρ2∗q)−−−−−−−−→ Hq(X 1 ∪ X 1 ∩̄ X 2)⊕Hq(X 2 ∪ X 1 ∩̄ X 2)

θ1∗q+θ2∗q−−−−−−→ Hq(X 1 ∪ X 2)→ Hq−1(X 1 ∩̄ X 2)→ . . .

Finally let

γi : X i → X i ∪ X 1 ∩̄ X 2

denote inclusion. It is straightforward to verify that ρi ⊂ γiµi and νi = χiγi
therefore we obtain from Lemma 7.2 and Lemma 8.3 the exact sequence (15).

�

11. Homology of Čech polyhedrons

In this section we define a chain map from the chain complex of the nerve of a
Čech structure to the singular chain complex of the associated Čech polyhedron.

Recall that given a collection of n+1 points a0, a1, . . . an in Rd, there is a unique
affine map which sends the ith vertex of the standard n-simplex to ai (see [29,
Section 29]). We denote this map by [a0, a1, . . . an] and call it the linear singular

n-simplex determined by a0, a1, . . . an. For a ∈ Rd we put

a · [a0, a1, . . . an] := [a, a0, a1, . . . an].

If c =
∑m
i=1 kiσi is a linear combination of linear singular simplices, we put

a · c :=

m∑
i=1

ki a · σi.

We say that x = {xS | S ∈ N(X ) } is a selector of X if

S ∈ N(X ) ⇒ xS ∈
⋂
S.
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Obviously, by the very definition of N(X ), every Čech structure admits at least one
selector.

Figure 5. A simplex in the nerve and the associated singular chain.

For a selector x of X we define a chain homomorphism

ϕx : C#(X )→ C#(|X |)

from the chain complex of the Čech structure X to the singular chain complex
of the support of X . The geometric idea behind the construction is presented in
Figure 5. The formal definition proceeds recursively. If S ∈ N0(X ) we put

ϕx(Ŝ) := xS .

Assuming ϕx is defined for chains of dimensions less than q and given S ∈ Nq(X )
we put

ϕxq (Ŝ) := xS · ϕxq−1∂(Ŝ).

We need to verify that ϕx is indeed a chain map, i.e.

∂qϕ
x
q = ϕxq−1∂q.

For q = 0 the equality is obvious. So assume q > 0. We have

∂qϕ
x
q (Ŝ) = ∂qxS · ϕxq−1∂q(Ŝ) = ϕxq−1∂q(Ŝ)− xS · ∂q−1ϕ

x
q−1∂q(Ŝ) = ϕxq−1∂q(Ŝ),

because by induction assumption ∂q−1ϕ
x
q−1∂q = ϕxq−2∂q−1∂q = 0.

Theorem 11.1. Assume F : X → Y is an enclosure of f : |X | → |Y|. If x and y
are selectors respectively in X and Y then the diagram

C#(|X |) f#−−−−→ C#(|Y|)xϕx
#

xϕy
#

C#(X )
F#−−−−→ C#(Y)

is commutative up to a chain homotopy.

Proof: The requested chain homotopy Dq : Cq(X ) → Cq+1(|Y|) will be con-
structed by induction in q in such a way that for any q ∈ Z

(17) ∂q+1Dq +Dq−1∂q = ϕyqF#q − f#qϕ
x
q
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and for any Ŝ ∈ Nq(X )

(18) |Dq((Ŝ))| ⊂ |F#q((Ŝ))|
We put Dq = 0 for q < 0. Let S ∈ V (X ). Since yF(S) ∈ F(S), f(xS) ∈ f(S) ⊂

F(S) and S as a convex set is acyclic, we have

yF(S) − f(xS) = ∂cS

for some c ∈ C#(F(S)). We put D0([S]) := cS . It is straightforward to verify that
conditions (17) and (18) are satisfied for q ≤ 0.

Now let i > 0 and assume now that Dq is defined for all q < i in such a way that

conditions (17) and (18) are satisfied. Let Ŝ ∈ Nq(X ). Observe that

∂i(Di−1∂i − ϕyiF#i + f#iϕ
x
i )(Ŝ) =(

−Di−2∂i−1 + ϕyi−1F#(i−1) − f#(i−1)ϕx
i−1

)
∂i(Ŝ)+

(−ϕyiF#i + f#iϕ
x
i )∂i(Ŝ) = 0

Therefore (Di−1∂i − ϕyiF#i + f#iϕ
x
i )(Ŝ) is a cycle. Moreover, we have

|(Di−1∂i − ϕyiF#i + f#iϕ
x
i )(Ŝ)| ⊂

|(Di−1∂i(Ŝ)| ∪ |ϕyiF#i(Ŝ)| ∪ |f#iϕ
x
i )(Ŝ)| ⊂

⋃
F(S).

Hence (Di−1∂i−ϕyiF#i + f#iϕ
x
i )(Ŝ) ∈ Zi(

⋃
F(Ŝ)). But

⋃
F(S) is acyclic. There-

fore there exists c ∈ Ci+1(
⋃
F(S)) such that

∂i+1c = (Di−1∂i − ϕyiF#i + f#iϕ
x
i )(Ŝ).

Putting Di(Ŝ) := c one easily verifies that (17) and (18) are satisfied for q = i. �
From Theorem 11.1 we obtain the following corollary.

Corollary 11.2. The chain homotopy class of the map ϕx : C#(X )→ C#(|X |) is
independent of the choice of a selector x. In particular, any two such maps induce
the same map in homology.

In the sequel we will write ϕX to denote the chain homomorphism ϕx : C#(X )→
C#(|X |) for some selector x of X . Since these maps serve only as an intermediate
step to obtain a map in homology, this will cause no ambiguity.

We can now prove the following version of Nerve Theorem.

Theorem 11.3. Let X be a Čech structure. Then the map ϕX : C#(X )→ C#(|X |)
induces an isomorphism in homology.

Proof: The proof will proceed by induction in the number of elements in X . If
X consists of just one set, then N(X ) is a cone, so it is acyclic. Similarly |X | as a
convex set is acyclic.

Hence assume that the theorem is proved for Čech structures of no more then k el-
ements and assume X = {S0, S1, . . . Sk }. Put X 1 := {S0} and X 2 := {S1, S2, . . . Sk }.
Then X = X 1 ∪ X 2 and X 1 ∩̄ X 2 have no more than k elements. We have the fol-
lowing commutative diagram

−−−−−→ H∗(|X 1| ∩ |X 2|) −−−−−→ H∗(|X 1|)⊕H∗(|X 2|) −−−−−→ H∗(|X |) −−−−−→x x x
−−−−−→ H∗(X 1 ∩̄ X 2) −−−−−→ H∗(X 1)⊕H∗(X 2) −−−−−→ H∗(X ) −−−−−→

of Mayer-Vietoris sequences. The top one is the standard Mayer-Vietoris sequence
for singular homology and the bottom one is the Mayer-Vietoris sequence estab-
lished in Theorem 10.1. The conclusion follows now from the induction assumption
and the Five Lemma. �
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Corollary 11.4. The homology of a Čech structure X depends only on the under-
lying Čech polyhedron |X | and is isomorphic to the reduced singular homology of
|X |. �

Here is another corollary of Theorem 11.3. It will be crucial in the proof of
Theorem 5.1 presented in Section 13.

Corollary 11.5. Assume X ⊂ Y are Čech structures such that |X | = |Y|. Then
the inclusion map ι : X → Y induces an isomorphism H∗(ι) : H∗(X )→ H∗(Y).

Proof: Observe that ι is an enclosure of the identity map id : |X | → |Y| and it
obviously induces an identity in homology. Therefore, by Theorem 11.1, we have
H∗(ϕ

Y)H∗(ι) = H∗(ϕ
X ). The conclusion follows now from Theorem 11.3. �

12. Connected simple systems.

The contents of Corollary 11.4 may be strengthened by showing that for a Čech
polyhedron X the isomorphisms between the Čech structures on X may be chosen
in a canonical way. In particular they form a category of isomorphisms. The
contents of this section is of interest in itself and is not needed in the sequel, so an
uninterested reader may skip it.

Let C be a category. We identify C with the collection of objects of C and we
denote by Mor(C) the collection of all morphisms in C and by Iso(C) the collection
of all isomorphisms in C. Given two objects C1, C2 ∈ C we write C(C1, C2) for the
collection of morphisms from C1 to C2 in C. Let D be a small subcategory of C. We
say that D is a pre-connected simple system (pre-CSS) in C if the following three
conditions are satisfied.

Mor(D) ⊂ Iso(C)(19)

∀E1, E2 ∈ D cardD(E1, E2) ≤ 1(20)

∀E1, E2 ∈ D ∃E3 ∈ D : D(E3, E1) 6= ∅ 6= D(E3, E2)(21)

If E1, E2 ∈ D and D(E1, E2) 6= ∅ then the unique element of D(E1, E2) will be
denoted by DE2E1 .

We say that D is a connected simple system (CSS) in C if for any two objects
E1, E2 ∈ D there exists exactly one morphism in D(E1, E2). Obviously every CSS
is also a pre-CSS. The concept of a CSS is due to Conley [9].

Theorem 12.1. (see [15, Theorem 3.1] ) For any D, a pre-CSS in C, there exists
a unique CSS D̄ in C such that

Obj(D) = Obj(D̄)(22)

Mor(D) ⊂ Mor(D̄)(23)

Let X be a Čech polyhedron. Denote by CS(X) the family of all Čech structures
of X.

Proposition 12.2. Assume X ,Y are two Čech structures such that |X | = |Y|. If
F : X → Y is an embedding then H∗(F) : H∗(X ) → H∗(Y) is an isomorphism,
which does not depend on the particular choice of the embedding F .

Proof: The assumptions imply that F is an enclosure of id|X |. The conclusion
follows from Theorem 11.1, Theorem 11.3 and Lemma 8.1. �

For any two X ,Y ∈ CS(X) such that X @ Y let

ιX ,Y : H∗(X )→ H∗(Y)

denote the isomorphism given by Proposition 12.2.
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Proposition 12.3. The collection ({H∗(X ) | X ∈ CS(X) }, { ιX ,Y | X @ Y }) is a
pre-CSS.

Proof: Property (20) is obvious. To prove (21) observe that if X ,Y ∈ CS(X)
are two Čech structures then X ∩̄Y is also a Čech structure and X ∩̄Y @ X as well
as X ∩̄ Y @ Y. �

From Theorem 12.1 we obtain the following corollary.

Corollary 12.4. The collection ({H∗(X ) | X ∈ CS(X) }, { ιX ,Y | X @ Y }) extends
to a unique CSS.

The connected simple systems in C form a category (see [15]). This allows us

to consider H̃(X) := {H∗(X ) | X ∈ CS(X) } as a functor. Details are left to the
reader.

13. Proof of Theorems 5.1 and 6.1

We say that an embedding

E : Y → Z
of Čech structures is an ε-embedding if

(24) E(Y ) ⊂ Y ε

for every Y ∈ Y. We say that Z is an ε-extension of Y if there exists a bijective
ε-embedding E : Y → Z.

Recall that for a Čech structure Y we put

Yε := {Y ε | Y ∈ Y }

and we consider the map

ιε : Y 3 Y 7→ Y ε ∈ Yε.
This map is obviously surjective and since for every compact convex A ⊂ Rd we
have

Rd \
(
Rd \Aε

)ε
= A,

the map is also injective. Therefore, it is bijective and consequently it is an ε-
embedding. Thus, Yε is an ε-extension of Y. We have the following theorem.

Theorem 13.1. If Y is a Čech structure and Z is an ε-extension of Y with ε > 0
sufficiently small, then every bijective ε-embedding E : Y → Z has an inverse which
is simplicial. In particular it induces an isomorphism in homology.

Proof: To prove this, assume the contrary. Then there exist sequences εn ↘ 0,
Sn ⊂ Y and En : Y → Zn such that En is a bijective εn-embedding, En(Sn) ∈
N(Zn) and Sn 6∈ N(Y). Since Y is finite, without loss of generality we may assume
that Sn = S for some S ⊂ Y. Let xn ∈

⋂
En(S) ⊂

⋂
Sε1 . Compactness argument

lets us replace the sequence xn by a subsequence convergent to an x ∈
⋂
Sε1 . Since,

by (24), dist(xn, S) ≤ εn for any S ∈ S, we conclude that x ∈ S for every S ∈ S.
Therefore

⋂
S 6= ∅, a contradiction. �

Proof of Theorem 5.1. We will first prove that a representation always exists.
For this end fix a Čech structure Y on Y . By Theorem 13.1 we can choose an ε > 0
such that ιε : Y → Yε induces an isomorphism in homology. Since X is compact
and f is continuous, we can select a δ > 0 such that for every A ⊂ X

diamA ≤ δ ⇒ diam f(A) ≤ ε.

Let X be a Čech structure on X such that diamX ≤ δ. For S ∈ X define

F(S) := conv f(S).
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Then diamF(X ) ≤ ε. Therefore, F(S) ⊂ Yε for every S ∈ X . In particular
Z := Yε ∪ F(X ) satisfies |Z| = |Yε|. It follows that Z is a Čech structure on Y ε.
Consider the map E : Y → Z defined as the composition ι′ιε, where ι′ : Yε → Z is an
inclusion. Obviously E is an enclosure of the inclusion map Y ⊂ |Z|. Since H∗(ι

ε) is
an isomorphism by Theorem 13.1 and H∗(ι

′) is an isomorphism by Corollary 11.5,
we see that H∗(E) is also an isomorphism. Therefore F is a representation of f .

Now, let F be an arbitrary representation of f . Observe that to prove the
commutativity of (9) it is enough to prove the commutativity of the following
diagram

H∗(X )
H∗(ϕ

X )−−−−−→ H∗(X)
H∗(f)−−−−→ H∗(Y )

H∗(ϕ
Y)←−−−−− H∗(Y)yH∗(F) H∗(f)

y yH∗(i) H∗(E)

y
H∗(Z)

H∗(ϕ
Z)−−−−−→ H∗(|Z|)

id−−−−→ H∗(|Z|)
H∗(ϕ

Z)←−−−−− H∗(Z)

,

in which the commutativity of the middle square is obvious and the commutativity
of the left and right squares follows from Theorem 11.1. �

Proof of Theorem 6.1. To show that the algorithm always stops, assume the
contrary. This is possible only if one of the two loops is never exited or the recursive
calls of the procedure recurse never stop. The while loop must be exited by
Theorem 13.1. The foreach loop always iterates through a finite set, so it also must
be exited as long as all calls to recurse terminate. This leaves an infinite recursion
as the only possibility. Let ε0 denote the value of the ε variable immediately after
completing the while loop. Obviously ε0 > 0. Let Xn denote the value of the first
argument of the procedure recurse on its nth call. Then, there is an Sn ∈ Xn
such that diam Φ(Sn) > ε0. By the assumption (iii) of the theorem we can find a
δ > 0 such that if S ∈ S and diamS ≤ δ, then diam Φ(S) ≤ ε0. Since Xn+1 is a
subdivision of an element of Xn, we see that diamSn → 0. Therefore, on some call
to recurse diamSn ≤ δ and consequently diam Φ(Sn) ≤ ε0, a contradiction.

It follows that the algorithm stops. Observe that when the first call to recurse

is completed, the variable F represents a map with all values in |Yε|. It follows
that |Z| = |Yε| and by Corollary 11.5 the map H∗(ι

′) is an isomorphism. Since
H∗(ι

ε) is an isomorphism by Theorem 13.1, we see that E induces an isomorphism
in homology. Finally, F is an enclosure of f by the assumption (iii) of the theorem.
Therefore (X k,Y,Z, E ,Fk) is a representation of f and the conclusion follows from
Theorem 5.1. �

14. Final remarks.

In order to implement the homology map algorithm presented in Section 6 a
particular class of convex sets needs to be selected. Among many possible choices,
the simplest but important case is the class of orthotopes, i.e. the Cartesian prod-
ucts of intervals. Orthotopes appear in a natural way in rigorous numerics based
on interval arithmetic. Also, the use of orthotopes may significantly reduce the size
of the representation of some cubical sets in Rd with non-uniform structure as in
Figure 2. Another advantage of orthotopes is that it is straightforward to verify if
a collection of orthotopes has non-empty intersection, which is needed in the con-
struction of the associated abstract simplicial complex. All this makes orthotopes
a good choice for an implementation and an implementation of the homology map
algorithm presented in Section 6 and based on orthotopes is in progress. However,
the class of orthotopes is not the only possible choice. For instance, general paral-
lelotopes may be better in the context of rigorous computations in dynamics based
on Lohner method [19].
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In the general Nerve Theorem, instead of assuming the convexity of the elements
of the covering one only requires that the intersection of any subfamily of the cov-
ering is either empty or acyclic. Thus, a generalization of this paper is possible
based on such a family. However, this poses several questions which need to be
addressed. The most important is how difficult it is to construct such a covering, a
question related to the subject of [26]. This is left for future research.
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