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Abstract. We calculate the discrete-time Conley index of the Poincaré map
of a time-periodic ordinary differential equation in an isolated invariant set

generated by a periodic isolating segment. As an application, we present results

on the existence of bounded solutions of some planar equations.

1. Introduction

The index of an isolated invariant set for a continuous-time flow in a locally
compact metric space was defined by C. Conley (see [C]). In the case of discrete-
time flow, the Conley index theory was initiated by J. Robbin and D. Salomon in
the paper [RS]. An improved version of the theory was established by the first
author in [Mr1, Mr2] and later developed by A. Szymczak in [Sz]. In [Sr1, Sr2],
in order to get results on the existence of periodic solutions of time-periodic non-
autonomous equations, the second author introduced the notion of periodic isolating
segment (actually, slightly different terminology was used in those papers). Such
a segment naturally generates an isolated invariant set for the Poincaré operator.
Theorem 1, the main result of the present paper provides the formula on the Conley
index of that set. In fact, the theorem can be derived from results of the authors’
paper [MRS] written jointly with J. Reineck. However, we present a direct proof,
based on the algorithmic approach to the discrete-time Conley index theory given in
[Mr4]. Corollary 1 represents the reduction of the formula to the Alexander-Spanier
cohomology setting. It is applied here to results on the existence of nonzero bounded
solutions of some planar Fourier-Taylor polynomial equations on the plane.

The problem of the existence od bounded solutions of nonlinear ordinary differen-
tial equations has received growing attention in the last years. Recent publications
on the problem combine analytic and topological or variational arguments, compare
for example [FZ, Ma1, Ma2, MT, MW1, MW2, O] for results obtained by guid-
ing functions techniques, applications of the Schauder fixed point theorem or the
Leray-Schauder degree, [V] for a variational approach, [IR, Wa1, Wa2, Wa3, Wa4]
for applications of the classical homotopy Conley index, and [D, K, Mu] for other
methods based on homotopy. Finally, we mention that the notions which appear
in the title of the present paper have already been used in the context of bounded
solutions; for example, the discrete-time Conley index was applied in the paper
[MR] and [Wo] contains an application of isolating segments.

The paper is organized as follows. In Section 2 we provide basic facts concerning
non-autonomous equations, in particular we recall the definition of the Poincaré
operator. Section 3 presents notions related to the discrete-time Conley index; it
includes the definitions of the excisive and normal functors. Section 4 starts with
some elementary facts concerning the Ważewski method. We use these facts to
introduce the definition of the periodic isolating segment, a concept fundamental in
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the rest of the paper. Theorem 1 together with Corollary 1 are given in Section 5.
The next Section 6 is devoted to the proof of Theorem 1. Applications of the main
results are given in Section 7.

2. Time-periodic equations and Poincaré maps

We consider a non-autonomous equation

(1) ẋ = v(t, x),

where v : R × M → TM is a continuous time-dependent vector-field having the
uniqueness property of the corresponding Cauchy problem and M is a Riemannian
manifold. Let t → Φ(t0,t)(x0) denote the solution to the Cauchy problem (1),(2)
with the initial condition

(2) x(t0) = x0.

The map Φ is continuous with respect to (t, t0, x0) and we call it the evolutionary
operator. It generates the local flow φ on the extended phase space R ×M given
by

φτ (t0, x0) := (t0 + τ,Φ(t0,t0+τ)(x0)).

In fact, φ is generated by the vector-field (1, v).
Let T > 0. In the sequel we assume that v is T -periodic in t. In this case the

map
Π := Φ(0,T )

is called the Poincaré operator and will play the main role in the present paper.
Its n-th iterate (for n ∈ Z) is given by

Πn = Φ(0,nT ).

3. Isolated invariant sets and Conley index

Let f : U → X be a continuous map, where X is a locally compact metrizable
space and U is an open subset of X. A set S ⊂ U is called isolated invariant (for
f) if it is compact, invariant (i.e. f(S) = S), and there exists V , a neighborhood of
S, such that S is the maximal invariant set contained in V . The set V is called an
isolating neighborhood of S. With such a set S one associates an algebraic object,
called Conley index (compare [Mr1, RS, Sz]). Following [Mr4] we present briefly
its construction.

By a weak index pair for the set S we mean a pair (P,Q) of compact subsets of
U such that

P ∩ f(Q) ⊂ Q,(3)

P ∩ f(P ) \ P ⊂ Q,(4)

P \Q is an isolating neighborhood of S.(5)

The conditions (3),(4) were introduced in [Sr4] and their role in algorithmic com-
putation of the Conley index was indicated in [Mr4]. The notion of weak index pair
generalizes various notions of index pairs.

Proposition 1 (compare [Sr4], Lemma 6). (P,Q) is a weak index pair for S if and
only if (5) is satisfied and there exists a compact pair (P ′, Q′) ⊃ (P,Q) such that

(6) f(P ) ⊂ P ′, f(Q) ⊂ Q′, and P \Q = P ′ \Q′.
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Following [Mr4, Definition 5.1] we say that (P,Q, P ′, Q′) is a weak index quadru-
ple if (P,Q) is a weak index pair, (P,Q) ⊂ (P ′, Q′) and (6) is satisfied. Various
constructive ways of finding the set P ′, Q′ are presented in [Mr4].

In the sequel we deal with the category of compact pairs: their objects are pairs
of compact spaces (P,Q) and morphisms are continuous maps (P,Q) → (P ′, Q′).
Let T be a functor from the category of compact pairs to another category. It
is called homotopy invariant if T (f) = T (g) for homotopic continuous maps f '
g : (P,Q) → (P ′, Q′). A continuous map e : (P,Q) → (P ′, Q′) is called excisive
provided e maps homeomorphically P \Q onto P ′ \Q′. T is called excisive if T (e)
is an isomorphism for every excisive map e. The functor sending a compact pair
(P,Q) onto the quotient space P/Q in the category of pointed spaces is an example
of an excisive functor. Due to the strong excision property, the Alexander-Spanier
cohomology is an excisive and homotopy invariant functor.

Let C be a category and let Endo(C) denote the category of endomorphism;
its objects are the endomorphisms in C and a morphisms from an endomorphism
a : A → A to b : B → B is any morphisms φ : A → B in C such that φ ◦ a = b ◦ φ.
In particular, each endomorphism (trivially) defines a morphism in Endo(C). Let
D be another category. A functor L : Endo(C) → D is called normal provided for
every endomorphism a (treated as a morphism in Endo(C)) its image L(a) is an
automorphism. The universal normal functor is constructed in [Sz]. Particulary
important normal functors appear if the target category D is equal to Auto(C) being
the full subcategory of Endo(C) whose objects are automorphisms, and the functor
L : Endo(C) → Auto(C) is a normal retractor, i.e. its restriction to Auto(C) is equal
(up to a natural conjugacy) to the identity functor. In [Mr3], various examples
of normal retractors in the category of modules are discussed. They include, in
particular, the direct and inverse limit functors, and the Leray functor introduced
in [Mr1].

Let us fix an excisive homotopy invariant functor T from the category of compact
pairs to a category C and a normal functor L from Endo(C) to a category D. For
an automorphism a : A → A in D denote by [a] its conjugacy class. Let S be
an isolated invariant set for the map f . Let (P,Q) be a weak index pair for an
isolated invariant set S for the map f (a construction of such a pair can be found
in [Mr2, Mr4, Sz]). By Proposition 1, there exists a compact pair (P ′, Q′) ⊃ (P,Q)
such that (P,Q, P ′, Q′) is an index quadruple for f . This in particular means that
there is an induced map f : (P,Q) → (P ′, Q′) and T (i) is an isomorphism for the
inclusion map i : (P,Q) ↪→ (P ′, Q′).

The (L, T )-Conley index of S is defined as

ConlLT (f, S) :=

{
[L(T (i)−1T (f))] if T is covariant,
[L(T (f)T (i)−1)] if T is contravariant.

One can prove that the definition is correct, in particular it does not depend on the
choice of a weak index pair (see [Mr4]).

4. Isolating segments

In this section we recall some concepts related to the Ważewski method as pre-
sented in [Sr5]. Assume for a moment that φ is a local flow on the space X and
Z ⊂ X. The exit set of Z (denoted Z−) is defined as

Z− := {z ∈ Z : ∃εn > 0, εn → 0: φεn
(z) 6∈ Z}.

In the same way the entrance set Z+ of Z is defined; it is equal to the exit set of
Z for the reversed local flow t → φ−t. The Ważewski Lemma asserts that if Z and
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Z− are closed then the exit-time map

σZ : Z0 3 z → sup{t : ∀s ∈ [0, t]φs(z) ∈ Z } ∈ [0,∞)

is continuous, where Z0 consists of those points z ∈ Z for which there exists a
t > 0 such that φt(x) /∈ Z (see [C, Sr5]). Let us recall recalled here that the
lemma immediately implies the Ważewski Theorem, which asserts the existence
of a positive semi-trajectory (or a full trajectory in the case both A and A− are
compact) contained in A if A− is not a strong deformation retract of A.

We return to the situation considered in Section 2; in particular φ is now a local
flow generated by the vector-field (1, v) and v is T -periodic in the first variable. For
a subset Z of R×M and t ∈ R we put

Zt := {x ∈ M : (t, x) ∈ Z}
and by π1 and π2 we denote the projections R×M → R and, respectively, R×M →
M .

Let W be a compact subset of R × M . It is called an isolating segment over
[0, T ] for the equation (1) if the exit and entrance sets W± with respect to the local
flow φ are also compact and

∂W = W+ ∪W−,

there exist compact subsets W−− and W++ of ∂W (called, respectively, the proper
exit set and the proper entrance set) such that

W− = ({T} ×WT ) ∪W−−, W+ = ({0} ×W0) ∪W++,

and there exists a homeomorphism

h : [0, T ]×W0 → W

satisfying π1 ◦ h = π1 such that

h([0, T ]×W−−
0 ) = W−−, h([0, T ]×W++

0 ) = W++.

The isolating segment W is called periodic if W0 = WT and W±
0 = W±

T .
Figure 1 shows an example of a periodic isolating segment W over [0, T ] for some

planar equation. W is equal to the twisted prism with hexagonal base and each

Figure 1.

of the sets W−− and W++ consists of three disjoint ribbons winding around the
prism. Actually, if T = 2π and the base is sufficiently large, it is a periodic isolating
segment for the equation

(7) ż = eitz2 + a(t)z + b(t)z̄ + c(t)

in the complex plane, where a, b, and c are continuous 2π-periodic functions (com-
pare [Sr1, Sr2, Sr3]).

Let 0 ≤ s ≤ t ≤ T . The homeomorphism h induces the map

m(s,t) : Ws ∈ x → π2h(t, π2h
−1(s, x)) ∈ Wt.

The map
µW := m(0,T )

is called the monodromy homeomorphism of the segment W . It depends on the
choice of h, however one can easily prove that its homotopy class is h-independent
and therefore it is an invariant of the segment. If W and W−− are absolute neigh-
borhood retracts then the Lefschetz number of the monodromy homeomorphism
Λ(µW ) is defined. In that case results of [Sr1, Sr2] assert the existence of a fixed
point of the Poincaré operator (hence the existence of a periodic solution of the
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equation) if Λ(µW ) is nonzero. For example, it is equal to 1 for the segment in
Figure 1, hence (7) has a 2π-periodic solution for arbitrary continuous 2π-periodic
functions a, b, and c. Actually, Λ(µW ) is equal to the fixed point index of the
Poincaré operator in some set generated by the segment; for applications of that
result to planar equations with the Fourier-Taylor polynomial right-hand side we
refer to [Sr1, Sr3].

5. Main Theorem

Since now we assume that W is a periodic isolating segment over [0, T ] for (1). It
naturally generates an isolated invariant set IW for the Poincaré operator Π given
by

IW := {x ∈ W0 : ∀t ∈ [0, T ]Φ(0,t)Πn(x) ∈ Wt }.
The following result provides calculation of its (L, T )-Conley index for some excisive
homotopy invariant functor T and a normal functor L.

Theorem 1.
ConlLT (IW ) = [LT (µW )],

where the monodromy homeomorphism µW is treated as a map (W0,W
−−
0 ) →

(W0,W
−−
0 ).

Denote by H the Alexander-Spanier cohomology functor over a fixed ring R.
Since H(µW ) is an automorphism, the previous theorem immediately implies

Corollary 1. The (L,H)-Conley index of IW does not depend on the choice of a
normal retractor L in the category of R-modules and

ConlLH(Π, IW ) = [H(µW )].

In the case of isolating segment W shown in Figure 1, H
1
(W0,W

−−
0 ) is isomor-

phic to R2 and H
q
(W0,W

−−
0 ) is trivial for q 6= 1. Since µZ rotates the hexagon by

the angle 2π/3, by Corollary 1 the Conley index of IW is equal to the conjugacy

class of the matrix
[
0 −1
1 −1

]
.

6. Proof of Theorem 1

In order to prove the theorem, without loss of generality we may assume that
both L and T are covariant functors. If x ∈ W0 then φt(0, x) /∈ W for t > T , hence
we can define

Σ: W0 3 x → σW (0, x) ∈ [0, T ]
(see Section 4). By the Ważewski Lemma the map Σ is continuous, hence the
following subsets of W0

P := {x ∈ W0 : Σ(x) = T},(8)

Q′ := {x ∈ W0 : φΣ(x)(0, x) ∈ W−−},(9)

Q := P ∩Q′(10)

are compact. One easily verifies that (P,Q,W0, Q
′) is a weak index quadruple for

IW . We treat the Poincaré operator as the map

Π: (P,Q) → (W0, Q
′)

and extend it to the map Π̃ defined in the whole W0 by the formula

Π̃(x) :=

{
Π(x) if x ∈ P ,
m(Σ(x),T )Φ(0,Σ(x))(x) if x ∈ Q′.
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Note that Π̃(Q′) = W−−
0 and Π̃ is homotopic to µW if it is treated as a map

(W0,W
−−
0 ) → (W0,W

−−
0 ); a homotopy is given by

W0 × [0, 1] 3 (x, s) →

{
m(Σ(x),T )Φ(0,Σ(x))(x) if Σ(x) ≤ sT

m(sT,T )Φ(0,sT )(x) if Σ(x) ≥ sT

}
∈ W0.

Let i : (P,Q) ↪→ (W0, Q
′) and j : (W0,W

−−
0 ) ↪→ (W0, Q

′) be the inclusions. Since i
is an excisive map, T (i) is an isomorphism. Thanks to the normality of L, in the
following commutative diagram

LT (P,Q) LT (P,Q)

LT (W0, Q
′) LT (W0, Q

′)

LT (W0,W
−−
0 ) LT (W0,W

−−
0 )

//
L(T (i)−1T (Π))

''OOOOOOOOOOOOOOOOOOOOOO

LT (Π)

��
� �
� �
� �
� �
� �

LT (i)

��
� �
� �
� �
� �
� �

LT (i)

//
LT (eΠ)

''OOOOOOOOOOOOOOOOOOOOOO

LT (eΠ)

OO� � � � � � � � � �

LT (j)

//
LT (eΠ)=LT (µW )

OO� � � � � � � � � �

LT (j)

all horizontal arrows are isomorphisms. LT (j) is also an isomorphism because both
the compositions LT (Π̃) ◦LT (j) and LT (j) ◦LT (Π̃) are isomorphisms (where Π̃ is
treated as a map (W0, Q

′) → (W0,W
−−
0 )). Thus L(T (i)−1T (Π)) and LT (µW ) are

conjugated, hence the result follows. �

7. Applications to bounded solutions

Assume that M = Rn. Each point x ∈ IW is an initial point of a bounded
solution of the equation (1), hence Theorem 1 can be used as a tool in proving the
existence of such solutions. In fact, the Ważewski method (hence also the classical
Conley index for continuous flows) is frequently sufficient in determining whether
IW is nonempty; the T -periodic vector-field generates a vector-field on S1 ×M via
the identification S1 and R/TZ and a periodic isolated segment over [0, T ] after
gluing left and right faces becomes a compact isolating block. Usually it is easy
to determine whether its exit set is not its strong deformation retract; in that case
there exists a full trajectory contained in it (by the Ważewski Theorem), hence also
a bounded solution of the equation.

A more delicate question arises when a bounded solution is known and one would
like to determine the existence of another one. In the following two examples of
planar equations zero constitutes a bounded solution. In such a situation Conley
index with its additivity property becomes helpful in finding a nonzero solution. In
the examples we indicate the role of Corollary 1 in the calculation of the required
Conley indices.

Let k, p, and q be integers. At first we consider the equation

(11) ż =
1

p + 1
iz + eitzp + eiktzq

for z ∈ C.

Proposition 2. Let 1 ≤ p < q.
(a) If k = 0 (mod q + 1) then (11) has a nonzero 2π-periodic solution.
(b) If k 6= 0 (mod q + 1) then (11) has a nonzero bounded solution.
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Proof. Part (a) is a particular case of more general theorems in [Sr1, Sr2, Sr3], hence
we restrict to the proof of (b). It follows from the results of the just cited papers
that the equation has two periodic isolating segments over [0, 2π] surrounding the
0-axis. The smaller one looks like the one in Figure 1 having the hexagon replaced
by the regular 2(p + 1)-polygon (hence three ribbons representing the proper exit
set are replaced by p + 1 ribbons). Its monodromy map is equal to the rotation by
the angle 2π/(p + 1), hence its first cohomology has the matrix

(12) A :=



0 0 0 . . . 0 −1
1 0 0 . . . 0 −1
0 1 0 . . . 0 −1
0 0 1 . . . 0 −1
...

. . .
...

0 0 0 . . . 1 −1


where the number of rows and columns is equal to p. The larger segment is equal to
the union of k-copies of similar segments (with p replaced by q) connected by the side
faces. Consequently, the first cohomology of its monodromy is equal to Ak, where
A is the q×q matrix given in (12). Since p 6= q, the cohomologies of the mondoromy
homeomorphisms of the segments cannot be conjugated, hence Corollary 1 implies
that the invariant set corresponding to the larger segment contains points different
from zero, which results in the existence of a nonzero bounded solution. �

In the next example the matrices generated by the monodromy maps have the
same dimension and we use determinants in order to distinguish their conjugacy
classes. Let r be another integer. We consider the equation

(13) ż =
1

p + 1
iz + eitzp + eiktzqzr

Proposition 3. Let p ≥ 1 be odd, p < q + r, and let r − q = p.
(a) If k = 0 mod p + 1 then (13) has a 2π-periodic nonzero solution.
(b) If k 6= 0 mod p + 1 and k is even then (13) has a bounded nonzero solution.

Proof. As before, we skip the proof of (a), since it is a consequence of [Sr1, Sr2,
Sr3]. For a proof of (b) we again consider two periodic isolating segments which
existence follows from the cited papers. The smaller one is exactly the same as in
the proof of Proposition 2; in particular it is constructed using a regular 2(p + 1)-
polygon. The larger one is build as the union of k-copies of some similar segment,
but contrary to the previous proof the number of ribbons forming the proper exit
sets of both segments is equal to p + 1. The first cohomologies of their monodromy
homeomorphisms are represented by A and, respectively, Ak, where A is the p× p-
matrix given in (12). Since the determinant of A is equal to (−1)p, p is odd and k
is even, there is no conjugacy and Corollary 1 implies the result. �

It is not clear whether the bounded solutions in points (b) of Propositions 2 and
3 are periodic; since the corresponding Lefschetz numbers are all equal to 1, the
methods of [Sr1, Sr2] do not recognize other periodic solutions from the zero one.
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Institute of Computer Science, Jagiellonian University, 17 Nawojki st., 30-072 Kraków,

Poland

E-mail address: mrozek@ii.uj.edu.pl

Chair of Computational Mathematics, WSB-NLU, 33-300 Nowy Sa̧cz, Poland and

Institute of Mathematics, Jagiellonian University, 4 Reymonta st., 30-059 Kraków,
Poland

E-mail address: srzednicki@im.uj.edu.pl


