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Abstract. We present an algorithm for computing the homology of inclusion maps
which is based on the idea of coreductions and leads to significant speed improvements
over current algorithms. It is shown that this algorithm can be extended to compute both
persistent homology and an extension of the persistence concept to two-sided filtrations.
In addition to describing the theoretical background, we present results of numerical
experiments, as well as several applications to concrete problems in materials science.

1. Introduction

In the mathematical literature, homology has long been the primary tool for studying
topological properties of spaces, and its computability based on the classical Smith normal
form algorithm has contributed to its applicability. Only fairly recently have homolog-
ical methods found their way into the applied sciences, and in this context the Smith
normal form algorithm quickly showed serious shortcomings due to its supercubical com-
plexity [31]. For large data sets, performing the algorithm was simply not feasible, both
in terms of memory usage and computational time. Not surprisingly, this fact has led to a
surge in the development of faster homology algorithms. Some of these consider only spe-
cific types of topological spaces such as simplicial or cubical complexes, some only apply
to spaces of certain dimensions, and some use probabilistic methods. For more details, we
refer the reader to [4, 5, 6, 7, 10, 15, 16, 17, 23, 24], as well as the references therein. Sev-
eral of the new homology algorithms are based around the idea of pre-processing. Rather
than trying to apply the Smith normal form algorithm to the original data set, the idea
is to employ a sequence of reduction steps which transforms the original input into one
which is considerably smaller and still has the same homology, and then to apply the
Smith normal form algorithm as a last step. A variety of different reduction mechanisms
have been proposed, such as elementary reductions, acyclic subspace reductions, as well
as coreductions. Implementations of these algorithms are available from [40, 41]. Again,
we refer the reader to the references cited above for more details.

While the methods mentioned in the previous paragraph have proved to be very success-
ful for the computation of the homology of topological spaces, computing the homology
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of continuous maps between topological spaces — despite its importance — has been ad-
dressed to a much lesser extent. A recent approach [22] is based on nerves of coverings and
Čech homology. Although the approach is very promising, it has not been implemented
so far, because the implementation is not easy. Therefore, there is no evidence how it
would perform in practice. An approach which has been implemented successfully [41] is
described in [15, 19] and is formulated using the framework of cubical sets. One of the
central steps in this approach is the realization that the homology of a map can be ob-
tained by essentially computing the homology of two projections, as long as it is possible
to keep track of the images of generators of the involved homology groups. The method
has been applied to the computation of the Conley index [21] and to problems in image
analysis [25].

Despite these early applications, the efficiency of the homology computation for maps is
still lagging behind the efficiency of comparable algorithms for topological spaces. This is
partially due to the fact that one has to keep track of the images of homology generators,
which makes the adaptation of reduction methods more difficult. In the current paper,
we propose an extension of the coreduction method [23] which allows one to compute the
homology of inclusion maps efficiently and at the same time keeps track of the homology
generators. While this is of independent interest, we also show that our method can be
used to efficiently compute persistence for cubical complexes. Persistent homology was
introduced in [9, 38], and previously in a zero-dimensional version in the context of shape
analysis in [33, 35]. It is aimed at identifying and measuring the significant topologi-
cal features in an increasing filtration of topological spaces. As one moves through the
topological spaces in such a filtration, non-trivial homology generators will be generated
and destroyed. Persistent homology keeps track of the birth and death of these gener-
ators by furnishing associated persistence intervals. These intervals allow one to study
significant topological features which exist over many spaces in the filtration, i.e., over
large persistence intervals. We will show that the persistence intervals can be computed
efficiently using our coreduction method for inclusion maps. Furthermore, we also address
the question of extended persistence, in which two back-to-back filtrations of topological
spaces are used to gain insight into the so-called essential topology classes. Our method
provides an alternative to the persistence algorithm developed in [39] for simplicial ho-
mology. While this algorithm has been adapted to cubical homology by Nanda [26] and
Strömbom [32], numerical experiments indicate that our coreduction method provides
significant efficiency gains.

The remainder of this paper is organized as follows. In Section 2 we recall the concept
of S-complexes introduced in [23], which is fundamental for the justification of our algo-
rithm. We also introduce the concepts of regular subsets of S-complexes and of homology
reductions via S-reduction pairs. After that, Section 3 is devoted to the presentation of
our coreduction algorithm, as well as a necessary discussion of homology models. Section 4
shows how the homology of inclusion maps can be used to compute persistence intervals,
and it also addresses a useful extension of the persistence concept to two-sided filtrations.
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Section 5 presents comparisons with other algorithms based on numerical experiments.
Finally, Section 6 contains a few selected applications to problems in materials science.

2. S-Complexes and S-Reduction Pairs

In this section we recall and extend basic definitions and results concerning S-complexes.
Most of these results are taken from [23]. In Section 2.1 we collect basic theorems on S-
complexes, Section 2.2 addresses the central question of when subsets of an S-complex
remain an S-complex, and Section 2.3 introduces the basic reduction methods associated
with S-complexes. We will also show how one can keep track of homology generators
throughout the reduction process.

2.1. S-Complexes. To set the stage, let C denote a category and let X be an object
in C. Then a sequence (Xq)q∈Z of objects of C is a gradation of X, if X decomposes

as the direct sum of the objects Xq. In particular, in the case of the category of sets
a gradation is the decomposition into a disjoint union, and in the category of moduli a
gradation is the decomposition into the algebraic direct sum.

Now let R denote a ring with unity. Given a finite set A, let R(A) denote the free
module over R generated by A. In the following, let S denote a finite set, and denote its
cardinality by |S|. Furthermore, let (Sq)q∈Z be a gradation of S such that Sq = ∅ for all

q < 0. Then (R(Sq))q∈Z is a gradation of the module R(S) in the category of moduli over

the ring R. For every element s ∈ S there exists a unique number q such that s ∈ Sq.
This number will be referred to as the dimension of s and denoted by dim s. We use the
notation 〈·, ·〉 : R(S) × R(S) → R for the scalar product which is defined on generators
by

〈t, s〉 =

{
1 for t = s,

0 otherwise,

and extended bilinearly to R(S)×R(S).
Let κ : S × S → R be a map such that

κ(s, t) 6= 0 implies dim s = dim t+ 1 .

We say that the pair (S, κ) is an S-complex , if the derived pair (R(S), ∂κ), where the
boundary map ∂κ : R(S)→ R(S) is defined on generators s ∈ S by

∂κ(s) :=
∑
t∈S

κ(s, t)t ,

is a free chain complex with base S. The map κ will be referred to as the coincidence
index. If κ(s, t) 6= 0, then we say that t is a face of s, and s is a coface of t. We also define
the coboundary map δκ on generators t ∈ S by

δκ(t) :=
∑
s∈S

κ(s, t)s .
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Using the notation introduced so far, it is straightforward to verify that for any pair of
chains c ∈ Rq(S) and d ∈ Rq−1(S) we have

〈∂κc, d〉 = 〈c, δκd〉 .
To complete our introductory definitions, we define the homology of an S-complex (S, κ)
as the homology of the associated chain complex (R(S), ∂κ), and denote it by H(S, κ) or
simply by H(S). In the following, we will drop the superscript κ in ∂κ whenever κ is clear
from context.

Obviously, every basis S of a free chain complex C, with the map κ defined as the
matrix of the boundary homomorphism, is an S-complex. Therefore, the concept of an S-
complex is basically only a reformulation of the standard concept of a free chain complex.
Nevertheless, by referring to an S-complex instead of a chain complex we emphasize
the fact that in many applications the natural coding of S intrinsically carries all the
information about κ, so there is no need at all to store κ in memory throughout the
process of reductions — and the reductions may be performed on the coding of S only. In
particular, throughout the paper we assume that the cost of evaluating κ(s, t) is constant
with respect to |S|. The two main examples of such S-complexes are simplicial complexes
and cubical complexes, which will be briefly described now.

To begin with, we consider the classical case of simplicial complexes. Recall that a
q-simplex σ = [A0, A1, . . . Aq] in Rd is the convex hull of q + 1 affine independent points
A0, A1, . . . Aq in Rd, which are called the vertices of σ. The number q is then called the
dimension of the simplex. A face of σ is a simplex whose vertices constitute a subset
of (A0, A1, . . . Aq). Using this notation, a simplicial complex consists of a collection S of
simplices such that every face of a simplex in S is contained in S as well, and that the
intersection of two simplices in S is their common face. The simplicial complex S has a
natural gradation (Sq), where Sq consists of all simplices of dimension q. Since a zero
dimensional simplex is the singleton of its unique vertex, the set S0 may be identified with
the collection of all vertices of all simplices in the simplicial complex S. Finally, assume
that an ordering of S0 is given, and that every simplex σ in S is coded as [A0, A1, . . . Aq],
where the vertices A0, A1, . . . Aq are listed according to the prescribed ordering of S0. If
we then define

κ(σ, τ) :=


(−1)i if σ = [A0, A1, . . . Aq]

and τ = [A0, A1, . . . Ai−1, Ai+1, . . . Aq] ,

0 otherwise ,

we obtain an S-complex whose chain complex is the classical simplicial chain complex
used in simplicial homology.

Our second example is concerned with cubical complexes. For this, let I = [k, l] ⊂ R
denote a compact interval, define its length as l−k, and denote the length by length I. The
interval I is called an elementary interval , if length I ∈ {0, 1} and both of its endpoints are
integers. Elementary intervals of length one are called nondegenerate. We define the left
interval of I by I− := [k, k], and the right interval of I by I+ := [l, l]. Then an elementary
cube in Rd is the Cartesian product Q = I1 × · · · × Id of d elementary intervals, and the
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dimension of Q is the number of nondegenerate intervals in the product decomposition. A
full elementary cube is an elementary cube whose product decomposition consists only of
nondegenerate intervals. For every elementary cube Q and every number j ∈ { 1, 2, . . . d }
we define the j-th nondegeneracy number of Q by

ν(Q, j) :=

{
card { i < j | length Ii = 1 } if length Ij = 1 ,

0 otherwise .

Using the above notation, a cubical complex C in Rd is a finite collection of elementary
cubes in Rd, and the associated cubical set is the union of this collection. The cubical
complex C has a natural gradation (Cq)q∈Z, where Cq consists of elementary cubes of

dimension q. Finally, if we define

κ(Q,P ) :=



(−1)ν(Q,j) if Q = I1 × · · · × Ij × · · · × Id
and P = I1 × · · · × I−j × · · · × Id ,

(−1)1+ν(Q,j) if Q = I1 × · · · × Ij × · · · × Id
and P = I1 × · · · × I+j × · · · × Id ,

0 otherwise ,

then a straightforward induction argument with respect to d may be used to show that
a cubical complex is indeed an S-complex. The associated chain complex coincides with
the cubical chain complex introduced in [15] for the definition of the homology of cubical
sets, i.e., for finite unions of elementary cubes.

In both of the above examples the internal structure of the generators carries all the
information needed to compute the coincidence index of two generators in constant time.
Therefore, such complexes may be represented in memory by storing only the generators
— there is no need to store the coincidence index. In the case of a cubical complex, the
memory representation may be taken to be a bitmap, which is particularly advantageous.

2.2. Regular Subsets of S-Complexes. In order to simplify a given S-complex through
a reduction step, one has to replace the original set of generators S by a subset S ′ ⊂ S,
and the original coincidence index κ by the restriction κ′ = κ|S′×S′ . This has to be done in
such a way that (S ′, κ′) is still an S-complex, and that H(S) ∼= H(S ′). Characterizations
for both of these requirements were obtained in [23], and we briefly review these results.
For this, we need the following notation. For any subset A ⊂ S define

bdS A := { t ∈ S | κ(s, t) 6= 0 for some s ∈ A } ,
cbdS A := { s ∈ S | κ(s, t) 6= 0 for some t ∈ A } .

If the set A contains only one element s, then we simply write bdSs or cbdSs. In addition,
a subset S ′ ⊂ S is called closed in S if we have bdSS

′ ⊂ S ′, and it is called open in S if
S \S ′ is closed in S. Using these definitions, one can now characterize when a subset of S
gives rise to a new S-complex. The following results can be found in [23].

Theorem 2.1. Let (S, κ) denote an S-complex over the ring R, and let S ′ ⊂ S. Then the
following hold:



6 MARIAN MROZEK AND THOMAS WANNER

(a) If S ′ ⊂ S is chosen in such a way that for all s, u ∈ S ′ and t ∈ S we have

t ∈ bdSs and u ∈ bdSt imply t ∈ S ′ ,
then the pair (S ′, κ′) with κ′ = κ|S′×S′ is again an S-complex. Any subset S ′ ⊂ S
which satisfies the above implication is called regular.

(b) If S ′ ⊂ S is closed in S, then both S ′ and S \ S ′ are regular.
(c) If S ′ is closed in S, then the boundary map ∂κ

′
satisfies ∂κ

′
= ∂κ|R(S′). Further-

more, R(S ′) is a subcomplex of R(S).

Notice that Theorem 2.1(c) does usually not hold if S ′ is not closed in S, since the
sum defining ∂κ(s) for some s ∈ S ′ might contain terms in S \ S ′. Therefore, only
for closed subsets S ′ of an S-complex S it is possible to define the relative homology
group H(R(S), R(S ′)). Nevertheless, even if S ′ is not closed, it is still possible that S ′ is
regular, i.e., the pair (S ′, κ′) with κ′ = κ|S′×S′ is again an S-complex. In order to simplify
notation we will write H(S, S ′) instead of H(R(S), R(S ′)) in the following.

The next theorem, which is also taken from [23], shows that the assumption of closedness
implies the existence of an exact sequence of homologies.

Theorem 2.2. Let (S, κ) denote an S-complex over the ring R, and let S ′ ⊂ S be a closed
subset. Then the following hold:

(a) Let S ′′ = S \ S ′ and κ′′ = κ|S′′×S′′. Then both the inclusion ι and the projection π
given by

ι :
(
R(S ′), ∂κ

′
)
→ (R(S), ∂κ) and π : (R(S), ∂κ)→

(
R(S ′′), ∂κ

′′
)

are chain maps. Moreover, we have the short exact sequence given by

0→ R(S ′)
ι→ R(S)

π→ R(S ′′)→ 0 ,

and the long exact sequence of homology modules given by

. . .
∂q+1→ Hq(S

′)
ιq→ Hq(S)

πq→ Hq(S
′′)

∂q→ Hq−1(S
′)
ιq−1→ . . .

(b) The homology of the chain complex (R(S ′′), ∂κ
′′
) satisfies

H(S ′′) ∼= H(S, S ′) .

Motivated by the above theorem, we call a regular subset T ⊂ S a nullset of S, provided
that T is closed or open in S and that H(T ) = 0. The following result follows immediately
from Theorem 2.2.

Corollary 2.3. Let (S, κ) denote an S-complex over the ring R, and let T ⊂ S be a
nullset of S. Then the homologies H(S) and H(S \ T ) are isomorphic.

The corollary tells us that if one is able to locate a nullset in S, then it can be removed
without changing the homology of S. In the next section we will indicate a simple method
of locating nullsets in S. We conclude the current section with the following simple lemma,
which will be useful in the sequel.
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Lemma 2.4. Let (S, κ) denote an S-complex over the ring R, and assume that three
elements s0, t0, u0 ∈ S are chosen in such a way that u0 ∈ bd t0 and t0 ∈ bd s0. Then we
have both card bd s0 ≥ 2 and card cbdu0 ≥ 2.

As with all the other results of this section, the proof of Lemma 2.4 can be found in [23].

2.3. S-Reduction Pairs. In the current section we describe a simple method for locating
nullsets in an S-complex. This method is based on the concept of a reduction pair of a
finitely generated free chain complex C, which was introduced in [15, Section 4.4] and [16].
Given a free chain complex C with basis S we say that a pair (a, b) of elements of S is
called reduction pair in C, if 〈∂b, a〉 is invertible in the ring R. Notice that any reduction
pair (a, b) satisfies dim b = 1 + dim a. For every such reduction pair one can define an
associated chain complex (C̄, ∂̄) via

(1) C̄q =

 Cq for q 6∈ {dim a, dim b} ,
{v ∈ Cq | 〈v, a〉 = 0} for q = dim a ,
{v ∈ Cq | 〈v, b〉 = 0} for q = dim b ,

as well as

(2) ∂̄qv =


∂qv for q − 1 6∈ {dim a, dim b} ,

∂qv −
〈∂qv, a〉
〈∂qb, a〉

∂qb for q − 1 = dim a ,

∂qv − 〈∂qv, b〉b for q − 1 = dim b .

In other words, one has to remove all chains from C which have nontrivial coincidence
with a or b and then update the boundary operator accordingly. One can show that the
chain complexes (C, ∂) and (C̄, ∂̄) are chain equivalent [15, 16], and we call the chain
complex (C̄, ∂̄) a reduction of (C, ∂) through the reduction pair (a, b).

As mentioned in the introduction, the fundamental philosophy behind reduction meth-
ods is the fact that it is often advantageous to perform a sequence of reductions before
applying the Smith normal form algorithm. In fact, experiments show that frequently the
decrease in size of the chain complex is significant [24, 23]. From a computational point
of view it is desirable to be able to identify reduction pairs quickly and then to be able to
perform the reduction efficiently. This naturally leads to considering only specific types
of reduction pairs. In this paper, we concentrate on the notions of elementary reduction
pairs and elementary coreduction pairs , which were introduced in [23].

Definition 2.5. Let (S, κ) denote an S-complex. Then a reduction pair (a, b) of elements
of S is called an elementary reduction pair if we have cbdSa = {b}, and in this case a is
called free face in S. Furthermore, the reduction pair (a, b) is called elementary coreduc-
tion pair if we have bdSb = {a}, and in this case b is called a free coface in S. Finally,
we will use the term S-reduction pair to denote either an elementary reduction pair or an
elementary coreduction pair.
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It turns out that S-reduction pairs give rise to nullsets in an S-complex, and we can
therefore use them as the basis of a reduction algorithm for S-complexes which preserves
homology. The following result is established in [23].

Theorem 2.6. Let (S, κ) denote an S-complex over the ring R, and let a, b ∈ S. Then
the following hold:

(a) If (a, b) is an elementary reduction pair, then {a, b} is open in S and a nullset.
(b) If (a, b) is an elementary coreduction pair, then {a, b} is closed in S and a nullset.

Together with Corollary 2.3 from the previous section, we can now immediately deduce
the following central result.

Corollary 2.7. Let (S, κ) denote an S-complex over the ring R, and let a, b ∈ S. If (a, b)
is an S-reduction pair, then the homologies H(S) and H(S \ {a, b}) are isomorphic.

Corollary 2.7 lies at the heart of the coreduction homology algorithm presented in [23].
To make it useful one needs to find as many S-reduction pairs as feasible. The reader
may have noticed that in the case of simplicial complexes and cubical complexes it is
straightforward to provide examples which admit elementary reduction pairs, but elemen-
tary coreduction pairs are not possible. However, it is easy to observe that by removing
a vertex one obtains an open subcomplex which admits elementary coreduction pairs.
Moreover, the homology of this subcomplex coincides with the reduced homology of the
original complex. Therefore, not only elementary reduction pairs, but also elementary
coreduction pairs are useful when computing the homology of simplicial or cubical com-
plexes. In fact, numerical experiments show that elementary coreduction pairs provide
essentially deeper reductions. For details we refer the reader to [23, Section 5].

Since in the current paper we are interested in computing both generators and homology
maps, we need to obtain explicit formulas for the isomorphism established in Corollary 2.7.
For this, let (a, b) denote a reduction pair. For the chain complex (C̄, ∂̄) the relevant chain
maps are given by

(3) ψ
(a,b)
k (c) :=


c− 〈c, a〉
〈∂b, a〉

∂b for k = dim b− 1 ,

c− 〈c, b〉b for k = dim b ,

c otherwise ,

and

(4) ι
(a,b)
k (c) :=

 c− 〈∂c, a〉
〈∂b, a〉

b for k = dim b ,

c otherwise ,

and we have the following result.

Theorem 2.8. Let (S, κ) denote an S-complex over the ring R, let a, b ∈ S denote an
arbitrary S-reduction pair, and consider the complex C̄ defined in (1). Then the chain
maps ψ(a,b) : C → C̄ and ι(a,b) : C̄ → C defined in (3) and (4), respectively, are mutually
inverse chain equivalences.
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Proof: The chain homomorphisms ι(a,b) and ψ(a,b) coincide with the chain homomor-
phisms p and j defined in [16]. Therefore, the above theorem follows from the argu-
ment used in the proof of [16, Theorem 2]. Compare also [15, Theorem 4.24, Proposi-
tion 4.25]. �

It turns out that in the case of an S-reduction pair (a, b), we can use the maps ψ(a,b)

and ι(a,b) also in the context of the chain complex (C ′, ∂′), which is obtained from the
regular subset S ′ := S \{a, b} and is explicitly given by C ′ := R(S ′), as well as ∂′ := ∂κ|C′ .
This is a consequence of the following result.

Theorem 2.9. Let (S, κ) denote an S-complex over the ring R, let a, b ∈ S denote an
arbitrary S-reduction pair, and consider the complexes C̄ and C ′ defined above. Then the
chain complexes (C̄, ∂̄) and (C ′, ∂′) coincide.

Proof: Since C ′ is generated by S ′ = S \ {a, b}, it is immediate that C̄ and C ′ are
identical. To see that also the boundary maps ∂̄ and ∂′ coincide, first observe that for
any s ∈ S ′ we have

∂κs = ∂κ
′
s+ κ(s, b)b+ κ(s, a)a .

Therefore, we always have ∂κs = ∂κ
′
s as long as dim s 6∈ {m,m + 1}, where m = dim b.

Now assume that dim s = m. In the case of an elementary reduction pair (a, b) we obtain
for s ∈ S ′ the identities

∂̄s = ∂κs− 〈∂s, a〉
〈∂b, a〉

∂b = ∂κs = ∂κ
′
s+ κ(s, a)a = ∂κ

′
s ,

since κ(s, a) = 0 for s 6= b in this situation. On the other hand, in the case of an
elementary coreduction pair (a, b) we obtain for s ∈ S ′ the identities

∂̄s = ∂κs− 〈∂s, a〉
〈∂b, a〉

∂b = ∂κs− κ(s, a)a = ∂κ
′
s ,

since we have ∂b = κ(b, a)a in this case. Finally, assume that we have dim s = m + 1.
Then one can readily show that

∂̄s = ∂κs− 〈∂s, b〉b = ∂κ
′
s+ κ(s, b)b− 〈∂s, b〉b = ∂κ

′
s ,

and this completes the proof of the theorem. �

The basic usage of reduction pairs can be summarized in the following definition. For
this definition, we do not specifically require the reduction pairs to be either elementary
reduction or elementary coreduction pairs.

Definition 2.10. A reduction sequence of a chain complex C is a sequence of generator
pairs ω = {(ai, bi)}i=1,2,...n in S such that (ai, bi) is a reduction pair in Ci−1, where the
chain complexes (Ci, ∂i) are defined recursively by letting (C0, ∂0) = (C, ∂), and then
letting (Ci, ∂i) denote the reduction of (Ci−1, ∂i−1) through (ai, bi), for i = 1, 2, . . . n. We
then use the notation (Cω, ∂ω) for the last chain complex in the sequence {(Ci, ∂i)}i=1,2,...n
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and call this chain complex an ω-reduction of (C, ∂). Given a reduction sequence ω in S
we also let

ιω = ι(a1,b1) ◦ ι(a2,b2) ◦ · · · ◦ ι(an,bn) ,
ψω = ψ(an,bn) ◦ ψ(an−1,bn−1) ◦ · · · ◦ ψ(a1,b1) .

Before closing this section, we would like to reiterate the main reason for introducing the
concept of S-complexes and S-reduction pairs. At first glance it seems too restrictive to
only consider these special cases of general reduction pairs. However, from an algorithmic
point of view one has to be able to both quickly identify reduction pairs, and then to
efficiently perform the reduction step. As we will see in Theorem 3.1 below, this is the
main reason for considering only S-reduction pairs in practice. As a side benefit, the chain
maps ιω and ψω described above allow one easily to track generators as well.

3. Coreductions and the Homology of Inclusion Maps

After the preparations of the last section, we now turn our attention to the coreduction
algorithm for inclusion maps. First recall that finitely generated abelian groups admit
bases, i.e., minimal sets of generators which behave similarly to bases in finite-dimensional
vector spaces [15, Theorem 3.61]. In particular, any two such minimal set of generators
have the same cardinality and given a basis, every element of the group may be written
as linear combination of basis elements with integer coefficients. Therefore, the homo-
morphisms of such groups may be studied in terms of integer matrices.

Let S denote an S-complex and let T ⊂ S be an arbitrary closed subset. Then there is
a chain map ρ : T → S which is induced by the inclusion map. The construction of the
matrix of the map induced in homology by ρ is a two-step procedure.

Step 1: Construct bases { [v1], [v2], . . . [vm] } and { [u1], [u2], . . . [un] } of the homol-
ogy groups Hq(T ) and Hq(S), respectively.

Step 2: Decompose each generator [vi] of Hq(T ) with respect to the set of generators
given by { [u1], [u2], . . . [un] } in Hq(S).

Notice that both, constructing a basis as well as decomposing a homology class with
respect to a given basis, are procedures of independent interest with applications going
beyond computing homology of maps. From the algebraic point of view both procedures
may easily be implemented by means of the Smith diagonalization but such an implemen-
tation has complexity O(nα) with α = 3.376...; see [31].

The goal of this section is to show that the reduction methods discussed in the last
section may substantially speed up each of the two procedures and consequently also the
construction of the homology of an inclusion map. To achieve this we first discuss in
Section 3.1 and 3.2 the transporting of chains via the maps ιω and ψω, then introduce the
concept of homology model in Section 3.3, and finally apply these ideas to the homology
of inclusion maps in Section 3.4.

3.1. Transporting Chains. To see that it is often possible to significantly speed up
the process of constructing a homology basis, assume that some ω-reduction Cω of the
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S-complex C is significantly smaller. Then, constructing the generators in the reduced
complex Cω may be achieved much quicker. Now, applying the chain equivalence ιω

to these generators one obtains the generators of the original S-complex. Notice, how-
ever, that this only makes sense if the involved generator transport can be implemented
efficiently.

A slightly more complicated but essentially similar situation is the case of decomposing
a homology class. Let C denote a chain complex and let u1, u2, . . . un be cycles in C such
that { [u1], [u2], . . . [un] } is a set of generators of the homology group Hq(C). Furthermore,
let [z] ∈ Hq(C) be an arbitrary homology class. The decomposition of the equivalence
class [z] in terms of the given generators consists in finding integral coefficients xi such
that

[z] =
n∑
i=1

xi[ui] ,

and this problem reduces to solving the equation

(5) z =
n∑
i=1

xiui + ∂c

for some unknown coefficients x1, x2, . . . , xn ∈ Z and an unknown chain c ∈ Cq+1(C). Now
consider the case of an S-complex C and assume that we have Sq = { sqj | j = 1, 2, . . . , rq }.
Then the chains z, ui, and c can all be represented as linear combinations in the form

z =

rq∑
j=1

zjs
q
j , ui =

rq∑
j=1

uijs
q
j , c =

rq+1∑
k=1

yks
q+1
k .

Due to

∂sq+1
k =

rq∑
j=1

akjs
q
j ,

where we use the abbreviation akj = κ(sq+1
k , sqj), one obtains

∂c =

rq∑
j=1

(
rq+1∑
k=1

akjyk

)
sqj ,

which implies that (5) can be rewritten as

(6) zj =
n∑
i=1

uijxi +

rq+1∑
k=1

akjyk for j = 1, 2, . . . rq .

This reformulation is a system of rq equations in n + rq+1 unknowns. We would like to
point out that the worst case complexity of solving such a linear system is supercubical,
and that in general it is difficult to solve the system significantly quicker. This poses a
serious obstacle when the numbers rq are large.

Again, if some ω-reduction Cω of the S-complex C is significantly smaller, then it turns
out to be advantageous to transport the generators ui and the chain z to the reduced
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complex Cω via the map ψω, which was introduced at the end of the last section. Once
this has been done, one can solve the equation (6) in the reduced complex Cω, and then
finally transport the solution back to the original complex C via the map ιω. As in the
case of constructing homology generators, this only makes sense if the involved generator
transport can be implemented efficiently.

3.2. The Cost of Transporting Chains. In order to assess the actual cost of the
generator transport, define the length of a chain c ∈ R(S) by

lS(c) := |{ s ∈ S | 〈c, s〉 6= 0 }| ,

the weight of a generator s ∈ S by

wS(s) := max(lS(∂s), lS(δs)) ,

and finally the weight of the set S by

w(S) := max {wS(s) | s ∈ S } .

In order to keep the notation as simple as possible, we will drop the index S in the
definitions of lS and wS in the following, as long as the set S is clear from the context.
With these notations, we can now assess the cost of the generator transport.

Theorem 3.1. Consider the situation of Definition 2.10. Then the cost of computing the
image of a chain under the maps ψω or ιω is bounded by O(|S|2). If however, in addition,
all reduction pairs are actually S-reduction pairs, then the cost of computing the image of
a chain under the maps ψω or ιω is bounded by O(|S| · w(S)).

Proof: We assume that chains are represented as vectors of their expansion coefficients.
Under such a representation the cost of modifying a chain c by adding or subtracting
another chain d is bounded by O(l(d)), the cost of evaluating 〈c, s〉 for a generator s ∈ S
is constant, and the cost of evaluating 〈∂c, a〉 = 〈c, δa〉 is bounded by O(w(a)). It then
follows from (3) and (4) that the cost of finding the image of a chain c under either the
map ψ(a,b) or the map ι(a,b) is bounded by O(max(w(a), w(b))). Therefore, the cost of
computing the image of a chain c under ψω or ιω is bounded by

O(max(w1(a), w1(b)) + max(w2(a), w2(b)) + · · ·+ max(wn(a), wn(b))) ,

where wi(s) denotes the weight of s in the chain complex Ci. In the case of general
reduction pairs, we then obtain the estimate

max(wi(a), wi(b)) ≤ |S| ,

which immediately furnishes the bound O(|S|2) for the total cost, due to n ≤ |S|. On the
other hand, if all involved reduction pairs are actually S-reduction pairs, one can readily
see that

max(wi(a), wi(b)) ≤ max(wS(a), wS(b)) ≤ w(S) ,

and therefore in the case of S-reduction pairs, one obtains the upper bound O(|S|w(S))
as an estimate of the total cost. �
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function HomologyModel(S-complex S)
begin

Q :=empty queue of generators;
M :=empty list of generator pairs;
s :=a generator in S0;
enqueue(Q,s);
while Q 6= ∅ do begin

s := dequeue(Q);
if bdS s contains exactly one element t then begin

S := S \ {s};
foreach u ∈ cbdS t do

if u 6∈ Q then enqueue(Q, u);
S := S \ {t};
enlist(M, (s, t));

end
else if bdS s = ∅ then

foreach u ∈ cbdS s do
if u 6∈ Q then enqueue(Q, u);

end;
return (M,S);

end;

Table 1. Coreduction homology model algorithm.

3.3. Homology Models. Based on the above discussion, we can now present the defi-
nition which lies at the center of the methods discussed in this section.

Definition 3.2. Let (S, κ) denote an S-complex over a ring R. Then a coreduction homol-
ogy model for S is a reduction sequence M := {(ai, bi)}i=1,2,...n such that the pair (ai, bi) is
an S-reduction pair in the complex Si−1, where the S-complexes Si are defined recursively
by

S0 := S , and Si := Si−1 \ {ai, bi} for i = 1, 2, . . . , n .

We use the abbreviation SM for the last S-complex in the sequence {Si}, and we call this
S-complex an M -reduction of S in the following.

The coreduction homology algorithm presented in [23] can now be adapted to lead to
the construction of coreduction homology models. We present the resulting algorithm in
Table 1, and deduce the following result concerning its validity. The proof is based on a
straightforward adaptation of the proof of Theorem 6.2 in [23] and is left to the interested
reader.

Theorem 3.3. Let S denote a non-empty S-complex. If the algorithm presented in Table 1
is applied to S, then it returns a pair (M,S ′) where M is a coreduction homology model
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of S and S ′ = SM . Moreover, assuming S is stored in a bitmap, the complexity of this
algorithm is O(|S|w(S)2).

3.4. Coreduction Homology Algorithm for Inclusions. Theorem 3.1 indicates that
when an S-complex S admits a small homology model, then the approach proposed in
Section 3.1 for the two steps discussed at the beginning of this section may indeed speed
up computations. For the complexity results presented in the rest of the paper we denote
the number of generators in a basis of H(S) by g(S). We also consider the class Sδ of
S-complexes such that for some constant K > 0 and every S-complex S ∈ Sδ

w(S) ≤ K,(7)

|SM | ≤ |S|δ,(8)

where M is the homology model of S provided by the algorithm in Table 1. Note that (7)
is satisfied for instance in the class of cubical complexes of fixed dimension and all their
S-subcomplexes. A class of S-complexes satisfying (8) is discussed in [23]. Numerical ex-
periments indicate that in many situations δ may be taken quite small. This is important
because of the following straightforward proposition.

Proposition 3.4. For S ∈ Sδ the complexity of finding the homology model M of S
followed by applying Smith diagonalization to the matrix of the boundary map of SM or
any other matrix of the size of the boundary matrix of SM is

O(|S|γ(δ)),

where

γ(δ) := max(1, αδ).

and α = 3.376.. is the complexity exponent in the Smith diagonalization algorithm. In
particular, if δ ≤ 1/α then the complexity is linear.

We are now ready to analyse the algorithms and their complexity for the two steps
discussed at the beginning of this section. For the first step we recall that in order to
obtain a basis of H(S) it is enough to find such a basis UM in H∗(S

M), and then lift this
basis back to H∗(S) via the map ιM . Therefore, Theorem 3.1 leads to the following result.

Theorem 3.5. Given an S-complex S ∈ Sδ, a basis of H(S) may be computed in time

O(g(S)|S|γ(δ)).

Proof: Let S ∈ Sδ. By Theorem 3.3 the cost of constructing a homology model M of
S does not exceed C1K

2|S| for some C1 > 0. To find the basis of H(SM) it is enough
to apply Smith diagonalization to the boundary map in SM , so the cost does not exceed
C2|SM |α ≤ C2|S|αδ. By Theorem 3.1 the cost of transporting g(S) homology generators
is g(S)C3K|S|. Therefore, the total cost does not exceed

C1K
2|S|+ C2|S|αδ + g(S)C3K|S| ≤ (C1K

2 + C2 + C3K)g(S)|S|γ(δ),

which gives the required conclusion. �
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function CoefficientVector(S-complex S, homology model M ,
homology basis UM , chain z)

begin
z′ := ψM(z);
D :=the matrix of the boundary operator in SM ;
solve z′ = UMx+Dy for x, y;
return x;

end;

Table 2. Coefficient vector through a homology model.

function HomologyInclusion(S-integer q, S-complex S,
homology model M , homology bases V, UM)

begin
Q :=empty sequence of vectors;
for i := 1 to V.length do

Q[i] :=CoefficientVector(S,M,UM , V [i]);
endfor;
return Q;

end;

Table 3. Coreduction homology algorithm for inclusions.

The second step is formalized in the algorithm presented in Table 2, and the following
result confirms its correctness and provides its complexity. The proof of correctness is
straightforward and the complexity analysis is similar to the proof of Theorem 3.5 and is
left to the reader.

Proposition 3.6. Let S denote a non-empty S-complex, let M denote a coreduction
homology model for S, let UM denote a basis for the homology group Hq(S

M), and let z
denote a cycle z ∈ Zq(R(S)). Then the algorithm in Table 2, when applied to this input
data, returns the coefficient vector of the decomposition of the homology class of z with
respect to the basis ιM(UM) of Hq(S). The complexity of the algorithm is O(|S|γ(δ)).

Despite the simplicity of the two above algorithms, they form the core of the coreduc-
tion algorithm for the homology computation of inclusion maps, presented in Table 3.
Altogether, we have now deduced the following result in which the complexity analysis is
similar to that in Theorem 3.5 and is skipped.

Theorem 3.7. Let S denote a non-empty S-complex and let M denote a coreduction
homology model for S. Furthermore, let V denote a set of generators for a closed S-
complex T ⊂ S, and let UM denote a set of generators in SM . Then the algorithm in
Table 3, when applied to the listed input data, returns the matrix of the homology of the
inclusion ρ : T → S with respect to the bases induced by V and U := ιM(UM). The cost
of running this algorithm is O(g(T )|S|γ(δ)).
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Finally, taking into account the cost of constructing homology models and bases, we
obtain the following corollary.

Corollary 3.8. The cost of computing the map induced in homology by the inclusion
T ⊂ S of two S-complexes in Sδ is

O(max(g(T ), g(S))|S|γ(δ))).

4. Persistent Homology and An Extension

In this section we demonstrate how the coreduction algorithm for inclusion maps can
be applied to the computation of persistence intervals. As mentioned in the introduction,
the concept of persistent homology was introduced in [9, 33, 35, 38] and is aimed at
identifying and measuring the significant topological features in an increasing filtration of
topological spaces, and our persistence algorithm is described in Section 4.1. After that,
Section 4.2 introduces an extension of the persistence idea to two-sided filtration, which
will turn out to be useful for our applications in the next section.

4.1. Persistence Intervals. The concept of persistence is aimed at identifying and mea-
suring the significant topological features in an increasing filtration of topological spaces.
See for example [8, 14] for an introduction. In our situation, we will consider an increasing
sequence of S-complexes. As one moves through such a sequence, non-trivial homology
generators will be generated and destroyed. Persistent homology keeps track of the birth
and death of these generators by furnishing associated persistence intervals. These inter-
vals allow one to study significant topological features which exist over many spaces in
the filtration, i.e., over large persistence intervals. To briefly illustrate the main ideas,
consider the example shown in Figure 1. In this figure we consider a filtration Xh which is
indexed by the height h, and which collects, for a given height h, all blue elementary cubes
(dark or light blue) below the level h. In the right half of the figure, the 0-dimensional
persistence intervals are shown. Each interval starts at the birth height of a new compo-
nent, and exists as long as the component persists. This implies that some of the intervals
are of finite length; in fact, these intervals correspond exactly to components which merge
with other components for increasing h. The remaining intervals are unbounded, and they
correspond to essential homology classes, i.e., homology classes which are still present in
the largest complex of the filtration.

In order to describe our approach to the computation of persistence intervals, we con-
sider a sequence S = (S1, S2, . . . , Sn) of S-complexes. We say that S is a filtration, if
Si ⊂ Si+1 and Si is closed in Si+1 for all i = 1, 2, . . . , n − 1. Following Edelsbrunner,
Letscher, and Zomorodian [9], for i < j one can then define the (i, j)-persistent q-th
homology group of S via

PH i,j
q (S) := Zq(S

i)/
(
Bq(S

j) ∩ Zq(Si)
)
.

The (i, j)-persistent Betti number of the filtration S in dimension q is then the rank of the
group PH i,j

q (S), and is denoted by βi,jq . The following proposition, which was originally
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-persistence0¯

Figure 1. Regular β0-persistence for an artificial cubical filtration Xh. If h
denotes a fixed height, then Xh consists of all points in the light or dark
blue region on the left which are at most at height h. Thus, the dark blue
region is Xh1 , and the union of dark and light blue corresponds to Xh2 . The
β0-persistence intervals are shown on the right in red, essential persistence
classes are indicated by arrows.

established by Zomorodian [38], can then easily be obtained for the case of arbitrary S-
complexes, and we omit the straightforward proof. Similar results in the context of size
functions can be found in [2].

Proposition 4.1. Let S = (S1, S2, . . . , Sn) denote a filtration of S-complexes, and denote
the inclusion maps corresponding to Si ⊂ Sj by ρi,j : Si → Sj. Then the (i, j)-persistent
q-th homology group PH i,j

q (S) of S is isomorphic to the image of Hq(ρ
i,j).

This result takes on a particular nice form if the ring R is actually a field. In this case,
it can readily be seen that

βi,jq = rank ρi,jq .

It was demonstrated in [39, Definition 3.2] that the collection of homology mod-
ules H∗(S

j)j=1,2,...n, together with the homomorphisms ρj,j+1
∗ : H∗(S

j)→ H∗(S
j+1), forms

a so-called persistence module. For the specific case of R being a field, this module is in
one-to-one correspondence with an R[t]-module of the form

m⊕
l=1

tilR[t]/
(
tjl−il

)
,

for some uniquely determined sequence of intervals (il, jl) with integer endpoints satisfying
il < jl. See [39, Theorem 3.1, Corollary 3.1] for more details. Given a pair of integers (i, j),
one can then define the number of (i, j)-persistence intervals in S as

pi(S, i, j) := pi(i, j) := card { l ∈ Z | 1 ≤ l ≤ m and (il, jl) = (i, j) } .
In practice, the number pi(S, i, j) gives the number of homology generators which start (or
are born) at level i in the filtration, and which survive exactly until level j − 1 (at which
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function PersistenceIntervals(filtration of S-complexes S, integer q)
begin

n := S.length;
for j := 1 to n do

(M [j], SM [j]) :=HomologyModel(S[j]);
UM [j] :=HomologyBasis(q, SM [j]);
U [j] := ιM [j](U

M [j]);
if j > 1 then

A[j − 1] :=
HomologyInclusion(q, S[j],M [j], U [j − 1], UM [j]);

endif ;
endfor;
Q := identity matrix;
for j := 2 to n do

(A[j − 1], Q) :=RowEchelon(A[j − 1] ∗Q);
C := identity matrix;
for i := j − 1 downto 1 do

C := C ∗ A[i];
β[i, j] :=rank C;

endfor;
endfor;
for j := 2 to n do

for i := j − 1 downto 1 do
p[i, j] := β[i, j − 1]− β[i− 1, j − 1]− (β[i, j]− β[i− 1, j]);

endfor;
endfor;
return p;

end;

Table 4. Coreduction homology algorithm for persistence intervals.

point the homology generator dies); see also [38, Section 3.3]. Using the interpretation
of βi,jq in terms of homology generators, one can now easily verify that for a field R we
have

(9) piq(i, j) =
(
βi,j−1q − βi−1,j−1q

)
−
(
βi,jq − βi−1,jq

)
,

see also [8, p. 152]. In other words, finding the collection of all persistence intervals of
the filtration S can be reduced to computing the numbers βi,jq . Since this in turn reduces
to determining the rank of the homologies of inclusion maps, the applicability of the
coreduction algorithm of the previous section is evident. We would like to point out that
the above function piq(i, j) has been studied in the context of size functions under the
name of multiplicity of cornerpoints. See [11, 18] for more details.
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The specific algorithm which applies coreduction homology models to the computation
of persistence intervals is presented in Table 4. Apart from the algorithms described in
this paper, it makes use of two standard algebraic algorithms. The first is HomologyBasis.
It takes an integer q and an S-complex S on input and returns a basis of Hq(S) in the
form of a matrix in which basis elements are stored as columns of the matrix. The other
algorithm is RowEchelon. It takes a matrix A on input and returns a pair of matrices
(A′, Q) such that A′ is in row echelon form and

(10) A′ = Q−1A.

Let us emphasize again that although the construction of basis and bringing to row
echelon form are purely algebraic algorithms of cubical complexity, they are applied to
the coreduction homology models. This results in efficiency gains if the homology models
are small when compared with the size of the original problem. Altogether, we have the
following result.

Theorem 4.2. Let S = (S1, S2, . . . , Sn) denote a filtration of S-complexes, and let q
denote an integer. Then the algorithm in Table 4 applied to this input data returns a lower
triangular matrix p such that p[i, j] denotes the number of (i, j)-persistence intervals in S
in dimension q. If all Si ∈ Sδ, then the complexity of this algorithm is

(11) O
(
n2|Sn|γ(δ) max { g(Si) | i = 1, 2, . . . , n }

)
.

Proof: Using (10) it is straightforward to verify that on the i-th pass of the internal
for loop and j-th pass of the second external for loop the C variable contains the matrix
of the inclusion map ρi,j, transformed into row-echelon form for quick determination of
its rank. Therefore, the first part of the conclusion follows from (9). If all Si ∈ Sδ, then
by the results of Section 3.4 we can estimate the cost of one pass of the first, second and
third external for loop respectively by

C1|Sn|+ C2|Sn|αδ + C3|Sn|max
i
g(Si) + C4|Sn|γ(δ) max

i
g(Si),

C5|Sn|γ(δ) + C6n|Sn|γ(δ),
C7n.

Since each of the three external loops is executed at most n times, we obtain the total
estimate (11). �

Our algorithm provides an alternative to the persistence algorithm developed in [39] for
simplicial homology, which has been adapted to the case of cubical complexes in [26, 32].
In the context of zero-dimensional persistent homology, reduction methods have previously
been introduced in [12].

4.2. Extended β0-Persistence. Despite the fact that persistence has been applied suc-
cessfully to many problems in the applied sciences, the information provided by the per-
sistence intervals does not always suffice. To see this, consider again Figure 1, which
gives a simple example of a “directed filtration” with respect to height, which is gener-
ated from the cubical complex X consisting of all light and dark blue elementary cubes.
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-persistence0¯  extended h { maxhYhX

h

maxh

h

Figure 2. Extended β0-persistence for an artificial cubical complex. If h
denotes a fixed height, then Xh consists of all points in the light or dark
blue region on the left which are at most at height h, and Yhmax−h contains
all points which are at least at height h. Thus, the dark blue region is Xh,
and the light blue corresponds to Yhmax−h. The extended β0-persistence
intervals for the essential homology classes are shown on the right in blue,
the regular ones for non-essential classes in red.

In this example, the persistence intervals clearly detect at which levels the components
of X appear for the first time, but their disappearance levels remain unknown, unless a
component merges with another component. Thus, the essential homology classes only
provide one part of the interesting information. For certain applications, however, the
missing piece of information is crucial; see Section 6.3 below.

Of course, finding the levels at which the components disappear can be achieved by
considering a new filtration Yh, which constructs the cubical set from top to bottom.
To be more precise, assume that we are given two filtrations Xh and Yh, for h-values
between 0 (without loss of generality) and hmax, and assume that these two filtrations
furnish the same maximal complex X = Xhmax = Yhmax . We are interested in the essential
homology classes , i.e., the non-trivial homology classes of the final complex X. More
precisely, we would like to determine the birth times of these classes in both filtrations.
Obviously, finding these birth times can easily be accomplished by performing two per-
sistence computations, one for each filtration. The problem is that in the end, we would
like to be able to match up the two birth times for a given generator. In general, this
cannot be easily accomplished, since the basis representations of the essential homology
classes may not be compatible. One approach based on Poincaré duality was presented
in [3]. For the applications which we have in mind, it is sufficient to consider the match-
ing for the 0-dimensional homology groups. It can easily be seen that in this case, the
basis transformation between the homology bases of H0(X) constructed via the Xh and
the Yh filtrations is always given by a permutation of a diagonal matrix. More precisely,
the implementation of the algorithm for inclusion maps described in the previous section
always returns bases for the 0-dimensional homology groups which are represented by a
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Size 1152 2048 3200 4608 6272 8192

graph approach 6.72 24.6 117 453 600 2680
coreduction approach 0.047 0.063 0.109 0.141 0.187 0.235

Table 5. CPU time in seconds of the computation of the matrix of ho-
mology inclusion based on the graph approach [19] (middle line) and the
coreduction approach (bottom line) for various rescalings (top line).

single vertex for each generator. Thus, the matching matrices which describe the basis
change to the homology basis given by the homology model for a set in the filtration is
a bijection which maps vertex subsets to vertex subsets — and therefore at every level
these matrices are permutations on subsets of vertices. Furthermore, both runs of the
persistence algorithm described above use the same homology model for the final com-
plex X = Xhmax = Yhmax . Thus, the matching can be done in a straightforward way by
the product of one permutation matrix and the inverse of another one. We would like to
point out that our notion of β0-persistence is more general than the one described in [3],
since in our situation the only requirement is the equality of the maximal complexes Xhmax

and Yhmax . No other restrictions have to be imposed on the filtrations Xh and Yh, which
opens the door for a variety of different applications.

Rather than describing the implementation in detail, we illustrate this idea using our
example from Figure 1. In Figure 2 we depict the definition of the two filtrations Xh

and Yh, which start at the bottom or top of the cubical set X, respectively. If we then
pair the birth time hb = hXb of a component of X with respect to the filtration Xh with
the level hd = hmax − hYb , where hYb denotes the birth time of the component in the
filtration Yh, then the interval [hb, hd] contains the desired information for the essential
homology classes. These intervals are shown in blue in Figure 2.

5. Numerical Experiments

In this section we discuss the performance of the coreduction homology algorithm for
inclusions and persistence based on numerical experiments with the implementation by
the first author [20].

5.1. The Coreduction Homology Algorithm for Inclusions. In order to test the
coreduction homology algorithm for inclusions we compared the implementation [20] with
the algorithm for homology maps based on [19] and implemented by P. Pilarczyk [41]. The
input consisted of a pair of cubical sets A ⊂ X in several rescalings with A homeomorphic
to a torus and X homeomorphic to a torus with an internal wall. The outcome of the
comparison performed on a 2.2 GHz Pentium processor with 2GB of RAM is presented
in Table 5. The same data is presented graphically in Figure 3.

5.2. The Coreduction Homology Algorithm for Persistence. In order to test the
coreduction homology algorithm for persistence we compared the algorithm in Table 4
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Figure 3. CPU time in seconds of the computation of the matrix of homol-
ogy inclusion based on the graph approach [19] (blue) and the coreduction
approach (yellow) for various rescalings. The bars are labelled with the
input size.

grid 1024× 1024

Input Size 178 176 352 256 526 336 700 416 874496 1 048 576
classical approach 38 278 405 693 742 3299

coreduction approach 11 53 122 214 333 470
speedup 3.5 5.3 3.3 3.2 2.2 7.0

grid 2048× 2048

Input Size 712704 1409024 2105344 2801664 3497984 4194304
classical approach 259 6558 24465 26502 27513 36187

coreduction approach 229 904 2063 3653 5619 8012
speedup 1.1 7.3 12. 7.3 4.9 4.5

grid 100× 100× 100

Input Size 200000 360000 520000 680000 840000 1000000
classical approach 291 1386 5061 17232 40474 60407

coreduction approach 25 139 571 1243 2601 4025
speedup 12. 10. 8.9 14. 16. 15.

Table 6. CPU time in seconds and the speedup factor for the computa-
tion of persistence intervals based on the classical approach [26] and the
coreduction approach [20].

with the classical, purely algebraic algorithm for persistent homology [9, 38]. The tests
were performed on a 3.0GHz Intel Xeon processor with 16GB of RAM.

We considered three data sets: A 17 level filtration on a 1024 × 1024 cubical grid, an
18 level filtration on a 2048× 2048 cubical grid, and a 25 level filtration on a 100× 100×
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grid 1024× 1024

Input Size 178 176 352 256 526 336 700 416 874496 1 048 576
classical approach 0.43 0.85 1.3 1.7 2.1 2.5

coreduction approach 0.23 0.25 0.26 0.29 0.30 0.33
decrease 2 3 5 6 7 8

grid 2048× 2048

Input Size 712704 1409024 2105344 2801664 3497984 4194304
classical approach 1.7 3.4 5.1 6.7 8.4 10.

coreduction approach 0.29 0.39 0.50 0.63 0.79 0.94
decrease 6 9 11 11 11 11

grid 100× 100× 100

Input Size 200000 360000 520000 680000 840000 1000000
classical approach 1.3 2.3 3.3 4.3 5.2 6.2

coreduction approach 0.23 0.26 0.28 0.30 0.32 0.34
decrease 6 9 12 14 16 18

Table 7. Memory usage in GB and the decrease factor for the computa-
tion of persistence intervals based on the classical approach [26] and the
coreduction approach [20].

100 cubical grid. For each data set we selected six subsets of varying size and ran the
implementation [20] of the algorithm in Table 4 and the implementation by V. Nanda [26]
of the classical persistence algorithm [9, 38]. The comparison of CPU time is gathered
in Table 6 and is also presented graphically in the left column of Figure 4. The average
speedup factor is respectively 4, 6 and 12 for the case of the 1024 × 1024, 2048 × 2048
and 100× 100× 100 cubical grid. Although there is not enough evidence to compare the
two algorithms asymptotically, it is clear that in the case of the input sizes accessible by
a typical or even top class present day personal computer, the coreduction algorithm for
persistence should be expected to perform significantly better than the purely algebraic
persistence algorithm. The coreduction algorithm also uses significantly less memory, as
indicated in Table 7 and in the right column of Figure 4.

6. Applications

In this final section of the paper we present three materials science oriented applications
based on the implementation [20] of the coreduction homology algorithm for persistent
homology.

6.1. Wavelength Characterization in Complex Patterns. Complicated patterns
that change with time can be observed throughout the applied sciences. In many cases,
these patterns lack a clear regular geometric structure which makes their quantitative
description and comparison difficult. This is particularly true for microstructures created
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Figure 4. Comparison of the CPU time in seconds (left column) and the
memory usage in kB (right column) for the grid 1024 × 1024 (top row),
the grid 2048 × 2048 (middle row) and the grid 100 × 100 × 100 (bottom
row) of the computation of persistence intervals based on classical approach
implementation [26] (green) and the coreduction approach implementation
[20] (orange). The bars are labelled with the input size counted in thou-
sands.

during phase separation processes in alloys. From a mathematical point of view, alge-
braic topology is a natural tool for obtaining such a quantification, and recent advances
in the algorithmic theory for homology have made it possible to determine homological
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invariants quickly, even for large data sets. The central question of course is whether
homological techniques can offer additional insight.

Only recently a number of studies have appeared that apply homological analysis to
problems in materials science, see for example [13], as well as the references therein. These
studies have concentrated on describing the topological complexity of time-dependent
patterns which are generated by partial differential equation models for phase separation.
Many of these models are phenomenological in nature, and trying to identify similari-
ties or — more importantly — differences between the microstructures obtained through
simulations and experimental data lies at the heart of model verification. In addition,
in many instances there are a variety of models that have been proposed for a specific
phenomenon, and one needs to understand their validity from a pattern formation point
of view.

Questions as the one described in the last section can be addressed successfully using
computational homology, as has been demonstrated in [13]. In this paper, numerically
computed microstructures are compared for two classical models of binary alloy phase sep-
aration — the deterministic Cahn-Hilliard and the stochastic Cahn-Hilliard-Cook model.
The solution u(t, x) to either partial differential equation determines the microstructure
determined by one of the two alloy components through the nodal domains

N±(t) = {x ∈ Ω : ±u(t, x) ≥ 0}

where u : R+
0 × Ω → R. By computing the homology of these nodal sets for a random

ensemble of solutions it was shown in [13] that the deterministic model differs significantly
from the stochastic model during the early phase separation stages, and that recent ex-
perimental data compares favorably to the stochastic model.

For the above study it was sufficient to determine the homology of the nodal domains
through the computation of Betti numbers. In many situations, however, more detailed
topological information is necessary, and the persistence algorithm developed in the cur-
rent paper can serve as such an improved tool in the cubical setting. As we will show
below, the use of β1-persistence turns out to be particularly useful. To illustrate this,
consider the viscous Cahn-Hilliard model [1, 27] given by

β · ut − (1− β) · ε2∆ut = −∆(ε2∆u+ f(u)) ,

on a square base domain Ω ⊂ R2 and subject to homogeneous Neumann boundary condi-
tions, where β ∈ [0, 1] is the viscosity parameter and ε is a small parameter modeling inter-
action length. This family of equations was proposed as a phase separation model which
takes into account interfacial forces, and in fact it serves as a homotopy between the clas-
sical Cahn-Hilliard model for β = 1 and the nonlocal Allen-Cahn model for β = 0. Similar
to [13], one is interested in a quantitative understanding of the nodal domains N±(t). Two
sample nodal domains are shown in the leftmost column of Figure 5 — the top image
corresponds to the Cahn-Hilliard model, while the bottom image was produced by the
nonlocal Allen-Cahn equation. It is evident that these patterns differ significantly, and
we now demonstrate how persistence can be used to quantify this difference. Fix a nodal
domain N , for example the one shown in the first image of the first row in Figure 5 in
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Figure 5. Sample Cahn-Hilliard (top row) and nonlocal Allen-Cahn (bot-
tom row) microstructures. In each row, the leftmost image shows the actual
microstructure, the next two images show dilated version with radii of r = 5
and r = 10 pixels, respectively.

dark blue. For r > 0 define the dilated nodal domain as the r-neighborhood

Nr = Br(N)

of the original microstructure. The filtration {Nr : r ≥ 0} serves as the basis for our
persistence computation. As r increases, new one-dimensional generators will be created
whenever pinch-offs occur in the dilated patterns. By keeping track of these generators,
one can determine quantitative size information on the holes in the microstructure.

For our application, the original nodal domains are given as a 512 × 512 pixel image,
and we choose the radius r in pixel increments. The results of a persistence computation
for the one-dimensional generators is shown in the top row of Figure 6 for the Cahn-
Hilliard (left) and the nonlocal Allen-Cahn (right) pattern. Both of these persistence
diagrams contain several hundred generator intervals, many of which correspond to short-
lived generators. Such generators arise for small r-intervals due to the curved interface
boundaries, and they will not contribute to our general understanding of the pattern
geometry. If we now discard all generators with existence intervals of length three or less,
we obtain the persistence diagrams in the second row of Figure 6. These diagrams show
that the Cahn-Hilliard pattern exhibits an almost uniform pattern wavelength, i.e., most
channels exhibit a thickness between 10 and 15 pixels. Furthermore, the large number
of generators indicates snake-like features with many high-curvature turns. On the other
hand, the nonlocal Allen-Cahn pattern lacks a clear well-defined wavelength and exhibits
considerably larger size holes (note the change of scale on the vertical axis).
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Figure 6. Dilation β1-persistence for the patterns shown in the left column
of Figure 5. In each case, the persistence parameter is the dilation radius r,
which is represented by the vertical axis. In the two figures in the top row,
all persistence intervals in dimension 1 are shown for the Cahn-Hilliard (left)
and the nonlocal Allen-Cahn (right) pattern. The bottom row shows only
the persistence intervals of length larger than 3. In all of these diagrams,
the horizontal axis enumerates the persistence intervals, while the vertical
axis represents the dilation parameter r.

6.2. Stress Networks in Polycrystals. Natural building stones such as marble are
widely used in both structural and decorative applications. However, many marbles show
limited durability. One such deterioration phenomenon is the bowing of marble panels,
which for example has been observed at the university library in Göttingen [37] or at the
Finland Hall in Helsinki [28] — in each case only a few years after the building’s com-
pletion. This bowing process is accompanied by a reduction of strength properties, and
can lead to the static failure of a facade with time. One major factor in such degradation
phenomena is thermal heating and cooling. Due to the anisotropic thermal expansion of
the underlying materials calcite and dolomite, stresses are created which lead to granu-
lar decohesion of the material with time. Similar effects have also been responsible for
microcracking in polycrystalline ceramics [34]. In both cases, regions with high maximal
principal stresses form complicated networks, and these networks and their topology play
a significant role in the creation of microcracks. From a practical point of view, it is desir-
able to understand the mechanism responsible for the network creation, and to quantify
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Figure 7. Maximal principal stress networks in alumina for different grain
misorientation distribution functions. From left to right the figures corre-
spond to misorientation distributions which result in predominantly low-
angle, in uniform, and in predominantly high-angle grain misorientation.
The dark blue regions in the top and bottom rows roughly correspond to
stresses above 20 MPa (megapascals) and 12 MPa, respectively.

the topology of the resulting network. If the high stress network covers a large portion of
the material, microcracking is more likely to occur.

From Figure 7 it appears that each network exhibits some characteristic width, or length
scale, whose appearance is somewhat surprising due to the lack of a well-defined length
scale in the underlying materials. Materials as the ones mentioned above are organized
in the form of grains: Even though each grain consists of the same crystalline material,
the grain orientations differ. Along the grain boundaries, the orientation mismatch of
adjacent grains results in stress formation due to thermal anisotropy, i.e., due to the fact
that the grains expand/contract differently depending on their orientation. Thus, one
would expect that the topology of the grain microstructure and the specific distribution
of the grain orientations are responsible for the stress network structure, and that the
highest stresses occur at the grain boundaries. Yet, the three stress networks shown in
Figure 7 are all for the same grain microstructure, and the specific distribution of the grain
orientations is the same in all three cases! A qualitative explanation of the differences in
the three networks has been given in [30]. Through rearrangement of the given set of grain
orientations, Fuller and Saylor generated misorientation distributions with predominantly
low angles, random angles, and predominantly high angles across the grain boundaries.
The corresponding stress networks are the ones shown in Figure 7 from left to right.
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Figure 8. Persistence diagrams for the three stress networks from Fig-
ure 7. The vertical axis corresponds to the threshold level θ, which is related
to the maximal principal stress σmax in MPa (megapascals) via σmax =
110− 100θ/255.

More recently, computational homology was used in [36] to develop a metric for dis-
tinguishing between these different stress networks and for relating their appearance to
the grain boundary misorientations. While we refer the reader to [36] for more details,
the results in this paper were obtained by applying Betti number computations to the
stress networks as a function of the stress level; see again Figure 7 for these networks at
two different threshold levels θ, which are related to the maximal principal stress σmax

in MPa (megapascals) via σmax = 110 − 100θ/255. It is evident from these images that
the provided stress data contains a large number of numerical artifacts which could lead
to spurious generators in the first dimension, and thus make a meaningful interpretation
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Figure 9. Eight sample drug polymer mixtures generated via phase field
simulations. In each sample, the stent surface is on the right vertical bound-
ary.

of the Betti number results impossible. In order to avoid this issue, the Betti numbers
in [36] were not computed for the patterns shown in Figure 7, but for smoothed versions.

Smoothing the stress networks is somewhat ad hoc, and while it does provide interesting
results, it would be desirable to work with the original data directly and dispense with the
artificial generators through topological methods. Exactly this can be achieved with the
persistence algorithm presented earlier. We apply this algorithm to cubical complexes Sθ
which contain all image pixels of stress level at least θ, for θ = 0, . . . , 255. The resulting
persistence diagrams, after the removal of topological noise (in this case, persistence
intervals of lengths smaller than 175 for the zero-dimensional case and 30 for the one-
dimensional one), are shown in Figure 8. Also in this case, the persistence diagrams can
quantitatively distinguish between the different stress networks, thus avoiding the need
for additional ad hoc smoothing techniques.

6.3. Topology of Controlled Drug Release Systems. Our final application is con-
cerned with the development of topological metrics for controlled drug delivery systems
such as drug-eluding arterial stents. In this setting, the drug is incorporated into a poly-
mer matrix which acts as a diffusion barrier and slows the rate of the drug release. These
drug-polymer coatings are usually fabricated by dissolving a homogeneous mixture of drug
and polymer into a solvent, and subsequently letting the solvent evaporate. Depending
on the materials and the precise manufacturing conditions the resulting drug-polymer
microstructure can exhibit a variety of complicated time-dependent structures. From a
practical point of view, one is particularly interested in developing metrics which can be
used to link the processing stage to the resulting microstructure and ultimately to the
drug release profiles. For this it is necessary to be able not only to distinguish between
topological differences of the microstructure, but also to describe the topology in a “di-
rectional sense.” Once a stent has been implanted, it will start to dissolve and release the
incorporated drug from the surface of the mixture downwards, and one has to be able to
characterize at which depths drug droplets appear, and up to which depths they extend.

In the recent paper [29] a model has been proposed for simulating the formation of
the drug polymer microstructure. For this, a small number of crystal particles are grown
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Figure 10. Extended β0-persistence intervals for the drug polymer mix-
tures of Figure 9.

into a phase separated matrix. This crystal growth process can take place in the context
of both nucleation and spinodal decomposition, depending on the concentrations of the
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involved components. The underlying model for this processing stage is a coupled system
of partial differential equations of Cahn-Hilliard and phase-field type, which describes the
evolution of the drug, polymer, and solvent concentrations, as well as the evolution of an
order parameter for distinguishing between amorphous and crystalline states. Some of
the resulting drug polymer microstructures are shown in Figure 9.

As we mentioned before, one can only hope to capture the topological information
necessary to distinguish the microstructures and the possible resulting drug release profiles
if the proposed metric does take into account the inherent directionality. We therefore
propose to use the concept of extended β0-persistence developed in Section 4.2, which is
based on the usage of two filtrations of topological spaces, rather than one. In our setting,
consider the increasing filtration Xh which consists of all points in the base domain which
are less then distance h from the top of the stents. For example, in the images shown
in Figure 9 this corresponds to all red pixels which are contained in a vertical slab of
width h pixels which extends from the right-hand side of the image to the left. Thus,
we have obtained an increasing filtration which extends up to a maximum width hmax. If
one computes persistence on this filtration, the zero-dimensional persistence interval for a
given component extends from the depth of origination until hmax, unless it merges with
another component. Thus, persistence of Xh can detect the appearance of components as
a function of height, but not the depth to which the component extends to.

In order to address this issue, extended persistence creates a second increasing filtra-
tion Yd, which in our case also contains all of the red pixels in a vertical slab of width d,
but this time the slab is aligned with the left edge of the image, i.e., the bottom side of
the stent. Notice that we have Xhmax = Yhmax , i.e., the largest cubical complexes in both
filtrations coincide. Now the further proceeding is clear. Computing persistence on the
filtration Yd allows one to determine the height h (measured from the right edge) at which
components disappear: If a component appears in for the first time in Yd, this component
disappears at height hmax−d. All one has left to do is to match the generators of the zero-
dimensional homology of the final complexes Xhmax and Yhmax , and this can easily be done
using the framework presented in this paper. The resulting zero-dimensional extended
persistence intervals for the microstructures of Figure 9 are shown in Figure 10. These
diagrams allow one to not only distinguish between different types of microstructures,
but also to analyze the depth information which is crucial for determining drug release
profiles. A more detailed analysis of this will be presented elsewhere.
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