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Abstract. In this paper we present our ongoing research on applying
computational topology to analysis of structure of similarities within a
collection of text documents. Our work is on the fringe between text min-
ing and computational topology, and we describe techniques from each
of these disciplines. We transform text documents to the so-called vector
space model, which is often used in text mining. This representation is
suitable for topological computations. We compute homology, using Dis-
crete Morse theory, and persistent homology of the Flag complex built
from the point-cloud representing the input data. Since the space is high-
dimensional, many difficulties appear. We describe how we tackle these
problems and point out what challenges are still to be solved.
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1 Introduction and existing work

With the growth of the Internet, efficient and accurate information-retrieval
systems are of great importance. Modern search-engines are able to quickly query
amounts of data counted in exabytes. Text mining aims at performing more in-
depth analysis, revealing some additional knowledge from the data.

Text mining methods often use graph-theoretical approaches [10]. Analysing
the connected components of the graph of similarities between pairs of docu-
ments is a simple example. From a topological perspective, such analysis operates
on 1-dimensional complexes (only pairs of documents are considered) and gives
0-dimensional topological information.

In general, higher dimensional relationships, i.e. relationships between larger
subsets of data, are sometimes used in data-mining. For example, the number of
triangles (3-cliques) is an important descriptor of the connectivity of a social or
collaborative network [6]. Rather than finding just the number of such higher-
dimensional elements, we would like to compute their topological structure.

We believe that mining a higher dimensional topological structure within a
set of text documents can give an important insight into the data. In general,
the current state-of-the-art topological methods are incapable of handling large
datasets in high dimensions, but efficient methods are being developed [14].
Still, we believe that experimenting with smaller, properly sampled data can
give interesting insights. For example, [3] shows that data coming from natural
images form a topological Klein bottle.



In the ongoing research, done in cooperation with Google, we use the tools of
computational topology to robustly analyse and compare text data. The goal is
to find meaningful topological patterns. This information can help understand
the global structure of the data. In a longer perspective, this knowledge can
be used in conjunction with the standard methods, improving the quality of
information-retrieval systems. This is a novel direction, as is the application
of computational topology in higher dimensions. In this paper we show how we
adapt existing topological methods and how we tackle computational difficulties,
exploiting certain properties of the data. The main question we seek to answer is
whether the current computational topology algorithms are capable of efficiently
handling reasonable amounts of text data.

For an introduction to computational topology see [5]. A paper by Carl-
son [3] is an important work, which shows that analysis of higher-dimensional
data can be meaningful. A number of papers dealing with lower-dimensional
spaces exist, but these techniques are hard or impossible to generalize to higher
dimensions [11]. A recent paper by Zomorodian [14] deals with building Rips
complexes of high dimensional data, which is also part of our computations.
A PhD thesis of Lewiner [9] describes the usage of Discrete Morse theory to
compute homology groups.

2 Background

2.1 Vector space model

We start with describing a way to map textual data into a representation which
allows us to use topological tools. Vector space model is a standard tool in infor-
mation retrieval and data mining [12]. A corpus, i.e. collection of text documents,
is mapped into points (or vectors) in Rn. These vectors are the so-called term-
vectors and each of them represents a single document, as described below. Each
dimension in this space corresponds to a single word (or term).

With each document in a corpus, we associate a term-vector [12], contain-
ing words characteristic of this document. In practice from 10 to 50 words
are extracted. While term-vectors do not fully describe the documents, they
roughly encapsulate the topic. Each term t contained in some document d in
corpus D is weighted according to the standard tf -idf [12] technique: w(d, t) =
tf(d, t) · idf(t), where tf(d, t) is the number of occurrences of word t in docu-

ment d, and idf(t) = log |D|
|{d:t∈d}| . Thus, more frequent words in a document are

weighted higher but this is offset by the global popularity of a given term. By P
we denote the array of term-vectors representing all the documents of the corpus
D. Each term-vector is associated with a unique integer, which is the index of
that term-vector in P .

In terms of implementation, each term in the corpus can also be assigned a
unique number, which represents the term. This is more efficient than storing
multiple copies of the string representations of the terms. Term-vector d ∈ P is
compactly stored as a sparse vector: we explicitly represent only the coordinates
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Dim 0 (e.g cats)

B = [(0,0.46),(1, 0.88)]

C = [(0,0.76),(1, 0.64)]

D = [(0,1)] 

φ

A = [(1,1)]

Fig. 1. Example of the vec-
tor space model. A two-
dimensional space is shown,
which means that only two
different words are extracted
from all documents. The sim-
ilarity between vectors B,C
equals cos(ϕ) = 0.46 · 0.76 +
0.88 · 0.64 = 0.91.

with non-zero weights. The actual data-structure representing term-vector d is
simply an array of pairs (index of t, w(d, t)). See Figure 1 for a simple example.
Note that, for brevity, we often identify a document with its term-vector.

Rather than using the Euclidean metric on this space, we use the so-called
cosine similarity measure. This is a natural choice, as this measure is a standard
text mining tool used to compare documents. The similarity between two docu-
ments (represented by term-vectors a, b), is given by sim(a, b) := cos(∠(a, b)) =
〈a,b〉

||a||||b|| . This formula requires computing square roots, which is costly. We will

store normalized (according to Euclidean norm) term-vectors and equivalently
compute similarity as:

sim(a, b) = 〈a, b〉

Cosine similarity quantifies the closeness of topics of two documents [12].
The values range from 0 (completely unrelated topics) to 1 (identical topic).
Note that the constructed space (equipped with the cosine similarity measure)
is not a metric space. Later we will use a weight function d(a, b) := 1−sim(a, b),
which is also not a metric, as the triangle inequality is not satisfied.

We have to distinguish between extrinsic (embedding) and intrinsic dimen-
sion of the space. In this case, the extrinsic dimension, R, is large, equal to the
number of unique words in the dataset, which can reach tens of thousands to
several millions in practical applications. It is typically assumed that the intrin-
sic dimension is significantly lower, which prevents the curse of dimensionality
from making the computations infeasible. Another important property of data
coming from real-world text corpora is that the frequency of word occurrences
follow the Zipf distribution [13]. It assumes that the frequency of an r-th most
common word is expressed as: P (r) = R

rln(cR) , where c is some constant which

depends on the corpus. This distribution is far from uniform – intuitively, the
most common words apear much more often than the others.

Also, note that due to very high extrinsic dimensionality, the space is very
sparse (empty) in practice. Another observation is that the number of keywords
extracted from each document is relatively small. In practice, this number is cho-
sen between 10-50. So, for each term-vector, the number of nonzero coordinates
is small, compared to the number of zero coordinates. Therefore, the similarity
between two randomly chosen term-vectors should be zero most of the time,
since the support of these vectors is disjoint. These facts suggest that this space



behaves differently than the Euclidean space, where the distance between any
two points is finite (intuitively, zero similarity corresponds to infinite distance).
In practice, this effect is offset by the Zipf distribution – more popular words
increase the number of pairs of documents with nonzero similarity.

The described properties of the data are important, as they reduce the num-
ber of large cliques appearing during computations. This makes topological com-
putations based on flag complexes, as described in the following section, more
feasible.

2.2 Computational topology

First, we would like to outline the computations we perform. We are interested in
computing homology and persistent homology of the space describing similarities
between the documents in a corpus. Representing the textual data in the vector
space model yields a point-cloud, allowing us to use topological tools. Starting
from the point-cloud we will construct a simplicial complex called a flag complex,
which encodes higher dimensional topological information, and can be viewed
as a higher-dimensional analog of a graph. Since the complex can be large,
we simplify it, using Discrete Morse theory. This step retains the topological
information. Finally, we compute homology on the reduced complex.

A finite collection of sets, S, is an abstract simplicial complex if for every
t ∈ S and for every s ⊂ t we have s ∈ S. Every element t ∈ S is a simplex and its
dimension is defined as card(t)− 1. By Sk we denote the k-skeleton of complex
S, i.e. all simplices in S with dimension ≤ k. If p ⊂ q and card(q)− card(p) = 1,
we say that p is a face of q and q is a co-face of p. (Co-)boundary is the set of
all (co-)faces of a simplex. A simplex of dimension 0,1,2 is respectively: a vertex,
an edge and a triangle.

An ε-graph imposed by the similarity measure sim on the collection of term-
vectors P is defined as G = (P,E), where E = {(a, b) ∈ P×P | 1−sim(a, b) ≤ ε}.
In other words, edges connect pairs of documents with similarity above certain
threshold. In general, for graph G = (V,E), a subset V ′ ⊂ V is a clique if
for every v1, v2 ∈ V ′, (v1, v2) ∈ E. Flag complex of graph G is defined as:
S(G) := {V ′ ⊂ V | V ′ is a clique in G}. In other words, the flag complex of
graph G is the maximal simplicial complex having G as its 1-skeleton.

3 Construction of flag complex

The flag complex, as well as the so-called Vietoris-Rips complex (see [5]), is a
standard tool used to perform topological data analysis [3]. In this section we
describe an efficient bottom-up technique to obtain flag complexes. The pre-
sented technique avoids the usage of associative data structures, which incur a
significant performance penalty. We designed the code to use only vectors (dy-
namically growing arrays as in the C++ Standard Library) which are fast due
to good caching properties.



The complex building phase is similar to the construction of Vietoris-Rips
complex presented in [14]. Since in Section 4 we are focused on computing Morse
complexes, we require fast access to the (co-)boundary of each simplex, which
is not included in the cited paper. We use the name flag complex instead of
Vietoris-Rips complex, as the latter assumes a metric function.

The input to the algorithms presented in this Section is the array P together
with the similarity function sim. Let us first describe the data structure we
use to store simplices. Each simplex s has a vector vertices storing the 0-
dimensional simplices (which correspond to indices of term-vectors) that belong
to s. Moreover, it has a vector boundary, containing the faces of s.

During the construction we also use vectors coboundary and neigh. Vector
s.neigh contains the vertices adjacent to all vertices in s, with the additional
property that for each i ∈ s.neigh i > max{s.vertices}. We assume the the
entire simplex is created by its maximum vertex. Importantly, we exploit this
property in the algorithms to ensure that each simplex is created only once
(when the maximal vertex is processed). SimplicialComplex, stores a vector of
pointers to simplices separately for each dimension. Algorithm 1 shows how we
build the 1-skeleton of the constructed flag complex.

Algorithm 1 CreateOneSkeleton

Input: array P of term-vector, double ε
1: verts = array of simplex*;
2: for i = 0 to P .size do
3: verts[i] = new simplex();
4: verts[i].vertices = i;
5: for i = 0 to P .size do
6: verts[i].neigh = ComputeNeigh(i , P , ε);
7: SimplicialComplex[0] = verts;
8: edges = array of simplex*;
9: for for i = 0 to vert.size do

10: for j = 0 to vert[i].neigh.size do
11: simplex* edge = new simplex;
12: edge.boundary = (vert[i], vert[i].neigh[j]);
13: vert[i].coBoundary.add(edge), vert[i].neigh[j].coBoundary.add(edge);
14: edge.vertices = (vert[i], vert[i].neigh[j]);
15: edge.neigh = vert[i].neigh ∩ vert[i].neigh[j].neigh;
16: edges.add(edge);
17: SimplicialComplex[1] = edges;

ComputeNeigh algorithm computes the ε-neighborhood of a given vertex
with a constraint that it returns only vertices with indices higher than the index
of the considered vertex. For the time being, we assume that it just iterates
through all the vertices, computes the similarity and rejects the vertices cor-
responding to documents with similarity below the threshold. This makes the
complexity of the entire Algorithm 1 quadratic. Since, in practice, the output



graph is sparse, the complexity can potentially be reduced. We are investigating
methods of computing ε-graphs, such as cover trees [2], which are more suitable
for this type of data. Some efficient techniques for metric spaces are reviewed
in [14].

Once the 1-skeleton of the complex is created, we proceed with the creation
of higher dimensional simplexes, as described in Algorithm 2. In terms of com-
putational complexity, the entire constructed flag complex can be exponential
in the number of vertices of the input. This is related to the fact, that the total
number of cliques is pessimistically exponential. In practice, we are interested
in computing the complex only up to a certain, small dimension, which yields
polynomial worst-case complexity. The actual performance is heavily dependent
on the data.

Algorithm 2 CreateHigherDimensionalSimplices

Input: array initial of simplex*, int dim
1: new elements = array of simplex*;
2: for i = 0 to initial.size do
3: for j = 0 to initial[i].neigh.size do
4: simplex* new simplex = new simplex();
5: new simplex.neigh = initial[i].neigh ∩ initial[i].neigh[j].neigh;
6: new simplex.vertices = initial[i].vertices ∪ initial[i].neigh[j]
7: initial[i].coboundary.add(new simplex);
8: new simplex.boundary.add(initial[i]);
9: for each bd ∈ initial[i].boundary do

10: for each cbd ∈ bd.coboundary do
11: if cbd 6= initial[i] and initial[i].neigh[j] ∈ cbd.vertices then
12: cbd.coboundary.add(new simplex);
13: new simplex.boundary.add(cbd);
14: new elements.add(new simplex);
15: SimplicialComplex[dim] = new elements;

4 Morse-Flag complexes

In this section we show how to use Discrete Morse theory [7] to compress the
Flag complex during its construction. Iterating Morse complex computations
(see Algorithm 3) yields the absolute Z2 homology of the considered complex
(see Theorem 1). Exploiting this property, we do not have to generate boundary
matrices required for algebraic computations, which tend to be costly in terms
memory and time. Note that using Z2, rather than Z, coefficients simplifies the
computations, but prevents us from capturing the so-called torsion (see [5])
in homology groups. As in the algorithm described in Section 3, during the
construction in dimension n, we need to store n − 1 and n − 2 dimensional
elements, which enables us to reduce memory usage.



Theorem 1. Let S be the input complex. We build a Morse complex of S and
iterate Morse construction, as long as some Morse pairing exist. Let |Sn| denote
the number of n-cells in the final Morse complex. Then dim Hn(S,Z2) = βn(S) =
|Sn|.

Proof. Since, in general, the Morse complex obtained in the described construc-
tion is not a simplicial complex, we use a more general algebraic Morse theory
(see Section 11.3, [8]). Compared to the setting of Forman [7], the important
difference is that during the matching between cells a and b, where a is a face of
b, we want the incidence coefficient (κ(a, b), see [8]) to be invertible. However,
in case of field coefficients, for a being a face of b we have κ(a, b) 6= 0, so it
is invertible in the field. We can instantly read the Betti numbers if every cell
has empty boundary and coboudary (this is a consequence of the definition of
homology groups).

Now by contradiction, let us assume that βn(S) 6= |Sn| and there are no
more Morse pairings to be made. Therefore, from Morse inequalities, we have
that βn(S) > |Sn|. If all elements from Sn have empty both boundary and
coboundary, then from the previous paragraph we get the contradiction, since
βn(S) > |Sn| = βn(S). Therefore some elements form Sn need to have nonempty
boundary or coboundary. But then a Morse pairing can be made between these
elements, which leads to a contradiction.

ut

In Algorithm 3 we describe the compression of the initial complex to a Morse
complex. The procedure doMorsePairings(C, d) performs Morse pairings in a
complex C under a constraint that the dimension of every element in a pairing
is ≤ d. The procedure computeMorseComplex(C, V ) computes the boundary
coefficients between critical cells (see [7, 8] for the theory and also [9] for algo-
rithmic details) and removes from C all the non-critical elements (i.e. elements
from V ). The procedure stops execution when there are no more pairings to
be done in the complex. We want to point out that only the d − 2-dimensional
skeleton of the constructed complex is modified, because we need the simplices
in dimension d− 1 and d in order to build the higher dimensional skeleton. This
algorithm should be called for each step of construction in Algorithm 2.

Algorithm 3 IteratedComputationOfMorseComplex

Input: C - initial complex
Output: C - reduced Morse complex
1: dim = dimension of C;
2: while true do
3: n = size(C);
4: List of Morse pairings V = doMorsePairings(C , dim− 2);
5: computeMorseComplex( C,V );
6: if size(C) == n then
7: return C;



5 Experiments

We have developed and tested a C++ implementation which includes the algo-
rithms outlined above. To compute homology and persistent homology, we use
the standard matrix reduction method [5], with the twist by Chen and Kerber [4].
For experiments we sample the corpus of the English Wikipedia [16], processed
using Python library gensim [17].

There are two main parameters of our software. Parameter dim controls
the maximum dimension of the constructed complex. As a result, homology is
computed up to dimension dim-1. The second parameter is ε ∈ [0, 1], which
means that only edges (a, b) with sim(a, b) ≥ 1− ε are included in the skeleton.
These parameters reduce the amounts of computations.

While in the worst case computing persistent homology takes cubic time,
the reduction algorithm is typically assumed to take linear time in practical
situations [4]. Judging from our experiments, the behavior is definitely super-
linear, probably roughly quadratic (in the size of the complex) for dimensions
≥ 3 (see Figure 2:left). For dimension < 2 the time required to build the complex
dominated over the persistence computations. Therefore, for higher dimensions
the reduction algorithm is clearly the computational bottleneck. Additionally
the number of cells grows super-linearly in the input size, but it is strongly
dependent on the chosen ε.
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Fig. 2. Left: Runtime (in seconds) of the reduction algorithm for dimension 4. The
behaviour appears to be quadratic, which is emphasised by fitting a degree two polyno-
mial. Right: Persistence diagram for a complex containing 0.8M cells (we can assume
1 for infinity, since we know that at this point the skeleton would become a complete
graph with all the cliques present). The curve in the lower part of the diagram repre-
sents a normalized cumulative sum of persistence values. It helps visualize the region
of values for which features of relatively large persistence appear.

The observed quadratic behavior is important in the context of finding effi-
cient methods of computing persistent homology. Recent research suggest that
simplifying the input complex using discrete Morse theory can increase efficiency.



In practice, the significant advantage is in terms of memory usage [15]. Morse
simplification, which exhibits roughly linear behavior, in most cases took more
time than computing persistence of the original, unreduced, complex.

The observed quadratic behaviour is a good motivation for further develop-
ment of algorithms based on discrete Morse theory. In case of textual data, such
methods could help increase both the memory and time efficiency of persistence
computations. Currently published methods are limited to dimension ≤ 3, but
we are aware of ongoing research promising methods working in general dimen-
sion.

Our attempt to compute standard homology using discrete Morse theory
was not very effective as the reduction factor was only about 10 − 20%. This
is surprising, since the homology appears to be simple, which would suggest a
large reduction factor. We plan to investigate this issue further.

As shown in Figure 2:right, the 1-dimensional topology is quite uninteresting
until the filtration value around 0.8. It means that only after introducing edges
with similarity ≤ 0.2, do many features of larger persistence start to appear.
On the other hand, we measured that the highest-dimensional cells are the most
abundant in the complex. It appears that cells rarely cluster to create homolog-
ical features of non-zero persistence. Note that in our setting a boundary of a
single simplex either remains a cycle ’forever’ (which actually means it is killed
at value 1, so persistence equals 1−birth) or is filled instantly (zero persistence).
Experiments in higher dimensions (but for much smaller datasets) back up this
statement.

These observations suggest that features of non-zero persistence capture, let
us call it, semi-similar sets of documents. By that we mean sets of documents
which are similar enough to create a, say, p-dimensional cycle, but there are
no additional documents similar enough to fill this cycle (for a given similarity
threshold). Consequently, persistence can be viewed as the measure of discrep-
ancy between the inter-similarity of a set of documents, and and its certain
superset.

Analysis of the 1-dimensional persistence suggests two explanations of the low
number of features of non-zero persistence. 1) The similarities are very strong,
many large cliques appear and most lower-dimensional features have zero per-
sistence. 2) The similarities are strong only locally - almost all appearing cycles
are boundaries of a single simplex, so their persistence is 0 (if they are killed).
To verify this hypothesis experiments in higher (> 4) dimensions should be run.
The behaviour of persistence in higher dimensions might also be different, which
makes it interesting to check.

6 Summary

The main purpose of this paper is to challenge the current computational topol-
ogy tools with large text datasets represented within the vector-space model.
The experimental results show that these methods lack efficiency. Specifically,
the algorithm for persistent homology exhibits quadratic behaviour in the size of



the constructed complex, which prevents our approach from scaling for realistic
amounts of data. Interestingly, to the best of our knowledge, this is the first
dataset exhibiting quadratic scaling, which comes from an application.

The experiments we were able to conduct did shed some light on the lower-
dimensional topological structure of the dataset. In our future research we would
like to answer some of the questions posed in the previous section as well as try
to verify the efficiency of different computational methods.
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