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Abstract

A cohomology ring algorithm in a dimension-independent frame-
work of combinatorial cubical complexes is developed with the aim of
applying it to the topological analysis of high-dimensional data. This
approach is convenient in the cup-product computation and motivated,
among others, by interpreting pixels or voxels in digital images as
cubes. The S-complex theory and so called co-reductions are adopted
to build a cohomology ring algorithm speeding up the algebraic com-
putations.
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1 Introduction

In the past two decades, homology and cohomology theory have gained
vivid attention outside of the mathematics community prompted by modern
applications in sciences and engineering. The development of a computa-
tional approach to these theories is motivated, among others, by problems
in dynamical systems [18], material science [5, 8], electromagnetism [14, 9],
geometric modeling [10], image understanding and digital image process-
ing [1, 3, 12, 16, 23]. Conversely, that development is enabled by progress
in computer science. Although algebraic topology arose from applications
and has been thought of as a computable tool since its early stage, prac-
tical implementations had to wait until the modern generation of powerful
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computers due to the complexity of the operations involved, especially in
high-dimensional problems.

Until recently, progress has mainly been achieved in the computation
of homology. The software libraries CHomP [4] and RedHom [25] provide
systematic approach to computing homology of topological spaces in arbi-
trary dimension. There are also implementations of homology algorithms
for some specialized tasks as, in particular, GAP [11] and Dionysus [19].
The abundance of various homology algorithms and implementations is, at
least in part, a consequence of the fact that the optimization techniques
depend crucially on the type of input as well as the data structure chosen to
represent it. Simplicial complexes constitute a common and historically well
justified method to represent topological spaces. However, in many appli-
cations, in particular in rigorous numerics of dynamical systems and in all
types of raster graphics a union of unit cubes in a cubical lattice provides the
most natural way to represent sets. This leads to the concepts of a cubical
set, a combinatorial cubical complex and cubical homology as introduced
in [15]. These concepts should not be confused neither with the singular
cubical homology [17] nor with the notion of cubical set in the homotopy
theory or algebra [2]. The cubical set in the sense of [15] may look as a
very restrictive one from the point of view of the general theory but it is
sufficiently broad in the context of applications and, most importantly, its
rigidness allows for bitmap representations which are extremly efficient due
to the natural optimization of processors to perform operation on bitmaps.
In this paper, we shall work in the framework of [15] but extending the
material on cubical homology to the dual cochain groups.

Cohomology theory, not less important than homology from the point
of view of applications, but intrinsically more difficult, had to wait longer
for computer implementations. Whenever a mathematical model made it
possible as, for example, in the case of orientable manifolds, duality has been
used to avoid explicitly working with cohomology. However, among features
distinguishing cohomology from homology is the cup product, which renders
a ring structure on cohomology. The cup product is a difficult concept, which
has been more challenging to make explicit enough for computer programs
than homology or cohomology groups. Some significant application-oriented
work on computing the cohomology ring of simplicial complexes has been
done by Real et. al. [13].

The notion of the singular cubical homology and cohomology and a cubi-
cal cup product formula were first introduced in 1951 by Serre [26, Chapitre
2]. However, we wish to emphasize that this pioneering approach is far from
the combinatorial and application–driven spirit of our work; for three main
reasons: of all, singular cubes are defined as equivalence classes of all contin-
uous functions from the standard cube [0, 1]d to a given topological space.
Secondly, because Serre, in his original work, does not directly derive alge-
braic properties of the singular cubical cohomology ring by arguments within
his theory: he only refers to the isomorphism between singular and simplicial
(co)homology. Finally, because Serre’s result on this topic is hidden as part
of a highly theoretical work addressed to readers with a deep background in
pure mathematics and beyond the reach of most of the computer engineer-
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ing community for instance. This is why authors working on applications of
cohomology to 3D digital images e.g. [13, 12] in the framework of 3D cellu-
lar cubical complexes tend to derive the needed cubical formulas from the
simplicial theory rather than from Serre’s work. Our philosophy is based
on the observation that the combinatorial cubical complexes presented in
[15] are a more friendly framework than the simplicial or singular setting,
to directly derive explicit formulas, such as, for instance, the cup product
formula, and to implement them in dimension–independent algorithms.

Let us recall the general definition of the cup product used in the stan-
dard literature on homological algebra [24].

Definition 1.1 The cup product ^ : Hp(X) × Hq(X) → Hp+q(X) is de-
fined on cohomology classes of cocycles zp and zq as follows.

[zp] ^ [zq] := diag∗([zp]× [zq]), (1)

where [zp] × [zq] is the cohomology cross product and diag∗ is the homo-
morphism induced by the diagonal map diag : X → X × X given by
diag(x) := (x, x).

An algorithm for cup product based on formula (1) would require an
implementation of cross product and diag∗ homomorphism which is trou-
blesome and would lead to an unefficient algorithm. The main goal of this
paper is to provide an explicit formula for computing the cup product in the
setting of cubical sets. As we will prove in Theorem 2.24 the computation of
the cup product of two generating elementary cubes in dimension d reduces
coordinate-wise to dimension one and the respective formula in dimension
one, given by Theorem 2.20 is straightforward to implement.

Such an elementary and easy to implement formula is possible, because
in the context of cubical sets the cochain cross product

× : Cp(X)× Cq(Y )→ Cp+q(X × Y )

is simply the dual of the cubical product

� : Cp(Rd1)× Cq(Rd2)→ Cp+q(Rd1+d2)

introduced in [15], restricted to cubical sets X ∈ Rd1 and Y ∈ Rd2 . The
concept of cross product is much easier and more natural in the context of
cubical sets than for simplical or singular complexes, because the cartesian
product of generating cubes is again a generating cube. This is not true for
simplices. These considerations lead us to Definition 2.16 of the cubical cup
product in Section 2.3.

In order to obtain Theorem 2.24, we need to derive an explicit formula
for a chain map diag# : C(X) → C(X × X) induced by the diagonal map.
Actually, this task is more complex than it may seem at the first glance and
Section 2.2 is devoted mainly to the related constructions.

Note that the choice of a chain map is not unique, thus the correctness
of the definition and the properties of the cup product are achieved at the
cohomology level. These properties are discussed in Section 2.3. We end the
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section with an example illustrating the use of the explicit, coordinate-wise
formula.

Cubical sets arising from large data sets which are present in applica-
tions are built of a huge number of generating elementary cubes. In order
to benefit from the established formula in this context, one needs reduc-
tion algorithms which render the computation efficient. Thus the second
goal of this paper, reached in Section 3, is to show that the techniques of
S-reductions of S-complexes successfully developed in [20, 22] with the pur-
pose of computing homology of large cubical complexes may be adapted
to computing the cohomology ring of a cubical set. The terminology of S-
complexes, S-reduction pairs, the coreduction algorithm and the concept of
homology models are reviewed and adapted for cohomology. We finish the
paper with Section 3.5, where computations via S-reductions are carried out
and compared on two explicit examples of a still quite simple nature.

The implementation of the methods presented in this paper as well as
numerical experiments are in progress. In particular, the method of S-
reductions for cohomology groups has been implemented in the Ph.D. thesis
of P. D lotko [6] and numerical experiments indicate the same efficiency of the
implementation for cohomology groups as in the case of homology groups.

2 Cubical Cohomology

2.1 Cubical cohomology groups

Recall from [15, Chapter 2] that X ⊂ Rd is a cubical set if it is a finite union
of elementary cubes

Q = I1 × I2 × · · · × Id ⊂ Rd

where Ii is an interval of the form I = [k, k+1] (non-degenerate) or I = [k, k]
(degenerate) for some k ∈ Z. For short, [k] := [k, k]. The dimension dimQ
of Q is the number of non-degenerate intervals in its product expression and
the embedding number emb Q is d. The set of all elementary cubes in Rd
is denoted by K(Rd) and those of dimension k by Kk(Rd). Those which are
contained in X are denoted by K(X), respectively, Kk(X).

The group Ck(Rd) of cubical k-chains is the free abelian group generated
by Kk(Rd), its canonical basis. For k < 0 and k > d, we set Ck(Rd) := 0. In
the sequel, we identify the geometric elementary cube Q with the elementary
cubical chain defined by

P 7→
{

1 if P = Q,
0 otherwise.

We recall that the cubical cross product

× : Cp(Rn)× Cq(Rm)→ Cp+q(Rn+m)

is defined on the canonical basis elements P ∈ Knp and Q ∈ Kmq as the
cartesian product P ×Q and extended on all pairs of chains (c, c′) by bilin-
earity. In [15], this operation is called cubical product and denoted by c�c′ in
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order to distinguish it from the cartesian product but we abandon this no-
tation here to emphasize its equivalence to the cross product in homological
algebra.

Given any k ∈ Z, the cubical boundary map ∂k : Ck(Rd) → Ck−1(Rd) is
a homomorphism defined as follows. If k ≤ 0 or k > d, we have Ck(Rd) = 0,
hence ∂k = 0. If 0 ≤ k ≤ d, ∂k is defined on the elements Q of the basis
Kk(Rd) by induction on d.

For d = 1, either Q = [a] ∈ K0(Rd) or Q = [a, a + 1] ∈ K1(Rd), for
some a ∈ Z. In the first case, ∂0Q = 0. In the second case, we put ∂1Q :=
[a+ 1]− [a].

For d > 1 decompose Q as Q = I × P , where emb I = 1 and emb P =
d− 1, and put

∂kQ := ∂pI×P + (−1)pI×∂qP, (2)

where p = dim I and q = dimP . The pair (C(Rd), ∂) := {
(
Ck(Rd), ∂k

)
}k∈Z

is called the cubical chain complex of Rd. We refer to [15, Chapter 2] for
the properties of the cubical cross product and cubical boundary maps, in
particular for this one:

Proposition 2.1 [15, Proposition 2.34] For any c ∈ Cp(Rn), and c′ ∈
Cq(Rm)

∂p+q(c×c′) = ∂pc×c′ + (−1)pc× ∂qc′.

As a consequence of the above formula, the cubical cross product induces
an isomorphism of chain complexes

⊕p+q=rCp(Rn)⊗ Cq(Rm) ∼= Cp+q(Rn+m)

(for the definition of the tensor product of chain complexes see e. g. [24,
Chapter 7]).

For any c, d ∈ Cp(Rd), the notation 〈c, d〉 is used for the scalar product
defined on the elements P,Q of the canonical basis Kp by

〈P,Q〉 :=

{
1 if P = Q,
0 otherwise.

(3)

The support |c| of c is the union of all Q ∈ Kp such that 〈c,Q〉 6= 0. Given
a cubical set X ⊂ Rd, the cubical chain complex of X denoted by C(X) is
the restriction of C(Rd) to the chains c whose support is contained in X.
We refer to [15] for the properties of cubical chain complexes and for the
computation of their homology.

Definition 2.2 Let X ⊂ Rd be a cubical set. The cubical cochain complex
(C∗(X), δ) is defined as follows. For any k ∈ Z, the k–dimensional cochain
group

Ck(X) = Hom (Ck(X),Z),

where Hom (−,Z) is the functor assigning to any abelian group G the group
of all homomomorphisms from G to Z, called the dual of G. Elements of
Ck(X) are called cochains and denoted either by ck, dk or by c?, d?, if we
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don’t need to specify their dimension k. The value of a cochain ck on a
chain dk is denoted by 〈ck, dk〉. Note that this notation is also used for the
scalar product in chain complexes introduced in (3) and in S-complexes in
Section 3 but it is easy to figure out from the context which product we
mean.

The k’th coboundary map δk : Ck(X)→ Ck+1(X) is the dual homomor-
phism of ∂k+1 defined by

〈δkck, dk+1〉 := 〈ck, ∂k+1dk+1〉.

Note that Ck(X) is the free abelian group generated by the dual canonical
basis {Q?|Q ∈ Kk(X)} where

〈Q?, P 〉 :=

{
1 if P = Q,
0 otherwise.

The notation Q?, for the dual of Q, is aimed to be distinct from H∗ for the
cohomology functor.

Definition 2.3 Given a cubical set X ⊂ Rd, the group of k–dimensional
cocycles of X is Zk(X) := ker δk, and the group of k–dimensional cobound-
aries of X is Bk := im δk−1. The kth cohomology group of X is the quotient
group

Hk(X) := Zk(X)/Bk(X).

Definition 2.4 The cubical cross product of cochains cp ∈ Cp(X) and cq ∈
Cq(Y ) is a cochain in Cp+q(X×Y ) defined on any elementary cube R×S ∈
Kp+q(X × Y ), where R ∈ K(X) and S ∈ K(Y ), as follows.

〈cp × cq, R× S〉 :=

{
〈cp, R〉 · 〈cq, S〉 if dimR = p and dimS = q,

0 otherwise.

We easily check the following.

Proposition 2.5 The cross product of cochains is a bilinear map. More-
over, for P ∈ Kp(X), Q ∈ Kq(Y ),

P ?×Q? = (P×Q)?.

Algebraic properties of the cubical product on cubical chains derived in
[15, Section 2.2] readily extend to the cross product on cochains, in particular
the following

Proposition 2.6 If cp × cq ∈ Cp+q(X), then

δ(cp×cq) = δcp×cq + (−1)pcp × δcq.
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2.2 Constructing chain maps

The most important step towards an explicit formula for the cup product
is the construction of a homology chain map diag# : C(X) → C(X × X)
induced by the diagonal map diag : X → X ×X given by diag(x) := (x, x).
This is done using the construction presented in [15, Chapter 6]. We briefly
outline that construction.

Given an elementary cube Q = I1 × I2 × · · · × Id, the corresponding

elementary cell
◦
Q is Q with all its proper faces removed. Given cubical sets

X and Y , a multivalued cubical map F : X −→→Y is a map from X to the set
of subsets of Y such that

(i) For every x ∈ X, F (x) is a cubical set;

(ii) For every Q ∈ K(X), F | ◦
Q

is constant.

The Chain Selector Theorem [15, Theorem 6.22] affirms that, if such a map is
lower semicontinuous and has non empty acyclic values (that is, H̃∗(F (x)) =
0 for all x ∈ X), then it admits a chain selector, that is, a chain map
ϕ : C(X)→ C(Y ) with the properties

1. |ϕ(Q)| ⊂ F (
◦
Q) for all Q ∈ K(X);

2. ϕ(Q) is a vertex of F (Q) for any vertex Q ∈ K0(X).

Any two such chain selectors are chain homotopic [15, Theorem 6.25], so they
give rise to the same map in homology. If a continuous map f : X → Y
admits an acyclic-valued representation, that is, a lower semicontinuous cu-
bical map F with the property f(x) ∈ F (x), the homology map of any chain
selector ϕ of F is the map H∗(f) induced in homology by f [15, Proposition
6.56]. The idea behind this construction is illustrated in Figure 1.

In general, computing a map induced in homology may be hard, because
an acyclic-valued representation may not always exist and one has to apply
a process of rescaling [15, Section 6.4.2]. However, for the purpose of this
paper, we do not need rescaling, because all considered maps admit the
acyclic-valued minimal representations. Recall from [15, Proposition 6.33
and Definition 6.34], that the minimal representation of a continuous map
f : X → Y is a lower semicontinuous cubical map F : X −→→Y defined by

F (x) = ch (f(ch (x))),

where, given any set A ⊂ X, the closed hull ch (A) is the smallest cubical
set containing A. In the case A = {x}, the set ch ({x}) is an elementary
cube denoted, for short, by ch (x). In the case of our diagonal map diag :
X → X ×X, its minimal representation Diag : X −→→ (X ×X) is given by

Diag(x) := Q×Q, where Q = ch (x) ∈ K(X). (4)

Obviously, Q×Q is acyclic.
Given any maps f : X1 → Y1 and g : X2 → Y2 on cubical sets, we

define f × g : X1 × X2 → Y1 × Y2 by (f × g)(x1, x2) := (f(x1), g(x2)).
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Figure 1: The graph of a continuous map f on an interval (displayed by a
smooth curve), its representation F (displayed by shaded rectangles), and
a symbolic display of a chain selector: The circles indicate pairs of vertices
([v], ϕ0([v])) while the line segments connecting them can be used to localize,
on the ordinate, the images of the corresponding edges under the chain map
ϕ1.

Given Fi : Xi
−→→Yi for i = 1, 2, we define F1 × F2 : X1 × X2

−→→Y1 × Y2 by
(F1 × F2)(x, y) := F1(x)× F2(y).

Given chain maps ϕ : C(X1) → C(Y1) and ψ : C(X2) → C(Y2), their
cubical tensor product ϕ ⊗ ψ : C(X1 × X2) → C(Y1 × Y2) is defined on
generators Q = Q1×Q2 ∈ Kk(X1 × X2) as follows. Set p := dimQ1 and
q := dimQ2. Note that p+ q = k. Put

(ϕ⊗ ψ)k(Q) := ϕp(Q1)×ψq(Q2), (5)

where the right-hand side is the cubical cross product of chains defined in
Section 2.1.

Lemma 2.7 Let X1, X2, Y1, Y2 be cubical sets and let f : X1 → Y1, g :
X2 → Y2 be continuous maps which admit acyclic-valued representations F ,
G. Let ϕ and ψ be the chain selectors of F and, respectively, G.

(a) The set-valued map F ×G is an acyclic-valued cubical representation
of f × g.

(b) The chain map ϕ⊗ ψ is a chain selector of F ×G.

Proof: The statement in (a) is straightforward because the product of acyclic
sets is acyclic. To prove (b), we show first that ϕ⊗ψ is a chain map. Given
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any Q = Q1 ×Q2 ∈ Kk(X1 ×X2), we have for p = dimQ1, q = dimQ2,

∂(ϕ⊗ ψ)k(Q) = ∂ϕp(Q1)×ψq(Q2) + (−1)pϕp(Q1)×∂ψq(Q2)

= ϕp−1(∂Q1)×ψq(Q2) + (−1)pϕp(Q1)×ψq−1(∂Q2)

= (ϕ⊗ ψ)k−1

(
∂Q1×Q2 + (−1)dimQ1Q1×∂Q2

)
= (ϕ⊗ ψ)k−1(∂Q).

It remains to check the chain selector conditions (6.12),(6.13) in [15, Theo-
rem 6.22]. First, we have

|(ϕ⊗ ψ)k(Q)| = |ϕp(Q1)| × |ψq(Q2)| ⊂ F (Q1)×G(Q2).

Finally, for any vertex V = V1 × V2 ∈ K0(X1 × X2), W1 := ϕ(V1) and
W2 := ψ(V2) are vertices, hence

(ϕ⊗ ψ)0(V ) = W1 ×W2 ∈ K0(X).

The following statement easily follows from the definitions.

Proposition 2.8 Let X1 ⊂ Rn and X2 ⊂ Rd−n be the images of a cubical
set X ⊂ Rd under its projections onto, respectively, the first n and the
complementary d − n coordinates in Rd. Consider the inclusion map j :
X ↪→ X1 ×X2. Then

(a) The map J : X −→→X1×X2 given by J(x) := ch (x) is an acyclic-valued
cubical representation of j;

(b) The inclusion of chain complexes ι : C(X) ↪→ C(X1 × X2) is a chain
selector of J .

Theorem 2.9 Let X,Y be cubical sets and let λ : X × Y → Y ×X be the
transpose given by λ(x, y) := (y, x).

(a) The map Λ : X×Y −→→Y ×X given by Λ(x, y) := Q2×Q1, where Q1 :=
ch (x) and Q2 := ch (y), is an acyclic-valued cubical representation of
λ;

(b) Let λ# : C(X × Y ) → C(Y × X) be the map defined on generators
Q = Q1×Q2 ∈ Kk(X × Y ) by

λk(Q) := (−1)dimQ1 dimQ2Q2×Q1.

Then λ# is a chain selector of Λ.

Proof: The statement (a) is a simple check of the definitions. For (b),
the conditions (6.12),(6.13) in [15, Theorem 6.22] follow immediately from
the definitions, so it remains to check that λ# is a chain map, that is, it
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commutes with the boundary map. Let Q = Q1×Q2 ∈ Kk(X × Y ). On the
one hand, we have

∂λk(Q) = (−1)dimQ1 dimQ2∂(Q2×Q1)

= (−1)dimQ1 dimQ2

(
∂Q2×Q1 + (−1)dimQ2Q2×∂Q1

)
= (−1)dimQ1 dimQ2∂Q2×Q1 + (−1)(dimQ1+1) dimQ2Q2×∂Q1.

On the other hand, we have

λk−1(∂Q) = λk−1

(
∂Q1×Q2 + (−1)dimQ1Q1×∂Q2

)
= (−1)dim ∂Q1 dimQ2Q2×∂Q1 + (−1)dimQ1+dimQ1 dim ∂Q2∂Q2×Q1

= (−1)(dimQ1−1) dimQ2Q2×∂Q1 + (−1)dimQ1+dimQ1(dimQ2−1)∂Q2×Q1

= (−1)(dimQ1+1) dimQ2Q2×∂Q1 + (−1)dimQ1 dimQ2∂Q2×Q1.

Hence ∂λk(Q) = λk−1(∂Q).

From Proposition 2.8 and Theorem 2.9 we derive the following corollary.

Corollary 2.10 Let X1, X2, Y1, Y2 be cubical sets and consider the permu-
tation

τ : (X1 × Y1)× (X2 × Y2)→ (X1 ×X2)× (Y1 × Y2)

given by τ(x1, y1, x2, y2) = (x1, x2, y1, y2). Then the map given by T (x) :=
τ(ch (x)) is an acyclic-valued representation of τ . It has the map

τ# : C(X1 × Y1 ×X2 × Y2)→ C(X1 ×X2 × Y1 × Y2)

defined on products of P1 ∈ K(X1), P2 ∈ K(Y1), Q1 ∈ K(X2), and Q2 ∈
K(Y1) by

τ# ((P1×P2)×(Q1×Q2)) := (−1)dimP2 dimQ1 (P1×Q1)× (P2×Q2)

as a chain selector.

Here are dual statements of Theorem 2.9 and Corollary 2.10 for cochains.

Corollary 2.11

Let λ : X × Y → Y ×X be the transpose defined in Theorem 2.9. Then the
induced cochain map λ# := Hom (λ#) : C∗(Y ×X)→ C∗(X × Y ) satisfies

λp+q(cq×cp) = (−1)pqcp×cq.

Proof: Let P ∈ K(X) and Q ∈ K(Y ). If dimP = p and dimQ = q, then

〈λp+q(cq×cp), P×Q〉 = 〈cq×cp, λp+q(P×Q)〉 = 〈cq×cp, (−1)pqQ×P 〉
= (−1)pq〈cq, Q〉 · 〈cp, P 〉 = (−1)pq〈cp, P 〉 · 〈cq, Q〉
= (−1)pq〈cp×cq, P×Q〉.

If dimP 6= p or dimQ 6= q, then both sides vanish.
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Corollary 2.12 Let τ : (X1 × Y1)× (X2 × Y2)→ (X1 ×X2)× (Y1 × Y2) be
the permutation discussed in Corollary 2.10. The map

τ# := Hom (τ#) : C∗(X1 ×X2 × Y1 × Y2)→ C∗(X1 × Y1 ×X2 × Y2)

induced by τ# is given on products of duals of P1 ∈ K(X1), P2 ∈ K(Y1),
Q1 ∈ K(X2), and Q2 ∈ K(Y1) by the formula

τ# ((P ?1×P ?2 )×(Q?1×Q?2)) = (−1)dimP2 dimQ1 (P ?1×Q?1)× (P ?2×Q?2) .

Let X ⊂ Rd be a cubical set. We proceed to the construction of a
homology-representative chain map diag# : C(X) → C(X ×X) induced by
the diagonal map. It is straightforward to see that the diagonal map admits
an acyclic-valued representation Diag : X −→→ (X × X) given by Diag(x) :=
Q × Q where Q = ch (x) ∈ K(X). The construction of a chain selector
proceeds by induction on d = emb X.

Case d = 1: If Q = [v] ∈ K0(X), we put

diag0([v]) := [v]×[v]. (6)

If Q = [v0, v1] ∈ K1(X), we put

diag1([v0, v1]) := [v0]×[v0, v1] + [v0, v1]×[v1]. (7)

For k /∈ {0, 1}, we must have diagk = 0.
The formula (7) is illustrated in Figure 2. In order to show that our

formula defines a chain map we are looking for, we need to make two obser-
vations.

Lemma 2.13 Let emb X = 1. The map diag# defined by (6) and (7) is a
chain selector for Diag.

Proof: The conditions [15, Theorem 6.22, (6.12),(6.13)] follow immediately
from the definitions, so it remains to check that diag# is a chain map. Since
∂0 = 0 and d = 1, it is enough to check that ∂1 diag1 = diag0 ∂1. Let
Q = [v0, v1] ∈ K1(X). On the one hand,

∂ diag1([v0, v1]) = 0 + [v0]× ([v1]− [v0])− ([v1]− [v0])×[v1] + 0

= [v1]×[v1]− [v0]×[v0].

On the other hand,

diag0(∂[v0, v1]) = diag0([v1]− [v0]) = diag0([v1])− diag0([vo])

= [v1]×[v1]− [v0]×[v0],

hence the conclusion follows.

11



[v0, v1]×[v0, v1]

[v0, v1]×[v0]

[v0, v1]×[v1]

[v0]×[v0, v1] [v1]×[v0, v1]

-

-

6 6

[v0, v0] [v1, v0]

[v0, v1] [v1, v1]

t t

t t

Figure 2: Illustration of two choices of chain maps induced by the diagonal
map in dimension one. The path “up and right” shows the one defined in
(7), while the path “right and up” shows the one in (8).

Remark 2.14 The formula

diag−1 ([v0, v1]) := [v0, v1]×[v0] + [v1]×[v0, v1]. (8)

leads to a different chain selector of Diag and a different definition of a cup
product on cochains. Note that the two choices are homologous since

diag1([v0, v1])− diag−1 ([v0, v1]) = ∂([v0, v1]× [v0, v1]).

These ideas are shown in Figure 2.

Induction step. Suppose that diag# is defined for cubical sets of embedding
numbers n = 1, . . . , d − 1 and let us construct it for a cubical set X of the
embedding number d.

Note that

diagRd(x1, . . . , xd) = (x1, . . . , xd, x1, x2, . . . , xd)

= τ(x1, x1, x2, . . . , xd, x2, . . . , xd)

= τ(diagR(x1),diagRd−1(x2, . . . , xd)),

where τ : R2d → R2d is the permutation of coordinates which transposes the
(d+ 1)st coordinate with the preceding d− 1 coordinates. The formula for
the chain maps induced by τ is provided by Corollary 2.10.

Consider the images X1 ⊂ R and X2 ⊂ Rd−1 of X under its projections
of, respectively, the first and the complementary d − 1 coordinates in Rd.
Let diagX1 and diagX2 be the diagonal maps defined, respectively, on X1

and X2. Then the diagonal map on X is the composition

diag = τ ◦ (diagX1 ×diagX2) ◦ j. (9)

where j is the inclusion map discussed in Proposition 2.8. Note that τ takes
values in X1 ×X2 ×X1 ×X2 ⊃ X ×X but the composition of maps on the
right-hand side of (9) takes values in X ×X.
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Lemma 2.15 Let d = emb X > 1. Assume that the chain selector diag# of
Diag is defined for cubical sets of embedding numbers less than d. Consider
the chain map ϕ : C(X)→ C(X1 ×X2 ×X1 ×X2) defined by the formula

ϕ := τ# ◦ (diagX1
# ⊗diagX2

# ) ◦ ι, (10)

where

1. ι : C(X)→ C(X1 ×X2) is the inclusion of chain complexes,

2. diagX1
# : C(X1) → C(X1 ×X1) and diagX2

# : C(X2) → C(X2 ×X2) are
defined by the induction hypothesis,

3. diagX1
# ⊗diagX2

# : C(X1 ×X2)→ C(X1 ×X1 ×X2 ×X2) is defined by
formula (5), and

4. τ# : C(X1 × X1 × X2 × X2) → C(X1 × X2 × X1 × X2) is defined in
Corollary 2.10.

Then ϕ takes values in C(X ×X) ⊂ C(X1 ×X2 ×X1 ×X2). Moreover the
map diag# : C(X) → C(X ×X), diagk(c) := ϕk(c), for c ∈ Ck(X), k ∈ Z,
is a chain selector of Diag.

Proof: We first check that the composition of the minimal representations
of the maps involved in formula (9) and described in the series of preceding
lemmas produces formula (4) for Diag. This implies, in particular, that the
composition has acyclic values contained in X ×X. Let x = (x1, x2) ∈ X,
with xi ∈ Xi, and Q = Q1 × Q2 = ch (x) ∈ K(X), with Qi ∈ K(Xi),
i = 1, 2. It is easy to check that ch (x1) = Q1 and ch (x2) = Q2. By
Proposition 2.8(a), J(x) = Q1 × Q2 = Q. Given any y ∈ Q, we have

ch (y) ⊂ Q and the equality holds when y ∈
◦
Q. Let y = (y1, y2) ∈ Q1 ×Q2.

We have

DiagXi(yi) = ch (yi)× ch (yi) ⊂ Qi ×Qi, i = 1, 2,

and the inclusion becomes equality when y ∈
◦
Q. Thus, by Lemma 2.7(a), we

have the inclusion(
DiagX1 ×DiagX2

)
(y) ⊂ Q1 ×Q1 ×Q2 ×Q2,

and the two sets are equal when y ∈
◦
Q. From here, we get(

DiagX1 ×DiagX2 ◦ J
)

(x) =
(
DiagX1 ×DiagX2

)
(Q1 ×Q2)

= Q1 ×Q1 ×Q2 ×Q2.

Using Corollary 2.10 and arguing as above, we get

(
T ◦DiagX1 ×DiagX2 ◦ J

)
(x) = T (Q1 ×Q1 ×Q2 ×Q2)

= Q1 ×Q2 ×Q1 ×Q2

= Q×Q = Diag(x).

13



Hence the map Diag is equal to T ◦ DiagX1 × DiagX2 ◦ J with the range
restricted to the image X ×X. It follows that the composition of the corre-
sponding chain selectors has the image in C(X×X). Finally, it follows from
[15, Corollary 6.31], that this composition is a chain selector for Diag.

2.3 The cubical cup product

Definition 2.16 Let X be a cubical set. The cubical cup product

^ : Cp(X)× Cq(X)→ Cp+q(X)

of cochains cp and cq is defined by the formula

cp ^ cq = diag
p+q

(cp×cq).

In particular, for Q ∈ Kp+q(X)

〈cp ^ cq, Q〉 = 〈cp×cq,diagp+q(Q)〉 (11)

The distributive law for the cup product on cochains

(cp + dp) ^ cq = (cp ^ cq) + (dp ^ cq) (12)

follows immediately from Definition 2.16, the linearity of diagp+q, and the
distributive law for the cross product. The proof of the associativity law and
the identification of the unit element will be easier once we have established
an explicit formula for the cup product. Definition 2.16 is also suitable for
proving the boundary properties, and the graded commutative law:

Theorem 2.17 [Boundary properties of the cup product]

(a) δ(cp ^ cq) = δcp ^ cq + (−1)pcp ^ δcq.

(b) If zp ∈ Zp(X) and zq ∈ Zq(X), then zp ^ zq ∈ Zp+q(X);

(c) If xp, yp ∈ Zp(X), xp − yp ∈ Bp(X), and zq ∈ Zq(X), then

(xp ^ zq)−(yp ^ zq) ∈ Bp+q(X) and (zq ^ xp)−(zq ^ yp) ∈ Bp+q(X).

Proof: (a) Let Q ∈ Kk(X), where k = p+ q + 1.

〈δ(cp ^ cq), Q〉 = 〈cp ^ cq, ∂Q〉 = 〈cp×cq,diagk ∂Q〉
= 〈cp×cq, ∂ diagk+1Q〉 = 〈δ(cp×cq), diagk+1Q〉
= 〈δcp×cq + (−1)pcp×δcq, diagk+1Q〉
= 〈δcp ^ cq + (−1)pcp ^ δcq, Q〉.

(b) is an immediate consequence of (a).

(c) Let xp − yp = δw. It follows from (a) that

(xp − yp) ^ zq = δw ^ zq = δ(w ^ zq)

14



because δzq = 0. Hence xp ^ zq−yp ^ zq ∈ Bp+q(X). The second equation
follows by the same argument.

The property (a) in Theorem 2.17 is the analogy of the boundary prop-
erty of the cubical cross product defined in [15, Section 2.2]. The property
(b) asserts that the cup product sends cocycles to cocycles, and by (c) that
it doesn’t depend on a representative of a cohomology class. Thus, we get
the definition:

Definition 2.18 The cup product ^ : Hp(X) × Hq(X) → Hp+q(X) is
defined on cohomology classes of cocycles as follows:

[zp] ^ [zq] := [zp ^ zq]. (13)

The distributive law (12) extends easily to cohomology classes. The follow-
ing property holds only for cohomology classes.

Theorem 2.19 [Graded-commutative law]

If zp and zq are cocycles, then

[zq] ^ [zp] = (−1)pq[zp ^ zq].

Proof: Let λ be the transpose defined in Theorem 2.9, applied for X = Y .
Let Q ∈ K(X). On the one hand, we have

〈zp ^ zq, Q〉 = 〈zp×zq,diagp+q(Q)〉.

On the other hand, from Corollary 2.11,

〈zq ^ zp, Q〉 = 〈zq×zp, diagp+q Q〉 = (−1)pq〈λp+q(zp×zq), diagp+q(Q)〉
= (−1)pq〈zp×zq,

(
λp+q ◦ diagp+q

)
(Q)〉.

Note that λ ◦ diag = diag on X. The corresponding chain maps ψ# =
λ# ◦ diag# and ϕ# = diag# are both chain selectors for Diag. By [15,
Theorem 6.25], they are chain homotopic. This implies that the associated
cochain maps ψ# and ϕ# are cochain homotopic (see the definition preced-
ing Theorem 44.1 in [24]), hence they induce the same homomorphism in
cohomology. Thus, we get

[zq] ^ [zp] = (−1)pqH∗(ψ)[zp×zq] = (−1)pqH∗(ϕ)[zp×zq]
= (−1)pq[zp] ^ [zq].

We can now derive an explicit formula, suitable for computations, for the
cubical cup product on cochains. By the distributive law (12), it is sufficient
to present a formula for generators P ? ∈ Kp(X) and Q? ∈ Kq(X). The
formula is developed recursively with respect to d = emb X and presented
in three stages, the first one for the case d = 1, the second one for the
recursion step, and the last one is the final recursion-free coordinate-wise
formula.
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Theorem 2.20 Let X be a cubical set in R and let P,Q ∈ K(X), P = [a, b],
Q = [c, d] be elementary intervals, possibly degenerate. Then

P ? ^ Q? =


[a]? if a = b = c = d,

[c, d]? if a = b = c = d− 1,
[a, b]? if b = c = d = a+ 1,

0 otherwise.

In particular, P ? ^ Q? is either zero, or a dual of an elementary interval.

Proof: Let p = dimP and q = dimQ. Then p, q ∈ {0, 1}. Let k := p + q.
Consider first the case k = 0. Let R = [v] ∈ K0(X). Then

〈P ? ^ Q?, R〉 = 〈P ?×Q?,diag0(R)〉 = 〈P ?×Q?, [v]×[v]〉
= 〈P ?, [v]〉 · 〈Q?, [v]〉

=

{
1 if P = Q = [v],
0 otherwise.

When k = p+ q = 1, let R = [v0, v1] ∈ K1(X). Then

〈P ? ^ Q?, R〉 = 〈P ?×Q?,diag1(R)〉 = 〈P ?×Q?, [v0]×[v0, v1] + [v0, v1]×[v1]〉
= 〈P ?, [v0]〉 · 〈Q?, [v0, v1]〉+ 〈P ?, [v0, v1]〉 · 〈Q?, [v1]〉

=


1 if P = [v0] and Q = [v0, v1],
1 if P = [v0, v1] and Q = [v1],
0 otherwise.

Finally, when k = p + q = 2, we have P ? ^ Q? = 0, because emb(X) = 1
and C2(X) = 0.

We reach the conclusion by expressing the values in terms of elementary
intervals [a, b], [c, d].

Example 2.21 Since [a]? ^ [a, a+ 1]? = [a, a+ 1]? and [a, a+ 1]? ^
[a]? = 0, we see that the graded commutative law in Theorem 2.19 does
not hold for the cup product on the level of chain complexes.

Theorem 2.22 Let embX = d > 1, and suppose that the formula for ^
is given for cochains on cubical sets of embedding numbers n = 1, . . . , d− 1.
Consider the decomposition of elementary cubes P = P1 × P2 ∈ Kp(X)
and Q = Q1 × Q2 ∈ Kq(X) with emb P1 = emb Q1 = 1 and emb P2 =
emb Q2 = d − 1. Let x = P ?1 ^ Q?1 and y = P ?2 ^ Q?2 be computed using
the induction hypothesis. Then

P ? ^ Q? =

{
(−1)dimP2 dimQ1 x×y if |x×y| ∈ K(X),

0 otherwise.

Proof: Consider a generator R = R1×R2 ∈ Kk(X), where emb R1 = 1 and
emb R2 = d− 1. Let p = dim R1 and q = dimR2. Note that p+ q = k. By
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Lemma 2.15 we get

〈P ? ^ Q?, R〉 = 〈P ?×Q?, diagk(R)〉
= 〈P ?×Q?,

(
πk ◦ τk ◦ (diagX1 ⊗diagX2)k ◦ jk

)
(R)〉

= 〈τk(πk(P ?×Q?)),
(
(diagX1 ⊗diagX2)k ◦ jk

)
(R)〉.

Since πk is a projection, its dual map πk is an injection which extends any
element of C?(X×X) as zero on elementary cubes in K(X1×X2×X1×X2)\
K(X × X). Set σ = (−1)dimP2 dimQ1 . By Proposition 2.8, Corollary 2.12
and Lemma 2.7, we get

〈P ? ^ Q?, R〉 = σ · 〈(P ?1×Q?1)× (P ?2×Q?2) , (diagX1 ⊗diagX2)k(R)〉
= σ · 〈P ?1×Q?1, diagX1

p (R1)〉 · 〈P ?2×Q?2,diagX2
q (R2)〉

= σ · 〈P ?1 ^ Q?1, R1〉 · 〈P ?2 ^ Q?2, R2〉
= σ · 〈x,R1〉 · 〈y,R2〉
= σ · 〈x×y,R〉,

with a non trivial value assumed if and only if |x| = R1 and |y| = R2.
However, R ∈ K(X) and the conclusion follows.

The following example illustrates the need for considering the alternative
|x×y| /∈ K(X) in the formula for P ? ^ Q? in Theorem 2.22.

Example 2.23 Let X = [0, 1]2, P = [0] × [0, 1], and Q = [0, 1] × [0]. We
get

P ? ^ Q? = (−1)1·1 ([0]? ^ [0, 1]?)× ([0, 1]? ^ [1]?) = −[0, 1]2
?
.

However, if X = P ∪Q, we get P ? ^ Q? = 0.

We now pass to a coordinate-wise formula. Let P and Q be as in Theo-
rem 2.22. Consider their decompositions to products of intervals in R:

P = I1 × I2 × · · · × Id and Q = J1 × J2 × · · · × Jd.

Let P ′j := Ij+1 × Ij+2 × · · · × Id. Put

sgn (P,Q) := (−1)
∑d−1

j=1 dimP ′j dim Jj = (−1)
∑d−1

j=1(dim Jj
∑d

i=j+1 dim Ii).

We get the following

Theorem 2.24 Let d = emb (X) > 1. With the above notation for elemen-
tary cubes P,Q ∈ K(X),

P ? ^ Q? = sgn (P,Q)(I?1 ^ J?1 )×(I?2 ^ J?2 )× · · ·×(I?d ^ J?d ), (14)

provided the right-hand side is supported in X, and P ? ^ Q? = 0 otherwise.
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Proof: We derive the formula from Theorem 2.22 by induction on the em-
bedding number d > 1.

When d = 2, we have sgn (P,Q) = (−1)dimP ′1 dim J1 , so the formula is
exactly the one in Theorem 2.22 with P1 = I1, P2 = P ′1 = I2, and Qj = Jj ,
j = 1, 2.

Let d > 2. We apply Theorem 2.22 with P1 = I1, P2 = P ′1, Q1 = J1,
and Q2 = Q′1. Note that the support of the cross product on the right-hand
side of (14) is the cartesian product of the supports of the terms:∣∣∣Πd

j=1I
?
j ^ J?j

∣∣∣ = |I?1 ^ J?1 | ×
∣∣∣Πd

j=2I
?
j ^ J?j

∣∣∣ .
Therefore, the support of the right-hand side of (14) is non-empty and con-
tained in X if and only if one of x × y in Theorem 2.22 is non-empty and
contained in X. If this is not the case, both formulas give the cochain 0.
Assume the non-trivial case. Then the support of P ′1

? ^ Q′1
? is non-empty

and contained in X2. By induction hypothesis,

P ′1
?
^ Q′1

?
= sgn (P ′1, Q

′
1)(I?2 ^ J?2 )× · · ·×(I?d ^ J?d ),

where
sgn (P ′1, Q

′
1) = (−1)

∑d−1
j=2 dimP ′j dim Jj .

By Theorem 2.22,

P ? ^ Q? = (−1)dimP ′1 dim J1(I?1 ^ J?1 )×(P ′1
?
^ Q′1

?
).

Since (−1)dimP ′1 dim J1sgn (P ′1, Q
′
1) = sgn (P,Q), the conclusion follows.

Let X be a cubical set embedded in Rd. We define the weight of a cochain
cp in X by

w(cp) := card {Q ∈ K(X) | 〈cp, Q〉 6= 0} .

By bilinearity, the computation of cp ^ cq for two cochains cp, cq in X
reduces to finding w(cp)w(cq) cup products of generating elementary cubes.
Since it follows easily from Theorem 2.24 that the cost of finding the cup
product of two generating elementary cubes is O(d2), we obtain the following

Corollary 2.25 The computational complexity of evaluating cp ^ cq is
O
(
d2mn

)
where m is the weight of cp and n is the weight of cq.

Example 2.26 We illustrate the cup-product formula for the cubical torus
T := Γ1×Γ1 ⊂ R4, where Γ1 = ∂[0, 1]2 is the boundary of the square. Since
it is hard to draw pictures in R4, we parameterize Γ1 by the interval [0, 4]
with identified endpoints 0 ∼ 4, which permits visualizing T as the square
[0, 4]2 with pairs of identified boundary edges, as shown in the figure below.

Consider the cocycle x1 generated by the sum of four solid line vertical
edges with [2, 3] at the second coordinate, and y1 by the sum of solid line
horizonal edges with [1, 2] at the first coordinate. Only the edges of the
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Figure 3: The graphical representation of the cubical torus discussed in
Example 2.26. The solid line vertical edges carry the cocycle x1 and the
horizontal ones the cocycle y1. The shaded square carries x1 ^ y1.

parametric square [1, 2]× [2, 3] may contribute to non-zero terms of x1 ^ y1.
Thus, using Theorem 2.20 and Theorem 2.24,

x1 ^ y1 = {([1]× [2, 3])∗ + ([2]× [2, 3])∗}^ {([1, 2]× [2])∗ + ([1, 2]× [3])∗}
= 0− ([1, 2]× [2, 3])∗ + 0 + 0 = −([1, 2]× [2, 3])∗.

The cohomology classes of cochains x1 and y1 generate H1(T ), and [Q∗],
where Q := ([1, 2]× [2, 3]), generates H2(T ).

We are now ready to prove the remaining ring properties for the cubical
cup product.

Theorem 2.27 Let X be a cubical set. The cup product on cubical cochains
is associative, that is,

(cp ^ cq) ^ cr = cp ^ (cq ^ cr).

The cochain given by 1C0(X) :=
∑

V ∈K0(X) V
? is the unit element, that is,

1C0(X) ^ cp = cp ^ 1C0(X) = cp

A fortiori, these formulas are valid for cohomology classes.

Proof: By the distributive law (12), it is sufficient to work with generators
P ? ∈ Kp(X), Q? ∈ Kq(X), and R? ∈ Kr(X). Let d = emb (X).

The unit element property easily follows from Theorem 2.20 in the case
d = 1 and from Theorem 2.24 in the case d > 1.

We prove the associativity by induction on d. When d = 1, a routine
verification of the formula in Theorem 2.20 shows that (P ? ^ Q?) ^ R? 6= 0
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if and only if there exists a ∈ Z such that the triple (P,Q,R) takes one of
the forms

([a], [a], [a]), ([a], [a], [a, a+ 1]),

([a], [a, a+ 1], [a+ 1]), ([a, a+ 1], [a+ 1], [a+ 1]),

In the first case (P ? ^ Q?) ^ R? = [a] and in the remaining cases it is
[a, a+ 1]. The same is verified for P ? ^ (Q? ^ R?).

Let now d > 1 and suppose the conclusion is true for the embedding
numbers smaller than d. Write P = P1×P2, Q = Q1×Q2, and R = R1×R2,
where the first component of each elementary cube is in R and the second
one in Rd−1. Using Theorem 2.20 and Theorem 2.22, we prove that

(P ? ^ Q?) ^ R? = (−1)α[{(P1
? ^ Q1

?) ^ R1
?}×{(P2

? ^ Q2
?) ^ R2

?}]
(15)

where
α := dimP2 dimQ1 + dim |P2

? ^ Q2
?|dimR1, (16)

provided the displayed cross product is non trivial and supported in X, and
it is 0 otherwise.

Indeed, assume the non-trivial case. The first application of Theo-
rem 2.22 gives

P ? ^ Q? = (−1)dimP2 dimQ1(P1
? ^ Q1

?)×(P2
? ^ Q2

?). (17)

By Theorem 2.20, P1
? ^ Q1

? = S1
?, where S1 ∈ K(X1) is equal either to

P1 or to Q1. By Theorem 2.22, P2
? ^ Q2

? = (−1)γS2
?, for some γ ∈ Z and

S2 ∈ K(X2). Let S = S1 × S2. By the hypothesis, S ∈ K(X). Hence (17)
can be written as

P ? ^ Q? = (−1)dimP2 dimQ1+γS?. (18)

Another application of Theorem 2.22 gives

S? ^ R? = (−1)dimS2 dimR1(S1
? ^ R1

?)×(S2
? ^ R2

?). (19)

We obtain (15) by combining (18) with (19) and passing (−1)γ inside the
cross product term containing S2

?. Analogously,

P ? ^ (Q? ^ R?) = (−1)β[{P1
? ^ (Q1

? ^ R1
?)}×{P2

? ^ (Q2
? ^ R2

?)}]
(20)

where
β := dimP2 dim |Q1

? ^ R1
?|+ dimQ2 dimR1, (21)

with the same condition on the support. By the induction hypothesis, the
expressions inside the square brackets in equations (15) and (20) are equal.
In particular their supports are equal, so we may assume that both supports
are non empty and contained in X. It remains to show that (−1)α = (−1)β.
By Definition 2.16,

dim |P2
? ^ Q2

?| = dimP2+dimQ2 and dim |Q1
? ^ R1

?| = dimQ1+dimR1
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hence the conclusion follows.
By Definition 2.18, the last statement on extension to the cohomology

classes is obvious.

The algebraic properties listed in the equation (12), Theorem 2.27 and in
Theorem 2.19 are referred to as the graded ring properties. Thus we arrived
at the key definition:

Definition 2.28 Let X be a cubical set. The cubical cohomology ring of X
is the graded abelian group H?(X) with the graded multiplication given by
the cup product.

It is known that the ring structure introduced in Definition 2.28 may be
used to distinguish non homeomorphic spaces even if their homology and
cohomology groups are isomorphic. This is shown in the example presented
in Section 3.5.

Remark 2.29 All what we have done until now can be extended to chain
complexes C(X;R) := C(X) ⊗ R with coefficients in a ring with unity R,
which are graded modules over R. This gives rise to the cohomology ring
H∗(X;R). We have initially chosen coefficients in Z for the sake of clarity
and, in particular, to avoid confusion between two rings, R and the graded
cohomology ring. However, we introduce ring coefficients in the next sec-
tion because, for computational purposes, it is often convenient to choose
coefficients in the finite field R = Zp, p a prime number. Field coefficients
are sufficient in many practical applications.

3 Computing cohomology

The aim of this section is to show that the techniques of S-reductions of
S-complexes developed in [20, 22] in order to construct efficient algorithms
computing homology of cubical complexes may be easily adapted to provide
algorithms computing the cohomology ring of a cubical set.

3.1 S-Complexes

Let R be a ring with unity and let S be a finite set. Denote by R(S) the free
module over R generated by S. Let (Sq)q∈Z be a gradation of S such that
Sq = ∅ for all q < 0. Then (R(Sq))q∈Z is a gradation of the module R(S)
in the category of modules over the ring R. For every element s ∈ S, the
unique number q such that s ∈ Sq is called the dimension of s and denoted
by dim s. We use the notation 〈·, ·〉 : R(S)×R(S)→ R for the inner product
which is defined on generators by

〈t, s〉 =

{
1 for t = s,

0 otherwise,

and extended bilinearly to R(S)×R(S).
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We recall (see [20, 22]) that a pair (S, κ), where κ : S × S → R is a map
such that κ(s, t) = 0 unless dim s = dim t+ 1, is called an S-complex , if the
pair (R(S), ∂κ) is a free chain complex with base S and the boundary map
∂κ : R(S)→ R(S) is defined on generators s ∈ S by

∂κ(s) :=
∑
t∈S

κ(s, t)t.

The homology of an S-complex (S, κ) is the homology of the associated chain
complex (R(S), ∂κ), denoted H(S, κ) or simply H(S). The elements of R(S)
are called chains.

Any cubical set X ⊂ Rd discussed in Section 2 defines an S-complex
(S, κ), where S = K(X) is the set of all elementary cubes ofX and κ(Q,P ) :=
〈∂Q, P 〉, ∂ the cubical boundary map. Its chain complex (R(S), ∂κ) is equal
to C(X;R) = C(X)⊗R, the cubical chain complex of X with coefficients in
R.

Let R?(S) := Hom (R(S), R) be the group of cochains. The coboundary
map defined as the dual δκ := (∂κ)? satisfies

δκ(t?) :=
∑
s∈S

κ(s, t)s? .

for duals of generators t ∈ S. Moreover, for any pair of a chain c ∈ R(Sq)
and a cochain d ∈ R?(Sq−1) we have

〈∂κc, d〉 = 〈c, δκd〉.

The cohomology of the cochain complex (Hom (R(S), R), δκ) is called the
cohomology of the S-complex and denoted H∗(S).

In the following, we will drop the superscript κ in ∂κ and δκ whenever κ
is clear from the context.

The technique of S-reductions consists in replacing the original set of
generators S by a subset S′ ⊂ S, and the original coincidence index κ by
the restriction κ′ := κ|S′×S′ . This has to be done in such a way that (S′, κ′) is
still an S-complex, and the (co)homology does not change. A subset K′ ⊂ K
is an S-subcomplex of the S-complex K if (K′, κ′), with κ′ := κ|K′×K′ , the
restriction of κ to K′×K′, is itself an S-complex, i.e. if (R[K′], ∂κ′) is a chain
complex. Note that the concept of an S-subcomplex is not the same as the
chain subcomplex (see [7, Example 1]).

Two important special cases of S-subcomplexes are the closed and open
subset of an S-complex. In order to define these concepts we introduce the
following notation for any subset A ⊂ S

bd SA := {t ∈ S | κ(s, t) 6= 0 for some s ∈ A} ,
cbd SA := {s ∈ S | κ(s, t) 6= 0 for some t ∈ A} .

We say that K′ ⊂ K is closed in K if bdKK′ ⊂ K′. We say that K′ ⊂ K is
open in K if the complement K \K′ is closed. Note that if K′ is closed in K,
then ∂κ(R[K′]) ⊂ R[K′]. Therefore, there is a well defined restriction

∂κ|R[K′] : R[K′]→ R[K′],
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which gives rise to a chain subcomplex (R[K′], ∂κ|R[K′]) of the chain complex
(R[K], ∂κ).

Similarly, if K′ is open in K, then there is a well defined quotient com-
plex (R[K]/R[K \K′], ∂′) with the boundary map ∂′ taken as the respective
quotient map of ∂κ. From the computational point of view it is worth to
observe that the quotient complex is isomorphic to the S-complex (K′′, δκ′′)
where K′′ = K \ K′ and κ′′ = κ|K′′×K′′ (cf. [20]).

The following theorem is a straightforward extension of Theorem 3.4 in
[20] to cohomology.

Theorem 3.1 Let (S, κ) be an S-complex over the ring R, S′ ⊂ S a closed
subset and S′′ := S \ S′ the associated open subset. Then we have the
following long exact sequence of homology modules

. . .
∂q+1→ Hq(S

′)
ιq→ Hq(S)

πq→ Hq(S
′′)

∂q→ Hq−1(S′)
ιq−1→ . . .

and the following long exact sequence of cohomology modules

. . .
ιq−1

→ Hq−1(S′)
δq→ Hq(S′′)

πq

→ Hq(S)
ιq→ Hq(S′)

δq+1

→ . . .

in which ι∗ : Hq(S
′) → Hq(S) and ι∗ : Hq(S) → Hq(S′) are induced by

the inclusion ι : R(S′) → R(S), whereas π∗ : Hq(S) → Hq(S
′′) and π∗ :

Hq(S′′)→ Hq(S) are induced by the projection π : R(S)→ R(S′′).

3.2 S-Reduction Pairs and the Coreduction Algorithm

Let (S, κ) be an S-complex. A pair (a, b) of elements of S is called an S-
reduction pair if κ(b, a) is invertible and either cbdSa = {b} or bdSb = {a}.
In the first case the S-reduction pair is referred to as an elementary reduction
pair and in the other case as an elementary coreduction pair .

Arguing as in the proof of [20, Theorem 4.1] we obtain the following
theorem.

Theorem 3.2 Assume S is an S-complex and (a, b) is an S-reduction pair
in S. If (a, b) is an elementary reduction pair then {a, b} is open in S. If
(a, b) is an elementary coreduction pair then {a, b} is closed in S. Moreover,
in both cases {a, b} is an S-subcomplex of S and H∗({a, b}) = H∗({a, b}) = 0.

Theorems 3.1 and 3.2 result in the following corollary.

Corollary 3.3 If (a, b) is an S-reduction pair in an S-complex S, then the
homology modules H(S) and H(S\{a, b}) as well as the cohomology modules
H∗(S) and H∗(S \ {a, b}) are isomorphic.

Corollary 3.3 lies at the heart of the coreduction homology algorithm pre-
sented in [20, Algorithm 6.1]. The same algorithm without any changes may
be used to speed up computation of cohomology modules. The algorithm
consists in performing as many S-reductions as possible before applying the
general Smith diagonalization algorithm to the reduced S-complex in order
to compute the homology or cohomology module. To make it useful, one
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needs to find as many S-reduction pairs as feasible. In the case of simplicial
complexes and cubical complexes it is straightforward to provide examples
which admit elementary reduction pairs, but elementary coreduction pairs
are not possible right away. However, it is easy to observe that by removing
a vertex one obtains an open subcomplex which admits elementary core-
duction pairs. Moreover, the homology of this subcomplex coincides with
the reduced homology of the original complex and the cohomology of this
complex coincides with the reduced cohomology of the original complex.
Therefore, not only elementary reduction pairs, but also elementary core-
duction pairs are useful when computing the homology or cohomology of
simplicial or cubical complexes.

If the reduced S-complex is small when compared to the original S-
complex then the coreduction algorithm is fast, because the reduction pro-
cess is linear whereas the Smith diagonalization algorithm is supercubical.
In fact, numerical experiments indicate that elementary coreduction pairs
provide essentially deeper reductions than the elementary reduction pairs,
and the speed up is essential. For details we refer the reader to [20, Section
5].

3.3 Homology Models

The Smith diagonalization algorithm applied to the reduced S-complex en-
ables computing the cohomology module of the original S-complex up to
isomorphism. In order to compute the cohomology ring of a cubical set it is
not sufficient to have the cohomology generators in a reduced S-complex. It
is necessary to construct the cohomology generators in the original cubical
set.

In order to achieve this we need the following theorem which is an im-
mediate consequence of [22, Theorem 2.8 and 2.9]:

Theorem 3.4 Assume (S, κ) is an S-complex, (a, b) is an S-reduction pair
in S and S̄ := S \ {a, b}. Then (S̄, κ̄) with κ̄ := κ|S̄×S̄ is an S-subcomplex

of (S, κ) and the maps ψ = ψ(a,b) : R(S) → R(S̄), respectively, ι = ι(a,b) :
R(S̄)→ R(S) given by

ψ(c) = c− 〈c, a〉
〈∂b, a〉

∂b− 〈c, b〉b, (22)

ι(c) = c− 〈∂c, a〉
〈∂b, a〉

b (23)

are mutually inverse chain equivalences. In particular, the chain complexes
(R(S), ∂κ) and (R(S̄), ∂κ̄) are chain homotopic.

Since mutually inverse chain equivalences induce isomorphisms in coho-
mology, we get the following corollary.

Corollary 3.5 If (S, κ), is an S-complex over the ring R and (a, b) is an
S-reduction pair in S, then the isomorphisms pointed out in Corollary 3.3
are induced by the chain maps defined in (22) and (23) for homology and
their duals for cohomology.

24



As we already mentioned, the coreduction algorithm consists in perform-
ing a sequence of reductions. A reduction sequence of an S-complex (S, κ) is
a sequence of pairs ω = {(ai, bi)}i=1,2,...n in S such that (ai, bi) is a reduction
pair in (Si−1, κi−1), where the S-complexes (Si, κi) are defined recursively
by taking

S0 := S,

κ0 := κ,

Si := Si−1 \ {ai, bi},
κi := κi−1

|Si×Si .

We then use the notation Sω for the last chain complex in the sequence of
S-complexes {Si}i=1,2,...n and call this S-complex the ω-reduction of S. A
homology model of S is an ω reduction Sω together with the chain equiva-
lences.

ιω = ι(a1,b1) ◦ ι(a2,b2) ◦ · · · ◦ ι(an,bn) : R(Sω)→ R(S),

ψω = ψ(an,bn) ◦ ψ(an−1,bn−1) ◦ · · · ◦ ψ(a1,b1) : R(S)→ R(Sω).

In order to discuss the benefits of constructing a homology model of an
S-complex S let us define first the weight of S by

w(S) := max {max(card bd s, card cbd s) | s ∈ S} .

The construction of a homology model of an S-complex S may be per-
formed in time O(w(S)cardS) (see [20, Theorem 6.2]). In particular, in the
case of cubical sets of fixed embedding dimension the homology model con-
struction takes linear time. When the ω-reduction of S is small relative to
S, one can profit from the homology model whenever homology generators
and/or a decomposition of a homology class on the generators are needed.
To construct the generators of H(S) one constructs the generators of H(Sω)
and transports them to H(S) via the map ιω, i.e. computes their image in
ιω. The computational complexity of this computation is O(w(S)cardS)
(see [22, Theorem 3.1]). To decompose a homology class in H(S) one trans-
ports the class via the map ψω to H(Sω) and finds the decomposition there.
See [22, Section 3.1]) for details.

3.4 Homology models for cohomology

Precisely the same method may be used to speed up the construction of the
cohomology generators in H∗(S) and the same complexity analysis applies
to this case. One only uses the dual (ιω)? of ιω to transport the cochains
in the S-complex to its ω reduction and the dual (ψω)? of ψω to transport
the cochains in the ω-reduction back to the original S-complex. However,
the transport requires an analogue of Theorem 3.4 for the duals ψ? and ι?.
For this it is convenient to make the following convention. If T is an S-
subcomplex of the S-complex S and t is a generator in T then dual of t in T
is the restriction to T of the dual of t in S. Since the dual of t in S is always
zero on S \ T , it is convenient to identify both duals and denote them by
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the same symbol t?. Using this convention and the setting of Theorem 3.4
we have the following theorem.

Theorem 3.6 The duals of the chain maps ψ and ι are given by

ψ? : R?(S̄) 3 c? 7→ c? − 〈b
?, δc?〉
〈∂b, a〉

a? ∈ R?(S), (24)

ι? : R?(S) 3 c? 7→ c? − 〈b
?, c?〉
〈∂b, a〉

δa? ∈ R?(S̄). (25)

Proof: It is enough to verify the formulas on generators. Let t ∈ S̄ and let
c ∈ R(S). Then by (22)

ψ?(t?)(c) = t?(ψ(c))

= t?
(
c− 〈c, a〉
〈∂b, a〉

∂b− 〈c, b〉b
)

= t?(c)− 〈c, a〉
〈∂b, a〉

t?(∂b)− 〈c, b〉t?(b)

= t?(c)− 〈b
?, δt?〉
〈∂b, a〉

a?(c)− t?(b)b?(c).

However, since t ∈ S̄ = S \ {a, b}, we have t?(b) = 0. Thus, we get

ψ?(t?)(c) =

(
t? − 〈b

?, δt?〉
〈∂b, a〉

a?
)

(c)

which proves (24). In order to prove (25) take s ∈ S and c ∈ R(S̄). Then
by (23) we have

ι?(s?)(c) = s?(ι(c))

= s?
(
c− 〈∂c, a〉
〈∂b, a〉

b

)
= s?(c)− 〈∂c, a〉

〈∂b, a〉
s?(b)

=

(
s? − 〈b

?, s?〉
〈∂b, a〉

δa?
)

(c)

which proves (25).

Surprisingly, there are even more benefits from the homology model for
cohomology computations than for homology computations. This is because
of the following theorem.

Theorem 3.7 Assume ω is a reduction sequence of an S-complex consisting
only of elementary coreduction pairs. Then (ψω)? is an inclusion

R?(Sω) ↪→ R?(S),

that is, (ψω)?(c) = c for any c ∈ R?(Sω).
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Proof: If (a, b) is an elementary coreduction pair, then bd b = {a}. Since
a 6∈ S̄ = S\{a, b}, we have 〈b?, δc〉 = 〈∂b, c〉 = 0 for any c ∈ R(S̄). Therefore,
(ψ(a,b))

?
(c) = c for any c ∈ R?(S̄). Since the reduction sequence ω consist

only of elementary coreduction pairs, the conclusion follows.

Note the following consequence; In the case of a reduction sequence ω
consisting only of elementary coreduction pairs there is no need to transport
the cohomology generators from the ω-reduction back to the original S-
complex. The cohomology generators constructed in the ω-reduction are
the cohomology generators in the original S-complex. This is particularly
useful for computing the ring structure of a cubical set X, because we can
apply formula (14) directly to the cohomology generators in the ω-reduction.

3.5 Computational example

Figure 4: Wedge of S2 and two S1 (top left) and wedge of S2 and two S1

coreduced (top right). Cubical torus (bottom left) and cubical torus core-
duced (bottom right). For visualization purposes, the vertices are displayed
as small black cubes, edges as long square-based prisms and 2D faces as large
square-based prisms. The 2D faces of cubical sets are partially transparent
to enable viewing through.
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Observe that the set

X :=

{
(x, y, z) ∈ R3 | max(|x− 1

2
|, |y − 1

2
|, |z − 1

2
|) =

1

2

}
∪{

(x, y, z) ∈ R3 | y = 0, max(|x− 3

2
|, |z − 3

2
|) =

1

2

}
∪{

(x, y, z) ∈ R3 | x = 0, max(|y − 3

2
|, |z − 3

2
|) =

1

2

}
is a cubical subset of R3 homeomorphic to S2 ∨S1 ∨S1 (see Fig. 4 top left).

The coreduction algorithm (see Section 3.3) applied to X outputs a
model Xω with respect to a reduction sequence ω. The model consists
of the following cells.

{[0]× [0]× [0], (1, 2)× [1]× [0], (0, 1)× (0, 1)× [1], [0]× (0, 1)× [2]} .

It is straightforward to observe that the cohomology classes of the cocy-
cles

α := ([1, 2]× [1]× [0])?

β := ([0]× [0, 1]× [2])?

form the basis of the first cohomology module of Xω and the cohomology
class of the cocycle

γ := ([0, 1]× [0, 1]× [1])?

generates the second cohomology module of Xω. By Theorem 3.7 and The-
orem 3.4 [α], [β] form the basis of H1(X) and [γ] generates H2(X).

A routine calculus based on Theorem 2.24 shows that

[α] ^ [β] = 0. (26)

Moreover, we consider

T :=

{
(x, y, z) ∈ R3 | 1

2
≤ max(|x− 3

2
|, |y − 3

2
|) ≤ 3

2
, z ∈ {0, 1}

}
∪{

(x, y, z) ∈ R3 | max(|x− 3

2
|, |y − 3

2
|) ∈ {1

2
,
3

2
}, 0 ≤ z ≤ 1

}
which is a cubical subset of R3 homeomorphic to a torus (see Fig. 4 bottom
left).

The coreduction algorithm applied to T outputs a model Tω with respect
to a reduction sequence ω. The model consists of the following cells.

{[0]× [0]× [0], (1, 2)× [2]× [0], (1, 2)× (2, 3)× [0], (1, 2)× [3]× [0],

(1, 2)× [2]× (0, 1), (1, 2)× [3]× (0, 1), (0, 1)× (0, 1)× [1], [1]× (0, 1)× [1],

(1, 2)× (0, 1)× [1], [2]× (0, 1)× [1], (2, 3)× (0, 1)× [1], (0, 1)× [1]× [1],

(2, 3)× [1]× [1], (0, 1)× (1, 2)× [1], (2, 3)× (1, 2)× [1], (0, 1)× [2]× [1],

(1, 2)× [2]× [1], (2, 3)× [2]× [1], (0, 1)× (2, 3)× [1], [1]× (2, 3)× [1],

(1, 2)× (2, 3)× [1], [2]× (2, 3)× [1], (2, 3)× (2, 3)× [1], (1, 2)× [3]× [1]}
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It is easy to check that the cohomology classes of the cocycles

α = ([1]× [0, 1]× [1])? + ([2]× [0, 1]× [1])? + ([0, 1]× [1]× [1])?

+([2, 3]× [1]× [1])? + ([0, 1]× [2]× [1])? + ([2, 3]× [2]× [1])?

+([1]× [2, 3]× [1])? + ([2]× [2, 3]× [1])?

and

β = ([1, 2]×[2]×[0])?+([1, 2]×[3]×[0])?+([1, 2]×[2]×[1])?+([1, 2]×[3]×[1])?

form the basis of the first cohomology module of Tω and the cohomology
class of the cocycle

γ = ([1, 2]× [2, 3]× [1])?

generates the second cohomology module of Tω. By Theorem 3.7 and The-
orem 3.4 [α], [β] form the basis of H1(T ) and [γ] generates H2(T ).

Moreover, a long but routine computation based on Theorem 2.24 shows
that

α ^ β = ±γ. (27)

Equations (26) and (27) show that the cohomology rings of X and T are
different. In this simple case, it is possible to make the necessary compu-
tations by hand. However, one may have two cubical sets homeomorphic
respectively to X and T whose representations consist of millions of cubes.
Such cubical sets often result from rigorous numerics of dynamical systems,
data or image analysis. The benefits from computing the ring structure via
the cohomology model is evident. This is visible even in the case of a simple
rescaling (for the definition of rescaling see [15, Section 6.4.2]) of the cubical
sets in our two examples (see Fig. 5).
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