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Abstract

Cubical sets and their homology have been used in dynamical sys-
tems as well as in digital imaging. We take a refreshing view on this
topic, following Zariski ideas from algebraic geometry. The cubical
topology is defined to be a topology in R% in which a set is closed
if and only if it is cubical. This concept is a convenient frame for
describing a variety of important features of cubical sets. Separation
axioms which, in general, are not satisfied here, characterize exactly
those pairs of points which we want to distinguish. The noetherian
property guarantees the convergence of algorithms. Moreover, maps
between cubical sets which are continuous and closed with respect to
the cubical topology are precisely those for whom the homology map
can be defined and computed without grid subdivisions. A combinato-
rial version of the Vietoris-Begle is derived and used for an algorithm
computing homology of maps which are continuous with respect to the
Euclidean topology.

*Research supported by a grant from NSERC

TResearch supported by Polish KBN grant no. 2 PO3A 041 24

92000 Mathematics Subject Classification: Primary 55-04; Secondary 52B05, 54C60,
68W05, 68W30, 68U10.



1 Introduction

Representable sets, in particular, cubical sets, and their homology have
proved to be useful geometric structures in a variety of applications from
the Conley index in dynamical systems [?, ?, 7, ?] to image and pattern
recognition in digital imaging [?, 7, ?]. We take a new refreshing view on
this topic, following Zariski ideas from algebraic geometry. Recall from [?, 7]
that the Zariski topology in the Euclidean space R is defined by declaring
that a proper subset of R? is closed if and only if it is algebraic. The cubical
topology is a topology in R? in which a proper subset is closed if and only if
it is cubical.

It seems foolish at first to abandon the standard Euclidean topology and
introduce one which is not metrizable — more than that — which does
not satisfy any separation axiom! Nevertheless, the points which we want
to distinguish in a cubical set are exactly those which belong to different
cells or different elementary cubes, thus, the points separated by the cubi-
cal topology. In digital imaging, computer scientists seem to have a hard
time deciding if they prefer to interpret pixels as unit size squares or as
isolated points in a square grid. The cubical topology permits these two
interpretations co-exist on mathematical grounds.

Cubical topology has some more interesting features. A crucial property
of the Zariski topology, related to the Hilbert Nullstellensatz is that it is
noetherian, that is, every decreasing sequence of closed sets eventually be-
comes constant. That the cubical topology is noetherian is quite obvious
but the simplicity of this observation does not diminish its importance: In
fact, all algorithms constructing isolating neighborhoods and index pairs in
dynamics are based on this property. Also, irreducible closed sets are pre-
cisely elementary cubes. Moreover, maps f : X — Y between cubical sets
which are continuous and closed with respect to the cubical topology are
precisely those for whom the homology map H,(f) can be defined and com-
puted without grid rescaling (the concept of rescaling is defined in [?]) or,
equivalently, without grid subdivisions. Although this class of maps, called
cubical maps, seems somewhat restrictive, its study leads to algorithms for
constructing homology of maps which are continuous with respect to the
Euclidean topology.

This paper is organized as follows. In Section 77, definitions and proper-
ties of cubical sets, cubical chain complex, and representable sets are recalled
from [?]. Note that the cubical chain complex studied here is a combinato-
rial concept in contrast with a well known but less suitable for algorithms
concept of singular cubical complex presented for instance in [?]. In Sec-



tion ??, definition and properties of cubical topology are presented. For
some routine proofs we refer to [?]. In Section ??, we define the class of
cubical maps as the class of maps on cubical sets which are continuous and
closed with respect to the relative cubical topology. We discuss the relation
of this definition to the one given in [?], and give an explicit formula for
a cubical map in terms of it’s coordinate functions. Using that formula,
the homomorphism induced in homology by a cubical map is constructed.
In Section ?? a combinatorial version of the Vietoris-Begle Theorem (see,
e.g. [?] for one of classical formulations) is derived for cubical maps. In
Section ?7, we show how that result is used for constructing the homology
of maps on cubical sets which are continuous in Euclidean topology. The
construction is based on ideas from [?] and [?], and it has been implemented
in [?]. The related algorithm is presented in Section 77.

2 Preliminaries

We recall here from [?] basic terminology related to cubical sets, cubical
chain complex, and representable sets. The proofs of all statements of this
section can be found in [?] except for Proposition ?? which is proved in [?].

2.1 Cubical Sets

An elementary cube is a finite product of intervals
Q=1L xILx. . xI;cR% (1)

where I; is either a unit interval [l;,1; + 1] or a point (degenerated interval)
i, ] = [li] = {l;}, and |; € Z, Z the set of all integers. The set of all
elementary cubes is denoted by K and the set of those which are in R¢ for
a specific d is denoted by K¢. The number d in (??) is called the embedding
number of () and is denoted by emb (). The dimension of @ is the number
of non-degenerated intervals I; of the form [l;,1; + 1] in (?7) is called the
dimension and is denoted by dim Q). We put

K :={Q e K |dmQ = k}

and
Ké .= KN K.

Let Q, P e K. If Q C P, then Q is a face of P. If Q C P and Q # P, then
Q is a proper face of P.



Proposition 2.1 Let QQ € ICZ, then @Q has 3* faces.

A set X € R%is cubical if X can be written as a finite union of elementary
cubes.

Given a cubical set X C RY, we denote by K(X), respectively Kp(X),
the set of those Q € K¢, respectively in Q € ng, that Q C X. If Q € K(X)
is not a proper face of some P € IC(X), then it is called a mazimal face in
X. The set of maximal faces in X is denoted by Kpax(X).

2.2 Cubical Chain Complex

The group C{ of k-dimensional chains of R? (k-chains for short) is the
free abelian group generated by ICg. By definition, the elements of C’g are
functions ¢ : K¢ — Z such that ¢(Q) = 0 for all but a finite number of
Q € IC,%. We distinguish between the geometric objects, elementary cubes
Q € ng, and the corresponding algebraic objects, their duals @ : ng — 7,
defined on any P € K¢ by

o(P) = { Lfp=0Q, @)

0 otherwise,

The set {Q | Q € K¢} is the canonical basis for C{L.
We put Cg =0if k >d, k<0, ord<0. In order to define the chain
complex structure for the collection of groups {C,f}kez, we first need the

following auxiliary operation.

Given P € K and Q € K, we have P x Q € K{T¥,. Set

PoQ:=PxQ.
This definition extends to arbitrary chains ¢; € Cg and ¢y € C’,ff,/ by

€1 0cg = Z cl(P)CQ(Q)P/X\Q.

PEKk,QEICk/

The chain ¢; 0 ¢y € C’gig: is called the cubical product of ¢; and co.

Given k € Z, the cubical boundary map
O Cd = |

is a homomorphism defined on generators @, where Q € K¢, by induction
on the embedding number d as follows.



Let first d = 1. Then Q =[] € K} or Q = [I,1 + 1] € K1 for some | € Z.

Define
akQ'_{[H—l]—[] if Q= [I,1+1].

Let d > 1 and @ = HZ 1 1i, where I; are intervals (some possibly degener-
ated) in R. Put I =1; and P = H I;. Then Q = I o P. Define

Q=0 To P+ (-1 Ts 0, P, (3)

where k1 = dim I and ko = dim P. Finally, we extend the definition to all
chains by linearity. It is shown in [?] that cubical boundary maps satisfy
the algebraic condition for a boundary map in an arbitrary chain complex,
that is,

Ok 0 Og+1 =0, (4)

for all k € Z. Thus C := {Cy, 0}z is a chain complex. We shall now
localize this chain complex to cubical sets. The support of a chain ¢ € C,f is

the cubical set
el =J{@ext @ 0}

Given a cubical set X C R? we define
Cl(X) = {cec;j | e] cx}. (5)

Cr(X) is a finitely generated free abelian group and the set {CA? | Q€ Kp(X)}
is its basis called canonical basis. We also have

I (Cr(X)) C Cp—1(X).

Hence, the restricted boundary map 8,? : Ck(X) — Cr—1(X) is well defined
and

C(X) = {Ck’( ai(}keZ’

is a chain complex called cubical chain complexr of X. When X it is clear
from the context, we will use the notation 0y for the restricted map 8,? .
The homology of X is the collection H.(X) = {Hy(X)}rez of quotient
groups
Hy(X) == Z)(X)/Bi(X),

where Z;(X) := ker 9} is the group of k-cycles of X and By(X) :=im ;' ,
is the group of k-boundaries of X.



2.3 Representable Sets

Note that any cubical set X C R? is closed and bounded. Intersections and
finite unions of cubical sets are cubical. We want to obtain a larger class of
sets, closed under the substraction X \ Y.

Given any elementary cube () = I X Is X ... X I, the corresponding
elementary cell

o o

Q:hxj'gx...xj‘d
is the set obtained by replacing all non-degenerated closed intervals I; =
[l;,1; + 1] in the expression for @ by the open ones ;Z = (li,l; + 1), while
=L if I = ).

Proposition 2.2 FElementary cells have the following properties:
(i) R =U{Q| Q € K1),
(i) If A C R? is bounded then the set {Q € K¢ | 52 NA#0} is finite.
(iii) If P,Q € K¢, then PN Q =0 or P = Q.
(iv) For every Q € K, clé = Q.
(v) Q € K% implies that Q = U{j% | P € K% such that pPc Q}.

(vi) If X is a cubical set and QN X # () for some elementary cube Q, then
QcCX.

A set Y C R? is called representable if it is a finite union of elementary
cells. The family of representable sets in R? is denoted by RY.

Proposition 2.3 Representable sets have the following properties:
(i) Every elementary cube is representable.
(ii) If A,B € R%, then AUB,ANB,A\ B € R%.
(i) A set X C R is cubical if and only if it is closed and representable.

(iv) A bounded set A C R? zs representable if and only if for every @ €
K, QOA#(Z) ZmplzesQCA



Let A € R? be a bounded set. Then the open hull of A is

oh (4):= | {QI @ € K,QnA#0}, (6)

and the closed hull of A is
ch(4) = J{Q1 Qe K.Qna+0}. (7)

Proposition 2.4 Assume A C R%. Then
(i) oh (A) = ({U € R4 | U is open and A C U}.
(i4) ch (A) = {B € R?| B is closed and A C B}.

3 Cubical Topology

It is obvious that a union of a finite family of cubical sets in R? is a cubical
set and easy to show that the intersection of any family of cubical sets is a
cubical set. Thus the following definition makes sense.

Definition 3.1 The cubical topology in R is defined by the family V¢ of
closed sets given by

V&= {X e R?| X is a cubical set} U {0, X}.

More precisely, the family 7¢ of open sets called the cubical topology in R?
is given by
U e T% if and only if R?\ U € V%

Note that open sets, the complements of cubical sets, are unbounded.
In particular, representable sets which are open with respect to Euclidean
topology are not open in cubical topology. This slight inconvenience may
be avoided by restricting the topology to a fixed cubical set X € R? which
is always done in practical applications. Let

Tx ={UNX|UeT%
be the relative cubical topology of X. It is easily verified that

Proposition 3.2 Let X be a cubical set. A set U C X is in 1| x if and only
if U is open in the relative Euclidean topology of X and representable.



It is easy to see that the cubical topology does not satisfy any separation
axioms. For example, points in the open interval (1,2) C R cannot be
separated in the sense of any axiom. We introduce the following refinement
of two axioms of our interest.

Definition 3.3 Let (X,7) be a topological space and x,y € X. We say
that

(i) The points z and y are Ty-separable if there exists U € 7 which con-
tains exactly one of those two points.

(ii) The points x and y are Ti-separable if there exist U, W € T such that
U contains z and not y and W contains y and not x.

(iii) The points x and y are Th-separable or Hausdorff-separable if there
exist UyW €T such that UNW =0, z € U and y € W.

Proposition 3.4 Consider the cubical topology T® and let x,y € R%. Then

(i) The points x and y are Ty-separable if and only if they are in distinct
o (o]
elementary cells P, Q.

(i) The points x and y are Ti-separable if and only they are in distinct
elementary cells Jg, Q, such that neither P C QQ nor Q C P.
(iii) Let X be a cubical set with the restricted cubical topology 7|x and let

x,y € X. The points x and y are Ta-separable in X if and only if
oh (z) Noh (y) = 0.

Proof: (i) Suppose that x and y are Tj separable, and let U € 7 be a
set with € U, y ¢ U. Then Y = R%\ U is a cubical set containing y.
By Proposition ??(i) and Proposition ?7?(iii) both U and Y are unions of

elementary cells, hence there exist P,Q € K Such that T € P C U and
Yy € Q C Y. Since U and Y are disjoint, so are P and Q
Now suppose that there exist distinct cells P and Q such that z € ﬁ

and y € Q. If 2 ¢ Q then we may take U = RY\ Q. Then x € U and
y ¢ U. If y ¢ P then we may take U = R?\ P and the conclusion follows

(o]
the same way. If neither of these assumptions hold, then x € @ N P and

y € PN Q. Then Proposition ??(iv) implies that 103 CQand Q C P. By
Proposition ??(iv), P = @, a contradiction.



(ii) Suppose that z and y are T separable, let U € 7 be a set with
xeU,y¢Uand W € T beaset withye W,z ¢ W. Thenx € U\ W
and y € W\ U. Since U and W are both unions of elementary cells, there

are cells P and Q such that z € P C U\WwW and Yy E Q C W\ U. It remains
to show that P ¢ @ and Q ¢ P. We have Q NU = (). Since U is open in
7T, it is also open in the Euclidean topology, and since @) = clé, it follows
that QNU = 0. If P C Q, we get a contradiction to ]?’ C U. The argument
for Q ¢ P is analogous.

Now suppose that there exist distinct cells ](—)7 and é such that x € Jg,

y € Q,P¢gQ and Q ¢ P. If x ¢ Q and y ¢ P then we may take
U=R4N\Q, W =R?\ P and the conclusion follows as in the proof of (i). If

one of these assumptions fails, for example x € @, then we show, as in (i),

that 103 CQ,so0P= cl]g C Q, a contradiction.

(iii) By Proposition ??(i), oh (x) and oh (y) are the smallest open (in
the Euclidean topology) representable sets containing respectively x and y.
Therefore the conclusion follows from Proposition ?7. [ |

Cubical topology has analogous properties to Zariski topology. This
analogy is exhibited in the following definitions and propositions.

Definition 3.5 A topological space (X, 7T) is called noetherian if, given any
decreasing family Vi D Vo D V3 D -+ of closed sets, there exists an integer
n > 1 such that V,, = V,,; for all j € N.

Proposition 3.6 The space (R, T?) is noetherian.

Proof: Consider a decreasing sequence Vi D Vo D V3 D --- of closed sets.
If V; = R¢ for all i or V;, = () for a sufficiently large n, the conclusion is
obviously satisfied, so we may assume that there exists k such that X; is a
cubical set for all ¢ > k. Inin particular, X; can be written as X = U;n:l Qj,
where Q; € K?. By Proposition ??, there exists at most m3¢ elementary
cubes included in X and at most gm3?’ _ 9 proper cubical subsets of Xo.
Thus Vj+1 =V, for all but finitely many ¢, and the conclusion follows. [ |

Definition 3.7 Let (X,7) be a topological space. A closed set V C X is
wrreducible if, given any decomposition V = V3 U V5 with Vi, Vs closed, we
must have V =V; or V = V5.



Proposition 3.8 Let V € V. Then V is irreducible if and only if V = R?
or 'V is an elementary cube.

Proof: First, observe that R is irreducible because all other elements of
V9 are cubical sets. Cubical sets are bounded and R? is not, so it cannot
be a union of two cubical sets. Let V C R¢ be an irreducible closed set.
If V # RY, then V is a cubical set, so it may be written as a union of n
elementary cubes, V = J_; Q;, Q; € K¢. We argue by induction on n that
V is an elementary cube. If n =1, V = @)1 is an elementary cube. If n > 1,
consider the decomposition V = V; U V5 with V4 = Q1 and Vs = U?:Q Q;.
Since V is irreducible, either V' = V; or V' = V5 and the induction hypothesis
applies to both cases.

Suppose that V' = @ is an elementary cube and consider its decompo-

o
sition Q = V; U V5 to two closed, hence cubical, subsets. Then the cell @
intersects either V; or V5 and the conclusion follows from Proposition??(iv).
|

Proposition 3.9 For any V € V¢ there exists a unique family of irreducible
sets {Vi}k=12,.n such that V; ¢ Vi, for j # k and V = Jz_; Vk.

Proof: The set V = R? is irreducible, so we may assume that V' is a cubical
set, hence, it can be written as a finite union of elements of K¢ By the
definition of a maximal face, it can be written as

V={HQ ek Q€ Kma(X)}.

This union extends over a finite set and it remains to show that it is unique.
Suppose that V = |Ji_, V& where Vj are irreducible and V; ¢ Vj. By
Proposition 7?7, V} is an elementary cube for each k. We need to show that

Vi |k=1,...n} = Knax(V).
Suppose that @ € Kmax(V). Since J,_, Vi = V, there exists k such that
QN Vi # (. By Proposition ??(vi), @ C Vj. Since @ is maximal, @ = Vj.
Thus

Knax(V) C{Vik | k=1,...n}. (8)

The reverse inclusion is shown by contradiction. Suppose that V; ¢ Kiax(V)
for some j. Then there exists Q € Kmax (V') such that V; is a proper face of
Q. By (77), Q =V}, for some k. But V; ¢ Vj, a contradiction. [

We end this section with a remark that the statements of all propositions
in this section hold true for relative cubical topology in a given cubical set.

10



4 Cubical Maps and Their Homology

4.1 Cubical Maps

In Section ?7 the definition of homology of a cubical set is recalled. We
want now to extend this definition to maps f : X — Y where X,Y C R¢
are cubical sets. Following [?], we would like to define the homomorphism
H.(f) induced in homology for a class maps satisfying the following two
conditions:

1. f(Q) € K(Y) for every Q € K(X),
2. The restriction fg to every @ € K(X) is affine linear.

These conditions somewhat mimic the definition of simplicial maps in the
simplicial homology theory. The difference between these two classes of
maps is that, vertices of a simplex are affine independent whereas vertices
of an elementary cubes are not. Thus, any simplicial vertex map admits a
unique linear extension to each simplex and the passage from a combinatorial
concept of a simplicial vertex map to a topological concept of a piecewise
continuous map is very natural. This is not true for maps defined on vertices
of elementary cubes which causes that the condition (2) is restrictive and
not natural. However, the only purpose of this condition is to obtain a
continuous map. When the cubical topology introduced in Section 77 is
considered, the condition (2) is not necessary and the definition of a cubical
map can be stated as follows.

Definition 4.1 Let X, Y be cubical sets. A map f: X — Y is called a
cubical map if it is a continuous and closed map with respect to the relative
cubical topology in X and Y.

Here is a more explicit equivalent formulation:

Proposition 4.2 Let X, Y be cubical sets. A map f: X — Y is a cubical
map if and only if it

(a) f~1(Q) is a cubical set for every Q € K(Y),
(b) f(Q) € K(Y) for every Q € K(X).

Proof: By definition of the relative cubical topology, f is continuous if and
only if f~1(A) is a cubical set in X for every cubical set A in Y. Since every

11



cubical set is a finite union of elementary cubes and a finite union of cubical
sets is a cubical set, this is equivalent to (a).

Again by definition, f is a closed map if and only if f(A) is a cubical set in
Y for every cubical set A in X. By the previous arguments, this is equivalent
to the condition that f(Q) is a cubical set for every @ € K(X). We show, by
contradiction, that f(Q) must be an elementary cube. Suppose that f(Q) is
a cubical set which is not an elementary cube. By Proposition 77, there are
two cubical sets R and S, neither equal to f(Q), such that f(Q) = RUS.
Then Q = f~Y(R)U f~1(S). Since Q is irreducible and f~'(R) and f~1(9)
are cubical, we must have Q@ = f~1(R) or Q = f~(S), so f(Q) = R or
f(Q) =S, a contradiction. [ ]

The following property of cubical maps will be used later:

Proposition 4.3 Let X, Y be cubical sets and f : X — Y a cubical map.
For any Q € K(X)

dim f(Q) < dim Q.

Proof: We argue by induction on the dimension & = dim@. If £ = 0,
@ is a singleton and so is f(Q), hence dim f(Q) = dim@ = 0. Suppose
that the conclusion holds for a given £ > 0. Let Q € Kgy1(X) and m =
dim f(Q). If m = 0, we are done. If m > 0, there are two opposite faces
Py and P_ of f(Q) of dimension m — 1. Since Py and P_ are disjoint
elementary cubes, f~!(Py) and f~!(P_) are two disjoint proper cubical
subsets of Q. Therefore, dim f~1(P,) < k and dim f~}(P_) < k. By
induction hypothesis, k <m — 1, s0 dim@Q =k + 1 < m = dim f(Q). [ |

The identity map id x obviously is a cubical map and it is easy to check
that the composition g o f of two cubical maps is a cubical map. Thus we
may form a category Cub whose objects are cubical sets and morphisms are
cubical maps.

Note that cubical maps are not necessarily continuous with respect to the
Euclidean topology. For example, any surjective function f : [0,1] — [0, 1]
such that f=1({0,1}) = {0,1} is a cubical map. We can modify values of a
cubical function inside elementary cells freely as long as images of elementary
cubes remain the same. Therefore it makes sense to define an equivalence
relation for cubical maps f,g: X — Y by setting f ~ g if and only f(Q) =
g(Q) for all @ € K(X). The equivalence class of f is called the cubical
class of f. We will soon see that any cubical map contains, in its cubical
class, a representative which is continuous and whose restriction to any
elementary cube is affine linear, that is, a linear map possibly composed

12



with a translation. Before proceeding further, it is helpful to have some
examples of cubical maps.

Example 4.4 An inclusion of cubical sets ¢ : A <— X is a cubical map.
The following maps of the Fuclidean space, when restriced to a cubical set
and its image, become cubical maps:

1. Projection p: R? — R~ p(x) = (22,23, ... 74);

2. Coordinate immersion, j : R? — R j(x) = (m,z1,29,...,24q),
m € 7;

3. Translation x — m + x, where m € Z%;
4. Transpose (x;, Ti+1) — (Tiy1,T;);
5. Inversion x; — —x;.

A composition of cubical maps is a cubical map hence more maps can
be generated from the above examples. We proceed towards an explicit
formula which implies, in particular, that any cubical map can be obtained
by composing the maps listed in Example 77, up to the cubical equivalence
class.

In the sequel, the following notation is be helpful. We first put

Ny ={1,2,3,...,d}.
Next, given an elementary cube Q = I x Ir x ... x Iy € K¢, we put
ess(Q) :={i € Ng | I; is non-degenerate}.

Theorem 4.5 Let X C R and Y C RY be cubical sets. The cubical class
of any cubical map g : X — Y contains a map [ with the following property:
For all Q € K(X), the restriction of f = (f1, fa,..., far) to Q can be ex-

pressed coordinate-wise by the formula
fi(x) = mi + 6wy, (9)

where i € Ny, m; € Z, ¢, € {—1,0,1} and p is a function from Ny to
Ngy. Moreover, €; and m; are uniquely determined by i, (i) is uniquely
determined by i unless ¢; = 0, and the function vy : ess(f(Q)) — ess(Q)
such that vy (k) = p(k) is injective and uniquely determined by f and Q.

Conversely, any map defined on elementary cubes in X by (?7) is a cubical
map.

13



Proof: The construction of f on each elementary cube ) goes by induction
on k = dim Q.
Let k = 0. Then g(Q) € K& (Y) by Proposition ??, so we may write

d/

9(Q) = H[li]v li € Z.

=1

Hence f;(Q) = l; + 0 is a unique function of the form (?7?) except that
p arbitrary because ¢; = 0. The function v, is not defined in this case
because ess(g(Q)) = 0 = ess(Q). Thus we may put fo = go-

Suppose that the construction is done for all elementary cubes of di-
mension k£ > 0 so that the restriction of g and f to the k’th skeleton of
X,

XW =| fQekuX)|i<k}

satisfies the conclusion of the theorem. Consider @ € Ki41(X).
If ess(g(Q)) = 0, we get as previously, ¢;(Q) = l; + 0 and fg := gjo- If
ess(g(Q)) # 0, choose n € ess(g(Q)) and let

gn(Q) = [TTL?TTL + 1]-

Put
P =g(Q),
Py = g1(Q) x g2(Q) X -+ X gn—1(Q) X [rn] X gn+1(Q) x -+ X gar(Q),
and
Qo=Qng ' (Ry).

Since Py is a proper face of P, Qg € Q. It follows from Proposition 77 that
(o is an elementary cube. Indeed, suppose that R, Rs are cubical sets such
that Qo = R; U Ry. Then g(R;1) U g(R2) = Py but g is a cubical map and
Py is an elementary cube hence g(R1) = Py or g(R2) = Fy. Consequently,
R1 = Qg or Ry = (Qy. Hence () is an elementary cube and a proper face of
Q. We show that dim Qo = k. Indeed, if dim Qg < k, there exists Ro/(X)
such that Qo € Rp € @ and then g(Qo) = Po € g(Ro) € ¢g(Q) = P. This
is impossible because the three sets are elementary cubes and dim ¢g(Q) =
dimPy 4+ 1. Thus dim Qg = dim Py = k.

By the induction hypothesis, fq, is defined coordinate-wise by formulas
foi(x) = moi + €0iT (), 1 € Nar, €0, mo; and pig(i) are uniquely determined
by i. Since dimg, = k, there is a unique j € ess(Q) such that j ¢ ess(Qo).
The j’th component I; of @) can be written as I; = [l;,1; + 1] and the j’th
component Iy; of Q is either [I;] or [I; + 1].

14



In the case Ip; = [I;], we put fi(x) = foi(x) for all i # n and f,(x) =
rn — lj + xj. This uniquely determines m, =r, —1l;, €, =1 and p(n) = j.

In the case In; = [l; + 1], we put f; = fo; for all i # n and f, =
rn +1+1; —x;. This uniquely determines m, = r, +1+1{;, ¢, = —1 and
n(n) =j.

We show that v g : ess(f(Q)) — ess(Q) such that vyg(k) = pu(k) an
injective function. Consider a,b € ess(f(Q)), a # b. If a # n and b # n, then
a,b € ess(f(Qo)) and, by induction hypothesis, a # b implies v(a) # v(b). If
a=mn #b, then v(a) = v(n) = j and b € ess(f(Qp)). However, j is not in
the image of v¢ ., hence v(a) # v(b).

The converse statement is obvious. [ |

Note that the coordinate function f; in the formula (??) for a given
elementary cube () depends only on one coordinate of x, namely z,,;). Thus,
we may introduce cubical functions f? : I u@) — Ji defined on elementary

intervals appearing in QQ = H;l:l L, f(Q) = Hflzl Ji, given by
fz(t) =m; + €;t. (10)

With the help of these one-dimensional functions, the formulas (??) for
i € Ng can be replaced by the formula

F69 = (£ @) F2@u@): o @) ) (11)

It is clear that the maps defined by (?7) and (??) are affine linear on
each elementary cube and since the formulas coincide on common faces of
elementary cubes, they extend to a map f : X — Y which is continuous
in Euclidean topology. Thus every cubical class contains a representative
which is continuous in the traditional sense.

4.2 Induced Chain Maps

We shall now proceed towards the definition of H,(f), the homomorphism
induced by a cubical map f.

First, let us introduced the following notation. Given A, B C N and a
function « : A — B, we define its sign by

sgn o = (—1)Card{(i’j)e’42‘aﬁ'<ai} if o is bijective,
’ 0 otherwise.

where card stands for the number of elements of a set.
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Definition 4.6 Let f : X — Y be a cubical map, X ¢ R% and Y ¢ RY
cubical sets. The homomorphism induced by f on k-chains fur, : Cp(X) —

Cx(Y) is defined on the generators Qe K¢(X) by induction on d as follows.

(a) Let k=0 and d = 1. Then @ = [I] for some [ € Z and we put

~ —

fyo(ll]) = [F(D)]

(b) Let k=1 and d =1. Then Q = [l,] + 1] for some | € Z and we put

—

. [F@, £+ D] i fO) < fUT+1)
fi(LU+ 1) =9 —[f0+1), ()] iff()> fi+1)
0 if £(1) = f(l+1)

(c) Let d > 1, Q =[[%, I, dim f(Q) = n, and let I; < Iy < -- -1, be the
indices in ess(f(Q)). We define

F4(@) =0 (£.Q) O Fin(L;0) (12

where sgn (f,Q) = sgn(vsg) is defined in Theorem ?7?, and f* is
defined in (?77).

Note that the image of a k-chain is always a k-chain because if dim @ #

dim f(Q) then sgn (f,Q) = 0.

Theorem 4.7 The family of homomorphisms fu = {fur} : C(X) — C(Y)
is a chain map, that is, it commutes with the boundary operator. More
explicitly, for any k € Nk # 0 we have

Ok o fak = fak—100k. (13)

Proof: Obviously it is enough to verify (?7) on elements of the canonical
basis @ € C(X). If emb@ = 1, the verification is straightforward. Thus
assume @ = H?Zl I; with d > 1. Let I; = [a;,b;] for some a; € Z and
b; € {a;,a; +1}. Let u: Ny — Ny be as in Theorem ??. Let A := ess(Q),
B :=ess(f(Q)) and v :=v(f,Q) = pp: B — A. If v is not a bijection then
one easily verifies that both sides of (?7) are zero. Thus assume that v is a
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bijection. For i € B put

si = card{v(j) € A|j<i}=card {j e B|j<i},

pi = card{j e B|j<iandv(j) >v(i)},

n; = card {jeB|j>iandv(j) <v(i)},

ti = card{j e B|v(j) <v(i)} =card {v(j) € A|v(j) <v(i)},
B; := B\/{i},

ri = card {(I,m) € B? |1 <m and v(l) > v(m)},

N = (_1)23-;11dimfi(fu(j))’
e = sgn(f, Q).

Since v is bijective, dim fi#(fl,(i)) = dim Z,(Z»), therefore

% = (~)ZR o = (<1,

Let
' i—1 d
QZ = HIj X [al] X H Ik,
j=1 k=it+1
A i—1 d
Qb = [[Lxblx I] I
j=1 k=i+1

Note that ess(Q’) = B; =ess(Q}), therefore sgn (f, Q!) = (=1)" = sgn (f, Qz)
Denote this common value by §;. We have

sgn (f, Q) _ (_1)card {(l,m)€B2|l<m and V(l)>1/(m)} _ (_1)ri+pi+ni‘

Therefore
6= (-1 = sgn (£, Q) (17"

Consequently
cidi = sgn (, QP (—1) 7 = (—),
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JFrom equation (?7?) and definition 7?7 we get

~ i—1 —~ Lo~ d ~
(00 flx(Q) = ZEi(hglfﬁ(fu(h)))Oaf;(fu(i))o(_<Z}+1f;§(fu(h)))

-1 ~ d ~

_ f# (Z(_l)card {meA\m<l}( O fh) 08[[0( o Ih))

h=1 h=Il+1
1 .7 =1 < ~ i—1
= f#<2(_1)22:11d1m1j (h<21lh) oo ( ¢ Ih))

=1 h=Il+1

= fzod(Q).

The correctness of the following definition is a standard consequence of
the property (?7?) of any chain map on chain complexes.

Definition 4.8 Let f : X — Y be a cubical map and f4 : C(X) — C(Y) the
induced chain map. The homomorphism H(f) : Hp(X) — H(Y) induced
by f4 on quotient groups is called the the kth homology of f. The family of
maps H.(f) = {Hk(f)}: Hi(X) — H.(Y) is called the homology map of f.

Lemma 4.9 The definition of a chain map induced by a cubical map is
functorial in the following sense.

(a) Given a cubical set X, (id x )4k = id ¢, (x) for all k,
(b) Given two cubical maps f : X — Y and g : Y — Z on cubical sets,
g#k e} f#k‘ = (g o f)#k fO’f' (lll k’

18



Proof: Let X c RYY ¢ RY and Z CARdH. It is enough to verify (a) and
(b) on elements of the canonical basis @ € K¢(X). Put Q = H?Zl I;.
(a) Since vjq o Ny — Ny is the identity, we have

(ZdX)#k(Q\) = sgn(idx, Q) (idX)#lfy(i) = § P = @

< a
LN

(b) Let first d =d' = d” = 1. If dim Q = 0 then @ = [I] for some | € Z
and

— ~

(930 © f0) ] = 940l T D] = [(g° ND] = (9© Holl]
If dim @ =1, then Q = [, + 1] for some [ € Z. Put a = f(l), b=
¢ =g(a), and d = g(b). We have

—

. gx1la,b] ifa<bd
(g0 f)([LI+1]) = & —guba ifb<a
9410 ifa=10
( [c/,E] ifa<bandc<d
—[g,\c] ifa<bandd<c
= —[d,c] fb<aandd<c
[e,d] ifb<aandc<d
0 otherwise

cd ife<d

= —ld,c] ifd<ec
0 otherwise

= (9o fwm(lI+1]).

Let now d,d’,d” > 1 not all equal to 1. We use abbreviations vy = vy
and vy, = vy(g)g. We let k1 < kg < ---ky, be the essential indices of f(Q)
and [; < ly < ---1, the essential indices of g(f(Q)).

By the linearity of g4 and by (?77?),

(gar 0 fur)(@) = gu (Sgn(f, Q) ¢§1 ff#ikfllf(ki)>

sen(vy) gk <,<_>1 f;;ikfyf(kio

oo ve(ly) 5
= sanlvy) sen(v) O i (f#jk( ’)(quwg(zm)) :
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Since sgn(o o7) = sgn(o) sgn(r) for any permutations o, 7, using the result
proved in the case d = d = d”’ = 1, we get

(945 © far)(Q) = SgH(VfOVg)< (9" 0 £ il o, ))

= sgn(vyouy) (
n
Ol

= sgn(Vgof) < (9 f)#k; Viog(ls )> =(go f)#k

H >3

H <>3

#k VfOVq(l ))

By standard homological algebra arguments, Lemma ?7 implies the fol-
lowing.

Theorem 4.10 H, is a functor from Cub to the category of graded groups.
More explicitly,

(a) Given a cubical set X, H,(id x) = id Ho(X)s

(b) Given two cubical maps f : X — Y and g : Y — Z on cubical sets,
H.(g) o Hi(f) = Hi(g o f).

The following examples are related to first three maps in Example 77.

Example 4.11 Assume A C X are cubical sets. If i : A — X is the
inclusion map then iy : C(A) — C(X) is also an inclusion map.

Example 4.12 Consider the elementary cubes @ = [0,1]¢, Q" = [0,1]¢"!
and the projection map p: Q — Q' given by

p(1, 22,23, ...,2q) = (22,23,...,2q).

Any face P of @ can be written as P = I x P’, where I; can be [0, 1], [0],
or [1], and P’ = p(P) is a complementary face of P. The induced chain map

p# : C(Q) — C(Q') is given by

5 Pt I =[0] or I = [1]
P) = ’ 14
k() { 0  otherwise. (14)

Example 4.13 Let Q and Q' be as in Example ??. The map j : Q' — Q
given by
j(xla Z2,x3,. .- 7$d—1) = (07$17x27 sy xd—l)
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is a cubical map, and the induced chain map py : C(Q") — C(Q) is given by

—

Juk(c) :==1[0]oc.

Note that pj = idQ/, therefore Daju = (pj)# = idC(Q’)- Next, jupy =
(jp)4 is chain homotopic to id ¢(q), with the chain homotopy Dy, : Cx(Q) —
Cr+1(Q) given by

0,16 P ifL =[1
Dy(P) = 0 if I = [0)],
0 if I; = [0,1],

B
]

where P = I; x P! € K(Q) is as in Example ??. It follows that H,.(pj) :
H.(Q") — H.(Q) is the inverse of H,(pj) : Hi(Q) — H.(Q'). Consequently,
H(Q) = Hi(Q).

JFrom the result presented in Example 77, one can conclude, by induc-
tion on d, that @ = [0,1]? is acyclic, that is, its homology is isomorphic to
homology of a point:

Hk(Q)%{ 7 ifk=0,

0 otherwise.

That is probably the simplest way of proving it without using the homotopy
invariance theorem, whose proof is more involved.

4.3 Combinatorial Vietoris Theorem

Here is a combinatorial version of the Vietoris Theorem [?].

Theorem 4.14 Let X,Y be cubical sets and f: X — Y a cubical map. If
f is surjective and f~1(Q) is acyclic for each Q € K(Y) then fi : Hy(X) —
H.(Y) is an isomorphism.

Proof: We construct by induction a chain map

Y = {x : Ck(X) — Cr(Y)}

and we prove that it is a homological inverse of f,.
Let k = 0. Let Q € Cy(X) be an elementary O-chain. Since f is surjective
and cubical, there exists a P € ICo(X) such that f(P) = Q. Then f4(P) = Q

~

and we put ¢o(Q) := P.
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Suppose now that & > 1 and ¢; : C;(X) — C;(Y) is constructed for
i=1,2,...k — 1 so that

Gi(Q)] € F7H(Q) for all Q € Ki(Y) (15)

Yi—10; = 0i;. (16)
Note that then for any Q € Ki(Y)

v (0Q)] < s (Jo@]) < 17 (|Q) < r (@

By the induction hypothesis, ¢y 18@ € Zi_1(f~1Q)). Since f~1(Q) is
acyclic, its reduced homology H.,(f~'(Q)) is zero. Therefore, there exists
a c € Cp(f71Q)) such that dc = 1,_10Q. In the case k > 1 this is
straightforward while in the case k = 1 it follows from the fact that @ is
an interval so, by the definition of Wy, woc?@ is a difference of two vertices,
thus it is a reduced cycle. We put wk@ =c.

Thus the map v is constructed. We will show now that

o =idcwy (17)

The proof is again by induction. For k = 0 the assertion follows immediately
from the definition of ¢g. Suppose that ¢4, 01; =id ¢;(y) for 0 < < k—1.
Given any Q € Kr(Y), we have

9Q = fyr—10vYE-1(0Q) = Iy o fur 0 Yr(Q)

and, by the definition of 1,

[Feeov@)] < F(0@) C FUTH @) @

It follows that fuy o wk(é) Qis a cycle in Q. However, H,(Q) =
hence, every k-cycle in @ is a boundary. Since dim @ = k, the only (k +
dimensional boundary in @ is zero. Thus

farov(Q) = Q.

In the last step we will show that 1 o f4 is chain homotopic to id ¢(x).
To do this we construct by induction a chain homotopy

Therefore fu, o wk(@) is a k-chain which has the same boundary as @
0,
1)-

D ={D;: C;(X) — Cita(X)}
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such that
Oit10D;+ Di—100; = ;o fy; —id gy x)

|Di(c)| € f7H(Q) for any c € C;(f71(Q)) and Q € K;(Y).
Let £ = 0 and take any P € Ko(X). Let Q := f(P) and let ¢ = 1/)0

Since H,(f~1(Q)) = 0, there exists a ¢’ € Cl(f 1(@)) such that
80’ =C— ﬁ = (¢0 o f#o — idCo(X)) (ﬁ)

We put Dy(P) := (.
Now suppose that for: =0, 1,2,...k—1 the maps D; : C;(X) — Cij+1(X)
are constructed so that properties (?7) and (??) are satisfied. Take any

P € Kn(X). Let Q := f(P) and let ¢ := ¢4(Q) = vy (fx(P)). Since both ‘13‘

and |¢| are in f71(Q), the induction hypothesis (??) and the subadditivity
of support in [?, Chapter 2, Proposition 2.19(iv)] imply that

c— ﬁ — Dk,lakﬁ‘ C ’C‘ U ‘ﬁ‘ U ’Dk,lakﬁ‘ C fﬁl(Q)
Since H,(f~'(|Q|)) = 0, there exists a ¢ € Cry1(f~1(Q)) such that
dc =c— P — Dy_104P = (Y o far, — id ¢ (x) — Di—10%) (P).

It remains to define Dy(P) := ¢’. Then (2?) is obviously satisfied and (??)
follows when the construction is completed for all cubes P in f~}(Q). m

5 Homology of continuous maps via cubical maps.

From now on, by a continuous map we mean a map which is continuous with
respect to the Euclidean topology. As we pointed out in Section 77, the class
of cubical maps is small. In particular it is to small to obtain a counterpart
of the theorem stating that every continuous map may be approximated by
simplicial maps. Since this approximation theorem is crucial in the definition
of simplicial homology of continuous maps, one can see that there is no way
to carry over the definition of the homology of a continuous map from the
simplicial case to the cubical case by means of approximation. One way
to overcome this difficulty is by considering cubical multivalued maps and
their homology. This approach is presented in [?]. The main difficulty of this
approach does not lie in the construction of the multivalued map itself but
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in the construction of the so called chain selector of the multivalued map.
In particular it requires solving a large linear equation for each elementary
cube in the domain of the multivalued map.

However, it turns out that approximation, which is convenient in the
case of simplicial homology, may be replaced by Cartesian approach, which
is natural for cubical homology. This approach is used in [?] to present
a new algorithm for computing homology of continuous maps. Since the
presentation there is technical and oriented on efficiency, in this section we
will describe the Cartesian approach without all the improvements designed
for the efficiency but hiding the main idea.

The construction is based on the definition of the homology of a multi-
valued map via projections from the graph given in [?] and an idea from [?].
Let X,Y be two cubical sets and let f : X — Y be continuous in Euclidean
topology. Our goal is to define the homology of f in terms of homology of
some cubical maps. Recall that the graph of f is the set

graph(f) := {(x,y) e X x Y |y =1{(x)} .

Obviously, graph(f) is not a cubical set unless f is locally constant. However,
we may consider a cubical set Z C X x Y such that graph(f) C Z. Let
pz : Z — X and qz : Z — Y denote projections respectively to X and Y.
Then we have the following commutative diagram of continuous maps.

Pz \ 9z (20)

We know from Example 7?7 that pz and ¢z are cubical maps and therefore
their homology is well defined. Since homology is functorial, the homology
of f must satisfy

H*(f) © H*(pZ) = H*(QZ)'

This may be solved for H,(f) if H.(pz) is an isomorphism. Since obviously
pz is surjective, by Theorem 7?7 H,(pz) is an isomorphism if for every x € X
the set

P (@) = {e} x ¥ N 2 (21)

is acyclic. The simplest candidate for Z is ch(f), the closed hull of f in
X x Y. In practice, it often fulfils the acyclicity condition of (?7). In the
case when the acyclicity condition of (??) fails, one has to go through the
process of subdivision or rescaling, similarly as in the multivalued approach
presented in [?]. One can prove that with a sufficiently large subdivision
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or rescaling the closed hull of the graph satisfies the acyclicity condition of
(?7).

6 Algorithms

In this section we present the algorithms, which compute the homology of
a cubical map and a continuous map. We use the notation and the syntax
of algorithms introduced in [?]. In particular let us recall the following
notation.

typedef endpoint := (left,right);

typedef interval := hash{endpoint} of int ;

typedef cube := array|[l :| of interval;

typedef chain := hash{cube} of int ;

typedef chainMap = array[0:]| of hash{cube} of chain;

To store a cubical map it is natural to use the following data structure.
typedef cubicalMap := hash{ cube} of cube;

The algorithm computing the homology of a cubical map is straightfor-
ward. It consists of two steps. The first step is based on Definition 7?7 and
produces the associated chain map. Then a straightforward to implement
algorithm homologyOfChainMap is used to get the homology of the chain
map. Here is a possible implementation.

Algorithm 6.1 Homology of a cubical map
function homology0fCubicalMap(cubicalMap m)
chainMap phi = ();
for i :=1 to lastIndex(m) do

for each Q in keys(m[i]) do
if dim(Q) = dim(m[i]{Q)});
ph 4] := sga(m, Qu[i}{Q)}:
endif;
endfor;
endfor;
return homologyOfChainMap(phi);

Now we are ready to present the prototype of an algorithm computing
homology of a continuous map. Of course the fundamental question is to
what class of continuous maps we can apply the algorithm. Obviously it is
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not possible to apply it to all continuous map, because there is uncountably
many of them. One has to choose a suitable countable subclass. What
matters is that for the continuous maps in the class one should be able to
construct the closed hull of the graph. This may be done in many ways and
we do not want to go into details here. The typical approach is based on
interval arithmetic [?]. Some ways to achieve this task for certain classes
of continuous functions are discussed in [?], [?] and [?]. For the sake of
this paper we simply assume that a suitable class of continuous functions
is available, the elements of this class can be stored in the data structure
contMap and algorithm closedHullOfGraph finding the closed hull of the
graph of a continuous map is given. We also assume that projection is an
algorithm which given a set Z C X xY and X or Y returns the projection of
Z on X or respectively Y. The algorithm is straightforward to implement.

Algorithm 6.2 Homology of a continuous map
function homology0OfContMap(cubicalSet X,Y, contMap f)
Z := closedHull0fGraph(X,Y, f);
p := projection(Z, X);
q := projection(Z,Y);
p := homologyOfCubicalMap(p);
q := homology0fCubicalMap(q);

return qop !

Theorem 6.3 Assume Algorithm 7?7 is called with f representing a con-
tinuous map f. If the cubical set represented by Z satisfies the acyclicity
condition of (?7), then the algorithm stops and returns the homology of f.

Proof: The proof of this theorem follows immediately from the discussion
in Section ?77. [ |

The strength of Algorithm ?? lies in the fact that one avoids solving
a large number of large linear equations what is needed in the algorithm
presented in [?]. However, a direct application of Algorithm ?? would not be
efficient for another reason. The problem is that with introducing the graph
one raises the dimension of the problem from the maximum of dimensions
of the cubical sets X and Y to the sum of these dimensions. The solution
is to perform some preprocessing, which allows one to replace the graph by
another set in X X Y whose dimension is the same as the dimension of X.
The preprocessing is quite complicated but leads to an algorithm which has
been implemented and performs well in concrete applications. The details
are presented in [?].
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