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Abstract

In this paper we present a new algorithm for computing the homology of reg-
ular CW-complexes. This algorithm is based on the coreduction algorithm due to
Mrozek and Batko and consists essentially of a geometric preprocessing algorithm
for the standard chain complex generated by a CW-complex. By employing the
concept of S-complexes the original chain complex can — in all known prac-
tical cases — be reduced to a significantly smaller S-complex with isomorphic
homology, which can then be computed using standard methods. Furthermore,
we demonstrate that in the context of non-uniform cubical grids this method
significantly improves currently available algorithms based on uniform cubical
grids.
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1 Introduction

Homology has long been accepted as an important and computable tool for the anal-
ysis of topological spaces. The classical approach for computing homology is based on
the celebrated Smith normal form, as described for example in [22]. For this method,
computing the homology is basically reformulated as a linear algebra problem over
the integers. The complexity of the Smith normal form algorithm, and consequently
the homology algorithm based on Smith normal form, is O(n3.376...), see [24]. This is
sufficient in the case of spaces with small representation. Unfortunately, in modern
scientific applications the size of the structures of interest frequently renders this ap-
proach infeasible due to the enormous size of the resulting matrices, and this fact is
only exacerbated by modern data acquisition techniques. For example, in the context
of materials science one might be interested in understanding the topology of extremely
large complex microstructures, and computing their homology via the Smith normal
form would easily lead to computations which cannot be handled on modern equip-
ment. For some applications of topological methods in materials applications we refer
the reader to [2, 10, 21, 25], as well as the references therein.

Based on these limitations of the Smith normal form algorithm, it is not surprising
that more efficient algorithms for the computation of homology have been developed
over the years, see for example [6, 7, 8, 9, 12, 13, 14, 19, 20], as well as the references
therein. These algorithms and their implementations vary by the type of the requested
input. Many algorithms require the topological space of interest represented as a
simplicial complex, in some cases with certain dimensional restrictions. A different
approach is employed in [12, 14, 19, 20], where the topological spaces are represented
as cubical complexes, i.e., they are assembled from a finite collection of unit cubes.
This framework is well-suited for the study of experimental and numerical data which
is provided in pixel or voxel form, such as digital images or three-dimensional structures
generated via experimental slicing techniques.

The success of many of these algorithms, for example [6, 19, 20], rests on minimizing
or entirely avoiding the algebraization, i.e., the process of constructing the matrices
of the boundary map followed by the Smith algorithm. One way of minimizing the
algebraization consists in substantially reducing the representation of the topological
space on input without changing its homology. A simple way to reduce the space is to
collapse every face and its coboundary whenever the coboundary contains exactly one
element. The collapsed space has the same homotopy type, so the homology does not
change. Unfortunately, this method rarely leads to substantial reductions. However,
the size of space significantly decreases after applying the dual concept of coreductions.
The coreduction homology algorithm has been introduced in [19].

In the cubical setting, numerical experiments have shown that the coreduction
algorithm is currently the fastest available method. In particular, it computes Betti
numbers in a small fraction of the time used by other algorithms only to construct the
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COMPUTING HOMOLOGY OF MAPS 7

elements in the cubical structure. This is because we can change the unit of cubical
structure from 1 to n.

However, when we apply the same rescaling to all sets in X 0 except F but we only
strech F in the horizontal direction and keep the vertical edge of F unchanged, then
the situation becomes different. The Čech structure still requires 8 elements but the
cubical structure cannot be rescaled, so that we need 44n2+3n unit cubes to cover
the set. This shows that there exists a sequence of planar sets Xn homeomorphic to
X0 such that they admit a Čech structure of 8 elements but the minimal number of
elementary cubes required to represent the sets goes with n to infinity. Therefore,
the cost of computing homology of Xn based on its cubical structure will have
supercubical complexity, whereas the cost of computing the homology of all Xn via
the Čech structure will be constant for all n.

The example may seem to be artificial but this is what happens when sets exhibit
nonuniform or fractal structure, a phenomenon often observed in dynamics. In
particular, the nonuniform structure may appear if some parts of the set need some
fine-tuning to guarantee some properties. For instance, consider an asymmetric
ring R, i.e. the difrence of a disk and an internally tangent subdisc (see Figure 2).
If we need a representable covering of R whose Hausdorff distance from R is not
greater than a prescribed ε > 0 then it is easy to see that the size of the covering
consisting of cubes of size ε will be proportional to 1

ε2 , whereas the size will be

proportional to 1
ε in the case of a non-uniform Čech structure consisting of cubes

with the smallest cube size ε.

Figure 2. An asymmetric ring with a cubical representation of
2708 cubes(left) and Čech representation of 662 cubes (right).

5. Homology of continuous maps.

Assume X,Y are Čech polyhedrons and f : X → Y is a continuous map. Our
goal is to represent the singular homology of this map in terms of the homology
of a map of some Čech structures. To be more precise, let X and Y be two Čech
structures and let

F : X → Y
be a map. By (1) the map F may be viewed as a map acting on the set of vertices
of K(X ). We say that F is simplicial if it is simplicial with respect to K(X ). If F

Figure 1: Two non-uniform cubical approximations: The left image contains a non-
uniform grid that can be used to validate the nodal domain shown in dark blue, and the
right image shows an efficient representation of a topological space with a singularity.

boundary matrices, i.e., even before they start applying the Smith algorithm. It has
been proved in [11] that Z2-Homology of weak 2-pseudomanifolds may be computed
by a variant of the coreduction algorithm in O(nα(n)), i.e., almost linear time. The
coreduction algorithm is defined in the general framework of S-complexes, which will
be described in more detail below.

Despite its efficiency, there are situations where the current form of the cubical core-
duction algorithm does not allow for a timely homology computation. For example,
in [4, 5] a rigorous computational technique was developed for finding the homology of
nodal sets of smooth functions, a situation which is frequently encountered in applica-
tions. See for example [1, 16, 17] and the references therein. The method presented
in [5], which will be explained in more detail in Section 4 below, is used to generate
a non-uniform cubical grid which represents the considered nodal domain. An exam-
ple of such a non-uniform grid is shown in the left image of Figure 1. Similarly, the
right image in this figure shows an efficient representation of a topological space with
a singularity.

While the method of [5] computes efficient non-uniform decompositions, the only
way to compute the homology of the nodal sets using currently available homology
codes is to embed the non-uniform grid into a fine uniform grid, whose size is determined
by the smallest square in the non-uniform decomposition. As was pointed out in [5],
this severely limits the practical applicability of the method. Similarly, in the context
of computing the homology of maps it has been shown in [18] that the restriction to
uniform cubical grids leads to inefficiencies which in principle can be addressed by
representing the objects of interest in a less stringent way.

In the current paper we adapt the coreduction homology algorithm of [19] to the
setting of regular CW-complexes. This allows us to prove that the Betti numbers of
planar CW-complexes may be computed in linear time. We also introduce the concept
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of a rectangular CW-complex of arbitrary dimension and show that the coreduction
algorithm is particularly useful for such complexes.

Our method may be compared with the recent work [23] on computing the gener-
ators of image homology using graph pyramids. Although our main goal is somewhat
different than the goal of [23], in the common setting of computing Betti numbers of
2-dimensional images the time and memory complexity of our algorithm is O(p) with p
the number of pixels, whereas the time complexity of building the graph pyramid alone
is O(p log p). Therefore, in those applications where the graph pyramid is only a tool for
finding Betti numbers and not part of a general goal, our approach to computing Betti
numbers is superior. Our algorithm may also be adapted to compute the homology
generators and in that case the time complexity is O(pg) with g the number of genera-
tors. Since the complexity of the respective algorithm in [23] is at least O(p log p+ g2),
the comparison in this case is in favor of our algorithm when the number of generators
is bounded.

The remainder of the paper is organized as follows. In Section 2 we recall results
and definitions from the theory of S-complexes and coreductions. Our main result on
extending the coreduction method to regular CW-complexes is the subject of Section 3.
We also demonstrate there that the necessary incidence indices can be determined
easily in the non-uniform cubical setting of rectangular CW-complexes. Also here
we show the complexity results concerning the planar case by proving that, in this
case, the coreduction method always produces final S-complexes with trivial boundary
operators, which eliminates the necessity to run a Smith normal form algorithm after
the reduction. Finally, Section 4 contains some numerical examples.

2 S-Complexes and Elementary Coreductions

In this section we collect basic definitions and results for our underlying algebraic
framework, i.e., the theory of S-complexes which was introduced in [19] as a reformu-
lation of the concept of a free chain complex with a fixed basis in a manner suitable
for computational reduction. Our discussion includes the notions of regular subsets of
S-complexes, as well as of elementary coreductions and elementary reductions.

2.1 Preliminaries

We begin with fixing some terminology and notation. Throughout the paper we write Z,
R, and R to denote the set of integers, the set of reals, and a fixed ring with unity,
respectively. Given a set A we denote by |A| its cardinality and by R(A) the free
module over R generated by A.

Given an object X of a category C, a sequence (Xq)q∈Z of objects of C is a gradation
of X, if X decomposes as the direct sum of the objects Xq.
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An abstract chain complex is a free R-module C with a gradation (Cn)n∈Z in the
category of R-moduli and a collection of homomorphisms ∂n : Cn → Cn−1 called
boundary maps, such that ∂n−1∂n = 0 for all n. The elements of Cn are referred to as
n-chains or simply chains. If c ∈ Cn is a chain, then n is the dimension of c, denoted
dim c.

Given a basis S of C with gradation (Sn)n∈Z we denote the associated scalar product
of chains c1, c2 ∈ C by 〈c1, c2〉S. We usually drop the index S if the basis S is clear from
the context. The incidence index of basis elements s, t ∈ S is defined as 〈∂s, t〉 ∈ R if
dim t = dim s− 1 and is zero otherwise. If the incidence index of s, t is nonzero, then t
is called a facet of s. This defines a relation in S×S, which will be referred to as facet
relation. For any subset A ⊂ S let us define

bdS A = { t ∈ S | t is a facet of s for some s ∈ A },
cbdS A = { s ∈ S | there is a t ∈ A such that t is a facet of s }.

The weight of a generator s ∈ S is given by

wS(s) := max(| bdS s|, | cbdS s|) ,

and the weight of the basis S by

w(S) := max {wS(s) | s ∈ S } .

Given a topological space X and a set A ⊂ X, we denote the closure and the boundary
of A, respectively, by A and ∂A.

2.2 S-Complexes and Regular S-Complexes

We first recall the definition of S-complexes as well as some basic results on the impor-
tant special case of regular S-complexes.

Let S denote a finite set, and let (Sq)q∈Z be a gradation of S with Sq = ∅ for all
integers q < 0. Then the sequence (R(Sq))q∈Z is a gradation of the module R(S) in the
category of moduli over the ring R. Let κ : S × S → R be a map such that

dim s = 1 + dim t is satisfied whenever κ(s, t) 6= 0 .

With κ we associate the map ∂κ : R(S)→ R(S) which is defined on generators s ∈ S
via

∂κ(s) =
∑
t∈S

κ(s, t)t . (1)

The pair (S, κ) is called an S-complex if (R(S), ∂κ) is a free chain complex with base S
and boundary map ∂κ.
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For a given S-complex (S, κ), its homology is defined as the homology of the chain
complex (R(S), ∂κ), and it is denoted by H(S, κ) = H(R(S), ∂κ) or simply by H(S).
In the following, we will drop the superscript κ in ∂κ whenever the meaning of κ is
clear from the context.

One can easily observe that mathematically speaking an S-complex is just a chain
complex with a fixed basis and the map κ provides the incidence indices with respect
to this basis. The reason to introduce the terminology of S-complexes is to shift the
emphasis from algebra to combinatorics. In the algebra setting, the moduli are given
first and the bases are selected arbitrarily, leading to incidence indices obtained as
respective entries in the matrices of boundary homomorphisms. In the setting of S-
complexes we start with a collection of combinatorial objects (for instance simplices
or cubes) for which a facet relation is somehow defined. Then, for each pair (s, t)
of objects such that t is a facet of s we assign, in an algorithmic way, the incidence
indices and use them to build the chain complexes. The shift of emphasis serves
stressing some algorithmic aspects of our approach. As we will see in the sequel, in
many situations only some or even no incidence indices are needed to compute the
homology of an S-complex. Instead, the facet relation suffices. This fact may be used
to speed up homology computations, because in many situations the facet relation is
more straightforward and computationally cheaper than finding the incidence index.
In particular, the computation of the incidence indices may be delayed so that only
those indices are computed which are really needed.

However, to make this work we need a method of computing the incidence index
after completing the reductions. We say that an S-complex is effective, if there is
a formula or an algorithm which computes the incidence index κ(s, t) by using the
information in s and t only, i.e., without using the information in the whole S-complex.
The two main examples of effective S-complexes are simplicial complexes and cubical
complexes. In both of these cases one can readily derive explicit formulas for the
incidence index κ(s, t). For more details we refer the reader to [21]. As we will see in
Section 3.1 a general CW-complex is not an effective S-complex. A detailed discussion
of the case of non-uniform cubical complexes, which are effective S-complexes, will be
given in Section 3.

In order to simplify a given S-complex through a reduction step, one is interested
in replacing the original set of generators S by a subset S ′ ⊂ S, and the original
incidence index κ by the restriction κ′ = κ|S′×S′ . This has to be done in such a way
that (S ′, κ′) is still an S-complex, that no evaluation of κ(s, t) is needed to construct S ′,
and that H(S) ∼= H(S ′).

Characterizations of these requirements were obtained in [19]. We recall from there
some terminology and the main result. A subset S ′ ⊂ S is called closed in S if we have
bdS S

′ ⊂ S ′, and it is called open in S if S \S ′ is closed in S. If S ′ ⊂ S is such that for
all s, u ∈ S ′ and t ∈ S, t ∈ bdS s and u ∈ bdS t implies t ∈ S ′, then S ′ is called regular
subset of S. For further details consult [19]. A regular subset T ⊂ S is called a nullset
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of S, provided that T is closed or open in S and that H(T ) = 0. The following result
follows immediately from [19, Theorems 3.4 and 3.5].

Corollary 2.1 ([19], Corollary 3.6) Let (S, κ) denote an S-complex over the ring R,
and let T ⊂ S be a nullset of S. Then the homologies H(S) and H(S \ T ) are isomor-
phic.

In other words, any nullset in an S-complex can be removed without changing the
homology of S.

2.3 S-Reduction Pairs

We now describe a simple method for locating nullsets in an S-complex. This method
is based on the concept of a reduction pair of a finitely generated free chain complex C,
which was introduced in [13, 14] and which we now briefly recall. Given a free chain
complex C with basis S we say that a pair (a, b) of elements of S is a reduction pair
in C, if 〈∂b, a〉 is invertible in the ring R. Notice that any reduction pair (a, b) satisfies
dim b = 1 + dim a. For every such reduction pair one can define an associated chain
complex (C̄, ∂̄) via

C̄q =


Cq for q 6∈ {dim a, dim b} ,

{v ∈ Cq | 〈v, a〉 = 0} for q = dim a ,
{v ∈ Cq | 〈v, b〉 = 0} for q = dim b ,

as well as

∂̄qv =


∂qv for q − 1 6∈ {dim a, dim b} ,

∂qv −
〈∂qv, a〉
〈∂qb, a〉

∂qb for q − 1 = dim a ,

∂qv − 〈∂qv, b〉b for q − 1 = dim b .

In other words, one has to remove all chains from C which contain either a or b in their
representation, and then update the boundary operator accordingly. One can show
that the chain complexes (C, ∂) and (C̄, ∂̄) are chain equivalent. We call the chain
complex (C̄, ∂̄) a reduction of (C, ∂) through the reduction pair (a, b).

The fundamental philosophy behind reduction methods is the fact that in many
cases it is advantageous to perform a sequence of reductions before applying the Smith
normal form algorithm. In fact, experiments show that frequently the decrease in size
of the chain complex is significant [19, 20]. From a computational point of view it is
desirable to be able to identify reduction pairs quickly and then to be able to perform
the reduction efficiently. This naturally leads to considering only specific types of
reduction pairs. In this paper, we concentrate on the notions of elementary reduction
pairs and elementary coreduction pairs , which were introduced in [19]. Let (S, κ) denote
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an S-complex. Then a reduction pair (a, b) of elements of S is called an elementary
reduction pair if we have cbdS a = {b}, and in this case a is called a free face in S.
Furthermore, the reduction pair (a, b) is called an elementary coreduction pair if we
have bdS b = {a}, and in this case b is called a free coface in S. Finally, we will
use the term S-reduction pair to denote either an elementary reduction pair or an
elementary coreduction pair. It turns out that S-reduction pairs give rise to nullsets in
an S-complex, and we can therefore use them as the basis of a reduction algorithm for
S-complexes which preserves homology. The following result is established in [19].

Theorem 2.2 ([19], Theorem 4.1, Corollary 4.2) Let (S, κ) denote an S-complex
over the ring R, and let a, b ∈ S. Then the following holds:

(a) If (a, b) is an elementary reduction pair, then {a, b} is open in S and a nullset.

(b) If (a, b) is an elementary coreduction pair, then {a, b} is closed in S and a nullset.

(c) If (a, b) is an S-reduction pair, then the homologies H(S) and H(S \ {a, b}) are
isomorphic.

Note that to detect an S-reduction pair only the knowledge of the facet relation is
needed. In particular, there is no need to compute the incidence index.

The basic usage of reduction pairs can be described as follows. A reduction sequence
of a chain complex C is a sequence of generator pairs α = {(ai, bi)}i=1,2,...n in S such
that (ai, bi) is a reduction pair in Ci−1, where the chain complexes (Ci, ∂i) are defined
recursively by letting (C0, ∂0) = (C, ∂), and then letting (Ci, ∂i) denote the reduction
of (Ci−1, ∂i−1) through (ai, bi), for i = 1, 2, . . . n. We then use the notation (Cα, ∂α) for
the last chain complex in the sequence {(Ci, ∂i)}i=1,2,...n and call this chain complex an
α-reduction of (C, ∂).

One can easily reformulate this concept in the framework of S-complexes. An
S-reduction sequence of an S-complex (S, κ) is a sequence of S-reduction pairs α =
{(ai, bi)}i=1,2,...n such that (ai, bi) is an S-reduction pair in (Si−1, κi−1), where the S-
complexes (Si, κi) are defined recursively by letting (S0, κ0) = (S, κ), and then let-
ting (Si, κi) denote the reduction of (Si−1, κi−1) through (ai, bi), for i = 1, 2, . . . n. We
then use the notation (Sα, κα) for the last S-complex in the sequence {(Si, κi)}i=1,2,...n

and call this S-complex an α-reduction of (S, κ).
Before closing this section, we would like to reiterate the main reason for introducing

the concept of S-complexes and S-reduction pairs. At first glance it seems too restrictive
to only consider these special cases of general reduction pairs. However, from the
algorithmic point of view one has to be able to both quickly identify reduction pairs,
and then to efficiently perform the reduction step. In the case of S-reduction pairs
this does not require any algebraic operations. In particular, there is even no need to
compute the incidence index. This contributes significantly to the speedup of homology
computations.
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2.4 Homology Generators

While Theorem 2.2 shows that performing a sequence of reductions via S-reduction
pairs allows one to reduce the size of a chain complex without affecting its homology,
even more is true. For every reduction step one can in fact explicitly write down the
isomorphism guaranteed by Theorem 2.2. For this, let (a, b) denote a reduction pair.
For the chain complex (C̄, ∂̄) the relevant chain maps are given by

ψ
(a,b)
k (c) =


c− 〈c, a〉〈∂b, a〉∂b for k = dim b− 1 ,

c− 〈c, b〉b for k = dim b ,

c otherwise ,

and

ι
(a,b)
k (c) =

 c− 〈∂c, a〉〈∂b, a〉b for k = dim b ,

c otherwise ,

and it is shown in [21, Theorem 2.8] that these chain maps are in fact mutually inverse
chain equivalences. In the case of an S-reduction pair (a, b) these maps can be used
also for the chain complex (C ′, ∂′) obtained from the regular subset S ′ = S \ {a, b} via
the definitions C ′ = R(S ′) and ∂′ = ∂κ|C′ . In fact, it is shown in [21, Theorem 2.9]
that the chain complexes (C̄, ∂̄) and (C ′, ∂′) coincide.

Given a reduction sequence α in S we let

ια = ι(a1,b1) ◦ ι(a2,b2) ◦ · · · ◦ ι(an,bn) , (2)

ψα = ψ(an,bn) ◦ ψ(an−1,bn−1) ◦ · · · ◦ ψ(a1,b1) . (3)

The chain maps ια and ψα described above allow one easily to track generators as well.
Namely, once the representatives of homology generators are computed in the com-
plex Sα, one can use the map ια to find the representatives of the homology generator
in the initial complex S0. Therefore storing the elementary reduction and coreduction
pairs enables to obtain information about the representatives of homology generators.
Moreover, in the case of S-complexes, the cost of finding the image of a generator in
the map ια is O(|S|w(S)), see [21, Theorem 3.1].

3 Coreduction Algorithm for CW-Complexes

In this section we describe how S-reduction pairs can be employed in the context of
CW-complexes, and demonstrate its applicability specifically for the case of planar
CW-complexes, as well as for nonuniform cubical complexes in arbitrary dimensions.
In particular, for planar CW-complexes we show that the coreduction algorithm com-
pletely reduces the underlying S-complex, thereby eliminating the need for the Smith
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normal form algorithm altogether. For nonuniform rectangular complexes we show
that the incidence indices of two cubes can be determined immediately from the rep-
resentation of the involved rectangular boxes.

3.1 CW-Complexes as S-Complexes

We begin by recalling basic results on CW-complexes, including a discussion of regular
CW-complexes and incidence indices. For this, we essentially follow the presentation
in [15]. First, given a Hausdorff space X, an n-cell e is a subset of X homeomorphic
to the open n-dimensional unit ball Bn

1 ⊂ Rn. We call n the dimension of e and write
dim e = n. An n-cell e is attached to a closed subset K ⊂ X, if e ∩K = ∅ and there
is a continuous map f : Bn

1 → e, called characteristic map, sending the open ball Bn
1

homeomorphically onto e and such that f(∂Bn
1 ) ⊂ K.

For the purposes of this paper, we only consider finite CW-complexes which are
defined as follows. A closed subset K ⊂ X is a finite CW-complex of dimension N ,
if there exists an ascending sequence of closed subspaces K0 ⊂ K1 ⊂ . . . ⊂ KN = K
such that K0 is a finite set consisting of 0-cells, also called vertices, and Kn is obtained
from Kn−1 by attaching a finite collection of n-cells for n = 1, . . . , N . The collection
of n-cells of K is denoted by Kn. We put Kn := ∅ for n 6∈ {0, 1, . . . N}. The graded
set K := (Kn)n∈Z is called the CW-complex structure of K. The subset Kn of X is
the n-skeleton. An N -dimensional CW-complex is regular , if for each cell e ∈ Kn,
where n = 0, 1, . . . , N , there exists a characteristic map f : Bn

1 (0) → e which is a
homeomorphism. In this case, given two cells e, e′ we say that e′ is a face of e and write
e′ < e, if e′ 6= e and the inclusion e′ ⊂ e holds. If e′ < e and dim e′ = dim e − 1, then
we say that e′ is a facet of e.

One of the main reasons of the importance of CW-complexes is that they repre-
sent a wider class of spaces than simplicial and cubical sets, while preserving enough
combinatorial structure to define the associated chain complex and homology in the
combinatorial spirit of simplicial and cubical complexes. For the detailed definition
of the chain complex structure associated with a CW-complex K we refer the reader
to [15]. In the sequel we refer to this chain complex as the standard chain complex
of K and denote it by C(K). Here we only recall a few central ideas which will be
used later. The first fact is that the homology of C(K) coincides with the singular
homology of K, so that C(K) may be used to compute the homology of K. Next, the
group of n-chains of C(K) is generated by Kn, so that we can we can consider the CW-
complex structure K := (Kn)n∈Z as an S-complex. However, to make this approach
computationally useful, we need a method of determining the incidence indices κ(e, f).
For general CW-complexes the standard way of obtaining these is either by comput-
ing the Brouwer degree of an appropriate map as described in [3] or, equivalently, by
computing relative homology. Unfortunately, neither of these methods is feasible in
the context of a computational approach.
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However, if one restricts attention to the special case of regular CW-complexes,
the situation is different. Recall from [15] that for every pair (f, e) ∈ Kn × Kn+2 of a
regular CW-complex K such that f < e, there are exactly two (n + 1)-cells gk, with
k = 1, 2, such that f < gk < e. In the case of regular CW-complexes the following
characterization of incidence indices, following immediately from [15, Theorem IX.7.2]
is useful in the computational context.

Theorem 3.1 Let K be a finite regular CW-complex on the Hausdorff space X. For
each pair (e, f) ∈ Kn × Kn−1 let there be given an integer αef ∈ {0,±1} such that the
following four conditions hold:

(a) If f is not a facet of e, then αef = 0.

(b) If f is a facet of e, then αef = ±1.

(c) If f and g are the two vertices of the 1-cell e, then αef + αeg = 0.

(d) Let e ∈ Kn and f ∈ Kn−2 be two cells of K such that f < e. Furthermore,
let g1, g2 ∈ Kn−1 denote the unique (n− 1)-cells such that f < gi < e for i = 1, 2.
Then the identity αeg1αg1f + αeg2αg2f = 0 holds.

Then, defining the boundary operator by (1) with

κ(e, f) :=

{
αef if f is a face of e,

0 otherwise.

leads to a well-defined chain complex isomorphic to the standard chain complex of K.

Theorem 3.1 enables the computation of incidence indices for any regular CW-complex.
In fact, Theorem 3.1 leads directly to an algorithm for the computation of incidence
indices of arbitrary regular CW-complexes. The algorithm is presented in Table 1.

The algorithm provides a means for the direct Smith normal form computation for
arbitrary regular CW-complexes. Moreover, it follows that reduction and coreduction
methods can be applied to speed up the homology computations. We would like to
point out that the incidence indices provided by the algorithm in Table 1 can be
obtained by one of the standard methods described for instance in [3]. The correctness
of the algorithm in Table 1 is established in the following theorem.

Theorem 3.2 For an arbitrary regular CW-complex structure K the algorithm in Ta-
ble 1 returns a collection of indices αef for f a facet of e, such that the assumptions of
Theorem 3.1 are satisfied.
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1. for every 1-dimensional cell e in the complex:

(a) Let f and g be the facets of e. Set αef := 1, αeg := −1;

2. for i = 2 to the maximal dimension of cells in the complex:

(a) for every i-cell e in the complex

i. pick any f which is a facet of e and set αef := 1;

ii. Let Q be an empty queue;

iii. push(Q, f);

iv. while Q 6= ∅:
• f := pop(Q);

• for every facet g of e such that αeg is not yet set and f and g
are sharing a facet h ∈ Ki−2:
– Set αeg := −αefαfh/αgh
– push(Q, g);

Table 1: An algorithm for determining the incidence indices of cells in regular CW-
complex which is based on Theorem 3.1.

Proof: By [15, Lemma IX.7.1], nonzero incidence index can only occur for a pair of a
cell and its facet. Therefore, the algorithm only considers pairs of this type. If the value
αef was not set by the algorithm, it is assumed to be 0. Moreover, it is straightforward
to see that for the incidence indices between one- and zero-dimensional cells as defined
in line (1.a) of the algorithm the condition (c) of Theorem 3.1 holds.

We now turn our attention to i-dimensional cells with i ≥ 2, and assume that
all lower-dimensional cells have already been taken care of. Let i ≥ 2 be fixed and
consider an i-cell e. Moreover, let E(e) denote the set of all equations in condition (d)
in Theorem 3.1 which contain e as the highest-dimensional cell. In order to establish
the theorem, one only has to show that for every facet g of the given cell e the variable
αeg is set by the algorithm in such a way that the equations in E(e) hold.

In line (2.a.i) of the algorithm, a facet f of e is (arbitrarily) distinguished. Setting
the incidence index αef equal to 1 is easily seen to be equivalent to choosing the
orientation of the given i-cell e. We would like to point out that according to [15,
Section IX.5], this choice of orientation uniquely determines all incidence indices of the
form αeg, where g denotes a facet of e. In particular, this shows that the system E(e)
of equations in condition (d) in Theorem 3.1 which involve e and lower-dimensional
cells has a unique solution satisfying αef = 1. See also [15, Lemma IX.7.1].

Now let us consider lines (2.ii-iv). As we mentioned in the previous paragraph, it
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follows from [15, Section IX.5, Lemma IX.7.1] that the solution of the system E(e) exists
and is unique, due to the choice made in line (2.i). In course of executing lines (2.ii-iv),
the algorithm solves a subset Ealg(e) ⊂ E(e) of these equations. Moreover, it follows
from the structure of the algorithm that as the loop in (2.iv) is executed, every equation
in Ealg(e) has a unique solution. If we now assume for the moment that the execution
of lines (2.ii-iv) sets the values αeg for all facets g of e, then these values in fact have to
solve all equations in E(e) — the algorithm automatically avoids unnecessary equations
in this overdetermined, yet consistent, system.

To complete the proof of the theorem we still have to show that the execution
of lines (2.i-iv) in the algorithm actually determines the incidence indices αeg for all
facets g of e. For this, let P denote the set of all facets g of e for which the incidence
indices αeg has been set by the algorithm, and let N denote the set of the remaining
facets of e. Suppose that in fact we have N 6= ∅. The definition of the algorithm then
implies that for every cell g ∈ P , every cell g′ ∈ N , and every (i − 2)-dimensional
face f of e, the cell f cannot be a common facet of both g and g′. Consequently,
the equations in E(e) from condition (d) in Theorem 3.1 can be partitioned into two
sets, one which only provides relations involving cells in P , and another one which
only concerns cells in N . This, however, implies that the initial cell g′ ∈ N can be
(arbitrarily) picked and the incidence index αeg′ can be set either to 1 or −1. Then the
while loop in line (2.iv) of the algorithm can be rerun. Thus, by possibly repeating
the above procedure several times, we can construct at least two distinct solutions to
the set of equations E(e) which satisfy αeg = 1 (one of them with αeg′ set to 1, another
with αeg′ set to −1) — and this of course contradicts the uniqueness of the solution
mentioned above. In other words, we have to have N = ∅, and this completes the
proof of the theorem. 3

Theorem 3.3 If the implementation of the algorithm in Table 1 uses pointers to access
the elements in the boundary or coboundary of a cell, then the time complexity of the
algorithm is O(|K|w(K)4).

Proof: First observe that in the for-loop in line (1) and in the nested for-loops in
lines (2), and (2.a) of the algorithm each cell from the complex K is considered just
once. The number of iterations of the for-loops in line (1) and in lines (2), and (2.a)
is therefore O(|K|). The actions taken in the points i., ii. and iii. of the algorithm, due
to the used pointer data structure, require constant time. There remains to calculate
the computational cost of the while-loop in the point iv. of the algorithm. There are
at most w(K) elements g being the facets of e. Each such element g will be considered
in the while-loop in the point iv. of the algorithm just once. The total number of
iterations of while loop is therefore bounded by w(K). It is straightforward to observe
that the total number of iterations of the for-loop inside the while-loop is O(w(K)3),
therefore the total complexity of the while-loop is O(w(K)4). Consequently, the time
complexity of the whole algorithm is O(|K|w(K)4), as required. 3
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;

Figure 2: Example 3.4 demonstrates the effect of S-coreductions on a simple regular
CW-complex. Notice that in order to start the coreduction sequence we add the empty
set in dimension −1. (White circles indicate missing vertices.)

Note that in most applications the number w(K) is constant and small when com-
pared with |K| and consequently, in such situations, the total complexity of the algo-
rithm is linear with respect to the number of cells in the CW-complex.

Example 3.4 In order to illustrate the S-reduction procedure in the context of reg-
ular CW-complexes, consider the simple CW-complex shown in the upper left part of
Figure 2. Upon adding the empty set in dimension −1 of the associated chain complex
(as indicated), one can apply a coreduction to remove one of the vertices of this com-
plex. This yields the S-complex in the upper right part. Subsequently, a sequence of
edge-vertex coreductions removes all the remaining vertices, as well as all the edges in
a spanning tree of the 1-skeleton, resulting in the S-complex on the lower left. Finally,
after two more coreductions between a 2-cell and an edge, one obtains the final complex
shown in the lower right part of Figure 2. Notice that this S-complex has empty chain
groups in dimensions 0 and 2, so the homology can be read off without any further
computations: It is the homology of a pointed circle, i.e., it equals R in dimension 1
and is 0 otherwise. We will see in the next section that this is not a coincidence.

Before closing this section, let us point out once more that in order for the above
coreduction algorithm to provide a significant improvement we need to be able to
determine the incidence index κ in an efficient and easy way, unless the final chain
complex is trivial. In the next two sections, these issues will be discussed in more
detail. Notice, however, that it is in general not possible to determine κ by only
satisfying the equations of Theorem 3.1 for the cells in the final S-complex.

Example 3.5 Consider for example the standard torus, represented by the regular
CW-complex shown on the left of Figure 3. As usual, vertices and edges marked with
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Figure 3: Example 3.5 demonstrates the necessity of a-priori knowledge of the incidence
index κ. For the torus representation shown on the left, the coreduction algorithm
results in the S-complex shown in the middle, which contains no vertices any more.
Thus, the equations of Theorem 3.1 do not pose any restrictions, and the boundary
operator defined in the picture gives the wrong homology.

the same letters are being identified.
By adding the empty set as before and performing coreductions as far as possible,

one can easily see that the final S-complex is basically given by the complex shown in
the middle of Figure 3. This complex consists of the five two-cells A, B, C, D, and E,
as well as the six one-cells α, β, γ, δ, ε, and ζ. Yet, the coreduction process removed
all zero-cells from the S-complex. Thus, in order to find the incidence indices which
satisfy all the conditions (a)-(d) of Theorem 3.1, one only has to make sure that (a)
and (b) are satisfied; the equations in parts (c) and (d) cannot occur. In particular, if
we choose the incidence index κ via

κ A B C D E
α −1 0 0 0 +1
β +1 0 −1 0 0
γ 0 0 +1 0 −1
δ 0 +1 0 +1 0
ε 0 −1 +1 0 0
ζ 0 0 +1 −1 0

then all restrictions in conditions (a)-(d) in Theorem 3.1 are satisfied. This choice
of incidence index results in the boundary operator ∂ presented in the right part of
Figure 3. However, one can easily check that over the ring of integers, the S-complex
shown in the middle of the figure, equipped with this boundary operator ∂, has the
trivial homology groups H0 = 0 and H2 = 0, as well as the nontrivial one H1 = Z⊕Z2.
Due to the presence of torsion, this does clearly not furnish the (reduced) homology of
the torus.
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Figure 4: This example shows that in general it is not possible to completely reduce a
planar CW-complex using only elementary reductions.

Figure 5: This example shows that in general it is not possible to completely reduce
a planar CW-complex using only elementary coreductions. In order to start the core-
duction sequence from the CW-complex shown on the left we add the empty set in
dimension −1.

The last example shows that a general CW-complex cannot be considered as an effective
S-complex. This, of course, does not mean that the S-reductions cannot be applied
to such a general complex. However, in such a case all incidence indices have to be
determined by applying the algorithm in Table 1 before applying any S-reduction. But,
as we will see in Section 3.3, there is an important case of CW-complexes, which is
effective.

3.2 Reductions of Planar CW-Complexes

In this section we describe a situation in which S-reductions allow the complete reduc-
tion of the original S-complex. In this situation, one can determine the homology of
the underlying CW-complex by just counting the number of remaining generators. It
will turn out that this can always be achieved for planar regular CW-complexes.

Before we turn to the proof of this result, notice that in order to achieve such a
complete reduction one usually has to employ both elementary reductions and elemen-
tary coreductions. To see this, Figure 4 shows a planar CW-complex and a reduction
sequence which uses only elementary reductions. For the final complex shown on the
right, no further elementary reductions are possible. Similarly, Figure 5 shows a planar
CW-complex and a reduction sequence which uses only elementary coreductions. Also
here, the final S-complex does not allow for any further elementary coreductions.

In order to completely reduce the S-complex associated with a planar regular CW-
complex a few preparations are necessary. It was already mentioned at the end of the
last section that in order to start the coreduction sequence, one has to add the empty
set to the associated chain complex in dimension −1. Thus, an elementary coreduction
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can be used to remove one vertex from the S-complex. In a homological sense this of
course means that one computes the reduced homology groups, rather than the original
one. It is therefore not too hard to see that for a disconnected CW-complex, one has
to add several elements to the associated chain complex in dimension −1, namely one
for each component, in order to finally arrive at a trivial zero-dimensional homology
group. From an algorithmic point of view, this can easily be achieved. One simply
removes a vertex1, and applies elementary coreductions as long as possible. If the
resulting S-complex still has generators in dimension 0, one just repeats the process,
and so on. By keeping track how many times this process has to be started, one can
keep track of the number of components in the underlying CW-complex.

We turn our attention to the main result of this section. For this, we call a reg-
ular CW-complex planar , if it can be embedded into R2. The following result now
shows that every such complex can be completely reduced by using only elementary
S-reduction pairs.

Theorem 3.6 Let K denote a finite planar regular CW-complex and let K denote the
associated CW-complex structure. Based on the discussion preceding this theorem, we
may assume without loss of generality that K is connected. Then there exists an S-
reduction sequence α of K such that the α-reduction of K has trivial chain groups except
in dimension one. Furthermore, the cardinality of Kα1 is exactly the first Betti number
of K.

Proof: In general there are many different S-reduction sequences which achieve the
goal of the theorem, and we present only one particular example. In a first step, one
can remove all 2-cells of K via a sequence of elementary reductions. To see this, note
that as a consequence of the Jordan curve theorem, any planar CW-complex must
have a 2-cell with a free edge — one just has to pick a 2-cell at the outer boundary of
the complex. Applying an elementary reduction not only gives a reduced S-complex,
but in fact a reduced planar CW-complex which is still connected. By applying this
argument successively, one 2-cell after another can be removed from the planar CW-
complex, without leaving the category of planar CW-complexes which are connected.

After the first step, one is left with a connected planar CW-complex of dimension
one. The addition of the empty set to the associated chain complex in dimension −1
then allows one to perform a first coreduction, which removes a vertex from the S-
complex. From this point onwards, one is no longer working with CW-complexes,
but rather with S-complexes. Using a succession of edge-vertex coreductions it is now
possible to remove all the remaining vertices of the S-complex, as well as all the edges in
a spanning tree for the 1-skeleton of K, i.e., the resulting α-reduced S-complex Kα has
the structure stated in the theorem. Finally, since S-reductions preserve the homology
of the chain complex and since the final S-complex has a vanishing boundary map, the

1It is straightforward to see that every CW-complex has to contain at least one 0-cell.
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Figure 6: This example shows that in general it is not possible to completely reduce a
two-dimensional non-planar CW-complex using elementary coreductions or elementary
reductions. The image shows a CW-complex representing a torus, where vertices with
identical letters are identified, as well as edges between them. In order to start the
coreduction sequence we add the empty set in dimension −1.

number of remaining 1-cells equals the first Betti number of the original CW-complex.
This completes the proof of the theorem. 3

In fact, the following theorem follows easily from our above discussion.

Theorem 3.7 Let K be a planar regular CW-complex with a CW-complex structure K.
Then the homology of K can be computed in O(|K|) time. For this, the Smith normal
form algorithm does not have to be employed and no knowledge of the incidence indices
of cells of K is necessary.

Let us remark that the results of Theorems 3.6 and 3.7 may be extended to the case of
homology generators. To see this observe that in the setting of Theorem 3.6 the set of
generators of the α-reduction coincides with the set of the homology generators of the
α-reduction. Therefore, to obtain the set of generators of the original S-complex (S, κ)
it is enough to find the images of these generators in the map ια given by (2). By
[21, Theorem 3.1] the cost of finding this image is O(|K|w(K)). Therefore we have the
following theorem.

Theorem 3.8 Let K be a planar regular CW-complex with a CW-complex struc-
ture K. Then the time complexity of computing the generators of the homology of K
is O(|K|w(K)g(K)), where g(K) denotes the number of homology generators of K.

In particular, in the setting of two-dimensional raster images the cost is O(|K|g(K)).
Before closing this section, we would like to point out that the conclusion of The-

orem 3.6 and Theorem 3.7 are in general not true for two-dimensional non-planar
CW-complexes. To see this, consider the torus represented by the CW-complex shown
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in the left image of Figure 6. As usual, vertices with the same letter are identified,
as well as the corresponding edges between them. After appending the empty set in
dimension −1 as before, one can remove the center vertex of the CW-complex. Sub-
sequent edge-vertex coreductions then allow one to remove all the remaining vertices,
as well as all the edges in a spanning tree of the 1-skeleton, resulting in the S-complex
shown in the center image of Figure 6. Finally, a sequence of 2-cell-edge coreductions
can be used to remove nine of the 2-cells, and this furnishes the S-complex on the right.
Notice that for this S-complex, no further elementary reductions or coreductions are
possible.

3.3 Rectangular CW-Complexes

The previous section identified a situation in which the coreduction algorithm always
leads to a final S-complex with trivial boundary operators. In such a case, the homol-
ogy of the underlying CW-complex can be determined directly from the generators of
the remaining chain groups, and no application of the Smith normal form algorithm is
necessary at all. In most situations, however, the final S-complex after the coreduction
step does contain nontrivial boundary operators. In order to then efficiently apply the
Smith normal form algorithm, one has to be able to determine the matrix represen-
tations for the boundary operators quickly, and this in turn depends on the efficient
computability of the incidence index κ. Since the reduced S-complex is no longer a
regular CW-complex, we cannot use the equations in (c) and (d) of Theorem 3.1. We
demonstrated this in Example 3.5. We can always use the algorithm in Table 1 to
obtain the incidence index κ before we start the reductions and use them after the
reductions to build the matrices of the boundary map in the remaining complex. It
will be shown in this section that CW-complexes in a special class, called rectangu-
lar CW-complexes, are effective S-complexes. Therefore, in this case the computation
of all incidence numbers before the S-reductions start is not needed, because the inci-
dence index κ can easily be computed directly from the representation of the cells, even
though the S-complex obtained after the reduction process is no longer a rectangular
cell complex. The explicit formula for the incidence of two cells which can be used for
the remaining cells in the reduced complex is provided in this section.

In the following, the term interval is always used for a compact interval I = [a, b]
in R with a ≤ b. We say that the interval I is degenerate if a = b, otherwise it is
called nondegenerate. A facet of an interval is defined as follows: If the interval I
is degenerate, then it has no facets; if I is nondegenerate, then it has two facets,
which are given by the degenerate intervals [a] := [a, a] and [b] := [b, b]. The class of
regular CW-complexes which is studied in this section is formed via rectangles. For
this, a rectangle in Rd is a product Q = Q1×Q2× · · ·Qd of d intervals Q1, Q2, . . . , Qd.
The dimension of Q, which is denoted by dimQ, equals the number of nondegenerate
intervals in the sequence Q1, Q2, . . . , Qd. Next, we need to define the notion of facets

20



for rectangles. For this, assume d > 1, and let P = P1 × P2 × · · ·Pd denote a second
rectangle in Rd. Then we say that P is a facet of Q, which is denoted by P < Q, if
P ⊂ Q, the dimensions satisfy dimP = dimQ − 1, and there exists a j such that Pj
is a facet of Qj. It can easily be seen that in this case the index j is unique and that
dimPi = dimQi for all i 6= j. Finally, P is called a face of Q, if either there is a
descending sequence of facets joining Q to P , or P ∈ {∅, Q}. The round of preparatory
definitions is completed by the notion of boundary. For an interval [a, b] we define its
boundary as

bdr [a, b] :=

{
{a, b} if a 6= b ,
∅ if a = b .

Now let d > 1 and consider a rectangle Q = Q1 × Q2 × · · ·Qd. Then its boundary
is defined as bdr Q :=

⋃d
i=1Q1 × · · · × bdr Qi × · · · × Qd. It can easily be verified

that if one thinks of an n-dimensional rectangle Q as an n-dimensional manifold with
boundary which is embedded in Rd, then the set bdr Q contains exactly the boundary
points of the manifold.

After the preparations of the previous paragraph, we can now define the central
object for this section. A rectangular structure is a finite collection Q of rectangles
such that for any choice of P,Q ∈ Q one has either P ∩Q = ∅, or P ∩Q is a common
face of both P and Q which in addition belongs to Q. Moreover, we assume that for
any rectangle Q ∈ Q, its boundary satisfies bdr Q =

⋃{P ∈ Q : P is facet of Q}.
Finally, a rectangular CW-complex is given by the union of some rectangular structure,
i.e., it is the subset of Euclidean space which is occupied by the rectangles in Q. Any
0-dimensional rectangle Q ∈ Q is called a vertex , and if Q ∈ Q is an n-dimensional
rectangle, then the set Q \ bdr Q is called an n-cell . For rectangular CW-complexes,
we have the following theorem.

Theorem 3.9 Any rectangular CW-complex is a regular CW-complex.

Proof: Any rectangular CW-complex is the finite union of closed rectangles, and
therefore it is a compact subset of Rd with respect to the standard topology. In
particular, it is a Hausdorff space.

Let Q denote the rectangular structure that induces the rectangular CW-complex
and let Qn denote the set of n-dimensional rectangles in Q. Then Kn :=

⋃{Q ∈ Q :
dimQ ≤ n} is an n-dimensional skeleton of the rectangular CW-complex. Obviously,
Qn ⊂ Q is finite for all n = 0, 1, . . . , d.

Now consider a rectangle Q = Q1 × Q2 × . . . × Qd ∈ Qn. It is well-known
that there exists a homeomorphism ĥn : Bn

1 (0) → (0, 1)n that can be extended to
a homeomorphism hn : Bn

1 (0) → [0, 1]n. Thus, it suffices to construct a homeomor-
phism fQ : [0, 1]n → Q which attaches Q to Kn−1. Due to dimQ = n, there exists
{i1, . . . , in} ⊂ {1, . . . , d} such that Qi1 , . . . , Qin are the nondegenerate intervals in Q.
For i 6∈ {i1, . . . , in} we write Qi = [qi], and for j ∈ {i1, . . . , in} we let Qj = [aj, bj],
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where aj 6= bj. Using this notation, consider the map fQ : [0, 1]n → Q which is defined
on points (x1, . . . , xn) ∈ [0, 1]n by

(fQ (x1, . . . , xn))j :=

{
aj + xl(bj − aj) for j = il ∈ {i1, . . . , in} ,
qj for j 6∈ {i1, . . . , in} ,

where (fQ(x1, . . . , xn))j denotes the j-th component of the vector fQ(x1, . . . , xn). One
can readily see that the inverse map f−1Q : Q→ [0, 1]n is given by

(
f−1Q (q1, . . . , qd)

)
j

=
qij − aij
bij − aij

∈ [0, 1]n ,

for j = 1, . . . , n and (q1, . . . , qd) ∈ Q. Both mappings fQ and f−1Q are continuous
bijections, and therefore fQ : [0, 1]n → Q is a homeomorphism for any Q ∈ Q. The
fact that fQ(∂[0, 1]n) = bdr Q ⊂ Kn−1 follows readily from the definition of fQ and
the assumption that bdr Q =

⋃{P ∈ Q : P is facet of Q}. 3

The next result shows that for rectangular CW-complexes, the incidence index κ
can be computed easily and efficiently.

Theorem 3.10 Consider a rectangular CW-complex given by a rectangular struc-
ture Q. Let P and Q denote two arbitrary rectangles in Q with dimQ = 1 + dimP ,
and define the number αQP as follows. For d = 1 and Q = [a, b] let

αQP :=


−1 if P = [a] ,
1 if P = [b] ,
0 otherwise ,

and for d > 1 set

αQP :=

{
(−1)

∑j−1
i=1 dimQi αQjPj

if P < Q and j satisfies Pj < Qj ,

0 otherwise .
(4)

Then the numbers αQP are incidence indices for the given rectangular CW-complex,
i.e., they satisfy all the conditions of Theorem 3.1.

Proof: The above definition of αQP immediately implies that (a) and (b) of Theo-
rem 3.1 are satisfied. In addition, condition (c) is clear in the case d = 1, and it follows
easily also for d > 1, since the index j and the corresponding exponent

ε(Q,P ) :=

j−1∑
i=1

dimQi
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Figure 7: Illustrations of Case 1 (left) and Case 2 (right) in the proof of Theorem 3.10.

in (4) are the same for the two vertices of a 1-cell. Thus, we only have to establish
the validity of condition (d) in Theorem 3.1. For this, consider d > 1 and let Q, P ,
R, and S denote rectangles with dimensions n, n − 1, n − 1, and n − 2, respectively.
Furthermore, assume that P and R are facets of Q, and that S is the unique facet of
both P and R. Finally, let Qi, Pi, Ri, and Si denote the i-th component interval of Q,
P , R, and S, respectively. Using this setting, we have to verify the identity

αQP αPS + αQR αRS = 0 (5)

in order to establish assumption (d) in Theorem 3.1. For this, we distinguish the
following two cases.

Case 1 (see Figure 7 left): Assume that the index j in the definition of a facet is
the same for both R < Q and P < Q.

Under this additional assumption, one obviously has ε(Q,P ) = ε(Q,R). Moreover,
since P ∩ R ⊃ S 6= ∅, we see that Pj = Rj = Sj and they coincide with one of the
endpoints of Qj. This results in αQP = αQR, and therefore it remains to be shown that
we have

αPS + αRS = 0 .

Since S < P and S < R, there exist unique integers k and l such that Sk < Pk and
Sl < Rl. In fact, we must have k = l, since otherwise one would obtain dimS = n− 3,
which contradicts our hypothesis. Thus, one can readily see that ε(P, S) = ε(R, S).
In addition, we have Sk = Pk ∩ Rk = [b] for some real number b. Without loss of
generality, Pk = [a, b] and Rk = [b, c], and therefore

αPS = (−1)ε(P,S)αPkSk
= (−1)ε(P,S) , αRS = (−1)ε(R,S)αRkSk

= (−1)ε(P,S)+1 .

From this the conclusion follows.
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Case 2 (see Figure 7 right): There are two distinct indices j 6= k such that Pk < Qk

and Rj < Qj.

Under this assumption, the intervals Pk and Rj are degenerate, and all other interval
components of P and R with coordinates i for which dimQi = 1 are nondegenerate.
Without loss of generality, we may assume k < j. The degenerate interval Pk may
be either a left or a right endpoint of the nondegenerate interval Qk, and Rj may be
either a left or a right endpoint of the nondegenerate interval Qj. This gives rise to four
distinct possibilities of which we only describe one in detail; the remaining cases can
be treated analogously and are left to the reader. Consider the 2-dimensional rectangle
in the k × j coordinates given by

Q′ := Qk ×Qj = [a, b]× [c, d] ,

as well as the edge parts

P ′ := Pk × Pj = [a]× [c′, d′] , with c ≤ c′ < d′ ≤ d ,

R′ := Rk ×Rj = [a′, b′]× [c] , with a ≤ a′ < b′ ≤ b .

Due to P ∩R ⊃ S 6= ∅, we then must have

S ′ := Sk × Sj = [a]× [c] .

This in turn is only possible if c′ = c and a′ = a, i.e., the interval P ′ intersects the
interval R′ in the lower-left corner of Q′. (Notice that the above-mentioned remaining
three cases correspond to the remaining three corners of Q′.) The definitions

p = ε(Q,P ) =
k−1∑
i=1

dimQi and r = ε(Q,R) =

j−1∑
i=1

dimQi

then furnish

αQP = (−1)pαQkPk
= (−1)p+1 and αQR = (−1)rαQjRj

= (−1)r+1 .

According to dimPk = dimSk = 0, the sum in the formula for the exponent ε(P, S)
extends up to the index j− 1, analogously to the case of the exponent r defined above.
In other words, we have

ε(P, S) =

j−1∑
i=1

dimPi .

Now observe that dimPi = dimQi for all i ≤ j − 1 — except for the choice i = k,
which corresponds to dimQk = 1 and dimPk = 0. Hence, the identity ε(P, S) = r − 1
holds and we obtain

αPS = (−1)r−1αPjSj
= (−1)r .
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In addition, we have dimRi = dimQi for all i ≤ j− 1. Combined with the assumption
k < j and Sk < Rk, this furnishes

ε(R, S) =
k−1∑
i=1

dimRi =
k−1∑
i=1

dimQi = p ,

as well as
αRS = (−1)pαRkSk

= (−1)p+1 .

This finally implies

αQP αPS + αQR αRS = (−1)p+1(−1)r + (−1)r+1(−1)p+1 = 0 ,

which completes the proof of the theorem. 3

Remark 3.11 The formula (4) is inspired by the boundary operator formula for cubi-
cal sets which was derived in [13, Corollary 2.35]. In fact, an alternative presentation of
rectangular CW-complexes can be given in terms of rescaling of cubical sets as defined
in [13, Section 6.4.2]. Suppose that Q is a rectangular structure for X ⊂ Rd such that
every cube Q ∈ Q is the product of intervals with rational coordinates. This hypothesis
is not restrictive in practice, because the interval arithmetic always produce such inter-
vals. Let αi be a common multiple of all denominators present in the i-th coordinate
intervals of all these cubes. Consider the scaling isomorphism Λα : Rd → Rd defined
by Λα(x) := (α1x1, α2x2, . . . , αdxd). Then the image Xα of X under the mapping Λα

is a cubical set. Moreover, it can be seen that the chain complex associated with X is
isomorphic to the cubical subcomplex of C(Xα) whose n-th chain group is generated
by the chains

Q̂ :=
∑{

P̂ : P ∈ Kn(Qα)
}

over Q ∈ Q, where Kn(Qα) denotes the set of elementary n-cubes in Qα and P̂ is the
dual generator corresponding to P ∈ Kn(Xα). We do not present the proof of this fact
because it is not used in the computations of this paper.

4 Numerical Experiments

In this final section of the paper we present a first application of the coreduction method
for regular CW-complexes in the context of planar rectangular CW-complexes. For this,
we consider again the study of topological properties of nodal domains of functions,
which has been considered before in [1, 4, 5, 10, 16, 17]. In particular, we will improve
on the numerical studies presented in [5]. As was already mentioned in the introduction,
the latter study developed a rigorous computational technique for finding the homology
of nodal sets of smooth functions. In order to determine and rigorously validate the
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boundary of nodal sets in the plane, the method of [5] finds a non-uniform cubical
decomposition of the underlying two-dimensional domain of the function in such a way
that the signs of the function values on the corners of any square in the decomposition
completely describe the structure of the nodal line within this square: If all signs are
the same, the nodal line has an empty intersection with the square; if exactly one
corner has a different sign from the remaining three corners, then the nodal line is a
simple curve which originates/ends at the two edges adjacent to the exceptional corner,
etc. Once the algorithm has determined a non-uniform decomposition of this type, the
only way to compute the homology of the nodal sets using homology codes which were
available at the time was to embed the non-uniform grid into a fine uniform grid, whose
size is determined by the smallest square in the non-uniform decomposition. It was
already pointed out in [5], that this approach severely limits the practical applicability
of the method.

In order to address these shortcomings with respect to the homology computa-
tion in [5] we have implemented a coreduction algorithm for planar rectangular CW-
complexes. According to Theorem 3.6 and Theorem 3.7, in this particular situation
it is possible to employ elementary reductions and coreductions to completely reduce
the underlying S-complex, i.e., at the end of the algorithm all boundary operators are
trivial and there is no need for an application of the Smith normal form algorithm.
In the remainder of this section, we describe the improvements that the coreduction
method brings over the homology computation method employed in [5]. As mentioned
above, in [5] the homology of the nodal domains was computed using a uniform cubical
approximation, whose grid size was determined by the smallest cube in the non-uniform
adaptive grid, and whose homology was then computed using the standard coreduction
algorithm for uniform cubical complexes developed in [19]. While the latter algorithm
is extremely efficient, the insistence on uniform cubical grids puts severe restrictions
on the largest possible problem size that could be tackled in [5]. For the case of nodal
domains of doubly-periodic random trigonometric polynomials, which will be described
in more detail below, it was only possible to consider fine uniform grids of sizes up to
650002. In order to compare the coreduction algorithm for rectangular non-uniform
CW-complexes to the one for uniform cubical complexes, we consider the test case of
random trigonometric polynomials. In previous theoretical work [16], rigorous bounds
on the probability of a correct homology computation using uniform cubical grids of
certain sizes were derived — and the validity of these estimates as a function of the
grid size for random trigonometric polynomials of certain degrees was established in [5].
These studies are concerned with a special class of random periodic Gaussian fields,
namely, with random trigonometric polynomials on the base domain Γ = [0, 1]2 of the
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Figure 8: Sample nodal domain patterns for random trigonometric polynomials in two
dimensions. From left to right the images correspond to the degrees K = 16, 20, 24
in (6). In each image, a yellow outline is selected, whose blow-up is shown in the second
row. These blow-ups contain the adaptive numerical grid which is used for homology
verification.

form

f(x1, x2, ω) =
K∑

k,`=0

αkα` · (gk,`,1(ω) cos(2πkx1) cos(2π`x2)

+gk,`,2(ω) cos(2πkx1) sin(2π`x2) (6)

+gk,`,3(ω) sin(2πkx1) cos(2π`x2)

+gk,`,4(ω) sin(2πkx1) sin(2π`x2)) .

In (6), the degree of the trigonometric polynomial is given by K ≥ 3, and the fac-
tors gk,`,m are random variables defined over a common probability space (Ω,F ,P)
which are independent and normally distributed with mean 0 and variance 1. See
also [4, 17].

Studying the nodal domains of random trigonometric polynomials of the form (6)
provides an excellent testing ground for the new coreduction algorithm for non-uniform
planar rectangular CW-complexes. This is due to the fact that with increasing degreeK
both the topological complexity of the resulting nodal domains, and the complexity
of the non-uniform adaptive grid produced by the algorithm of [5] grows. In fact, our
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Figure 9: The left image shows the growth of the averaged 0-th Betti numbers (blue
curve) and 1-st Betti numbers (red curve) of the nodal domains of random trigonometric
polynomials given by (6); both axes in this image use a logarithmic scale. The image
on the right shows the average number of validated rectangles in the final adaptive
grid generated by the validation algorithm in [5] as a function of the degree K of
the random trigonometric polynomial; in this image, only the vertical axis is using
logarithmic scaling.

simulations — which are described in more detail below — show that the averaged
Betti numbers β0(K) and β1(K) of random trigonometric polynomials of degree K
roughly follow the proportionalities

β0(K) ∼ K1.337 and β1(K) ∼ K2.272 .

Furthermore, the size of the adaptive validated grid grows exponentially via

adaptive grid size ∼ 1.306K .

Thus, for the largest simulations that are included in the discussion below, we are deal-
ing with non-uniform rectangular CW-complexes with millions of cells. Nevertheless,
even in these extreme cases the runtime of our homology algorithm turns out to be
only a few seconds.

The graphs shown in Figures 10 and 11 contain basic timings of the coreduction
algorithm for non-uniform planar rectangular CW-complexes, as well as comparisons
with the method employed in [5]. To obtain these graphs, we applied the validation
algorithm of [5] to random ensembles of trigonometric polynomials of the form (6), for
values of the degree K between 3 and 32. The sizes of the random ensembles varied
between 3000 for small values K and 5 for the largest few values. The selection of the
ensemble sizes was dictated by the running time of the validation algorithm. Once the
non-uniform validated adaptive grid has been determined, we applied the coreduction
algorithm for non-uniform planar rectangular CW-complexes to the non-uniform grid
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Figure 10: Timings for the coreduction algorithm for planar rectangular CW-
complexes. The left image shows the ratio of computational time over the actual size
of the considered non-uniform planar rectangular CW-complex, averaged over the sam-
ples of a random ensemble of trigonometric polynomials, as a function of the degree K.
This image indicates linear time complexity, except for the increase in computational
time around K ≈ 15 which is caused by memory paging effects. The right image shows
the average and median speedups which were observed in comparison with the uniform
grid method employed in [5]. Notice that no comparisons could be made for K ≥ 23.

to determine the Betti numbers. In addition, whenever possible — i.e., if the size 1/M
of the smallest cube in the adaptive grid was not too small — we applied the homology
algorithm used in [5].

The first set of timings obtained in this way can be found in the left image of
Figure 10. This image shows the ratio of computational time of the coreduction algo-
rithm for non-uniform planar rectangular CW-complexes divided by the actual size of
the considered non-uniform rectangular CW-complex, averaged over the samples of a
random ensemble of trigonometric polynomials, as a function of the degree K. This
image indicates that the runtime complexity of the algorithm is linear in the complex
size, as indicated by the almost constant ratios as a function of K. At first glance,
the sudden increase of this ratio around K ≈ 15 seems to contradict the linearity.
However, for degrees less than this threshold the resulting complexes are so small that
they can be completely dealt with without memory paging. Once the degree of the
random trigonometric polynomial exceeds the threshold value, memory paging has to
be employed by the C++ program to deal with the larger complex size — and this
results in the increased computational effort.

In order to compare the new algorithm with the homology algorithm used in [5], we
also computed the mean and median speedups for the runtimes of the two algorithms.
The results of these computations can be found in the right image of Figure 10. The
data shows that significant average speedups of two orders of magnitude can be ob-
served for degrees K larger than 10, while the speedups are more moderate for smaller
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Figure 11: Further comparisons of the coreduction algorithm for planar rectangular
CW-complexes with the uniform grid method employed in [5]. The top left image
shows the percentage of samples for which the algorithm in [5] could not compute the
homology due to memory constraints. The top right image gives the maximal speedup
which was observed within the random ensembles for each value of the degree K (notice
the logarithmic scale on the vertical axis). The decay of the maximal speedup for K-
values approaching 23 is due to the fact that the algorithm in [5] is able to compute
the homology of nodal domains of trigonometric polynomial of such degrees only if the
topology of the nodal domain is very simple. In these cases, one cannot see the huge
advantage of the new approach when compared with the uniform grid method. The
lower left image shows the distribution of log2M , where 1/M is the size of the smallest
cube in the adaptive grid, for various degrees K, and the lower right image presents
the averaged speedups as a function of log2M , for K-values between 3 and 21.
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values of K — due to the low complexity of the nodal domains. We would like to point
out, however, that for K ≥ 23 no speedup data could be obtained. An explanation of
this fact is given in the top left image of Figure 11. As a function of K, this image
depicts the percentage of samples within each ensemble of random trigonometric poly-
nomials with fixed degree K, for which it was impossible to determine the homology
using the method of [5]. In fact, for none of the considered functions of degrees K ≥ 23
the old method could be applied, since the size 1/M of the smallest cube in the val-
idated adaptive grid was many orders of magnitudes too small. This failure was the
reason to restrict the studies in [5] to K ≤ 16. Nevertheless, in all of these cases, the
new algorithm could produce the Betti numbers in no time.

As a final measure of the performance of the two algorithms we show the maximal
observed speedup within each ensemble of random trigonometric polynomials with
fixed degree K in the top right image of Figure 11. These maximal speedups were
about four orders of magnitude for smaller values of K, and decrease to two orders
of magnitude as K increases from 10 to 22. Notice, however, that the latter numbers
do not give an accurate picture. This is due to the fact that the range of K-values
were the maximal speedups decrease corresponds exactly to the range of K-values for
which the failure rate of the old homology code increases. In other words, for these
degrees, comparisons can only be made if the nodal domain geometry is simple enough
to allow for the application of the homology algorithm of [5] — and these of course
are exactly the cases where we do not expect large speedups from the new code. In
fact, this statement is illustrated more in the bottom pictures of Figure 11. In these
images, we take into account the size M2 of the homogeneous grid which is used for
the homology computations in [5], where again 1/M denotes the side length of the
smallest cube in the validated adaptive grid. The image in the lower left shows the
distribution of log2M for various degrees K, which indicates a fairly narrow range for
each K, which of course shifts to the right as K increases. In the lower right image we
then present the averaged speedups as a function of log2M , for K-values between 3
and 21. This image clearly shows that the decay in the upper right image of Figure 11
is due to the lack of comparison data from the old algorithm.
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