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October 17, 2004

Jagiellonian University,
Institute of Computer Science, ul. Nawojki 11,

30-072 Kraków, Poland
e-mail: mrozek@ii.uj.edu.pl

and
Jagiellonian University,

Institute of Mathematics, Reymonta 4,
30-059 Kraków, Poland.

E-mail: wojcik@im.uj.edu.pl

Abstract

We present a geometric method for detecting chaotic dynamics in dis-
crete dynamical systems.

Keywords: isolating block, Conley index, fixed point index, periodic points,
chaos

1 Introduction

In recent years there has been growing interest in the study of chaotic dynamics
by means of topological tools. Chaotics dynamics are difficult to study in general
and there are few rigorous results about chaotic dynamics in concrete dynamical
systems. The advantage of topological approach is that the topological criteria
are often easier to verify than the criteria based on smoothness and consequently
easier to apply.

Among the first topological criteria for chaos were two criteria presented in
[1]. The first one was based on the Conley index, the other on the fixed point
index and continuation methods. The Conley index criterion was later applied
in [2, 3] to prove chaos in the Lorenz equations. The Conley index criterion was
refined by Szymczak [9], who proved a conjecture presented in [1]. The fixed
point index criterion was further developed by Zgliczyski [11], who applied it to
the Hénon map and Rössler equations [12, 13].

Another topological criterion for chaos was presented in [7]. It is based on
the work of Srzednicki [6] who developed the machinery of isolating segments
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to compute the fixed point index of the Poincaré map of a flow directly from
the geometric features of an isolating block of the flow. The criterion for chaos
based on this machinery applies directly to differential equations with periodic
forcing, which is in contrast to the other mentioned criteria: they apply to
discrete dynamical systems and may be applied to differential equations only
via the study of the Poincaré map. The criterion uses two isolating segments
whoose exit sets on a certain Poincaré section are the same but the fixed point
indexes computed for the two neighborhoods are different.

Despite the direct applicability to differential equations of the criterion for
chaos developed in [7] it is still hard work to construct analytically the necessary
isolating segments for concrete differential equations. Therefore it would be very
helpful to have a discrete counterpart of the geometric criterion, because this
would open the way to computer assisted proofs based on such an analogue.
Surprisingly, it is not obvious what a discrete counterpart of the geometric
criterion in [7] should be. The aim of this paper is to present a possible analogue
of [7] in the discrete case.

Let us remark that the criterion we present should have some connections
to the criterion developed in [9]. Originally the authors even intended to use
[9] to prove their criterion but so far they failed. Eventually the proof follows
relatively closely the proof for differential equations in [7] and should be easy to
follow for readers familiar with that proof. In particular let us notice that the
reason of introducing an auxiliary map F defined on 3n copies of the original
space is just to be able to mimic to some extend the proof in [7]. The relation
to [9] is not obvious, because the criterion in [9] requires the decomoposition
of the isolating neighborhood into at least two connected components. In the
example we provide the isolating neighborhoods are connected. Of course the
assumptions we make may imply that there are some other isolating neighbor-
hoods inside, which satisfy the criterion in [9], but so far we do not know how
to do it. Also, even if we assume that an isolating neighborhood as in [9] exists,
it would have to be closer to the invariant set inside, so using it directly in
numerical computations would make them much more expensive.

2 Preliminaries

R, Q, Z, N will denote the sets of real, rational, integer and natural numbers,
respectively. For a topological space X and a subset A ⊂ X the notation
intX(A), clX(A), bdX(A) will be used for the interior, the closure, and the
boundary of A in X, respectively. If this causes no misunderstanding, we shall
drop the subscript X in the above notation. We say that (A,B) is a pair of
subsets of X if B ⊂ A ⊂ X.

Let X be a locally compact metric space and let f : X −→ X be a homeo-
morphism. For a subset K ⊂ X we define the invariant part of K (with respect
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to f) by

invf(K) =
+∞⋂

j=−∞
f j(K).

A pair P = (P1, P2) of compact subsets of X is called an index pair with respect
to f if and only if the following conditions hold

(A) if x ∈ P2 and f(x) ∈ P1, then f(x) ∈ P2

(B) if x ∈ P1 and f(x) /∈ P1, then x ∈ P2

(C) invf(cl(P1 \ P2)) ⊂ int(cl(P1 \ P2))

Let P be an index pair for f and H be the Alexander-Spanier cohomology
functor (with rational coefficients). We put

fP : (P1, P2) 3 x −→ f(x) ∈ (P1 ∪ f(P2), P2 ∪ f(P2)),

iP : (P1, P2) 3 x ↪→ x ∈ (P1 ∪ f(P2), P2 ∪ f(P2)).

It follows from the strong excision property that iP induces an isomorphism in
the Alexander-Spanier cohomology.

Definition 1 The endomorphism H(fP ) ◦ H(iP )−1 of H(P1, P2) is called the
index map associated with the index pair P and is denoted by χP .

The index map was first introduced in [5] (see also [4]).
Let N ⊂ X be compact. We say that N is an isolating block for f if and

only if f−1(N) ∩ N ∩ f(N) ⊂ int(N). One can check that if N is an isolating
block, then (N,N−) is an index pair with N− = N \f−1(int(N)) (compare [1]).
For an isolating block N by χN we will denote the index map associated with
the index pair (N,N−).

Assume that X is an ENR i.e. a Euclidean Neighborhood Retract and P is
an index pair for f such that χP is an isomorphism. Put S = invf (cl(P1 \P2)).
The following result was proved in [5] (compare also lemma 5.2 in [8])

Theorem 1 Let K ⊂ S be the set of fixed points of f contained in S. Then, K
is compact and open in the set of fixed points of f , H(P1, P2) is of finite type
and the fixed point index ind(f,K) is equal to the Lefschetz number of χP .

3 Main result

Let X be an ENR. Assume that M ⊂ N are isolating blocks with respect to f
such that

(a) χM = idQ, χN = −idQ,

(b) f(N) ∩M ∩ f−1(N) ⊂ int(M),
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(c) f(N \ f−1(int(M))) ∩M ⊂ N−,

(d) all inclusions in the diagram

(M,M−) −→ (N,N \ f−1(int(M)))

(M,M ∩N−) −→ (N,N−)

? ?

induce isomorphisms in the Alexander-Spanier cohomology.

Put I = invfN = invf (cl(N \ N−)). Let Σ2 = {0, 1}Z and σ : Σ2 → Σ2 be a
shift map.

Theorem 2 There is a continuous, surjective map g : I → Σ2 such that f
restricted to I is semiconjugated by g to the shift σ i.e. g ◦ f = σ ◦ g. Moreover,
for any n-periodic sequence of symbols c ∈ Σ2 its counterimage g−1(c) contains
an n-periodic point for f .

Remark 3 It follows from our proof of Theorem (2) that the condition (a) can
be replaced by the condition

(a’) χM = −idQ, χN = idQ.

Lemma 4 If x ∈ I, then x ∈ int(M) or x /∈M .

Proof: Suppose that x ∈M \ int(M). Since x ∈ I, there exists a y ∈ I such that
x = f(y). Consequently, y ∈ N \ f−1(int(M)). From assumption (c) we have

x = f(y) ∈ f(N \ f−1(int(M))) ∩M ⊂ N−,

a contradiction.

With every point x ∈ I we associate a symbol h(x) ∈ {0, 1} by the rule
h(x) = 0 if x ∈ int(M) and h(x) = 1 if x /∈M . Define

g : I 3 x −→ {h(fn(x))}n∈Z ∈ Σ2. (1)

Remark 5 It follows from Lemma 4 that g is continuous. In order to prove the
theorem it suffices to prove that periodic sequences are contained in the image
of the map g. Indeed, since I is compact and the set of periodic points is dense
in Σ2, g must be surjective.
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Let n ≥ 1 be fixed. We define an auxiliary function

F : X × Z3n −→ X × Z3n

by
F (x, i) = (fi(x), i + 1), (2)

where the homeomorphism fi : X → X is given by

fi(x) =
{

f(x), if i ≡ 1 mod 3,
x, otherwise. (3)

One can check that F 3n(x, i) = (fn(x), i). In particular,

F 3n(X × {i}) ⊂ X × {i}.

For A ⊂ X × Z3n and i ∈ Z3n we put

Ai = A ∩ (X × {i}).

Let c = (c0, ..., cn−1) ∈ Σ2 be an n-periodic sequence. We define the pair
P (c) = (P1(c), P2(c)) ⊂ X × In by

P1(c)3i+k =
{

M × {3i + k}, if k = 2 and ci = 0 ,
N × {3i + k}, otherwise ,

(4)

P2(c)3i+k =

 (N \ f−1(int(M)))× {3i + k} if k = 1 and ci = 0,
(M ∩N−)× {3i + k} if k = 2 and ci = 0,
N− × {3i + k} otherwise,

(5)

for i ∈ {0, 1, . . . , n− 1}.

Lemma 6 (1) if x ∈ N and f(x) /∈M , then x ∈ N \ f−1(int(M)),

(2) if x ∈ N \ f−1(int(M)) and f(x) ∈M , then f(x) ∈M ∩N−.

Proof: (1) is obvious. It follows from assumption (c) that f(x) ∈ M ∩ f(N \
f−1(int(M))) ⊂ N−, so f(x) ∈M ∩N−. This proves (2).

Put W = N ∩ f−1(N).

Lemma 7 Assume that x ∈ f(W ) ∩W ∩ f−1(W ). Then

(W1) x ∈ int(N) ∩ f−1(int(N)),

(W2) if x ∈ N ∩ f−1(M) and f(x) ∈ M ∩ f−1(N), then x ∈ int(N) ∩
f−1(int(M)),

(W3) if x ∈ (M ∩ f−1(N)) ∩ f(W ), then x ∈ int(M) ∩ f−1(int(N)).
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Proof:
(1) Since x ∈ W ∩ f−1(W ), we have f(x) ∈ f(N) ∩ N ∩ f−1(N). Since N is
an isolating block, we get f(x) ∈ int(N). From x ∈ f(W ) it follows that there
exists a y ∈ W such that f(y) = x ∈ W . We now apply this argument again,
with x replaced by y and obtain x = f(y) ∈ int(N).

(2) Since x ∈ N ∩ f−1(M), we have f(x) ∈ f(N) ∩M , and f(x) ∈ f(N) ∩
M ∩ f−1(N). By (b) we get f(x) ∈ int(M) and the already proved property (1)
shows that x ∈ int(N). Consequently x ∈ int(N) ∩ f−1(int(M)).

(3) In this case x ∈ f(N) ∩M ∩ f−1(N), so again by assumption (b) and prop-
erty (1) x ∈ int(M) ∩ f−1(int(N)).

Corollary 8 For any n ≥ 1 and an n-periodic sequence c ∈ Σ2 the pair P (c)
is an index pair for F .

Proof: The conditions (A), (B) follow from Lemma 6. In order to prove the
condition (C) we have to show that

invF(cl(P1(c) \ P2(c))) ⊂ int(cl(P1(c) \ P2(c))). (6)

One can check that for i ∈ {0, 1, . . . , n− 1}
(P1(c) \ P2(c))3i+k = (M ∩ f−1(int(N)))× {3i + k}, if k = 2 and ci = 0 ,

(N ∩ f−1(int(M)))× {3i + k}, if k = 1 and ci = 0 ,
(N ∩ f−1(int(N)))× {3i + k}, otherwise .

(7)

It follows that
cl(P1(c) \ P2(c)) ⊂W × Z3n. (8)

In particular
invF(cl(P1(c) \ P2(c))) ⊂ invF(W × Z3n). (9)

Let (x, 3i + k) ∈ invF(cl(P1(c) \ P2(c)))) for some i ∈ {0, 1, . . . , n − 1} and
k ∈ {0, 1, 2}. Since

invF(W × Z3n) =
+∞⋂

j=−∞
F j(W × Z3n),

it follows from equations (2) and (3) that

x ∈ f−1(W ) ∩W ∩ f(W ). (10)

If ci 6= 0 or ci = 0 and k = 0 then by (W1) in Lemma 7 we have that

(x, 3i + k) ∈ (int(N) ∩ f−1(int(N)))× {3i + k} ⊂ int((P1(c) \ P2(c))3i+k).
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If k = 1 and ci = 0 then by (7) and (3)

x ∈ N ∩ f−1(M), (11)

f(x) ∈M ∩ f−1(N), (12)

so by (W2) in Lemma 7

(x, 3i + k) ∈ int((P1(c) \ P2(c))3i+k).

If k = 2 and ci = 0 then by (7) x ∈ M ∩ f−1(N). On the other hand, since
(x, 3i + 2) ∈ invF(cl(P1(c) \ P2(c))) there is (y, 3i + 1) ∈ cl((P1(c) \ P2(c))3i+1)
such that F (y, 3i+1) = (f(y), 3i+2) = (x, 3i+2). Again by (7) we obtain that
y ∈ N ∩ f−1(M). In particular,

x ∈M ∩ f−1(N) ∩ f(W ),

so by (W3) in Lemma 7

(x, 3i + 2) ∈ (int(M) ∩ f−1(int(N)))× {3i + 1} ⊂ int((P1(c) \ P2(c))3i+1),

and (6) follows.

Let χP (c) be the index map associated with index pair P (c) for n-periodic
sequence c ∈ Σ2. Observe that

H(P (c)) =
3n−1⊕
i=0

H(P (c)i),

χP (c) =
3n−1⊕
i=0

χi,

where
χi = χP (c)|P (c)i

: H(P (c)i)→ H(P (c)i−1).

The index map χP (c) has the matrix

0 χ1 . . . 0 0

0 0
. . . 0 0

0 0
. . . . . .

...
...

...
. . . 0 χ3n−1

χ0 . . . 0 0 0


(13)

Lemma 9 Assume that 1 appears in the sequence c exactly k times. Then for
i ∈ Z3n

(χP (c))3n|H(P (c)i) = (−1)kidQ, (14)
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so χ3n
P (c) has the matrix 

(−1)k 0 . . . 0

0 (−1)k . . .
...

...
. . . . . . 0

0 . . . 0 (−1)k

 (15)

Proof: Put Y = N \ f−1(int(M)) and consider the following commutative
diagram

(N,N−)
f̄3i−→ (N,Y )

f̄3i+1−→ (M ∪ f(Y ), (M ∩N−) ∪ f(Y )) k←− (M,M ∩N−)
f̄3i+2−→ (N,N−)

(M,M−)
f̄−→ (M ∪ f(M−), (M ∩N−) ∪ f(M−)) k̄←− (M,M ∩N−)

(M,M−)
f(M,M−)−→ (M ∪ f(M−),M− ∪ f(M−))

i(M,M−)←− (M,M−)

?
66

? ?
6

where f̄ , f(M,M−) are induced by f , f̄i are induced by fi and all other maps
are inclusions. Note that i(M,M−) and k are excisions and all other inclusions
induce isomorphisms in cohomology by the condition (d). Let

Fi = FP (c)|P (c)i
: (P1(c)i, P2(c)i)→ (P1(c)i+1∪F (P2(c)i), P2(c)i+1∪F (P2(c)i)),

iP (c)i
= iP (c)|P (c)i

: (P1(c), P2(c))i → (P1(c) ∪ F (P2(c)), P2(c) ∪ F (P2(c)))i.

If ci = 1 then

F3i+k : (N,N−)×{3i+k} 3 (x, 3i+k)→ (x, 3i+k+1) ∈ (N,N−)×{3i+k+1},

for k ∈ {0, 2} and

F3i+1 : (N,N−)× {3i + 1} → (N ∪ f(N−), N− ∪ f(N−))× {3i + 2},

is induced by f , hence
χ3i+3 = χ3i+1 = idQ,

χ3i+2 = χN = −idQ,

so
χ3i+1 ◦ χ3i+2 ◦ χ3i+3 = −idQ. (16)

Assume that ci = 0. Then

F3i : (N,N−)× {3i} 3 (x, 3i)→ (x, 3i + 1) ∈ (N,Y )× {3i + 1},
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is induced by f̄3i and

iP (c)3i+1 = idH((N,Y )×{3i+1}),

so
χ3i+1 = H(F3i).

Similarly

F3i+2 : (M,M ∩N−)×{3i+2} 3 (x, 3i+2)→ (x, 3i+3) ∈ (N,N−)×{3i+3},

is induced by f̄3i+2 and

iP (c)3i+3 = idH(N,N−)×{3i+3},

so
χ3i+3 = H(F3i+2).

One can check that F3i+1 is induced by f̄3i+1 and iP (c)3i+2 is induced by inclusion
k so it follows from the diagram and assumptions (a) and (d) that

χ3i+1 ◦ χ3i+2 ◦ χ3i+3 = idQ. (17)

Since
(χP (c))3n|H(P (c)0) = χ1 ◦ . . . ◦ χ3n−1 ◦ χ0,

for i = 0 the result follows from (16) and (17).
In a similar way one can check that for i ∈ Z3n

(χP (c))3n|H(P (c)i) = (−1)kidQ.

Let Sc = invF (cl(P1(c) \ P2(c)) ⊂ I × Z3n. By the properties of the Conley
index (see theorem (1) ) the Lefschetz number of (χP (c))3n is well defined and
is exactly the fixed point index of F 3n in Sc. Let

Kc = {(x, i) ∈ Sc : F 3n(x, i) = (x, i)}. (18)

be the set of fixed points of F 3n contained in Sc. It follows from Lemma 9 that

ind(F 3n,Kc) = (−1)k3n. (19)

Proof of Theorem 2: Let

Jc = {(x, i) ∈ Sc : x ∈ g−1(c), fn(x) = x}. (20)

Since
F 3n(x, i) = (fn(x), i), (21)

it suffices to prove that ind(F 3n, Jc) 6= 0. This follows from

Lemma 10 Assume that 1 appears in the sequence c exactly k ≤ n times. Then

ind(F 3n, Jc) = (−2)k3n.
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Proof: If k = 0 then c = (0), Kc = Jc, so by (19)

ind(F 3n, Jc) = (ind(F 3n,Kc) = 3n. (22)

For k ≥ 1 we use the induction with respect to k. Let k = 1. Since K(0) and
Jc form a compact and disjoint covering of Kc,by the additivity property of the
fixed point index and (19)

−3n = ind(F 3n,Kc) = ind(F 3n,K(0)) + ind(F 3n, Jc),

so again by (19)
ind(F 3n, Jc) = −6n. (23)

Assume now that the lemma holds for 1 ≤ k < n. We will prove it for k +1.
Denote by Γ the set of all sequences z = (z0, ..., zn−1) such that ci = 0 implies
zi = 0 and 1 appears exactly l times in z for some 1 ≤ l ≤ k. One can check
that Jc ∪K(0) ∪

⋃
z∈Γ Jz is a compact and disjoint covering of Kc. Then, again

by the additivity of the fixed point index

ind(F 3n,Kc) = ind(F 3n, Jc) + ind(F 3n,K(0)) +
∑
z∈Γ

ind(F 3n
n , Jz),

hence by the inductive step and (19)

ind(F 3n, Jc) =

(
(−1)k+1 − 1−

k∑
l=1

(
k + 1

l

)
(−2)l

)
3n.

If k is odd then the formula

k∑
l=1

(
k + 1

l

)
(−2)l = −2k+1 (24)

implies the required equation, because 1 appears k + 1 times in the sequence c,
which is an even number. Similarly, if k is even then

k∑
l=1

(
k + 1

l

)
(−2)l = −2 + 2k+1 (25)

and the equation holds.

4 Some generalizations.

In this section we assume the conditions (b), (c), (d) and additionally the con-
ditions

(a1) χM = idZ , Lef(χN ) 6= χ(Z)) where Z = H(N,N−) is a finite dimensional
vector space and χ(Z) is the Euler-Poincaré characteristic of Z,
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(a2) there is a natural number n0 ≥ 2 such that

Lef(χN ) = . . . = Lef(χn0−1
N ),

χn0
N = idZ .

For I = invf (N) the map g : I → Σ2 is defined by (1). Let c = (c0, . . . , cn−1) ∈
Σ2 be an n-periodic sequence of symbols. Let F be the map defined by (2) and
(3). Assume that P (c) is the index pair for F associated with the sequence c
(see (4) and (5)). Recall that the index map χ(P (c)) has the matrix (13). It
follows from the arguments in the proof of (16) and (17) that

χ3i+1 ◦ χ3i+2 ◦ χ3i+3 =

{
χN , ci = 1
idZ , ci = 0.

(26)

Recall that the set Jc is the set of fixed points of F 3n contained in invF (cl(P1(c)\
P2(c)) coded by the sequence c (compare (20)).

Lemma 11 Let the symbol 1 appears exactly k ∈ {0, . . . , n} times in the se-
quence c = (c0, . . . , cn−1) ∈ Σ2. Then

ind(F 3n, Jc) =

(
k∑

l=0

(−1)k−l

(
k

l

)
Lef(χl

N )

)
3n. (27)

Proof: For k = 0, obviously

ind(F 3n, J(0)) = Lef(⊕i∈Z3n
χ0

N ) = Lef(⊕i∈Z3n
idZ) = 3n χ(Z).

For k ≥ 1 we use the induction with respect to k. Let k = 1. Since K(0) and Jc

form a compact and disjoint covering of Kc, by (26) and the additivity of the
fixed point index

Lef(χN ) = ind(F 3n,Kc) = ind(F 3n,K(0)) + ind(F 3n, Jc),

hence
ind(F 3n, Jc) = (Lef(χN )− χ(Z)) 3n.

Assume that the formula holds for 1 ≥ k < n. We will prove it for k + 1. Let
Γ be the set of all sequences z = (z0, . . . , zn−1) such that ci = 0 implies zi = 0
and the symbol 1 appears exactly l times in z for some 0 ≤ l ≤ k. One can
check that Jc ∪

⋃
z∈Γ Jz is a compact and disjoint covering of Kc. Then, by the

additivity property of the fixed point index

ind(F 3n,Kc) = ind(F 3n, Jc) +
∑
z∈Γ

ind(F 3n, Jz).

Since by (26)
ind(F 3n,Kc) = Lef(χ3n

P (c)) = 3n Lef(χk+1
N ),
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we get from the inductive step

ind(F 3n, Jc) =

(
Lef(χ3n

N )−
k∑

s=0

(
k + 1

s

) s∑
l=0

(−1)s−l

(
s

l

)
Lef(χl

N )

)
3n =

(
Lef(χk+1

N )−
k∑

s=0

s∑
l=0

(−1)s−l

(
k + 1

s

)(
s

l

)
Lef(χl

N )

)
3n =

(
Lef(χk+1

N )−
k∑

s=0

s∑
l=0

(−1)s−l

(
k + 1

l

)(
k + 1− l

k + 1− s

)
Lef(χl

N )

)
3n.

Let s0 ∈ {0, . . . , k} be fixed. One can easy check that the coefficient of Lef(χs0
N )

equals [
−

k∑
r=s0

(−1)r−s0

(
k + 1− s0

k + 1− r

)](
k + 1

s0

)
= (−1)k+1−s0

(
k + 1

s0

)
.

Corollary 12

ind(F 3n, Jc) =

∑
n0|s

(−1)k−s

(
k

s

) (χ(Z)− Lef(χN )). (28)

Proof: It follows from assumption (a2), (27) and

k∑
s=0

(−1)k−s

(
k

s

)
= 0.

Theorem 13 If n0 is even then g is surjective and for any n-periodic sequence
c there exists an x ∈ g−1(c) such that fn(x) = x.

Proof: It follows that ind(F 3n, Jc) 6= 0, so result follows from density of periodic
sequences in Σ2.

Theorem 14 If n0 is odd, then g is surjective. Moreover, for any n-periodic
sequence c ∈ Σ2 in which 1 appears k times and k is not odd multiplicity of n0,
then there is x ∈ g−1(c) such that fn(x) = x.

Proof: One can check that for n0 odd∑
n0|s

(−1)k

(
k

s

)
= 0

if and only if k is an odd multiplicity of n0. Hence the result follows from (28).

Example 15 As an illustration we consider the homeomorphism f : R2 → R2

which maps the unit square N = ABCD as indicated on the picture. Let M
denote the thin, red rectangle on the picture. One can easily check that N and
M are isolating blocks for f which fulfill the assumptions of Theorem 2.
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[11] P. Zgliczyński, Fixed point index for iterations, topological horseshoe and
chaos, Topological Methods in Nonlinear Analysis 8(1996), 169-177.
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