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Abstract Recent research has examined how to study the topological features of
a continuous self-map by means of the persistence of the eigenspaces, for given
eigenvalues, of the endomorphism induced in homology over a field. This raised
the question of how to select dynamically significant eigenvalues. The present paper
aims to answer this question, giving an algorithm that computes the persistence of
eigenspaces for every eigenvalue simultaneously, also expressing said eigenspaces
as direct sums of “finite” and “singular” subspaces.
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1 Introduction

The theory of persistent homology [2, 6] has proved in the past two decades to be a
very useful tool in several branches of applied mathematics and computer science.
In [1], a novel application of persistence to the computational analysis of dynami-
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cal systems is introduced. Building upon the concept of towers in a given category
(a tower in the category of modules or vector spaces is equivalent to a persistence
module as defined in [6]), the authors define the tower of eigenspaces for an endo-
morphism of a tower of (finite dimensional) vector spaces. When these vector spaces
are obtained as the homology over a field F of a filtration representing the underlying
topological space, and the endomorphism is the map induced in homology by a self-
map of said topological space, the eigenvectors are homology classes invariant under
the self-map and provide a first step towards understanding the persistence of this
map.

When the self-map is expanding, there is no guarantee that the image of a homol-
ogy class by the endomorphism is in the filtration at the same step or even at any
step. To overcome this difficulty, the authors of [1] adapted persistent homology to
the study of a self-map by using two towers of vector spaces, which are equivalent
to persistence modules indexed over integer numbers: (Yi , ηi ), a tower of homology
spaces obtained from a filtration of the underlying topological space, and (Xi , ξi ), a
tower of homology spaces obtained by restricting domains such thatmaps induced by
the self-map are simplicial. The morphisms ϕi : Xi → Yi , ψi : Xi → Yi are obtained,
respectively, from the self-map and from the inclusion map. In [1], the eigenspace
for pairs Et (ϕ,ψ) was constructed by defining, for every t ∈ F,

Et (ϕ,ψ) = ker(ϕ − tψ)

and then quotienting out the common kernel of ϕ and ψ, that is,

Et (ϕ,ψ) = Et (ϕ,ψ)/(ker ϕ ∩ ker ψ). (1)

Nevertheless, despite quotienting out the common kernel of ϕ and ψ, it may
happen that Et (ϕ,ψ) is non-trivial for every t ∈ F, a phenomenon that was termed
“abundance of eigenvalues” in [1]. This difficulty in finding the eigenvalues for the
pair (ϕ,ψ), and in identifying them as dynamically significant, leads to the question
whether there exists a way to compute the eigenspace towers for a pair of morphisms,
for all eigenvalues simultaneously. The present article aims to answer this question in
the affirmative, providing an algorithm to extract eigenvectors for every eigenvalue
all at once. In addition, using the theory of the Kronecker canonical form for matrix
pencils (a generalization of the Jordan form to polynomial matrices of the form
t B − A), the eigenspace for every eigenvalue can be expressed as the direct sum
of a “finite” and a “singular” part, the latter of which being associated with the
abundance of eigenvalues phenomenon. We believe that the dynamically significant
eigenvectors are contained in the former, finite part.

In Sect. 2, we reintroduce the concept of the Kronecker canonical form along
with invariant polynomials of polynomial matrices, which while belonging to clas-
sical theories in linear algebra, appear not to be part of the common mathematical
knowledge. Section 3 is dedicated to the algorithm to extract eigenvectors, as well
as generalized eigenvectors, for all eigenvalues simultaneously. Section 4 shows
numerical examples.
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2 Kronecker Canonical Form

By the term linear matrix pencil, or simplymatrix pencil, we refer to the polynomial
matrix t B − A, where A, B ∈ Mm×n(F) and F is a fixed field. Fix a value t̂ ∈ F; if
the equation

(̂t B − A) x = 0

possesses a nonzero solution x ∈ F
n , then x is said to be an eigenvector for the

eigenvalue t̂ . In addition, if there is a finite sequence x1, x2, . . . , xk ∈ F
n of nonzero

vectors such that the system

(̂t B − A) x1 = 0,

(̂t B − A) x2 = Bx1,

...

(̂t B − A) xk = Bxk−1

has a solution, then this sequence is called a sequence of generalized eigenvectors
for the eigenvalue t̂ . Let t B1 − A1 and t B2 − A2 be two m × n pencils; if there exist
invertible matrices Q ∈ Mm×m(F), R ∈ Mn×n(F) such that Q−1(t B1 − A1)R =
t B2 − A2, then the pencils are said to be similar.

In order to study the eigenstructure of the pencil t B − A, that is find its eigen-
values and the dimension of its eigenspaces and generalized eigenspaces, and hence
to extract (generalized) eigenvectors, we recall the classical concepts of invariant
polynomials and of Kronecker indices of matrix pencils.

We first start by considering a particular type of pencil. Call the rank of a pencil,
rank (t B − A), the largest integer k such that there exist non-vanishing k × k minors
of t B − A. If a pencil t B − A is square (B, A ∈ Mn×n(F)) and has rank n, it is said
to be regular. If it is non-square, or if it is n × n square but its rank is strictly lower
than n, it is said to be singular. Wewill additionally say that a pencil has full row rank
(respectively full column rank) if its rank equals its number of rows (respectively its
number of columns).

Let us recall the well-known rational canonical form and primary rational canon-
ical form of a square matrix.

Definition 1 For p(t) = c0 + c1t + c2t2 + . . . + ck−1t k−1 + t k a monic polyno-
mial, the k × k matrix

C(p) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 · · · 0 −c0
1 0 · · · 0 −c1
0 1 · · · 0 −c2
...
...
. . .

...
...

0 0 · · · 1 −ck−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦
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is called the companion matrix of d.

Theorem 2 [4, Theorem 11.17] Let T be a square matrix, then T is similar to a
unique square matrix

diag {C(d1),C(d2), . . . ,C(ds)} (2)

where C(di ) is the companion matrix of a non-constant monic polynomial di and
d1|d2| . . . |ds.
Theorem 3 [4, Theorem 11.20] Let T be a square matrix, then T is similar to a
square matrix

diag {C(p1),C(p2), . . . ,C(pr )} (3)

where each pi = qsi
i is a power of a monic prime polynomial qi , and C(pi ) its

companion matrix. This matrix is uniquely determined up to the order of the blocks
C(pi ) on the diagonal.

We refer to the form (2) as the rational canonical form of T , and to the form (3) as
the primary rational canonical form of T .

Proposition 4 Every regular pencil t B − A over F is similar to a pencil in the form

diag{t N − Ir1 , t Ir2 − C} (4)

where N is the direct sum of nilpotent companion matrices, C is a square matrix in
rational canonical form, and Ir1 and Ir2 are identity matrices of the given size.

Proof This proof proceeds similarly to the proof of [3, Chapter 12, Theorem 3]. If
t B − A is regular, then there exists t̂ ∈ F such that t̂ B − A has full rank. Call ˜A the
matrix −(̂t B − A), then

t B − A = (t − t̂) B − ˜A

⇒ ˜A−1 (t B − A) = (t − t̂) ˜A−1B − I.

We can write the primary rational canonical form of ˜A−1B by ordering the blocks
such that the block corresponding to tr1 for r1 > 0, if it exists, is in the top left. The
pencil t B − A is thus similar (in the sense for pencils given above) to

(t − t̂) diag {C0,C1} − I = diag
{

t C0 − (Ir1 + t̂ C0), (t C1 − (Ir2 + t̂ C1)
}

whereC0 is the companion matrix of p(t) = tr1 . Since Ir1 + t̂ C0 is invertible, and so
is C1, we can left-multiply the above pencil by diag

{

(Ir1 + t̂ C0)
−1,C−1

1

}

, yielding

diag
{

t (Ir1 + t̂ C0)
−1 C0 − Ir1 , t Ir2 − C−1

1 (Ir2 + t̂ C1)
}

.

The result is obtained by putting the matrices (Ir1 + t̂ C0)
−1 C0 and C

−1
1 (Ir2 + t̂ C1)

into their rational canonical forms, respectively N and C . �
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Matrix N in (4) is a block diagonal matrix, whose blocks are nilpotent companion
matrices Ni , i = 1, . . . , l. Each such matrix is the companion of the polynomial t ki ,
ki ≥ 1, and so N has only 0 as eigenvalue. We say that t B − A possesses l infinite
elementary divisors, whose orders are k1, k2, . . . , kl .

We also encountered in (4) a matrix C in rational canonical form, that is

C = diag {C(d1),C(d2), . . . ,C(ds)}

with d1|d2| . . . |ds . These polynomials are referred to as the invariant polynomials of
the pencil t B − A. Wewill refer to the eigenstructure ofC as the finite eigenstructure
of the pencil. From Proposition 4 and the fact that t N − Ir1 has no eigenvalue, we
see that t is an eigenvalue of a regular pencil if and only if it is a root of one of its
invariant polynomials, with the dimension of its eigenspace being the number of such
invariant polynomials. In [3, Chapter 6], the classical algorithm to put a polynomial
matrix into Smith normal form is shown to yield a diagonal matrix in canonical form,
whose first diagonal elements are ones followed by the invariant polynomials of the
matrix, with zero rows at the bottom and zero columns at the right. A regular pencil
is of full rank and can, therefore, not have zero rows or columns, so the classical
Smith normal form algorithm provides invertible matrices Q(t), R(t) such that

Q(t)−1 (t B − A) R(t) = diag{1, . . . , 1, d1, . . . , ds}.

We easily see that if R(t) = [y1(t) y2(t) . . . yn−s(t) x1(t) x2(t) . . . xs(t)], and if t̂ is a
root of polynomial di , then

(̂t B − A) xi (̂t) = 0.

Since R(t) is invertible, its columns are linearly independent for every value t .
Therefore, if t̂ is a root of more than one invariant polynomial, we can find the same
number of linearly independent eigenvectors.

Now, consider a general m × n pencil t B − A. We can study solutions of

∀t ∈ F (t B − A) x(t) = 0, (5)

where x : F → F
n is the variable. If there exists a linear dependence over F[t]

between the columns of t B − A, then there exists a polynomial solution of Eq. (5)
which we call a polynomial eigenvector for the pencil. Write such a solution as

x(t) = x0 + t x1 + t2 x2 + · · · + tε xε, ε ≥ 0 (6)

with xi , i = 0, . . . , ε vectors in F
n , and xε �= 0, where ε is the degree of the poly-

nomial eigenvector. Without loss of generality, we can assume that x0 �= 0. Indeed,
suppose that x0 = x1 = · · · = xk−1 = 0 and xk �= 0 for k ≤ ε in Eq. (6). Then we
can factor out t k , leaving

t k (t B − A) (xk + t xk+1 + t2 xk+1 + · · · + tε−k xε) = 0,
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that is, xk + t xk+1 + t2 xk+1 + · · · + tε−k xε is a new polynomial eigenvector with
nonzero constant term. Therefore, if x(t) is a polynomial eigenvector of t B − Awith
nonzero constant term, then for every t̂ ∈ F, x (̂t) is an eigenvector of t B − A for
eigenvalue t̂ .

Theorem 5 [3, Chapter 12, Theorem 4] Suppose that ε is the smallest positive
integer such that the pencil t B − A possesses a polynomial solution (6) of degree
ε > 0. Then the pencil is similar to

[

Lε 0
0 t̂B − ̂A

]

where

Lε =
⎡

⎢

⎣

t −1
. . .

. . .

t −1

⎤

⎥

⎦ (7)

is a bidiagonal pencil of dimension ε × (ε + 1), known as a columnKronecker block
of index ε, and t̂B − ̂A has no polynomial eigenvector analogous to (6) of degree
less than ε.

Theorem 5 is also valid in the case where ε = 0, in which case a “0 × 1” block L0

means a column of zeros to the left of t̂B − ̂A.

Proposition 6 A vector x0 ∈ ker A ∩ ker B if and only if x(t) = x0 is a polynomial
eigenvector of t B − A of degree 0.

Proof If x0 ∈ ker A ∩ ker B, then obviously (t B − A) x0 = 0. Now suppose that
(t B − A) x0 = 0, then for every t ∈ F, A x0 = t B x0. Since A x0 and B x0 are ele-
ments of F, then this can only be true if A x0 = B x0 = 0. �

The last theorem in this section concerns a decomposition of the pencil t B − A:

Theorem 7 Any m × n pencil t B − A over F is similar to the pencil

diag{Lε1 , . . . , Lεp , L
T
η1
, . . . , LT

ηq
, t B − A}

where t B − A is a regular and therefore square pencil.

Proof Repeatedly Applying Theorem 5, we may successively extract from t B −
A Kronecker blocks of nonincreasing index until we end up with the following
decomposition: t B − A is similar to

diag{Lε1 , Lε2 , . . . , Lεp , t̂B − ̂A}

where the columns of t̂B − ̂A are linearly independent and the blocks Lεi may
be ordered in a way that 0 ≤ ε1 ≤ ε2 ≤ · · · ≤ εp. At this point, t̂B − ̂A may still
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have a linearly dependent set of rows, in which case it would possess left polyno-
mial eigenvectors y(t) such that y(t) (t̂B − ̂A) = 0. This is obviously equivalent to
(t̂BT − ̂AT ) yT (t) = 0, and therefore Theorem 5 can now be applied to this trans-
posed subpencil, yielding row Kronecker blocks LT

η j
, j = 1, . . . , q.

Since we already know the decomposition t B − A of (4), this completes the
presentation of the Kronecker canonical form of a pencil. We will more precisely
call this form the rational Kronecker canonical form since it includes a matrix in
rational canonical form; the classical Kronecker canonical form is a generalization
of the Jordan form and therefore is only guaranteed to exist when working with an
algebraically closed field.

Let us now show an example.

Example 8 Consider the following pencil over Q:

t B − A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−t 0 0 1 0 0 0 0
t − 1 0 t − 1 t − 1 0 −t 1 0
−1 0 0 t 0 0 0 0
0 −t − 1 1 0 0 0 0 0
0 0 1 t + 1 t + 1 0 0 0
0 0 −1 −t − 1 −t − 1 0 0 0
0 0 0 0 0 0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

We can show that this pencil has column Kronecker indices ε1 = ε2 = 1, row Kro-
necker index η1 = 0, one infinite elementary divisor of order 1 and invariant polyno-
mials t + 1 and t2 − 1. Therefore, the rational Kronecker canonical form of t B − A
is

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

t −1
t −1

−1
t + 1

t −1
−1 t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

We leave to the reader to verify that the following transition matrices put t B − A
into this canonical form:

Q−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 −1 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 −1 1 0 0
0 0 1 0 0 0 0

−1 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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R =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0

−1 0 0 0 0 1 −1 0
1 1 1 0 0 0 1 1
1 1 0 1 0 0 1 1
0 0 0 0 1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

3 Algorithm

Van Dooren [5] introduced an algorithm to transform a pencil t B − A into a form
from which its column Kronecker indices can be computed, and the associated poly-
nomial eigenvectors are easily extracted. This is done by successively column- and
row-reducing subpencils of t B − A. In the following algorithm, indices denote step
number except for zero and identity matrices, where they denote dimension.

Algorithm 9

Input: t B − A
j := 1; m1 := m; n1 := n;
A1,1 := A; B1,1 := B; Q−1 := Im; R := In;
while (true)

if Bj, j has n j linearly independent columns
l := j − 1;
return Q−1, R;

[

Bj+1 0m j×s j

] := Bj, j R j ;
Let R j be obtained through column reduction algorithm on Bj, j
[

A j+1 A j
] := A j, j R j ;

for i = 1 to j − 1 do
(* Update other blocks in column j *)
[

Bj+1,i B j,i
] := Bj,i R j ;

[

A j+1,i A j,i
] := A j,i R j ;

(* Update transition matrix R *)

R := R

[

R j 0n j×(n−n j )

0(n−n j )×n j In−n j

]

;
[

0(m j−r j )×s j

A j, j

]

:= Q−1
j A j ;

Let Q−1
j be obtained through row reduction algorithm on A j

and permutation so zero rows are on top
[

A j+1, j+1

A j+1, j

]

:= Q−1
j A j+1;

[

Bj+1, j+1

Bj+1, j

]

:= Q−1
j B j+1;

(* Update transition matrix Q−1 *)
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Q−1 :=
[

Q−1
j 0m j×(m−m j )

0(m−m j )×m j Im−m j

]

Q−1;
m j+1 := m j − r j ; n j+1 := n j − s j ;
j := j + 1;

Theorem 10 Algorithm9 stops when Bl+1,l+1 has full column rank. At this point,
the output are the matrices Q−1 and R such that Q−1 (t B − A) R is the following
block lower triangular matrix:

⎡

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎦

t Bl+1,l+1 − Al+1,l+1 0 · · · 0 0 ml+1

t Bl+1,l − Al+1,l −Al,l · · · 0 0 rl
...

. . .
. . .

...
...

...

t Bl+1,2 − Al+1,2 t Bl,2 − Al,2 · · · −A2,2 0 r2
t Bl+1,1 − Al+1,1 t Bl,1 − Al,1 · · · t B2,1 − A2,1 −A1,1 r1

nl+1 sl · · · s2 s1

(8)

where the A j, j ’s have full row rank r j for j = 1, . . . , l, and the B j, j−1’s have full
column rank s j for j = 2, . . . , l. Some of the r j ’s can equal 0.

Proof Form (8) is a direct consequence of the algorithm. Indeed, the initial form of
the pencil is

t B1,1 − A1,1,

and at step j , the left block of columns,

⎡

⎢

⎢

⎢

⎣

t B j, j − A j, j

t B j, j−1 − A j, j−1
...

t B j,1 − A j,1

⎤

⎥

⎥

⎥

⎦

is the only part of the pencil to change, being transformed by multiplying on the right
by R j and on the left by

[

Q−1
j

Im−m j

]

into
⎡

⎢

⎢

⎢

⎢

⎢

⎣

t B j+1, j+1 − A j+1, j+1 0(m j−r j )×s j

t B j+1, j − A j+1, j −A j, j

t B j+1, j−1 − A j+1, j−1 t B j, j−1 − A j, j−1
...

...

t B j+1,1 − A j+1,1 t B j,1 − A j,1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.
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The A j, j blocks, j = 1, . . . , l, have full row rank r j , being obtained from the nonzero
rows of a row-reduced matrix. In addition, at every step j , the block Bj+1 created
has full column rank, being obtained from the nonzero columns of a column-reduced
matrix. Multiplying it on the left by Q−1

j yields

[

Bj+1, j+1

Bj+1, j

]

. (9)

If Bj+1, j+1 has full column rank, then the algorithm stops and this block becomes
the upper left block Bl+1,l+1. Otherwise, the block (9) is multiplied on the right by
R j+1, yielding

[

Bj+2 0
Bj+2, j B j+1, j

]

= Q−1
j B j+1 R j+1.

Since Bj+1 has full column rank, then Bj+1, j also does. This is true for j = 1, . . . , l −
1, proving the theorem. �

From the row and column ranks r j and s j , we then compute (putting sl+1 := 0)

e j := s j − r j ≥ 0 for j = 1, . . . , l;
d j := r j − s j+1 ≥ 0 for j = 1, . . . , l.

As shown in [5, Proposition 4.3], the indices d j and e j fully determine the infinite
elementary divisors and the column Kronecker indices, respectively. More precisely,
they tell us that t B − A has d j infinite elementary divisors of degree j , j = 1, . . . , l,
and e j column Kronecker blocks L j−1 of size ( j − 1) × j , j = 1, . . . , l. The pencil
t Bl+1,l+1 − Al+1,l+1 additionally contains the finite structure of the original pencil.

In [5] a dual algorithm is also described. It extracts the infinite elementary divisors
and rowKronecker indices of t B − A. Here, let us recall that if B is an identitymatrix,
that is for the classical eigenproblem for a square matrix A, there exists a natural
isomorphism between the left and right eigenspaces, and generalized eigenspaces,
of A. Indeed, the left generalized eigenspace of A (equivalently the generalized
eigenspace of AT ) for every given eigenvalue is the dual space of its (right) general-
ized eigenspace. This natural isomorphism breaks down in the case of matrix pencils
since column and row Kronecker indices are completely independent of each other,
but it is possible to retain it by quotienting out vectors from the column (respectively
row) Kronecker structure from the eigenspace (respectively left eigenspace).

When the pencil has been put into form (8), we can further use the fact that
Bl+1,l+1 has full column rank, as do the blocks Bi,i−1 for i = 2, . . . , l, and that Ai,i

has full row rank for i = 1, . . . , l, to zero out the majority of subdiagonal blocks in
the following way.

Algorithm 11

Input: Q−1, R, Q−1 (t B − A) R from Algorithm9
for i = 1 to l
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(* Zero out block Bl+1,l+1−i *)
Find X such that Bl+1,l+1−i = X Bl+1,l+1;
Bl+1,l+1−i := 0;
Al+1,l+1−i := Al+1,l+1−i − X Al+1,l+1;

Q−1 :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Iml+1

. . .

−X Irl+1−i

. . .

Ir1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Q−1;

for j = 1 to i − 2
(* Zero out block Bl+1− j,l+1−i *)
Find Z such that Bl+1− j,l+1−i = Z Bl+1− j,l− j ;
Bl+1− j,l+1−i := 0;
Al− j,l+1−i := Al− j,l+1−i − Z Al− j,l− j ;

Q−1 :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Iml+1

. . .

Irl− j

. . .

−Z Irl+1−i

. . .

Ir1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Q−1;

for j = 1 to i
(* Zero out block Al+1−i+ j,l+1−i *)
Find Y such that Al+1−i+ j,l+1−i = Al+1−i,l+1−i Y ;
Al+1−i+ j,l+1−i := 0;

for k = 1 to l − i
Al+1−i+ j,k := Al+1−i+ j,k − Al+1−i,l+1−i−k Y ;
Bl+1−i+ j,k := Bl+1−i+ j,k − Bl+1−i,l+1−i−k Y ;

R := R

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Inl+1

. . .

Isl+1−i+ j

. . .

−Y Isl+1−i

. . .

Is1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

;

At this point, having reused the names of the blocks, Q−1 (t B − A) R equals

methier@ustboniface.ca



130 M. Ethier et al.

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

t Bl+1,l+1 − Al+1,l+1 0 0 · · · 0 0 ml+1

0 −Al,l 0 · · · 0 0 rl
0 t Bl,l−1 −Al−1,l−1 · · · 0 0 rl−1

0 0 t Bl−1,l−2
. . .

...
...

...
...

...
...

. . . −A2,2 0 r2
0 0 0 · · · t B2,1 −A1,1 r1

nl+1 sl sl−1 · · · s2 s1

. (10)

Note that the blocks Ai,i have si − ri = ei zero columns, which is also the number
of Kronecker blocks of index i − 1, each of which corresponds to a polynomial
eigenvector of degree i − 1. Therefore, using the blocks Ai,i to zero out the blocks
t Bi+1,i , i = 1 going up to l − 1 in this order, will expose zero columns in the pencil.

Algorithm 12

Input: R, Q−1 (t B − A) R from Algorithm11
for i = 1 to l − 1

Find Y such that Bi+1,i = Ai,i Y ;
Bi+1,i := 0;

R := R

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Inl+1

. . .

Isi+1

t Y Isi
. . .

Is1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

;

Note that R is now a matrix over F[t], and for every zero column of Q−1 (t B −
A) R, we find a column x(t) ∈ F[t]n of R which is a polynomial eigenvector of
t B − A. In addition, Algorithm12 ensures that the degrees of such columns of R are
equal to the column Kronecker indices of t B − A.

Furthermore, since the block t Bl+1,l+1 − Al+1,l+1 contains the whole finite struc-
ture of the pencil, we can at this point (also updating R) put it into Smith normal form,
whose non-constant diagonal elements will be the invariant polynomials of t B − A.
Here as well, we expose a column in the pencil that is zero except for one entry, an
invariant polynomial of t B − A. When evaluated at a root t0 of this polynomial, the
corresponding column of R is an eigenvector for eigenvalue t0.

When working on Q, the rational roots of a polynomial with integer (or rational)
coefficients can be obtained with the following well-known theorem:

Theorem 13 (Rational Root Theorem) Let

anx
n + an−1x

n−1 + . . . + a1x + a0 = 0 (11)
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be a polynomial equation with integer coefficients, and suppose that an �= 0, a0 �= 0.
Then every rational root p/q of (11), where p, q are relatively prime, has the property
that p|a0 and q|an.

Applying the previous theorem to the invariant polynomials of t B − A over Q
(multiplying by an integer if necessary) allows one to find every rational eigenvalue.

Note that in case left eigenvectors are required, the dual algorithm of [5] can be
used instead of Algorithm 9, followed by a dual “row” version of Algorithms11 and
12, keeping track of the left transition matrix QT .

Example 14 Consider again the pencil of Example 8. Applying Algorithm 9 yields

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

t + 1 0 0 0 0 0 0 0

m3
−t − 1 0 0 0 0 0 0 0

t −t −1 0 0 0 0 0
1 −1 −t 0 0 0 0 0 r2
0 0 t − 1 t − 1 0 −1 1 0

r1−1 −t t − 1 t t + 1 0 1 0
0 0 0 0 0 0 0 −1

n3 s2 s1

,

so we can verify the presence of s2 − r2 = 2 column Kronecker blocks of index 1,
and r1 − s2 = 1 infinite elementary divisor of order 1. Applying Algorithms11, 12
and the Smith normal form algorithm, we obtain

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

t B − A ∼

1 0 0
0 t + 1 0
0 0 t2 − 1
0 0 0

0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

R =

0 0 1 0 0 0 0 0
0 1 −t 0 −1 0 0 0

−1 0 −t − 1 0 −t − 1 1 1 0
1 0 t 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 −1 −1 −t − 1 1 1 0

−1 0 −t −t −t − 1 0 1 0
0 0 0 0 0 0 0 1

verifying that t + 1 and t2 − 1 are invariant polynomials of this pencil. We conclude
that

x1(t) = [0, 0, 0, 0, 0,−1,−t, 0]T ; x2(t) = [0,−1,−t − 1, 0, 1,−t − 1,−t − 1, 0]T
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are polynomial eigenvectors,

x3 = [0, 1, 0, 0, 0, 0, 0, 0]T

is an eigenvector of t B − A for eigenvalue −1, and

x4(t) = [1,−t,−t − 1, t, 0,−1,−t, 0]T

is a vector that can be evaluated at ±1 to yield an eigenvector for each of these two
eigenvalues.

We note that, as can been seen in Example 14, our algorithm allows us to identify,
for every eigenvector for a given eigenvalue, whether it originates from the singular
structure of the pencil or not. Since we believe that the singular structure is not
associated with topologically significant eigenvectors, this identification is useful in
applications.

Let us now discuss the computation of generalized eigenvectors of a pencil. Algo-
rithm 12 provides polynomial eigenvectors of degree equal to the column Kronecker
indices. A pencil whose Kronecker structure has one index ε possesses a sequence
of ε + 1 generalized eigenvectors. To see this, consider the Kronecker block Lε in
(7). It can easily be checked that for every field value t , the sequence

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
t
t2

...

tε−1

tε

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
−1
−2 t
...

−(ε − 1) tε−2

−ε tε−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, . . . ,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
...

(−1)ε−1

(−1)ε−1 ε t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
...

0
(−1)ε

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

is a sequence of ε + 1 linearly independent generalized eigenvectors of Lε. We also
notice that the above sequence of polynomial vectors has been obtained by formal
differentiation over the ring F[t] of the first vector. This is a ring homomorphism
denoted d

dt (or with prime notation) with the property that

d

dt
t k = k tk−1 for k ∈ N, and

d

dt
c = 0, c ∈ F.

If we denote x(t) = [1, t, t2, . . . , tε−1, tε]T , then the above sequence is

x(t),−x ′(t),
1

2
x ′′(t), . . . ,

(−1)ε−1

(ε − 1)! x
(ε−1)(t),

(−1)ε

ε! xε(t).

This property generalizes to other pencils. Suppose that t B − A possesses a poly-
nomial eigenvector x(t) of degree ε, as obtained for example by Algorithm 12. Then
x(t) satisfies Eq. (5). Formal differentiation verifies the chain rule, and so we can
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apply it repeatedly to both sides of this equation:

(t B − A)x ′(t) = −Bx(t),

(t B − A)x ′′(t) = −2Bx ′(t),
...

(t B − A)x (ε)(t) = −εBx (ε−1)(t).

From this it can easily be seen that ((−1)k/k! x (k)(t)), k = 0, . . . , ε is a sequence
of ε + 1 linearly independent generalized eigenvectors for t B − A. The (ε + 1)st
derivative of x(t) is the zero vector and therefore not linearly independent. The same
procedure can also be applied to the columns of R in the output of Algorithm12, say
x(t), that correspond to invariant polynomials of t B − A in the sense that

Q−1 (t B − A) x(t) = d(t) e

for d an invariant polynomial and e a vector of the canonical basis of Fm . Indeed, if
t0 is a root of d, we can write d(t) = (t − t0)k+1 r0(t) for a certain k ≥ 0, where r
does not have t0 as a root. Then

(t B − A) x(t) = (t − t0)
k+1 r0(t) Q e.

Proposition 15 For i ≤ k, applying formal differentiation i times to both sides
of the previous equation yields

(t B − A)x (i)(t) = −i Bx (i−1)(t) + (t − t0)
k+1−i ri (t)Q e (12)

where ri (t) is another polynomial such that ri (t0) �= 0.

Proof Suppose, for 0 ≤ i ≤ k − 1, that (12) holds. Then, applying formal differen-
tiation on both sides, we obtain

(t B − A) x (i+1)(t) = −(i + 1)B(i)(t) + (t − t0)
k−i ((k − i + 1) ri (t) + (t − t0) r

′
i (t)

)

Q e.

We can fix ri+1 = (k − i + 1) ri (t) + (t − t0) r ′
i (t); it is obvious that t0 is not a root

of this polynomial. �

Evaluating the previous sequence at t0, we find that ((−1)i/ i ! x (i)(t0)), i =
0, . . . , k provides us with a sequence of generalized eigenvectors for eigenvalue t0.

Example 16 In Example 14, the vectors

x1(t) = [0, 0, 0, 0, 0,−1,−t, 0]T ; x2(t) = [0,−1,−t − 1, 0, 1,−t − 1,−t − 1, 0]T
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are eigenvectors of t B − A for every field value, and so they are also generalized
eigenvectors for every field value. The vectors

−x ′
1(t) = [0, 0, 0, 0, 0, 0, 1, 0]T ; −x ′

2(t) = [0, 0, 1, 0, 0, 1, 1, 0]T

are also generalized eigenvectors for every field value.

4 Numerical Results

We studied a map on a cloud of 100 points, taken in S1 ⊂ C and then subjected
to Gaussian noise with standard deviation varying from σ = 0 to 0.30. The image
of each point z is taken to be the closest point to z2, so the map is angle-doubling
with noise. It is expected that we should find in homology H1, computed over the
field Z19, an eigenvector of long persistence for eigenvalue t = 2, but that stronger
noise may make it harder to distinguish. Figure 1 shows the persistence barcodes for
the eigenvector associated with t = 2 along a filtration of complexes indexed with
parameter value ε. Since we can identify, at every step along the filtration, whether
the eigenvector originates from the singular structure of the pencil or not, we can
code the bar with the following colours: red when it does originate from the singular
structure, and blue when it does not. It can be seen that as the noise level is increased,

Fig. 1 Persistence of the longest lasting eigenvector associated with t = 2 in H1 persistence over
Z19 for several noise levels of a cloud of sample points on S1, subject to the map z 
→ z2. Bar is
red for vectors from singular structure, blue otherwise
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the persistence of this eigenvector tends to become shorter, being born later and dying
earlier, and additionally the eigenvector becomes “degenerate” (associated with the
singular structure of the pencil) for a longer term.

Our 3D example uses a map on the torus constructed in the following way. Con-
sider the square [0, 1]2, identifying its left and right edges, as well as its top and
bottom edges. Take a randomly selected sample of 200 points on this square, and
build the map sending each point (x, y) to the closest point to A[x, y]T , for the 2 × 2
matrix

A =
[

0 1
1 0

]

,

which has eigenvalues 1 and −1. In Fig. 2 we show persistence barcodes in H1

homology over the field Q for eigenvalues 0, 1 and −1 for this test case. Here too

Fig. 2 Persistence barcodes for eigenvalues t = −1, t = 1 and t = 0 in H1 persistence over Q for
matrix A on the torus. Numbering is arbitrary. Bar is red for vectors from singular structure, blue
otherwise
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the bars are colour-coded red if the vector comes from the singular structure of the
pencil, and blue if it comes from its finite structure. We notice several long-lasting
vectors, but only two of those, one for eigenvalue 1 and one for eigenvalue −1, have
a long life as non-singular vectors.

5 Conclusion

Algorithms9, 11 and 12 positively answer the question asked in [1], on whether
it is possible to compute the eigenspace towers of a pair of morphisms between
two towers of vector spaces for all eigenvalues simultaneously. This is a necessary
condition in applications, where candidate eigenvalues for long-lasting eigenvectors
are not and cannot be known. It also makes it possible to study towers of eigenspaces
when the spaces are over an infinite field such as Q.

Furthermore, Proposition 15 and the preceding discussion describe a procedure to
compute generalized eigenvectors for pairs of maps that does not have any added cost
with respect to simply computing eigenvectors themselves. The link between gen-
eralized eigenvectors and differentiation is to our knowledge not very well-known,
but it can be inferred for example from discussions in [3, Chap. 6].

Finally, being able to split the eigenspace for a pair of maps between a finite and
a singular part, with the singular part being represented by polynomial eigenvectors,
raises the question whether it is possible to define persistence generally for the
Kronecker structure of a tower of maps between spaces. This is not a trivial problem
and has links with the non-existence of a simple classification for persistence over
modules [6] and with the problem of finding constraints for the persistence diagrams
of two towers joined by a morphism.
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