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Abstract We describe an algorithm for computing a finite, and typically small, presentation of
the fundamental group of a finite regular CW-space. The algorithm is based on the construction
of a discrete vector field on the 3-skeleton of the space. A variant yields the homomorphism of
fundamental groups induced by a cellular map of spaces. We illustrate how the algorithm can be
used to infer information about the fundamental group π1(K) of a metric space K using only
a finite point cloud X sampled from the space. In the special case where K is a d-dimensional
compact manifold K ⊂ Rd, we consider the closure of the complement of K in the d-sphereMK =
Sd \K. For a base-point x in the boundary ∂MK of the manifoldMK one can attempt to determine,
from the point cloud X , the induced homomorphism of fundamental groups φ:π1(∂MK , x) →
π1(MK , x) in the category of finitely presented groups. We illustrate a computer implementation
for K a small closed tubular neighbourhood of a tame knot in R3. In this case the homomorphism
φ is known to be a complete ambient isotopy invariant of the knot. We observe that low-index
subgroups of finitely presented groups provide useful invariants of φ. In particular, the first integral
homology of subgroups G < π1(MK) of index at most 6 suffices to distinguish between all prime
knots with eleven or fewer crossings (ignoring chirality). We plan to provide formal time estimates
for our algorithm and characteristics of a high performance C++ implementation in a subsequent
paper. The prototype computer implementation of the present paper has been written in the
interpreted gap programming language for computational algebra.

1 Introduction

Let X be a finite point cloud sampled from a metric space K. Suppose that the distance between
points in X is given but that limited further information about K is given. We are interested

P.D. is supported by the grant DARPA: FA9550-12-1-0416 and AFOSR: FA9550-14-1-0012. GE was partially
supported by the European Science Foundation network on Applied and Computational Algebraic Topology and by
Polish MNSzW, Grant N N201 419639. GE thanks the IST, Austria for its hospitality during the writing of this
paper. MM was partially supported by Polish MNSzW, Grant N N201 419639.

Piotr Brendel
Division of Computational Mathematics, Jagiellonian University, ul. St.  Lojasiewicza 6, 30-348 Kraków, Poland

Pawe l D lotko
Department of Mathematics, University of Pennsylvania, 209 s. 33rd st., Philadelphia, PA 19104-6395, USA

Graham Ellis
School of Mathematics, National University of Ireland, Galway, Ireland E-mail: graham.ellis@nuigalway.ie

Mateusz Juda
Division of Computational Mathematics, Jagiellonian University, ul. St.  Lojasiewicza 6, 30-348 Kraków, Poland

Marian Mrozek, Division of Computational Mathematics, Jagiellonian University, ul. St.  Lojasiewicza 6, 30-
348 Kraków, Poland E-mail: Marian.Mrozek@ii.uj.edu.pl



2 Piotr Brendel et al.

in how to infer information on the fundamental group π1(K) using only the data X . Following
the standard approach to topological data analysis we associate to X a filtered regular CW-space
KX

0 ⊆ KX
1 ⊆ KX

2 ⊆ · · · ⊆ KX
N with KX

0 a discrete space and KX
N a contractible space. The

spaces KX
i are constructed (in one of several possible ways) so that we could expect ‘reasonable’

metric spaces K to admit a self homotopy equivalence of the form K → KX
s ⊆ KX

t → K for
some large range s < t. We do not expect the spaces KX

s and KX
t to be homotopy equivalent

in general. Tools such as persistent homology can help in identifying a suitable range s < t. The
image of the homomorphism ψst:π1(K

X
s )→ π1(K

X
t ) is an heuristic approximation to π1(K). We

describe a procedure that inputs the data X , determines a suitable range s < t, and outputs
ψst as a homomorphism of finitely presented groups. The crux of the procedure is an algorithm
for computing a finite, and typically small, presentation of the fundamental group of a finite
regular CW-space from a discrete vector field on the 3-skeleton of the space. We illustrate an
implementation on a point cloudX ⊂ R3 and explain how low-index subgroups of finitely presented
groups can be used to determine useful information about ψst.

When K is a d-dimensional compact manifold K ⊂ Rd we consider the closure M = Sd \K of
the complement of K in the d-sphere Sd and let ∂M denote the boundary of M with base-point
x ∈ ∂M . We describe how our fundamental group procedure, together with standard procedures
for low-index subgroups of finitely presented groups, can be used to infer information about the
induced homomorphism of fundamental groups φ:π1(∂M, x) → π1(M,x) from a knowledge of
the finite point cloud X sampled from K. Of particular interest is the case when K is a closed
tubular neighbourhood of a tame knot in R3, the neighbourhood being small enough so as to
contain the knot as a deformation retract. In this case the boundary ∂M is a torus and the
homomorphism φ is known to determineM up to homeomorphism by a result of Waldhausen [32].
(More specifically, Waldhausen’s result implies that two Haken 3-manifoldsM ,M ′ with connected
boundary components are homeomorphic if and only if there exists an isomorphism π1M → π1M

′

inducing an isomorphism π1∂M → π1∂M
′.) It is known by a result of Gordon and Luecke [16]

that two knots are ambient isotopic in R3 if and only if their complements are homeomorphic.
The homomorphism φ is thus of some interest as it is a complete knot invariant. We illustrate the
computation of φ for knots K arising from experimental data on protein backbones. We also use
our computer implementation to observe that the first homology of subgroups G < π1(MK) of
index at most 6 suffices to distinguish between all prime knots K with eleven or fewer crossings.

1.1 Prior work

The combinatorially defined edge-path group of a connected simplicial complex K, due to Rei-
demeister, is well-known to be isomorphic to the fundamental group π1(K) (see [30]). It is also
well-known that this combinatorial definition and isomorphism extends to connected regular CW-
spaces. In this paper we use the terms edge-path group and fundamental group interchangeably as
synonyms. Several authors have described algorithms for implementing Reidemeister’s edge-path
group. Rees and Soicher [29] use spanning trees and redundant relator searches in their description
of an algorithm for finding a small finite presentation of the edge-path group of a 2-dimensional
combinatorial cell complex; they implement their algorithm in gap [13] for 2-dimensional simplicial
clique complexes of graphs. Letscher [24] uses spanning trees and Tietze elimination/reduction of
relators to compute edge-path groups from the 2-skeleta of simplicial complexes arising from knot
complements, the knots being produced from experimental data on protein backbones. Palmieri
et al. [28] have implemented the edge-path group of simplicial complexes in Sage [31]; the im-
plementation uses the 2-skeleton of the complex and calls gap’s Tietze reduction/elimination
procedures [13]. Kim et al. [22] describe an algorithm for the fundamental groups of 3-dimensional
simplicial complexes; their algorithm, which makes use of 3-dimensional cells and the language of
general CW-spaces, is applied to 3-dimensional tetrahedral meshes arising in computer vision.

We also mention that there is a large literature on the related problem of algorithmically
determining a collection of shortest generating loops for the fundamental group of a space. The
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case of oriented combinatorial 2-manifolds is treated by Ericson and Whittlesey in [10]; their
algorithm invoves the computation of spanning trees.

1.2 Our contribution

We present an algorithm for computing a presentation of the edge-path group of a finite regular
CW-space K based on the observation that a maximal acyclic discrete vector field on the 3-
skeleton of K uniquely defines a finite presentation for π1(K) in the case when there is just a
single critical 0-cell. The generators of the presentation correspond to critical 1-cells of K, and
the relators of the presentation correspond to critical 2-cells. The 3-cells of K help to reduce the
number of critical 2-cells. The algorithm thus boils down to a choice of procedure for finding a
maximal acyclic discrete vector field on K; we consider one such choice in the present paper. In
a subsequent paper [2] we plan to compare several procedures for obtaining discrete vector fields
and provide formal time estimates as well as details on the performance of an optimized C++
implementation.

A discrete vector field can be viewed as a means of specifying a sequence of simple homotopy
collapses in the sense of Whitehead’s simple homotopy theory [35] (cf. Example 2). That theory
seems to have been inspired by Tietze’s theorem in the theory of group presentations asserting that
any presentation of a group can be deformed into any other by a sequence of Tietze moves. The
Tietze moves involve generators and relators and can be regared as being of a 1- and 2-dimensional
nature. A simple homotopy collapse is the n-dimensional analogue of a Tietze move. In the context
of the present paper, two advantages to simple homotopy collapses over Tietze moves are: (i) they
yield a geometrically guided sequence of simplifications of a fundamental group presentation rather
than just an algebraically guided sequence; (ii) they allow simplifications of the 3-skeleton and not
just of the 2-skeleton.

Our algorithm for finding the homomorphism of finitely presented groups ψ:π1L → π1K
induced by an inclusion of finite regular CW-space L ⊆ K is based on the observation that an
acyclic discrete vector field on K defines a sequence ψ(e) of oriented critical 1-cells of K for each
oriented 1-cell e in K. If e happens to be critical in K then ψ(e) is just the sequence e of length 1.
For non-critical 1-cells ψ(e) is defined by a recursive formula. The value of the homomorphism ψ
on a generator x ∈ π1(L) is read off directly from the discrete vector field on K by concatenating
ψ(f) for f ranging over the sequence of 1-cells in a representative path for x ∈ π1L.

In order to efficiently represent point clouds as regular CW-space we use a preliminary repre-
sentation as either a pure simplicial complex, or a pure cubical complex or a pure permutahedral
complex. The details of how point clouds are converted to these preliminary representations is
explained in Section 2. Homotopy collapse procedures (such as the deformation retract procedures
described in [20] and zig-zag deformation retract procedure described in [9]) are then used to
reduce the cell structure of the pure complex while retaining its homotopy type. A reduced pure
complex is converted to the data type of a regular CW-space.

In order to compute with boundaries of manifolds we use pure permutahedral complexes as
the preliminary representation. These complexes are topological manifolds and in this setting the
deformation retract procedures preserve homeomorphism type. On converting a pure permutahe-
dral complex to a regular CW-space K we record that K is a manifold. A homeomorphism-type
preserving cellular simplification procedure is applied to K before extracting its boundary ∂K as
a pure regular CW-subcomplex of K of codimension 1. We give examples involving 3-dimensional
manifolds arising from data on protein backbones that illustrate the potential of this approach.

As a more theoretical application we use our computer implementation to observe that the first
integral homology of subgroups G < π1(MK) of index at most 6 suffices to distinguish between
all prime knots K with eleven or fewer crossings.

The paper is organized as follows. In Section 2 we recall details on regular CW-space, simplicial
complexes, pure cubical complexes, pure permutahedral complexes and their computer representa-
tions. We also recall details on discrete vector fields and describe one easily implemented algorithm
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for computing a maximal acyclic discrete vector field on finite regular CW-space. In Section 3 we
describe an algorithm for computing presentations of fundamental groups, and an algorithm for
computing homomorphisms between finitely presented fundamental groups. In Section 4 we de-
scribe a procedure for simplifying the cell structure of a regular CW-manifold without changing
its homeomorphism type. We then demonstrate how to compute Waldhausen’s complete knot in-
variant for knots arising from experimental data on protein backbones. In Section 5 we explain
how low-index subgroups of finitely presented groups can be used to compute invariants of the
isomorphism type of a finitely presented group. As an illustration we distinguish between all prime
knots K with eleven or fewer crossings.

We have chosen to present theoretical aspects in an informal style. We plan to devote a sub-
sequent more formal paper [2] to a rigorous analysis of our algorithm for finding presentations of
fundamental groups and to a discussion of time-estimates and computational efficiencies.

2 Cellular spaces

2.1 Regular CW-spaces

A good introduction to the theory of CW-spaces can be found in [25]. A CW-space K is regular
if every cell is attached by a map that restricts to a homeomorphism on the boundary of the
cell. The complex K is finite if it has only finitely many cells. It is n-dimensional if it contains
a cell of dimension n and no cell of higher dimension. An n-dimensional CW-space is pure if
any cell of dimension k < n lies in the boundary of some (k + 1)-dimensional cell. The cellular
structure of a finite regular CW-space K can be encoded as a finite collection of binary valued
incidence numbers. From this encoding one can construct a homeomorphic regular CW-space K ′

for which there exists a homeomorphism K ′ ∼= K which maps cells homeomorphically to cells. We
let Kk denote the k-skeleton of K, and ekj the jth cell of dimension k. Thus ekj is a subspace of K
homeomorphic to an open Euclidean ball.

The space K can be represented on a computer as a sequence of lists B0, B1, ..., Bn, where
the jth term of the list Bk = {bk1 , b

k
2 , ...} records those (k − 1)-dimensional cells of K that lie in

the boundary of the jth k-dimensional cell of K. For algorithmic efficiency it is best to encode
some additional redundant information. Namely, we record the lists C0, C1, ..., Cn, where the jth
term of the list Ck = {ck1 , c

k
2 , ...} records those (k+1)-dimensional cells of K that contain the jth

k-dimensional cell of K in their boundary. Thus ckj records the coboundary of ekj . The lists Bk (or

the lists Ck) can be used to construct the face poset of the space K.

2.2 Pure simplicial, cubical and permutahedral complexes

There are several ways to represent a pure simplicial complex on a computer. For present purposes
an appropriate representation is simply as a regular CW-space. From this CW representation it
is useful to derive and store some extra information for efficient computation of the deformation
retracts described in Section 2.3 below. The extra information is a list R = {r1, r2, . . .} whose j-th
term is a list rj = {(d1, k1), (d2, k2), ...(dt, kt)} of those integer pairs for which the ki-th simplex
of dimension di intersects non-trivially with the j-th simplex of dimension n. Each list rj contains
precisely t = 2n+1 − 2 pairs.

Let L ⊆ Rn be an additive subgroup generated by some choice of n linearly independent vectors
VL = {v1, · · · , vn}. Then L acts freely on Rn as a discrete group of translations with fundamental
domain

DL = {x ∈ Rn : ||x|| ≤ ||x− v|| ∀v ∈ L} .

When VL is an orthogonal set the convex polytope DL is combinatorially equivalent to the n-
dimensional hypercube. If we identify Rn with the hyperplane

Rn = {(x1, . . . , xn+1) ∈ Rn+1 : x1 + · · ·+ xn+1 = 0}
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Fig. 1 3-dimensional cube, permutahedron and hexagonal prism.

and take VL to be the set v1 = (−n, 1, 1, . . . , 1, 1), v2 = (1,−n, 1, . . . , 1, 1), . . . , vn = (1, 1, 1, . . . ,−n, 1)
of n vectors in this hyperplane, then the convex polytope DL is the n-dimensional permutahe-
dron. Other choices of VL can lead to other polytopes such as prisms. A 3-dimensional cube,
permutahedron and prism are illustrated in Figure 1.

Any finite subset Λ ⊂ L determines a finite union of polytopes

P =
⋃

λ∈Λ

DL + λ .

Following [9] we call such a union P a lattice complex or L-complex. When the polytope DL is
combinatorially equivalent to a hypercube we say that P is a pure cubical complex. When DL is
combinatorially equivalent to a permutahedron we say that P is a pure permutahedral complex.
Figure 2 shows a 3-dimensional pure cubical complex and a 3-dimensional pure permutahedral
complex, both of which model the trefoil knot.

Fig. 2 Pure cubical and permutahedral models of the trefoil knot.

On a computer we represent the L-complex P as an n-dimensional binary arrayA = (aλ1,λ2···,λn
)

with

aλ1,λ2···,λn
=

{

1 if DL + λ1v1 + · · ·+ λnvn lies in P,
0 otherwise.

together with the finite set of integer vectors

BL := {λ = (λ1, . . . , λn) ∈ Zn : DL ∩ (DL + λ1v1 + · · ·+ λnvn) 6= ∅}.

The binary array aλ1,λ2···,λn
is often called a bitmap representation. We call BL the L-ball. For

DL an n-dimensional hypercube the L-ball contains 3n − 1 vectors. For DL an n-dimensional
permutahedron the L-ball contains 2n+1 − 2 vectors.
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2.3 Deformation retracts

The representations of n-dimensional pure regular CW-space K given in Section 2.2 have the
property that, for low values of n, one can quickly compute the cellular structure of the intersection
δ(en) = en∩K \ en of the closure of an n-dimensional cell en with the closure of the complement of

en inK. If δ(en) is contractible then the pure complex K \ en is a deformation retract ofK. (To see
this, note that the boundary ∂en = en \ en is homeomorphic to an (n− 1)-sphere and that δ(en) is
a closed contractible subspace of ∂en. Thus ∂en \ δ(en) is homotopic to a subspace en−1 ⊂ K that

is homeomorphic to an open (n− 1)-ball. Hence we can view K \ en = K \ {en ∪ en−1} as arising
from K by a so-called simple homotopy collapse [35]; it is thus a deformation retract.) There are
at most 23

n

−1 possible reduced CW-structures on δ(en) when K is a pure cubical complex, and at

most 22
n+1

−2 possible structures when K is a pure simplicial or permutahedral complex. In these
three cases, and for low values of n, it is possible to record the possible contractible δ(en) in a

table and thus implement a quick test for when K \ en is a deformation retract of K. Such a test
is the basis of computational procedures described in [20] for finding small deformation retracts
of pure cubical complexes; implementations for the cubical, simplicial and permutahedral settings
are available in the software packages [4,8]. More recently an heuristic procedure for computing a
sequence of deformation retracts

K
≃

→֒ K1
≃

←֓ K2
≃

→֒ K3 · · ·
≃

←֓ K ′

was described in [9]. The aim of the procedure is that K ′ is a pure complex homotopy equivalent
to K but with fewer n-cells than K. We say that K ′ is a zig-zag deformation retract of K. An
implementation of zig-zag deformation retracts for pure cubical and pure permutahedral complexes
is available in [8].

For an arbitrary regular CW-space K containing a k-cell ek that lies in the boundary of
exactly one cell ek+1 of dimension k+1, we have a deformation retract K \ (ek+1 ∪ ek) →֒ K. This
observation is the basis of procedures for computing small deformation retracts of arbitrary finite
regular CW-space; these are implemented in [4, 8]. The retract K \ (ek+1 ∪ ek) is often said to be
obtained from K by a free face collapse.

2.4 C̆ech complex and forgetful functors

Algebraic topology involves a range of functors for converting one type of cellular space into
another type. We mention two such functors that are particularly useful for fundamental group
computations.

The C̆ech complex construction can be used to associate a simplicial complex Cech(P ) to
any n-dimensional lattice complex P . The simplicial complex Cech(P ) has one vertex for each
n-cell in P , and one simplex for each collection of n-cells of P whose closures have non-trivial
common intersection. This construction is easily implemented on a computer using the L-ball
BL to determine non-trivial intersections. For each n-cell en in P we can construct a small open
neighourhood en ⊂ en ⊂ U(e) of the closure of en such that the open sets U(e) form an open cover
of P . Then Cech(P ) can be viewed as the nerve of the cover {U(e)} and, as such, is well-known
to be homotopy equivalent to P . Standard texts such as [30] contain details on the nerve.

A second useful and easily implemented class of functor are the so-called forgetful functors
that convert a pure simplicial, cubical or permutahedral complex K to a regular CW-space simply
by forgetting some of the structure of K. These forgetful functors are again easily implemented
on a computer.

Example 1 Figure 3 (left) shows the backbone of the Thermus Thermophilus protein. The Eu-
clidean coordinates of all atoms in the protein are available from the Protein Data Bank [27].
These coordinates are experimental data. The backbone is obtained by taking the coordinates of
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Fig. 3 T.thermophilus 1V2X protein backbone represented as a curve (left) and pure cubical complex (right)

the alpha carbon atom in each of the 191 amino acids in the protein and fitting a curve to this
sequence of alpha carbon atoms. The initial and final alpha carbon atoms, which lie close to the
‘surface’ of the protein structure, have been artificially joined by a curve so as to form a continuous
embedding S1 → R3. Any such embedding is referred to as a knot. Figure 3 (right) shows a repre-
sentation of the knot as a 3-dimensional pure cubical complex K. The complex K was formed as a
deformation retract of a pure cubical complex K ′, the complex K ′ having been constructed so that
it contains the image of the knot S1 → R3 as a deformation retract. It can be seen from Figure 3
that the pure cubical complex K is not a topological manifold. However, K can be embedded in a
manifold M as follows. Let A = (aλ) be the binary array representing K. Let A′ = (a′λ) be a new
binary array defined by setting a′λ = 1 if aλ+µ = 1 for some µ ∈ BL = {−1, 0, 1}3, and setting
a′λ = 0 otherwise. Let L be the pure cubical complex represented by A′. Then L is a topological
manifold containing K. In this example it happens that L contains K as a deformation retract.
(In other examples it might be necessary to rescale, and use smaller cubes to ensure that K is a
deformation retract of L.) The pure cubical complexes K and L contain 1071 and 16408 3-cubes
respectively.

As we are interested in the complement R3 \L we form a pure cubical complex C with binary
array A′′ = (a′′λ) defined by a′′λ = 1 if a′λ = 0 and a′′λ = 0 if a′λ = 1. To ensure that C is a finite
complex we restrict the index λ to a finite range that includes all cases where a′λ = 1. The complex
C has 691684 3-cubes and is homeomorphic to the complement I3 \L with I3 some 3-dimensional
solid closed cube whose interior contains the manifold L. By applying the implementation of the
zig-zag deformation procedure in [8] we obtain a pure cubical complex C′ involving 4892 3-cubes
that is homotopy equivalent to C. Considered as a regular CW-space C′ has 77077 cells. A smaller,
but homotopy equivalent, regular CW-space can be obtained as C′′ = Cech(C′). The CW-space
C′′ has a total of 51607 cells and is 5-dimensional. In general the Cech complex of a pure cubical
complex will be of higher dimension than the original complex. A deformation retract C′′′ ⊂ C′′

can be computed using the default procedure in [8]. The regular CW-space C′′′ has a total of
30743 simplicial cells, compared to a total of 5674743 cubical cells in the homotopy equivalent
CW-space C. Moreover, the CW-space C′′′ is of dimension 2.

2.5 Discrete vector fields

Many algorithms on CW-spaces work more efficiently when a space has fewer cells. The requirement
that a CW-space be regular often necessitates the inclusion of more cells than would be needed
in a non-regular CW-decomposition of the space. The difficulty with non-regular CW-spaces is,
however, that it is not so clear how best to represent them combinatorially on a computer without
loosing homotopy-theoretic information. We opt for a compromise representation involving a triple
(X,Y, h) where X is a regular CW-space, Y is a (possibly) non-regular CW-space and h:X → Y
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is a homotopy equivalence. This way all information is stored in X , while Y can be used in
algorithms. We specify h and Y using the following notion.

Definition 1 A discrete vector field on a regular CW-space X is a collection of formal arrows
s→ t where

1. s, t are cells of X with dim(t) = dim(s) + 1 and with s lying in the boundary of t. We say that
s and t are involved in the arrow, that s is the source of the arrow, and that t is the target of
the arrow.

2. any cell is involved in at most one arrow.

An example of a discrete vector field on a regular CW-decomposition of a torus is illustrated in
Figure 4. The term discrete vector field is due to Forman [11]. In an earlier work [19] Jones calls

1
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Fig. 4 A regular CW-structure on a torus endowed with an acyclic discrete vector field (left) and a non-regular
CW-structure (right).

this concept a marking.
A chain in a discrete vector field is a sequence of arrows

. . . , s1 → t1, s2 → t2, s3 → t3, . . .

where si+1 lies in the boundary of ti for each i. A chain is said to be a circuit if it is of finite length
with source s1 of the initial arrow s1 → t1 lying in the boundary of the target tn of the final arrow
sn → tn. A discrete vector field is said to be admissible if it contains no circuits and no chains
that extend infinitely to the right. We are only concerned with finite CW-spaces; in this context a
discrete vector field is admissible if it contains no circuits. In the context of finite CW-spaces we
use the term acyclic as a synonym for admissible. We say that an admissible discrete vector field
is maximal if it is not possible to add an arrow while retaining admissibility. A cell in X is said to
be critical if it is not involved in any arrow.

Theorem 1 [11, 12, 35] If X is a regular CW-space with admissible discrete vector field then
there is a homotopy equivalence

X ≃ Y

where Y is a CW-space whose cells are in one-one correspondence with the critical cells of Y .

The CW-space Y in this theorem is determined (up to some choice in its cell attaching maps)
by X and the discrete vector field onX . In Forman’s paper [11] the cellular chain complex C∗(Y ) is
referred to as the Morse complex of X . We shall refer to the space Y as the Morse CW-complex of
X . The following example is presented in such a way that it serves as an informal constructive proof
of Theorem 1. This constructive proof underlies our algorithm for computing a small presentation
of π1(X). We plan to present a more rigorous account of this proof in [2].
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Example 2 Consider the acyclic discrete vector field on the regular CW-decomposition of the torus
X shown in Figure 4 (left). It has one critical 0-cell, two critical 1-cells and one critical 2-cell. We
shall derive a homotopy equivalence h:X → Y where Y is a CW-space with one 0-cell, two 1-cells
and one 2-cell as illustrated in Figure 4 (right). To this end we let Xn denote the n-skeleton of
X ; we let T n denote the union of Xn with all those (n+ 1)-cells that occur as the target of some
arrow on X ; we denote by V n+1 the union of T n with all the critical (n+ 1)-cells of X . We take
V 0 to be the collection of critical 0-cells. There are inclusions

V n ⊆ Xn ⊆ T n ⊆ V n+1.

The spaces T 0, V 1 and T 1 are illustrated in Figure 5.
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Fig. 5 The spaces T 0, V 1 and T 1 for Example 2 with critical cells shown in bold.

We construct the CW-space Y recursively, defining its 0-skeleton Y 0 to consist of the critical
0-cells. So V 0 = Y 0. Suppose now that we have constructed a homotopy equivalence ν:V n → Y n

where the cells of Y n are in one-one correspondence with the critical k-cells of X for k ≤ n.
In the spirit of our discussion of deformation retracts in Section 2.3 we can establish that V n

is a deformation retract of T n. To do this we note that since the discrete vector field is admissible
there must be some n-cell en in T n that is the source of the initial arrow en → en+1 of some
chain in the vector field on T n. Let T n

1 ⊂ T n denote the regular CW-space obtained from T n by
removing en and en+1. This constitutes an elementary collapse T n ց T n

1 and elementary expansion
T n
1 ր T n in the sense of simple homotopy theory [6]; in particular, T n

1 is a deformation retract of
T n. Applying the same procedure to T n

1 we obtain a deformation retract T n
2 →֒ T n

1 with V n ⊆ T n
2 .

Repeating the procedure we obtain a sequence of deformation retracts

V n ր T n
k ր T n

k−1 ր · · · ր T n
1 ր T n.

Therefore there exists a map τ :T n → V n which is a homotopy equivalence.
For each critical (n+1)-cell en+1 in X we have a characteristic map Dn+1 → X which resiticts

to φ:Sn → Xn. The composite map

φ′:Sn φ
−→ Xn ⊆ T n τ

−→ V n ν
−→ Y n

can be used to form the union Y n∪en+1 with CW-structure in which φ′ extends to a characteristic
map for en+1. We take Y n+1 to be the space obtained by attaching to Y n all the critical (n+1)-cells
of X in this manner. The construction of Y n+1 is such that the homotopy equivalence ν:V n → Y n

extends to a homotopy equivalence ν:V n+1 → Y n+1.
Let V, Y denote the CW-spaces with skeleta V n, Y n. For n = dim(X) we have the desired

homotopy equivalence h:X = V n → Y .

Our computer representation of a discrete vector field on a finite n-dimensional regular CW-
space K is a sequence of lists V 0, V 1, ..., V n−1, where the jth term of the list V k = {vk1 , v

k
2 , ...} is

either unbound (i.e. empty) or else records an arrow wth source the j-th cell of dimension k and
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target cell number vkj of dimension k+1. For algorithmic efficiency we also record the sequence of

lists U1, U2, ..., Un, where the jth term of list Uk = {uk1 , u
k
2 , ...} is either unbound or records an

arrow with target the j-th cell of dimension k and source equal to cell number ukj of dimension
k − 1.

There are a number of approaches to constructing discrete vector fields, some of which are
based on the following obvious result.

Lemma 1 Let X be a regular CW-space endowed with an admissible discrete vector field. Suppose
that there exist a pair of critical cells s, t in X such that: dim(t) = dim(s)+1; s lies in the boundary
of t; any other cell of dimension dim(s)+1 containing s in its boundary is critical. Then the vector
field on X can be extended by adding the arrow s → t and the resulting discrete vector field is
admissible.

One procedure for constructing a discrete vector field using Lemma 1 is given in Algorithm 2.1
There are various possibilities for Step 1 of the algorithm. The cells could be partially ordered in

Algorithm 2.1 Discrete vector field on regular CW-space
Require: A finite regular CW-space X

Ensure: A maximal admissible discrete vector field on X.
1: procedure

2: Partially order the cells of X in any fashion.
3: Initially deem all cells of X to be critical.
4: Furthermore, deem all critical cells to be inessentially critical and none to be essentially critical.
5: while there exists an inessentially critical cell do
6: while there exists a pair of inessentially critical cells s, t such that: dim(t) = dim(s) + 1; s lies in the

boundary of t; no other inessentially critical cell of dimension dim(s) + 1 contains s in its boundary; do
7: Choose such a pair (s, t) with s minimal in the given partial ordering.
8: Add the arrow s → t and deem s and t to be non critical.
9: end while

10: if there exists an inessentially critical cell then
11: Choose a minimal inessentially critical cell and deem it to be essentially critical.
12: end if

13: end while

14: end procedure

some way that ensures any cell of dimension k is less than all cells of dimension k+1. This partial
ordering guarantees that the resulting discrete vector field on a path-connected regular CW-space
K will have a unique critical 0-cell. A natural alternative that seems to give good results is to
partially order the cells of K in some fashion such that any cell of dimension k+1 is less than all
cells of dimension k.

Example 3 The implementation of Algorithm 2.1 available in [8] was applied to the 5-dimensional
regular CW-space C′′ of Example 1. With (k+1)-cells ordered less than k-cells the implimentation
produces a discrete vector field with one critical 0-cell, two critical 1-cells, two critical 2-cells and
no critical cells in higher dimensions. This output corresponds to a representation of the homotopy
type of the knot complement as a CW-space with just five cells. With k-cells ordered less than
(k+1)-cells the implementation produces one critical 0-cell, five critical 1-cells, five critical 2-cells
and no critical cells in higher dimensions. When the algorithm, with same ordering, is applied
directly to the much larger homotopy equivalent 3-dimensional CW-space C′ it returns one critical
0-cell, three critical 1-cells, three critical 2-cells and no critical cells in higher dimensions.

There are other possible algorithms for constructing discrete vector fields. For example, two
algorithms which are similar but slightly different to the one presented above are described in
[17, 18]. We plan to discuss and compare a range of algorithms in a subsequent article [2].
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3 Computing fundamental groups of cellular spaces

A CW-space is said to be reduced if it has just one 0-cell. It is well-known that the cellular
structure of the 2-skeleton of a reduced CW-space Y is encoded by a corresponding presentation
for its fundamental group in terms of a generating set x for a free group F = F (x) and a set r ⊂ F
of relators. The generators are in bijection with the 1-cells of Y , and the relators are in bijection
with the 2-cells. A precise statement of this assertion can be given using the language of free
crossed modules and is due to Whitehead [33,34]. It is well-known that if Y is any path-connected
CW-space then, by contracting any maximal tree in its 1-skeleton, the CW-structure on the space
Y can be modified to that of a reduced one.

The above is very standard material covered, for instance, in [14]. We now summarize details
of how to construct a presentation 〈x | r〉 for the fundamental group π1(Y ) of the CW-space Y
of Theorem 1 that corresponds to a regular CW-space K endowed with admissible discrete vector
field.

We say that a cell in K is terminal if it is either critical or the target of an arrow. Otherwise,
we say that the cell is initial. Note that a 0-cell is terminal if and only if it is critical.

Any 0-cell e0 in K can be associated with a unique terminal 0-cell H(e0) by recursively defining

H(e0) =

{

e0 if e0 is terminal,
H(e′0) if there exists an arrow e0 → e1 with e′0 6= e0 a boundary of the 1−cell e1 .

By an orientation on a 1-cell e1 in K we mean that its two distinct vertices have been labelled
as ∂−e1i and ∂+e1i . We say that ∂−e1i is the first vertex of e1i and that ∂+e1i is the second
vertex. Any oriented 1-cell e1 in K can be associated with a unique path H(e1) of terminal 1-cells
(e11, e

1
2, . . . , e

1
n) in K. By a path we mean that each edge is endowed with an orientation such that

∂+e1i = ∂−e1i+1 for 1 ≤ i ≤ n− 1 and ∂−e1i = ∂+e1i−1 for 2 ≤ i ≤ n. Once we have defined H(e1)
we will be able to define, for any path of 1-cells f = (f1

1 , f
1
2 , . . . , f

1
m), the path H(f) to be the

concatenation of the ordered sequence of paths H(f1
1 ), H(f1

2 ), . . . , H(f1
m).

For any oriented initial 1-cell e1 we have an associated 2-cell e1 → e2. The boundary of e2

specifies a path f1
1 , f

1
2 , . . . , f

1
m where the first vertex of f1

1 is the first vertex of e1, and the second
vertex of f1

m is the second vertex of e1. We denote this path by ← e1 →. The path involves all
1-cells of the boundary of e2 except the 1-cell e1.

We define H(e1) recursively by

H(e1) =

{

e1 if e1 is terminal,
H(← e1 →) otherwise.

Note that in the recursive definitions of H(e0) and H(e1) the recusrion will terminate because
of the admissibility condition on the discrete vector field.

We can now describe the CW-space Y of Theorem 1. The 0-skeleton Y 0 consists of one 0-cell
for each critical 0-cell e0 in K; we denote by ρe0 the 0-cell of Y corresponding to e0. The 1-skeleton
Y 1 consists of Y 0 together with one 1-cell ρe1 for each critical 1-cell e1 of K. The 1-cell ρe1 is
attached to the 0-cells ρH(e0), ρH(e′0) where e0 and e′0 are the 0-cells in the boundary of e1.
The 2-skeleton Y 2 consists of Y 1 together with one 2-cell ρe2 for each critical 2-cell e2 in K. The
2-cell ρe2 is attached via the path (ρ(e11), ρ(e

1
2), . . . , ρ(e

1
n)) where the sequence (e11, e

1
2, . . . , e

1
n) is

obtained by applying H to the entire boundary ∂e2 of e2 and deleting any non-critical 1-cells from
the resulting path H(∂e2). The boundary ∂e2 is a closed path of 1-cells and it does not matter at
which 1-cell the closed path is deemed to start.

Example 4 In the discrete vector field of Figure 4 the CW-space Y has one 0-cell, two 1-cells and
one 2-cell. If we denote the arbitrarily oriented 1-cells of Y by x and y, and denote their opposite
orientations by x−1 and y−1, then the 2-cell is attached via the path xyx−1y−1. Using the well-
known correspondence between reduced 2-dimensional CW-spaces and group presentations we
obtain the presentation π1(Y ) ∼= 〈x, y | xyx−1y−1〉.
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Fig. 6 Sample of 3397 points from a surface in R3 and its β1 barcode.

The CW-space Y of Theorem 1 will often not be reduced. However, if it is connected then we
can construct a maximal tree in its 1-skeleton and contract the tree to a point in order to obtain
a reduced CW-structure on Y . We read a presentation for the fundamental group of a reduced
CW-space Y directly from its 2-skeleton.

Example 5 The above construction of a group presentation from an admissible discrete vector field
on a regular CW-space has been implemented in [8]. Applying this implementation to the first
vector field of Example 3 yields the presentation 〈x, y | y−1x−1y−1xyx, y−1x−1yxyx−1〉 for the
fundamental group of the complement of the knot in Figure 3. On applying gap’s Tietze operation
procedure this presentation simplifies to 〈x, y | y−1x−1y−1xyx〉.

Example 6 Figure 6 (left) shows a set X of 3397 points sampled from an unkown surface K ⊂ R3.
The surface K lies inside the cube of side 100 and the points in X have been chosen to have integer
coordinates. We let KX

0 denote the pure cubical complex consisting of one unit 3-cube centred at
the integer vector x for each vector x ∈ X . We define KX

i recursively to consist of the union of
those unit 3-cubes centred at integer vectors that intersect non-trivially with KX

i−1. As a means of
inferring infomation about K we can follow the standard persistent homology approach to data
analysis and investigate the induced homology maps αij

n :Hn(K
X
i ,Q) → Hn(K

X
j ,Q) for i ≤ j.

These are maps of vector spaces and thus determined by their rank βi,j
n = rank(αij

n ). The degree
1 homology maps

H1(K
X
2 ,Q)→ H1(K

X
6 ,Q)→ H1(K

X
10,Q)→ H1(K

X
14,Q)

are described by the barcode of Figure 6 (right) which was produced using the persistent homology
implementation in [8]. The number of vertices in each column of the barcode, counted by multi-
plicity, equals βi,i

1 = β1(K
X
i ) = rank(H1(K

X
i ,Q)). So β2,2

1 = 400, β6,6
1 = 7, β10,10

1 = 2, β14,14
1 = 2.

The number of lines from the i-th column to the j-th column equals βi,j
1 . Thus β2,6

1 = 4, β2,10
1 = 2,

β2,14
1 = 2 etc. The long line corresponding to β2,14

1 = 2 implies that two 1-dimensional homology
classes in KX

2 persist as distinct homology classes in KX
14.

The barcode is consistent with X having been sampled from a manifold K with β1(K) = 2.
The corresponding β0 and β2 barcodes (which are not shown) suggest that β0(K) = 1, β2(K) = 1.
These Betti numbers are consistent with K being a torus K = S1×S1 or a wedge of one 2-sphere
with two 1-spheres K = S2 ∨ S1 ∨ S1.

Up to this point in the example we have applied standard techniques from persistent homology
to the topological data analysis of our point cloud (c.f. [7]). At this point it is useful to take the
novel step of computing the fundamental group of KX

14. This pure cubical complex has 1321192
cubes of dimension 3. A ziz-zag deformation retract L ≃ KX

14 can be constructed with just 664 3-
cubes. The space L and fundamental group presentation π1(L) ∼= 〈x, y | xyx−1y−1〉 were computed
using [8]. The computation involved the construction of a discrete vector field on L with one critical
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0-cell, two critical 1-cells, one critical 2-cell and no other critical cells. The presentation suggests
that X was sampled from a torus.

The method of Example 6 could be directly applied to the topological analysis of 3-dimensional
digital images and thus provides an additional tool in this area (cf. [15]). For higher-dimensional
data a variant of Example 6 would be to choose an increasing sequence of real numbers ǫ1, ǫ2, . . .
and take KX

i to be the simplicial clique complex (also called the Vietoris-Rips complex) having
one vertex for each point in X , and one k-simplex for each subset of vertices {x1, . . . , xk+1} ⊂ X
where the distance between each pair of points in the subset satisfies d(xi, xj) ≤ ǫk. The distance
d could be Euclidean distance or any other distance. This variant would use only a knowledge of
the distances between each pair of points in X .

A notable feature of Examples 5 and 6 is the relatively uncomplicated nature of the presenta-
tions for the fundamental groups which were produced using the implementation in [8]. Above we
have stated that our fundamental group algorithm returns a presentation which is typically small.
This is an informal statement with the terms typically and small intentionally left undefined. One
standard measure of the size of a presentation P = 〈r | x〉 of a group G involves its deficiency
def(P) = |r| − |x|, defined as the difference between the number of relators and the number of
generators. One has the inequalities

def(P) ≥ d(H2(G,Z)) − rank(H1(G,Z)) (1)

|x| ≥ rank(H1(G,Z)) (2)

where Hn(G,Z) is the integral homology of G, rank is the torsion-free rank, and d() denotes
the minimum number of generators of a group (see for instance [3]). Inequalities (1) and (2) are
equalities for the presentations computed in Examples 5 and 6 and thus the number of generators
and relations in these examples is as small as possible. Of course, in other examples the output
presentation will not be minimal in this sense and it seems a difficult task to quantify the term
typically in our informal statemnent. We should also mention that there exist finite groups G due
to Swan and torsion free groups G due to Lustig (see [3] for references) for which (1) is a strict
inequality for all presentations of G.

In keeping with the spirit of persistent homology, we consider the homomorphisms πij
1 :π1(K

X
i )→

π1(K
X
j ) induced by inclusion. In Example 6 we readily compute that π1(K

X
6 ) is the free group on

seven generators, and that π1(K
X
10) is the free abelian group on two generators. In this example the

theoretical isomorphism π1(K
X
i )ab ∼= H1(K

X
i ,Z) of first integral homology as the abelianization

of the fundamental group, together with the given computations implies that π6,14
1 is a surjection

and that π10,14
1 is an isomorphism.

In general we could attempt to compute πij
1 :π1(K

X
i ) → π1(K

X
j ) by computing a maximal

discrete vector field on KX
i and a possibly unrelated maximal discrete vector field on KX

j . To

simplify the discussion let us suppose that KX
i , KX

j are path-connected and that we have chosen

to construct a vector field on KX
i with a unique critical 0-cell in KX

i . This vector field determines
a tree Ti ⊂ KX

i in which all 1-cells are targets of arrows. Each generator x ∈ π1(KX
i ) corresponds

to some critical 1-cell e1x in KX
i . This critical 1-cell e1x determines a loop γx of 1-cells representing

x with all but one of the 1-cells of γx lying in Ti. Each 1-cell in the loop γx is also a 1-cell in KX
j .

For each 1-cell f in the loop γx let H(f) denote the sequence of 1-cells in KX
j defined above with

respect to the disrete vector field on KX
j . Then πij

1 (x) is represented by the concatenation of the
sequences H(f) as f runs through the edges of the path γ.

This computation of homomorphisms of finitely presented groups applies to the homomorphism
π1(K) → π1(L) induced by any inclusion K ⊆ L of regular CW-spaces. We give a computed
example in Section 4.
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∼=

≇

Fig. 7 Permutahedral retracts are homeomorphic whereas cubical retracts may not be.

4 Cellular manifolds and a complete knot invariant

An n-dimensional pure permutahedral complex K has the property that any two distinct n-cells
en, e′n with non-trivially intersecting boundaries share exactly one common boundary cell of
dimension n− 1. This implies that K is a topological manifold (i.e. locally homeomorphic to Rn).

Furthermore it implies that for any “elementary” deformation retract K \ en ⊂ K there exists

a homeomorphism K \ en ∼= K (cf. Figure 7). Since any zig-zag deformation retract is just a
sequence of such elementary deformations it follows that any zig-zag deformation retract of a pure
permutahedral complex K is actually homeomorphic to K.

A second important feature of elementary deformation retracts in the pure permutahedral
and pure cubical settings is that they preserve ambient isotopy type. That is, if K ′ is a zig-zag
deformation retract of K then there exists a continous map F :Rn × [0, 1] → Rn such that F0 is
the identity, Ft is a homeomorphism, and F1 maps K to K ′.

These properties make 3-dimensional pure permutahedral complexes a good setting for com-
putational knot theory.

Example 7 The implementation of permutahedral complexes in [8] was used to construct a 3-
dimensional pure permutahedral complex K ambient isotopic to a small closed neighbourhood
of the knot in Figure 3 (left). The complex K contained 1606 3-dimensional permutahedra. A
contractible compact manifold R ⊂ R3 was constructed so that K lies in the interior of R. The
homeomorphism type of the complement closure R \K was realized as a 3-dimensional pure per-
mutahedral complex C involving 4793 3-dimensional permutahedral cells. The manifold C was
then represented as a regular CW-space. The manifold boundary T = ∂C was computed as a
2-dimensional pure CW-space. The total number of cells in C and T was 207553 and 171374 re-
spectively. As theory predicts, the complex T had two connected components, one homeomorphic
to a torus and the other homeomorphic to a 2-sphere corresponding to the boundary ofR. Choosing
a common base-point for T and C in the torus component of T , we then used the the fundamental
group procedure described above to compute the induced homomorphism π1(T ) → π1(C) as the
homomorphism of finitely presented groups

〈u, v | uvu−1v−1〉 −→ 〈x, y | xyxy−1x−1y−1〉, u 7→ x−3yx2yx, v 7→ x .

By results of Waldhausen [32] and Gordon and Luecke [16] this homomorphism is known to
completely determine the ambient isotopy of the knot K.

The following gap code was used to construct π1(T )→ π1(C).
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gap> K:=ReadPDBfileAsPurePermutahedralComplex("1V2X.pdb");

Pure permutahedral complex of dimension 3.

gap> C:=ComplementOfPureComplex(K);

Pure permutahedral complex of dimension 3.

gap> C:=ZigZagContractedPureComplex(C);

Pure permutahedral complex of dimension 3.

gap> Y:=PermutahedralComplexToRegularCWComplex(C);;

Regular CW-space of dimension 3

gap> i:=BoundaryPairOfPureRegularCWComplex(Y);

Map of regular CW-spaces

gap> CriticalCellsOfRegularCWComplex(Source(i));

[ [ 2, 1 ], [ 2, 1331 ], [ 1, 9951 ], [ 1, 31415 ],

[ 0, 22495 ], [ 0, 25646 ] ]

gap> phi:=FundamentalGroup(i,22495);

[ f1, f2 ] -> [ f1^-3*f2*f1^2*f2*f1, f1 ]

gap> RelatorsOfFpGroup(Source(phi));

[ f1*f2^-1*f1^-1*f2 ]

gap> RelatorsOfFpGroup(Target(phi));

[ f1^-1*f2^-1*f1*f2*f1*f2^-1 ]

Let K be an arbitrary manifold endowed with the cell structure of a regular CW-space. We
mentioned above that any k-cell ek lying in the boundary of exactly one cell ek+1 of dimension
k + 1 yields a deformation retract K \ (ek+1 ∪ ek) →֒ K. In general this deformation retract will
not be a manifold. There is an alternative basic operation that can sometimes be applied to the
regular CW-structure of the manifold K to yield a homeomorphic regular CW-manifold with two
fewer cells. Suppose that K contains a k-cell ek lying in the boundary of precisely two (k+1)-cells
ek+1
1 , ek+1

2 with identical coboundaries (i.e. ek+1
1 lies in the boundary of a cell ek+2 if and only if

ek+1
2 lies in the boundary of ek+2.) Then the three cells ek, ek+1

1 , ek+1
2 can be removed and replaced

by a single cell of dimension k + 1. The topological space K is unchanged; only its CW-structure
changes. The resulting CW-structure will not in general be regular. However, it will be regular if
the sets of vertices V0, V1, V2 lying in the boundaries of ek, ek+1

1 , ek+1
2 respectively are such that

V0 = V1 ∩ V2. Several applications of this operation are illustrated in Figure 8. A simplification
procedure for regular CW-manifolds, based on this operation, is implemented in [8]. (A related
simplification procedure for arbitrary finitely generated chain complexes is described in [21].)

5 Computations with low-index subgroups

Novikov [26] and Boone [1] have shown that there exists a finitely presented group for which it is
impossible to find an algorithm for deciding equality between group elements given by products
of powers of the generators. Nevertheless, there are algorithms for determining some basic isomor-
phism invariants of finitely presented groups. Moreover, the gap system contains implementations
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∼=

Fig. 8 Simplification of cell structure of regular CW-spaces

of these which seem to be quite practical for many groups G involving just a few generators and
a few short relators. The algorithms we have in mind compute the following invariants of G. We
refer the reader to gap’s extensive manual pages [13] for further information on these algorithms
and implementations.

– The invariants of the abelian quotient G/[G,G].
– For a given integer n, a list of finite presentations for the subgroups S < G of finite index at

most n.
– For a given integer c, a finite presentation and normal form procedure for the nilpotent group
G/γc+1G where terms of the lower central series are defined as γ1G = G, γi+1 = [γiG,G].
The normal form procedure provides an algorithm for determining equality between group
elements.

– For given integers c and p, a finite presentation and normal form procedure for the finite p-
group G/γpc+1G where terms of the lower p-central series are defined as γp1G = G, γpi+1 =
[γpiG,G] (γ

p
iG)

p.
– For given integers c, p and m, the invariants of the integral homology groups Hm(G/γc+1G,Z)

and Hm(G/γpc+1G,Z).

In view of the availability of the above algorithms we consider the following invariants of a
group G and group homomorphism φ:G→ G′.

Definition 2 For a group G and for integers m,n, c ≥ 1 we define the set of homology groups

I [n,c,m](G) = {Hm(S/γc+1S,Z) : S ≤ G, |G : S| ≤ n}.

For a homomorphism φ:G→ G′, prime integer p > 1 and integersm, c ≥ 1 we define the canonical
abelian group homomorphism

J [p,c,m](φ) : Hm(S/γcS,Z)→ Hm(S′/γc+1S
′,Z)

for S = [G,G]Gp, S′ = [G′, G′]G′p.

Both invariants in Definition 2 can, in principle, be computed in gap for any finitely presented
group and any homomorphism of finitely presented groups. In practice, the computation is not
practical for groups with large generating sets or large sets of relators, or small sets of relators
where the word length of individual relators is large. It is difficult to quantify ‘large’ as it depends
to some extent on the nature of the presentations involved.

Example 8 The following gap code computes the invariant I [5,2,3](G) for G the complement of
the protein knot shown in Figure 3. The set I [5,2,3](G) is printed as a sorted list of abelian group
invariant lists. From the printout we see that G has nine subgroups S < G of index |G : S| ≤ 5.
Timings, shown in milliseconds, were obtained on a Lenovo ThinkPad W530 Linux laptop.
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Fig. 9 A 3-dimensional pure cubical complex representation of knot 49 on nine crossings.

gap> K:=ReadPDBfileAsPurePermutahedralComplex("1V2X.pdb");;time;

7901

gap> G:=KnotGroup(K);;time;

25722

gap> L:=LowIndexSubgroupsFpGroup(G,5);;time;

0

gap> Apply(L,F->Range(IsomorphismFpGroup(F)));;time;

8

gap> Apply(L,S->NilpotentQuotient(S,2));;time;

4

gap> Apply(L,Q->GroupHomology(Q,3));;time;

952

gap> Print(SortedList(L));

[ [ ], [ ], [ 2, 2, 2, 4, 4, 4, 4 ], [ 3, 3 ],

[ 3, 3 ], [ 3, 3 ], [ 4 ], [ 4 ], [ 9 ] ]

The KnotInfo website [5] includes a list of all prime knots that can be presented as a planar
diagram with at most 11 crossings. For each knot the site links to an arc presentation of the knot
given in the Knot Atlas [23]. A table of these arc presentations has been imported into [8] and
used to produce a function that returns the arc presentation as a small 3-dimensional pure cubical
complex K such as that in Figure 2 for the trefoil knot. Each such cubical complex has been
constructed as a topological manifold. Mirror images have been excluded from the table. Figure 9
illustrates the pure cubical complex K representing the 49th knot on nine crossings.

For each prime knot with eleven or fewer crossings, excluding mirror images, we have computed
the invariant I [6,1,1](G) for G the fundamental group of the complement of our 3-dimensional pure
cubical complex representation of the knot. Mirror images are excluded because it is well-known
that the fundamental group of a knot complement does not distinguish between the knot and its
mirror image. The computation, which took about 15 minutes on a laptop, yielded the following.

Theorem 2 For a knot K:S1 → R3 define G(K) = π1(R
3 \K). The knot invariant

I [6,1,1](G(K)) = {Sab : S ≤ G(K), |G(K) : S| ≤ 6}

distinguishes, up to mirror image, between ambient isotopy classes of all prime knots that admit
planar diagrams with eleven or fewer crossings.

A procedure for computing the classical Alexander polynomial, from a presentation of the
group G(K), has been implemented in [8]. There are 801 prime knots with 11 or fewer crossings
(excluding mirror images and the trivial knot). The Alexander polynomial attains 550 distinct
values on these 801 knots.
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