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Streszczenie

We introduce an efficient algorithm to compute the homomorphism
induced in (relative) homology by a continous map. The algorithm is based
on a cubical approximation of the map and the theory of multivalued
maps. A software implementation of the algorithms introduced in the
paper is available at [27].
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1 Introduction

This paper provides an efficient algorithm to be used in the computation of the
map on homology induced by a continuous function f : (X,A) → (Y,B). This
work is motivated by a growing number of applications in which f is not treated
analytically, but rather is obtained via rigorous numerical approximation [4, 5,
6, 15, 16, 19] or experimental observation [18]. As such, before describing the
results presented here there are three essential issues that need to be addressed:
the approximation of f , the representation of the spaces and the function in a
combinatorial form that can be manipulated by a computer, and the requirement
for dimension independent algorithms.
Beginning with the question of approximation, consider the case of a non-

linear function f :Rn → Rm. Due to computational errors the best that one
can expect is that a careful numerical estimation of f results in a different map
fnum with the property that given x ∈ Rn one can construct ε > 0 such that
‖f(x) − fnum(x)‖ < ε, or equivalently f(x) ∈ Bε(fnum(x)); that is the cor-
rect value of f(x) lies in an ε-ball of the numerical approximation of f . It is
this latter formulation that suggests the use of multivalued maps as a means of
representing f .
To be more precise, a multivalued map F :X −→→Y is a function from X to

the power set of Y , i.e. F (x) ⊂ Y for every x ∈ X. We impose the additional
assumption that F (x) 6= ∅. A continuous map f :X → Y is called a selector of
F :X −→→Y if f(x) ∈ F (x) for every x ∈ X.
We will use multivalued maps to approximate continuous functions on the

level of topology. However, as was mentioned earlier, in order to use the compu-
ter we need a combinatorial means of representing these multivalued maps. For
this purpose we make use of the cubical theory developed in [11]. Recall that
an elementary cube Q in Rn has the form

Q = I1 × I2 · · · × In ⊂ Rn

where Ii = {li} or Ii = [li, li+1] and li ∈ Z. The set of elementary cubes in Rn
is denoted by Kn. The dimension of Q is defined as

dimQ := card {i | Ii = [li, li + 1]}

and Knd indicates the set of d-dimensional elementary cubes in Rn. Let X ⊂ Kn,
then its geometric realization is

|X | :=
⋃
X ⊂ Rn.

Consider finite sets of elementary cubes X ⊂ Knn and Y ⊂ Kmm. A combina-
torial multivalued map is a multivalued map F :X −→→Y. The upper envelope of
F is the multivalued map dFe:X −→→Y defined by

dFe(x) =
⋃
{|F(Q)| | x ∈ Q ∈ X} ⊂ Y.
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Observe that this provides us with a well defined procedure for passing from
combinatorial data to topological information. To simplify the notation, we will
implicitly define F := dFe.
A set X ⊂ Rn is a cubical set if it is a finite union of elementary cubes. Note

that a cubical set X is in fact a combinatorial object as it can be represented in
a finite way by the set X ∈ Kn such that X = |X |. However, the representation
of X is usually non-unique: Define Xmax := {Q ∈ Kn | Q ⊂ X} and Xmin :=
Xmax\{Q ∈ Xmax | Q ⊂ R for some R ∈ Xmax}; thenX = |X | for every X ⊂ Kn
such that Xmin ⊂ X ⊂ Xmax. In the implementation of our algorithms we
try and represent cubical sets as close to Xmin as possible. Since the technical
complications arising from such optimization are inevitable, in the algorithms
described in this paper we operate with cubical sets at the topological level,
but the reader should keep in mind the fact that they are really combinatorial
objects.
Because F is used to represent f , we are particularly interested in full cubical

sets; that is, cubical sets of the form X = |X | where X ⊂ Knn. Observe that if
X is a full cubical set, then there is a unique set of elementary cubes X ⊂ Knn
such that X = |X |.
To simplify the notation we adopt the following convention. We use calli-

graphed letters to denote combinatorial objects and the corresponding capital
letters to denote the corresponding topological objects. In particular, if a full
cubical set in Rn is written using a capital letter, then the corresponding set of
elementary cubes in Knn is denoted by the corresponding calligraphed letter.
Because of the intended applications we introduce two more concepts. A

combinatorial multivalued map F :X −→→Y is a combinatorial representation of
a continuous map f :X → Y if f is a selector of F . It is acyclic if F (x) is an
acyclic set for each x ∈ X.
Assume f : (X,A) → (Y,B) is a continuous map of pairs and X,A ⊂ Rn

and Y,B ⊂ Rm are full cubical sets. We are interested in an algorithm compu-
ting f∗:H∗(X,A) → H∗(Y,B). For this end we need to extend the concept of
representation of a single valued map to the maps of pairs. We say that a com-
binatorial multivalued map F :X −→→Y is a representation of f : (X,A)→ (Y,B)
if F is a representation of f :X → Y and F(A) ⊂ B. (Note that if F :X −→→Y
is a combinatorial representation of f :X → Y , then the condition F(A) ⊂ B
implies f(A) ⊂ B.) The reader may expect that given a representation F of
f : (X,A) → (Y,B) we have F (A) ⊂ B, where F = dFe. However, this is not
the case, as the example in Figure 6 shows. Therefore, it is convenient to intro-
duce another concept. A pair (F,G) of multivalued maps is a representation of
f : (X,A)→ (Y,B) if F :X → Y is a representation of f :X → Y and G:A→ B
is a represenatation of f |A:A → B, and G ⊂ F . It is straightforward that if F
is a combinatorial representation of f : (X,A) → (Y,B), then (dFe, dF|Ae) is a
representation of f .
Observe that given a continuous map f :X → Y where X and Y are full

cubical sets, finding a combinatorial representation F :X −→→Y is a question of
approximation. This is a topic in its own right (see [21], Th. 4.2, and the discus-
sion in [23]) and is not the subject of this paper. Thus, we will limit ourselves
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to a few comments. The simplest approach to computing a rigorous enclosure
is to use interval arithmetic [20] to evaluate the images of entire intervals or
cubes by the map f . For simple nonlinearities more sophisticated approaches
to obtaining bounds can also be used [5]. A more challenging example arises
when f is the translation map of a continuous dynamical system induced by
an ODE. In this setting one can use the method introduced in [12, 23, 33] (an
implementation is available at [2]), as, for instance, was done in [22, 25, 26].
With this set of examples as justification our approach for the remainder of this
paper is to assume that an appropriate combinatorial representation has been
found.
The final point which needs to be addressed is the justification for the deve-

lopment of a dimension independent algorithm. As was mentioned earlier, the
origins of this work lie in the analysis of numerical and experimental data. In
particular, the common strategy for these applications is to use the computer
to identify an isolating neighborhood and compute its homology Conley index
which involves computing the relative homology of a map (see [17, 14] for an
introduction to this theory in the context of computations). For the earliest
applications [15, 16, 19, 18] the computation of the homology map was greatly
simplified by the fact that the maps of interest where defined on subsets of the
plane and only the first homology groups were involved. This meant that the
computation could be reduced to a question involving the connectedness of gra-
phs. However, recent applications to infinite dimensional problems [4, 5] require
that these computations be performed in higher dimensional spaces (dimensions
5 and 6 for the specific examples considered in [4, 5]). Furthermore, the higher
homology groups come into play. At the moment, it appears that the techniques
described in this paper are essential to these applications in the sense that they
can handle relatively high dimensional data in an efficient manner both in time
and memory.
Our main result is Algorithm 5.1 (see Section 5) whose validity is justified

by the following theorem.

Theorem 1.1 Let A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm be full cubical sets. Let the
combinatorial multivalued map F :X −→→Y be a representation of

f : (X,A)→ (Y,B).

Assume that F(A) ⊂ B and that both F and F|A are acyclic. Then the ho-
momorphism returned by Algorithm 5.1 invoked with F , A, B and “incl” set
to false coincides with f∗:H∗(X,A) → H∗(Y,B) in the sense that the doma-
in D of this homomorphism is isomorphic to H∗(X,A), the codomain C of it
is isomorphic to H∗(Y,B), and the following diagram, in which ϕ denotes the
returned homomorphism, commutes

D
ϕ−→ Cy' y'

H∗(X,A)
f∗−→ H∗(Y,B)
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Moreover, if X ⊂ Y, A ⊂ B and the inclusion i: (X,A) ↪→ (Y,B) induces an
isomorphism in homology, then the homomorphism returned by Algorithm 5.1
invoked with F , A, B and “incl” set to true coincides with the endomorphism
(i∗)−1 ◦ f∗:H∗(X,A)→ H∗(X,A).

While necessary, the validity of an algorithm is not sufficient. To be of prac-
tical value it must also be efficient. Though we will not present a formal analysis
of the complexity, our experience suggests that the two predominant factors in
the cost of computing homology are the number and dimensions of the elements
of X and Y. For this reason much of the algorithm focuses on reducing theses
quantities before computing homology. Since F :X −→→Y, we cannot manipulate
elements of X and Y in a completely independent manner. Thus, we have adop-
ted the following strategy modelled on [9, 7, 8] which allows us to simultaneously
keep track of the modifications to X , Y and F .
Given a continuous map f :X → Y one always has the commutative diagram

Γf
↗ ι

yq
X

f−→ Y

(1)

where Γf := {(x, f(x)) | x ∈ X} ⊂ X × Y is the graph of f , ι is the embedding
map ι(x) = (x, f(x)), and q is the projection onto Y . Observe that ι is a home-
omorphism whose inverse is the projection p: Γf → X. Thus, f = q ◦ p−1 and in
particular f∗ = q∗ ◦ (p∗)−1; that is the homology map of f can be computed in
terms of the homology maps of two projections.
This same idea carries over to the multivalued setting. More precisely, let

F :X −→→Y be an acyclic combinatorial multivalued represtentation of f :X → Y .
Then we can construct a corresponding diagram

ΓF
↙ p

yq
X

F−→→ Y

(2)

where ΓF := {(x, y) | x ∈ X, y ∈ F (x)} ⊂ X×Y is the graph of F . Of course, in
this case the projection p may not be invertible. However, because F is acyclic
valued, p∗ is an isomorphism (see Proposition 2.4) and hence (p∗)−1 is well
defined. In particular, as we will show, f∗ = q∗ ◦ (p∗)−1.
Since our goal is to compute f∗:H∗(X,A)→ H∗(Y,B), we have two related

diagrams,
ΓF

↙ pF

yqF
X

F−→→ Y

ΓG
↙ pG

yqG
A

G−→→ B

(3)

that need to be considered, where G = dF|Ae.
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Because p and q are simple projection maps, the computational cost of this
approach to computing homology is determined mainly by the elementary cubes
in ΓF \ΓG. As was suggested earlier, the efficiency of Algorithm 5.1 arises from
preprocessing these sets of elementary cubes. This is done using a variety of
other algorithms three of which we briefly mention here.
The first, reduceF (see Algorithm 4.3), is used to reduce the number of

elements of X that need to be considered. More precisely, reduceF takes as
input the sets X and A and produces sets X̃ ⊂ X and Ã ⊂ A with the property
that H∗(X̃, Ã) ∼= H∗(X,A) and both F̃ := F|X̃ and F̃ |Ã are acyclic.
Another way to simplify the computations is to enlarge the set A since its

content is in essence ignored during the homology computation. This is done
using expandF which produces sets Ã and B̃ satisfying A ⊂ Ã ⊂ X and B ⊂
B̃ ⊂ Y such that F|Ã is still acyclic and F(Ã) ⊂ B̃.
The final algorithm which we wish to mention here is collapse which whe-

never possible eliminates the highest dimensional cubes. The importance of this
is that in general the cost of homology computations increases rapidly as a func-
tion of the dimension of the cubes and by construction ΓF consists of (n+m)-
dimensional cubes. However, it is intuitively clear that on the level of homology
all the relevant information of the map should be carried by a collection of n-
dimensional cubes in ΓF . collapse is used to perform a reduction to such a set
of elements.
The outline of this paper is as follows. In Section 2 we discuss the class of

multivalued maps that are used for the homology computations. Although we
are working in a different context, the reasoning is motivated by Górniewicz [7].
We also present Corollary 2.6 which guarentees that computing the homology
map of an appropriate multivalued function produces the homology map of its
continuous selector.
Section 3 recalls the cubical theory developed in [11]. In particular, it is

indicated how given a combinatorial multivalued map one can construct a chain
map from which the homology map can be computed.
Section 4 describes the reduction algorithms indicated above. As was men-

tioned above the purpose of these algorithms is to preprocess the data so as
to minimize the cost of the homology computations. As such they are essential
elements of Algorithm 5.1. However, for the sake of continuity of presentation
we delay presenting the proofs of their validity to Section 7.
In Section 5 we state Algorithm 5.1 and prove Theorem 1.1. In Section 6 we

present several examples indicating the applicability of this method.
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2 Multivalued maps

As was indicated in the introduction, in this section we delve into the class of
multivalued maps used for computing the homology of continuous functions. In
particular, we define homomorphisms induced in homology by such maps. We
begin our discussion on a fairly general level; postponing to the next section the
restriction to the setting of cubical complexes.

Definition 2.1 Let X ⊂ Rn and Y ⊂ Rm be compact ENRs. A continuous
map f :X → Y is a Vietoris map if the following two conditions are satisfied:

(i) f−1(C) is compact for every compact set C ⊂ Y ,

(ii) f−1(y) is acyclic for every y ∈ Y .

The following two theorems allow us to use graph projections to compute
the homology of multivalued maps. The first is classical [30] and the second is
a straightforward extension.

Theorem 2.2 (Vietoris-Begle Mapping Theorem) Let X and Y be com-
pact. If f :X → Y is a Vietoris map, then the induced map f∗:H∗(X)→ H∗(Y )
is an isomorphism.

Proposition 2.3 Let A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm be compact sets. If
f : (X,A) → (Y,B) is a continuous map such that both f :X → Y and its re-
striction f |A:A → B are Vietoris maps, then f∗:H∗(X,A) → H∗(Y,B) is an
isomorphism.

Proof: Since f is a Vietoris map, the induced homomorphism f∗:H∗(X) →
H∗(Y ) is an isomorphism. For the same reason, (f |A)∗:H∗(A)→ H∗(B) is also
an isomorphism. Applying the five lemma to the following commutative diagram
whose rows are the exact sequences for the pairs (X,A) and (Y,B):

· · · → Hk(A) → Hk(X) → Hk(X,A) → Hk−1(A) → Hk−1(X) → · · ·y(f |A)k yfk yf y(f |A)k−1 yfk−1
· · · → Hk(B) → Hk(Y ) → Hk(Y,B) → Hk−1(B) → Hk−1(Y ) → · · ·

we conclude that f∗:H∗(X,A)→ H∗(Y,B) is an isomorphism.

Consider now a multivalued map F :X −→→Y . It is upper semi-continuous if
for every x ∈ X the set F (x) is compact and for every open set V ⊂ Y the set
F−1(V ) := {x ∈ X | F (x) ⊂ V } is an open subset of X. By [7, Proposition 1.2]
if F :X −→→Y is upper semi-continuous then the image F (A) of every compact
set A ⊂ X under F is compact. G:X −→→Y is a submap of F , if G(x) ⊂ F (x) for
all x ∈ X. Observe that a selector f of F is a particular example of a submap.
The following proposition indicates how we will make use of Vietoris maps

in the context of upper semi-continuous multivalued maps. Recall that a multi-
valued map F :X −→→Y is acyclic if F (x) is acyclic for every x ∈ X.
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Proposition 2.4 Consider compact sets A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm. Let
F :X −→→Y and let G:A−→→B be a submap of F |A. If F and G are acyclic upper
semi-continuous maps, then the natural projection p: (ΓF ,ΓG)→ (X,A) induces
an isomorphism in homology.

Proof: Since the image of a compact set under an upper semi-continuous map is
compact, the pre-image of every compact set by each of the projections pF : ΓF →
X and pG: ΓG → A is compact. This property combined with the acyclicity of F
and G implies that pF and pG are Vietoris maps. Moreover, pG is a restriction
of pF . Proposition 2.3 completes the proof.

We define the map induced in homology by a pair of multivalued maps (F,G)
satisfying the assumptions of Proposition 2.4 in the following way:

(F,G)∗ := q∗ ◦ (p∗)−1:H∗(X,A)→ H∗(Y,B),

where q is the natural projection (ΓF ,ΓG)→ (Y,B). Note that by Proposition
2.4, p induces an isomorphism in homology, so this map is well-defined. More-
over, it is easy to see that if F = f (that is, F is a single-valued map), then
(F,G)∗ = (f, f |A)∗ = f∗.

Proposition 2.5 Consider compact sets A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm. Let
F :X −→→Y and G be a submap of F |A:A−→→B. Assume that F and G are acyclic
upper semi-continuous maps. If F̃ and G̃ are acylic upper semi-continuous sub-
maps of F and G, respectively, and G̃ is a submap of F̃ , then (F,G)∗ = (F̃ , G̃)∗.

Proof: Denote the natural projections for the map F by p, q, and for the map
F̃ by p̃, q̃. Consider the following commutative diagram:

(ΓF ,ΓG)
↙ p ↘ q

(X,A)
xι (Y,B)

↖ p̃ ↗ q̃

(Γ
F̃
,Γ
G̃
)

where ι: (Γ
F̃
,Γ
G̃
) ↪→ (ΓF ,ΓG) is the inclusion. Apply the homology functor to

this diagram and notice that

(F,G)∗ = q∗ ◦ (p∗)−1 = q∗ ◦ ι∗ ◦ (p̃∗)−1 = q̃∗ ◦ (p̃∗)−1 = (F̃ , G̃)∗.

Corollary 2.6 Let F and G be as in Proposition 2.4. Let f : (X,A) → (Y,B)
be a continuous map. If f is a selector of F and f |A is a selector of G, then
(F,G)∗ = f∗.
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3 Representable sets and maps

In this section we return to the discussion of the combinatorial representation
of sets and maps in terms of elementary cubes. We begin by introducing some
additional terminology and then turn to the relation between these combinato-
rial objects and the topological constructs of the previous section. We conclude
with a description of the formulas for the chain maps of the graph projections.
If P ⊂ Q ⊂ Rn are two elementary cubes, then P is a face of Q. It is a

proper face of Q if, in addition, P 6= Q. Given an elementary cube Q, define
◦
Q := Q \

⋃
{P | P is a proper face of Q} .

Observe that if P and Q are elementary cubes such that P 6= Q, then
◦
P ∩

◦
Q = ∅.

Since by definition every cubical set is the finite union of elementary cubes, it

is compact and moreover, is a disjoint union of
◦
Q over all the elementary cubes

Q it contains.
A multivalued map F :X −→→Y , where X ⊂ Rn and Y ⊂ Rm are cubical sets,

is called a cubical multivalued map if ΓF is a cubical set in Rn+m. It follows

that F (x) is a cubical set in Rm for every x ∈ X and F is constant on
◦
Q

for every elementary cube Q ⊂ X. Note that since ΓF is compact, F is upper
semi-continuous.
We would like to stress that a cubical multivalued map is in fact a combi-

natorial object and can be represented in a finite way by the set of assignments{
◦
Q 7→ F (

◦
Q) |

◦
Q ⊂ X

}
. In particular, in order to define such a map in an al-

gorithm, it is enough to define each F (
◦
Q), and this is done in Algorithm 4.12,

although the assignment “F (
◦
Q) := D” may look strange at first glance.

As an immediate consequence of Corollary 2.6 we have the following

Theorem 3.1 Let A ⊂ X ⊂ Knn, B ⊂ Y ⊂ Kmm, and F :X −→→Y. Assume that
F(A) ⊂ B and F is a representation of a continuous map f :X → Y (note
that then f(A) ⊂ B). Let G := F|A. If F and G are acyclic, then (F,G)∗ =
f∗:H∗(X,A)→ H∗(Y,B).

Computing the homology of f with the use of a pair of multivalued maps
(F,G) instead of using F : (X,A)−→→ (Y,B) directly (as is suggested in [7]) may,
at first glance, appear somewhat artificial. However, it should be kept in mind
that the actual computations are performed using F and by definition F =
dFe. Because of this F(A) ⊂ B does not imply that F (A) ⊂ B (see Figure
6 for a counterexample). In fact, one can check that F (A) ⊂ B if and only if
F(oX (A)) ⊂ B, where

oX (A) := {Q ∈ X | Q ∩ P 6= ∅ for some P ∈ A} .

Note that even the identity map I:X −→→X given by I(Q) = {Q} does not in
general satisfy this assumption.

10



We would also like to explain why we assume that both maps F and F|A
are acyclic in Theorem 3.1. The reason is that a restriction of an acyclic com-
binatorial multivalued map need not be acyclic, as one of the examples in [27]
proves.
In the remainder of this section we introduce explicit formulas for the chain

maps of the projections used to compute the homomorphism induced in homo-
logy by a pair of multivalued maps.
Given a pair of cubical sets (K,L) let C(K,L) denote the associated cubical

chain complex. This is a free chain complex whose generators correspond to the
elementary cubes Q ⊂ K such that Q 6⊂ L. The generator corresponding to Q
is denoted by Q̂. See [11] for further details.
Let A ⊂ X ⊂ Rn and B ⊂ Y ⊂ Rm be cubical sets. Let F :X −→→Y and

G:A−→→B be acyclic cubical multivalued maps such that G is a submap of F |A.
The chain map ϕ:C(ΓF ,ΓG)→ C(X,A) of the projection p: (ΓF ,ΓG)→ (X,A)
is defined for Q̂ ∈ Ck by

ϕk(Q̂) =
{
p̂(Q) if p̂(Q) ∈ Ck(X,A),
0 otherwise.

The chain map ψ:C(ΓF ,ΓG)→ C(Y,B) of the projection q: (ΓF ,ΓG)→ (Y,B)
is defined similarly.

Proposition 3.2 (see [11]) The homomorphisms induced in homology by the
chain maps ϕ and ψ defined above coincide with the homomorphisms induced
in homology by the projections p: (ΓF ,ΓG) → (X,A) and q: (ΓF ,ΓG) → (Y,B),
respectively.

Corollary 3.3 If f : (X,A)→ (Y,B) is a selector of F and f |A is a selector of
G, then

f∗ = (F,G)∗ = (ψ)∗ ◦
(
(ϕ)∗
)−1

.

Based on the discussion above, in Section 5 we will assume that we have the
following algorithms which compute the chain maps of the projections p and q,
respectively, and whose details are left to the reader:

Algorithm 3.4 Chain Map of the Projection p
function proj p (F , G: cubical multivalued map; X, A: cubical set):

chain map;

Algorithm 3.5 Chain Map of the Projection q
function proj q (F , G: cubical multivalued map; Y , B: cubical set):

chain map;

For the homology computation of the chain maps ϕ and ψ of the projections
(ΓF ,ΓG)→ (X,A) and (ΓF ,ΓG)→ (Y,B), respectively, one can use the algori-
thm introduced in [10] or its generalization [24]. Our interface to this algorithm
is as follows:

11



Algorithm 3.6 Homology of Chain Maps
function homchain (ΓF , ΓG, X, A, Y , B: cubical set; ϕ, ψ: chain map):

(ϕ∗, ψ∗: homomorphism);

At this point we are able to compute f∗:H∗(X,A)→ H∗(Y,B). Unfortuna-
tely, the method introduced so far is of limited use in practice, since the amount
of algebraic data to process can be extremely large due to the size of the chain
complex of (ΓF ,ΓG), as illustrated in Section 6. Therefore, it is necessary to re-
place the pair (ΓF ,ΓG) with a smaller one. For this end, we decrease in size the
domain and codomain of f and we construct a possibly small cubical submap of
F such that the homomorphism induced in homology after the reduction is the
same as for the original map. Effective algorithms which we use for this kind of
the reduction are discussed in Section 4.
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4 Geometric cubical reduction

In this section we introduce algorithms for the reduction of a pair of cubical sets
(X,A) in such a way that the homology of (X,A) is preserved. The reduction is
done either on the level of full cubical sets or cubical sets. We also introduce an
algorithm for the construction of a possibly small cubical submap of a cubical
multivalued map. For the sake of clarity of presentation, proofs of the results
are postponed to Section 7.
The first algorithm in this section removes cubes from X whenever it does

not affect the homology of (X,A).

Algorithm 4.1 Reduce Cubes
procedure reduce (var X , A: finite subset of Knn; S: finite subset of Knn);
begin

while exists Q ∈ X \ S
such that

(
Q 6∈ A and Q ∩ |X \ {Q}| is acyclic

)
or
(
Q ∈ A and Q ∩ |A \ {Q}| is acyclic
and Q ∩ |X \ {Q}| is acyclic

)
or
(
Q ∈ A and Q ∩ |X \ A| = ∅

)
do

begin
X := X \ {Q};
A := A \ {Q}

end
end.

Rysunek 1: Reduction with Algorithm 4.1. Cubes in A are dark-grey, cubes in
X \A are light-gray, S = ∅. Cubes selected for removal are indicated with arrows
and labeled with the corresponding condition from Lemma 7.2

Proposition 4.2 Consider the finite subsets A ⊂ X ⊂ Knn. Let S ⊂ X . Assume
that Algorithm 4.1 transforms (X ,A) to the pair (X̃ , Ã). Then the inclusion
(X̃, Ã) ↪→ (X,A) induces an isomorphism in homology. Moreover, S ⊂ X̃ .

Let F :X −→→Y be an acyclic combinatorial multivalued map. Assume that
A ⊂ X and F|A is also acyclic. In order to make sure that the restrictions of F
to X \{Q} as well as A\{Q} are acyclic at each step, we propose the following,
enhanced version of Algorithm 4.1.

Algorithm 4.3 Reduce Mutlivalued Map
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procedure reduceF (var X , A: finite subset of Knn;
F :X −→→Y: combinatorial multivalued map);

begin
while exists Q ∈ X
such that

[ (
Q 6∈ A and Q ∩ |X \ {Q}| is acyclic

)
or
(
Q ∈ A and Q ∩ |A \ {Q}| is acyclic
and Q ∩ |X \ {Q}| is acyclic

)
or
(
Q ∈ A and Q ∩ |X \ A| = ∅

) ]
and
[
for each proper face P of Q(
the set

⋃
{|F(R)| | R ∈ X , R 6= Q,P ⊂ R} is acyclic

and if P ⊂ |A| then
⋃
{|F(R)| | R ∈ A, R 6= Q,P ⊂ R}

is also acyclic
) ]
do

begin
X := X \ {Q};
A := A \ {Q}

end
end.

Proposition 4.4 Let X and A be finite subsets of Knn such that A ⊂ X . Assume
that Algorithm 4.3 transforms (X ,A) to the pair (X̃ , Ã). Then the inclusion
(X̃, Ã) ↪→ (X,A) induces an isomorphism in homology. Moreover, if F and
F|A are acyclic then so are F|X̃ and F|Ã.

The following algorithm increases the set A within X in such a way that this
does not change the homology of (X,A).

Algorithm 4.5 Expand Relative Set
procedure expandA (X : finite subset of Knn, var A: finite subset of Knn);
begin
while exists Q ∈ X \ A such that Q ∩ |A| is acyclic do
A := A ∪ {Q}

end.

Proposition 4.6 Let A ⊂ X ⊂ Knn. Assume that Algorithm 4.5 transforms
(X ,A) to the pair (X , Ã). Then the inclusion (X,A) ↪→ (X, Ã) induces an
isomorphism in homology.

If a combinatorial multivalued map F :X −→→Y is given and F(A) ⊂ B, then
after obtaining the pair (X , Ã) from (X ,A) with Algorithm 4.5, it can turn
out that the inclusion F(Ã) ⊂ B is not valid. Therefore, whenever a cube Q is
added to A, one must also modify the set B so that the inclusion F(A) ⊂ B
is preserved and the homology of (Y,B) remains unchanged. The latter holds
true, for example, if B ∪ F(Q) can be reduced to B with Algorithm 4.1 (note
that this is not an “if and only if” condition). Moreover, like in Algorithm 4.3,
we must be cautious not to spoil the acyclicity of F|A. With this in mind, we
propose the following modification of Algorithm 4.5:

14



Algorithm 4.7 Expand Relative Part of Map
procedure expandF (F :X −→→Y: combinatorial multivalued map;
var A: finite subset of Knn; var B: finite subset of Kmm);

begin
while exists Q ∈ X \ A such that Q ∩ |A| is acyclic

and reduce (B ∪ F(Q), ∅, B) = B
and for each face P ⊂ |A| of Q the set⋃
{|F(R)| | R ∈ A, R 6= Q,P ⊂ R} is acyclic do

begin
A := A ∪ {Q};
B := B ∪ F(Q)

end
end.

Proposition 4.8 Let A ⊂ X ⊂ Knn and B ⊂ Y ⊂ Kmm. Let F :X −→→Y be a
combinatorial multivalued map such that F(A) ⊂ B. Let G := F|A. Assume that
Algorithm 4.7 modifies (A,B) to (Ã, B̃). Consider the inclusions i: (X,A) ↪→
(X, Ã) and j: (Y,B) ↪→ (Y, B̃). Then the homomorphisms i∗, j∗ induced in
homology by these inclusions are isomorphisms. Moreover, F(Ã) ⊂ B̃, and if
F|A is acyclic, then so is F|Ã.

Algorithms 4.1, 4.3, 4.5 and 4.7 provide a variety of methods for reducing
the number of highest dimensional cubes that need to be considered in the
computation of homology. Thus, before turning to algorithms which reduce the
dimension we include some technical remarks concerning possible modifications
and their effect on runtime.

Rysunek 2: Two different results of reduction

In Algorithm 4.1 it is worth to make an additional effort to choose for re-
duction those elements of Knn which have the smallest number of neighbors in
X . Figure 2 shows two possible results of reduction of a pair of cubical sets in
R2. The upper result was obtained with the use of this improvement, the lower
one is an example of what one can obtain without it. Note that the gain is not
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only in the smaller number of cubes to process, but also the chain complexes
and the generators of homology obtained in this way are smaller.

Rysunek 3: A homology generator obtained without and with Algorithm 4.5

Algorithm 4.5 usually reduces the computations significantly, but it causes
the loss of the information about the actual generators of homology, as illustra-
ted in Figure 3.
Note that if (X , ∅) can be reduced with Algorithm 4.1 to a set containing

exactly one grid element, then X is acyclic. However, the converse is not true.
There exist acyclic sets X ⊂ Knn such that cardX > 1, but no element of X can
be removed without causing the change in the homology of |X | (consult [27] for
examples).
Algorithms 4.3 and 4.7 can perform more efficiently if one cancels the veri-

fication whether the acyclicity of F is preserved, and verify this condition only
on the final sets of cubes X̃ and Ã (in dimension 3 our experiments suggest that
the computations run about 3 times faster).
However, in some cases acyclicity may be lost (an example is available at

[27]).
On the other hand, if F has convex values then we know apriori that every

restriction of F is acyclic.
If X ⊂ Rk is a cubical set, then an elementary cube Q is called a free face

in X if there exists exactly one elementary cube P ⊂ X such that Q ⊂ P and
dimP − dimQ = 1.
The following algorithm removes pairs of elementary cubes from a cubical

set with the use of so-called free face collapses (see [11]).

Algorithm 4.9 Collapse Free Faces
procedure collapse (var X: cubical set in Rn; A, K: cubical set in Rn);
begin
for k := n− 1 downto 0 do
while exists a k-dimensional free face Q in X
such that Q 6⊂ A ∪K do
begin
let P ⊂ X be the (k + 1)-dimensional elementary cube
such that Q ⊂ P ;

X := X \ (
◦
Q ∪

◦
P )

end
end.
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Rysunek 4: Reduction with Algorithm 4.9. Free faces are indicated with arrows

Rysunek 5: Two stages of reduction of cubical sets—with Algorithm 4.1 and
Algorithm 4.9.

At this point we would like to make a remark that Algorithm 4.9 works on
more general data than Algorithm 4.1 and in our computations it is supposed
to be the continuation of the latter, as shown in Figure 5. However, one should
expect to obtain a similar result of reduction even if one does not run Algorithm
4.1 prior to Algorithm 4.9, but such computations use more resources, as one
can see in Table 3 (Example 1 and 5).

Proposition 4.10 Let A ⊂ X ⊂ Rn and K ⊂ X be cubical sets. Assume
that Algorithm 4.9 transforms X to X̃. Then K ⊂ X̃ ⊂ X and the inclusion
(X̃, A) ↪→ (X,A) induces an isomorphism in homology.

Like in the case of Algorithm 4.1, if (X, ∅) can be reduced with Algorithm
4.9 to a single point, then X is acyclic, but the converse is not true (see [27] for
an example).
In addition to the reduction by Algorithm 4.9, a considerable amount of data

can often be removed in a very simple manner, as shown in the following result
which follows directly from the excision property.

Proposition 4.11 Let A ⊂ X ⊂ Rn be cubical sets. Take X̃ := cl (X \A) and
Ã := X̃ ∩ A. Then the inclusion (X̃, Ã) ↪→ (X,A) induces an isomorphism in
homology.

The last algorithm introduced in this section constructs a possibly small
upper semi-continuous cubical submap F̃ of a given cubical multivalued map
F |
X̃
for the purpose of homology computation.

Algorithm 4.12 Reduce Map
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function reducemap (F :X −→→Y: combinatorial multivalued map;
A: finite subset of Knn, X̃, Ã: cubical set): cubical multivalued map;

begin
F̃ := ∅;
for k := n downto 0 do
for each elementary cube Q ⊂ X̃ of dimension k do
begin

D := dFe(
◦
Q);

K :=
⋃
{F̃ (

◦
P ) | P is an elementary cube, Q ⊂ P ⊂ X̃,

and dimP − dimQ = 1};
if Q ⊂ Ã then

K := K ∪ dF|Ae(
◦
Q);

collapse (D, ∅, K);
F̃ (
◦
Q) := D; [see explanation in Section 3]

end;
return F̃

end.

Proposition 4.13 Let A ⊂ X ⊂ Knn and B ⊂ Y ⊂ Kmm. Let F :X −→→Y be a
combinatorial multivalued map. Assume that F(A) ⊂ B. Let G := F|A. Let Ã ⊂
X̃ ⊂ Rn be cubical sets such that Ã ⊂ A and X̃ ⊂ X. Let i: (X̃, Ã) ↪→ (X,A)
denote the inclusion map. Let F̃ be the map returned by Algorithm 4.12 applied
to F , A, X̃, Ã. Then F̃ is an upper semi-continuous cubical multivalued map
which is a submap of F , G̃ := G|

Ã
is a submap of F |

Ã
and if F is acyclic then

so is F̃ .

We would like to point out that Algorithm 4.12 is crucial for the effectiveness
of our approach. This is due to the fact that if X,Y ⊂ Rn, then the graph of F
is a subset of R2n. However, Algorithm 4.12 can usually replace this graph with
a subset that is essentially n-dimensional, as illustrated in Figure 6. Note that if
complicated acyclic cubical sets which cannot be reduced by means of free face
collapses appear in Algorithm 4.12, then the dimension of the created graph
is higher. This impacts the effectiveness of the algorithm since the associated
algebraic computations become more complicated. Observe that the graph of G
does not need to be reduced at all, because for relative homology computation
all the generators of the cubical chain complex of ΓG are neglected.
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Rysunek 6: The graph of F and the graph of F̃
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5 Homology computation of maps

In this section we gather the algorithms introduced in the previous sections in
order to compute the homology of a continuous map, given its representation.

Algorithm 5.1 Computation of Homology Map
function homology (F :X −→→Y: combinatorial multivalued map;
A: finite subset of Knn, B: finite subset of Kmm, bool incl):
homomorphism;

begin
expandF (F , A, B); [Algorithm 4.7]
reduceF (X , A, F); [Algorithm 4.3]
S := F(X );
if incl then S := S ∪ X ;
reduce (Y, B, S); [Algorithm 4.1]
expandA (Y, B); [Algorithm 4.5]
X̃ := |X |; Ã := |A|;
collapse (X̃, Ã, ∅); [Algorithm 4.9]
X̃ := cl (X̃ \ Ã); Ã := Ã ∩ X̃; [Proposition 4.11]
F̃ := reducemap (F , A, X̃ , Ã); [Algorithm 4.12]
G := F|A;
G̃ := G|

Ã
;

K := q(Γ
F̃
);

if incl then K := K ∪ X̃;
Ỹ := |Y|; B̃ := |B|;
collapse (Ỹ , B̃, K); [Algorithm 4.9]
if incl then

ϕ := proj p (F̃ , G̃, Ỹ , B̃); [Algorithm 3.4]
else ϕ := 0;
ψ := proj q (F̃ , G̃, Ỹ , B̃); [Algorithm 3.5]
(ϕ̄, ψ̄) := homchain (Γ

F̃
, Γ
G̃
, Ỹ , B̃, Ỹ , B̃, ϕ, ψ); [Algorithm 3.6]

if incl then return ψ̄ ◦ (ϕ̄)−1
else return ψ̄

end.

Proof of Theorem 1.1: At the beginning of Algorithm 5.1, Algorithm 4.7 trans-
forms A, B to A1, B1 such that by Proposition 4.8 the inclusions i1: (X,A) ↪→
(X,A1) and j1: (Y,B) ↪→ (Y,B1) induce isomorphisms in homology. Moreover,
the map F|A1 is acyclic.
Next, Algorithm 4.3 transforms (X ,A1) to (X2,A2) such that by Proposition

4.4 the inclusion i1: (X2, A2) ↪→ (X,A1) induces an isomorphism in homology
and the maps F2 := F|X2 and G2 := F|A2 are acyclic.
Afterwards, Algorithm 4.1 transforms (Y,B1) to (Y2,B2) such that the in-

clusion j2: (Y2, B2) ↪→ (Y,B1) induces an isomorphism in homology. Note that
F2(X2) ⊂ Y2 and F2(A2) ⊂ B2, which implies that F2(X2) ⊂ Y2 and G2(A2) ⊂
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B2. Moreover, if “incl” is set to true, then also X2 ⊂ Y2 and A2 ⊂ B2, and
therefore X2 ⊂ Y2 and A2 ⊂ B2.
In the next step, Algorithm 4.5 transforms B2 to B3 such that the inclusion

j3: (Y2, B2) ↪→ (Y2, B3) induces an isomorphism in homology.
Then Algorithm 4.9 and the two assignments that follow it transform (X2, A2)

to (X̃, Ã) such that the inclusion i3: (X̃, Ã) ↪→ (X2, A2) induces an isomorphism
in homology by Propositions 4.10 and 4.11. Note that the maps F̃2 := F2|X̃ and
G̃ := G2|Ã are acyclic as restrictions of acyclic cubical multivalued maps F2 and
G2, respectively.
Next, Algorithm 4.12 constructs the submap F̃ : X̃ −→→Y2 of F̃2 and the two

assignments that follow it construct G̃ as above. Proposition 4.13 implies that
F̃ is acyclic. Moreover, Proposition 2.5 implies that (F̃ , G̃)∗ = (F̃2, G̃)∗.
In the next step, Algorithm 4.9 transforms (Y2, B3) to (Ỹ , B̃) such that

the inclusion j4: (Ỹ , B̃) ↪→ (Y2, B3) induces an isomorphism in homology. Since
F̃ (X̃) ⊂ Ỹ , the multivalued maps F̃ : X̃ −→→ Ỹ and G̃: Ã−→→ B̃ are well-defined.
Moreover, if “incl” is set to true, then X̃ ⊂ Ỹ .
Consider the following diagram which gathers most of the sets and maps

discussed so far:

(X,A)
i1
↪→ (X,A1)

i2←↩ (X2, A2)
i2←↩ (X̃, Ã)yy(F,G) yy(F,G1) yy(F2,G2) yy(F̃ ,G̃)↘↘ (F̃ ,G̃)

(Y,B)
i1
↪→ (Y,B1)

i2←↩ (Y2, B2)
i2←↩ (Y3, B3)

i4←↩ (Ỹ , B̃)

This is not a commutative diagram, but it becomes one after applying the
homology functor. Then the horizontal arrows correspond to isomorphisms. The-
refore, f∗ = (F,G)∗ ≈ (F̃ , G̃)∗. In addition to this, if “incl” is set to true, then
the inclusion map ĩ : (X̃, Ã) ↪→ (Ỹ , B̃) is well-defined and i∗ ≈ ĩ∗.
In the remaining computations programmed in Algorithm 5.1, either the

homomorphism q̃∗:H∗(ΓF̃ ,ΓG̃) → H∗(Ỹ , B̃) induced in homology by the na-

tural projection q, or the homomorphism q̃∗ ◦ (̃i∗)−1:H∗(Ỹ , B̃) → H∗(Ỹ , B̃) is
computed, which corresponds either to f∗ or (i∗)−1 ◦ f∗, respectively.
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6 Examples

In this section several examples of the applications of the algorithms introduced
in this paper are discussed and the issue of computational complexity is briefly
adressed. Some possible improvements of the algorithms are also indicated.
A software implementation of the algorithms introduced in this paper is

available to the public at the website [27]. In particular, a computer program for
the computation of the homomorphism induced in homology by a combinatorial
multivalued map F : (X ,A)−→→ (Y,B) is available there, as well as a program
which verifies whether a given map F satisfies the assumptions of Theorem 3.1.
To the best of our knowledge the first and only other dimension independent

algorithm for computing homology of maps is due to M. Allili and T. Kaczynski
[1]. Therefore, a comparison is appropriate. To begin with, the algorithm of [1]
requires that the upper representation F of the combinatorial multivalued map
has convex as opposed to acyclic values for each point in the domain. Moreover,
the issue of relative homology is not addressed there. In addition to that, no
geometric reduction is performed, which usually results in much larger algebraic
data that needs to be processed. Last but not least, the algorithm in [1] produces
only a chain map ϕ and one needs to continue the computations further in
order to find the homomorphism induced by this chain map in homology. These
algebraic computations are included in our algorithm. An actual comparison
of effectiveness of the computer program [27] based on our algorithm with the
implementation of [1] introduced in [13] proves the superiority of our approach
(consult a discussion in [27] for details).
In order to illustrate the effectiveness of the algorithm introduced in this

paper, we would like to mention a few example maps which we computed for
benchmarking and testing purposes (see Table 1). The first combinatorial map
is a representation of a Conley index map for an unstable periodic trajectory
[29], the second arises from a Conley index map for a finite-dimensional ap-
proximation of the Kot-Shaffer map [5], and the remaining three are rigorous
enclosures of various index maps for an attracting periodic trajectory in the
Rössler equations [25].
All the running times are measured accurately and refer to a PC with a 1 GHz

processor running Linux. The memory measurements are only approximate. In
Table 1 we indicate the size of the data in terms of the dimension of the space and
the number of cubes in the domain of the map. The topological complexity of
the examples is indicated by the homology module (over the ring of integers) of
the map’s domain. In all the cases the homomorphism induced in homology was
computed together with the homomorphism induced by the inclusion. Note that
the program easily handles relatively large sets of cubes, but the computation
time and memory requirements increase significantly with the dimension.
The latter observation is clearly illustrated in Table 2, which contains a

benchmark comparison of the computation of the homomorphism induced in
homology by an example combinatorial multivalued map arising from the Conley
index map for an attracting periodic trajectory. The domain of the map taken
for the tests contains 814 two-dimensional squares and was embedded in higher-
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dimensional spaces in order to determine how the space dimension increases
the need for the computational resources. We also remark that the algebraic
stage of the homology computation usually requires far more memory than the
geometric reduction; therefore, the effort put into the latter pays off in the final
stage of computations.

Ex. space no. of cubes in H∗(X,A) computation memory
no. dimension X \A and A over Z time used
1 3 2,136 and 1,016 (0,Z,Z) 0.33 min 9 MB
2 6 3,647 and 6,683 (0,Z,Z18) 192 min (3.2 h) 100 MB
3 3 122,178 and 0 (Z,Z,Z) 2.1 min 28 MB
4 3 840,303 and 0 (Z,Z4,Z44) 245 min (4.1 h) 204 MB
5 3 1,372,328 and 0 (Z,Z8,Z24) 770 min (12.8 h) 616 MB

Tabela 1: Some example computation benchmarks

space dimension computation time memory used
2 0.005 min < 2 MB
3 0.019 min < 2 MB
4 0.074 min 5 MB
5 0.32 min 12 MB
6 1.9 min 32 MB
7 8.3 min 80 MB
8 72 min 211 MB

Tabela 2: A comparison of time and memory complexity for various space di-
mensions

For yet another benchmark we computed an endomorphism induced in ho-
mology by a simple combinatorial multivalued map on a 3-dimensional pair of
cubical sets arising from a Conley index map for a repelling periodic trajectory
in the plane and embedded in R3 as in the previous example. We compared
how the speed and memory usage change if we skip some of the algorithms. In
Table 3 each column corresponds to one example computation. In each row, a
‘+’ indicates which reductions were used, and a ‘−’ shows which were disabled.
The last two rows show the computation time and approximate memory usage.
Notice that the lack of some reductions is compensated to a certain extent by
other reductions. As one should expect, without any geometric reduction the
program is very inefficient: it needs 3.7 hours and over 0.5 GB RAM to perform
the computations that can normally be done in 22 seconds within less than 10
MB RAM.
All the combinatorial multivalued maps used for benchmarks mentioned in

this section were obtained with the software available at [2] as cubical enclosures
of translation maps in various ODEs, except for the 6-dimensional example listed
in Table 1, which was provided to us by S. Day and O. Junge (see [27] for details).
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Example no. 1 2 3 4 5 6 7
reduce (Alg. 4.1) + + + + + − −
reduceF (Alg. 4.3) + + + + + − −
expandA (Alg. 4.5) + + − + + − −
expandF (Alg. 4.7) + + − − + − −
reducemap (Alg. 4.12) + + + + − + −
collapse (Alg. 4.9) + − + + + + −
computation time (min) 0.36 0.64 1.8 0.94 0.95 2.1 224(!)
memory used (MB) 9.18 20.6 35.8 27.3 99.1 36.7 540(!)

Tabela 3: Computation times and memory usage with some geometric reductions
turned off

Although we don’t prove it in this paper, the worst-case complexity of all
the algorithms for the geometric reduction introduced in the paper is linear in
the number of [elementary] cubes, provided the space dimension is fixed. Unfor-
tunately, this might not be the case with the algebraic homology computations
used in the software (see [24]). However, due to the simplicity of that algori-
thm, as well as the specific data that arises from the geometric complexes, the
algorithm [24] proves to be efficient in practice.
Notice that in order to compute the homomorphism induced by a suitable

combinatorial multivalued map F : (X ,A)−→→ (Y,B) one needs to know the map
F on X \ A and on only these cubes in A which have at least one neighbor in
X \ A. This is a valuable observation, but one can go even one step further.
The idea of relative homology of (X,A) is that the subset A of X is, from the
topological point of view, collapsed to a single point which is mapped to what B
is collapsed to. Therefore, one should expect that the homomorphism induced in
relative homology by the map on (X,A) should not require the knowledge of the
map on A at all. However, the algorithm introduced in this paper does require
the knowledge of the map F at least on some cubes in A. We are convinced
that this weak point of the algorithm can be fixed in the future.
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7 Proofs for Section 4

In this section we prove all the results introduced in Section 4. We begin with
the following lemma which was proved implicitely in [25] but for the sake of
completeness we provide a proof.

Lemma 7.1 Let Q ∈ D ⊂ Knn. If Q ∩ |D \ {Q}| is acyclic, then the inclusion
|D \ {Q}| ↪→ |D| induces an isomorphism in homology.

Proof: To simplify the notation, set D′ := |D \ {Q}| and D := |D| = Q ∪D′.
Consider the following portion of the Mayer-Vietoris sequence for Q and D′:

Hk(Q ∩D′)
ik−→ Hk(Q)⊕Hk(D′)

jk−→ Hk(D)
∂k−→ Hk−1(Q ∩D′).

Since Q and Q ∩D′ are acyclic, for k > 1 the first and the last entries in this
sequence are trivial. By the exactness of the sequence, the homomorphism in
the middle, which is the homomorphism induced by the inclusion of interest
(because Hk(Q) ∼= 0), is an isomorphism for each k > 1.
Now consider the following part of the Mayer-Vietoris sequence:

H1(Q ∩D′)︸ ︷︷ ︸
0

i1−→ H1(Q)︸ ︷︷ ︸
0

⊕H1(D′)
j1−→ H1(D)

∂1−→

∂1−→ H0(Q ∩D′)︸ ︷︷ ︸
∼=Z

i0−→ H0(Q)︸ ︷︷ ︸
∼=Z

⊕H0(D′)
j0−→ H0(D)

∂0−→ 0

Since i0 acts as z 7→ (z,−z), one can see from the form of the domain and
codomain of i0 that i0 is a monomorphism. Therfore, ∂1 ≡ 0 and j1 is an
epimorphism. Since i1 is the zero map, j1 is in fact an isomorphism, and this is
the isomorphism induced by the inclusion we are interested in, because H1(Q) ∼=
0.
The fact that ∂0 ≡ 0 implies that j0 is an epimorphism. Since j0 acts as

(x, y) 7→ x + y, one can use the information on i0 to see that j0 restricted to
H0(D′) is an isomorphism.

Lemma 7.2 Let A ⊂ X ⊂ Knn. If Q ∈ X satisfies at least one of the following
conditions:

(i) Q 6∈ A and Q ∩ |X \ {Q}| is acyclic,

(ii) Q ∈ A and both Q ∩ |A \ {Q}| and Q ∩ |X \ {Q}| are acyclic,

(iii) Q ∈ A and Q ∩ |X \ A| = ∅,

then the inclusion (|X \ {Q}| , |A \ {Q}|) ↪→ (|X | , |A|) induces an isomorphism
in homology.
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Proof: To simplify the notation, define X ′ := |X \ {Q}| and A′ := |A \ {Q}|.
For (i) and (ii) consider the following commutative diagram

Hk(A′) −→ Hk(X ′) −→ Hk(X ′, A′) −→ Hk−1(A′) −→ Hk−1(X ′)y∼= y∼= y y∼= y∼=
Hk(A) −→ Hk(X) −→ Hk(X,A) −→ Hk−1(A) −→ Hk−1(X)

where the rows are fragments of the exact sequences for the pairs (X ′, A′) and
(X,A), respectively, and the maps indicated by the vertical arrows are the ho-
momorphisms induced by the corresponding inclusion maps. Note that in both
cases (i) and (ii) the inclusions A′ ↪→ A andX ′ ↪→ X induce isomorphisms in ho-
mology by Lemma 7.1 (however, in the case (i) the inclusion A′ ↪→ A is just the
identity map). The five lemma implies that also the inclusion (X ′, A′) ↪→ (X,A)
induces an isomorphism in homology.
For the case (iii) notice that since X \ X ′ = A \ A′, the inclusion map

(X ′, A′) ↪→ (X,A) is an excision map and therefore it induces an isomorphism
in homology.

Proof of Proposition 4.2: The isomorphism part follows directly from Lemma
7.2. The inclusion S ⊂ X̃ follows from the fact that in Algorithm 4.1 only cubes
from X \ S are analyzed and therefore no cube which belongs to S is removed
from X .

Proof of Proposition 4.4: We only need to prove that if F and F|A are acyclic
then so are F|X̃ and F|Ã, because the rest follows directly from Proposition 4.2.
Note that in each step of the algorithm, dF|X e||X\{Q}| differs from dF|X\{Q}e
only on the proper faces of Q, and the acyclicity of these images is verified in
the condition for the removal of Q.

Lemma 7.3 Let A ⊂ X ⊂ Knn. Let Q ∈ X . If Q ∩ |A| is acyclic, then the
inclusion (|X | , |A|) ↪→ (|X | , |A ∪ {Q}|) induces an isomorphism in homology.

Proof: If Q ∈ A, then this is trivial. Otherwise, we use Lemma 7.1 and the five
lemma in the following way.
To simplify the notation, let Ā := |A ∪ {Q}|. Consider the following com-

mutative diagram:

Hk(A) −→ Hk(X) −→ Hk(X,A) −→ Hk−1(A) −→ Hk−1(X)y∼= y∼= y y∼= y∼=
Hk(Ā) −→ Hk(X) −→ Hk(X, Ā) −→ Hk−1(Ā) −→ Hk−1(X)

where the rows are fragments of the exact sequences for the pairs (X,A) and
(X, Ā), respectively, and the maps indicated by the vertical arrows are the ho-
momorphisms induced by the corresponding inclusion maps. By Lemma 7.1, the
inclusion A ↪→ Ā induces an isomorphism in homology (we apply this lemma to
the inclusion |(A ∪ {Q}) \ {Q}| ↪→ A∪{Q}). The inclusion X ↪→ X induces the
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identity isomorphism. By the five lemma, also the inclusion (X,A) ↪→ (X, Ā)
induces an isomorphism in homology.

Proof of Proposition 4.6: This follows directly from Lemma 7.3.

Proof of Proposition 4.8: The fact that the inclusion i induces an isomorphism
in homology follows directly from Lemma 7.2, case (i). For the inclusion j, note
that the condition “reduce (B ∪ F(Q), ∅, B) = B” implies that the inclusion
|B| ↪→ |B ∪ F(Q)| induces an isomorphism in homology, and so does the inclu-
sion (Y, |B|) ↪→ (Y, |B ∪ F(Q)|) (see the proof of Lemma 7.3 for details).
The inclusion F(Ã) ⊂ B̃ follows from the fact that whenever Q is added to

A, its image is added to B.
The acyclicity of F on Ã follows from the same argument as used in the

proof of Proposition 4.4.

Lemma 7.4 Let A ⊂ X ⊂ Rn be cubical sets. Let Q ⊂ X, Q 6⊂ A, be a free face
in X. Let P ⊂ X be the elementary cube such that Q ⊂ P and dimP −dimQ =
1. Then the inclusion (X \ (

◦
Q ∪

◦
P ), A) ↪→ (X,A) induces an isomorphism in

homology.

Proof: In [11] such a modification of (X,A) is called a free face collapse. A
minor modification of the proof therein shows that the inclusion in question
induces an isomorphism in homology.

Proof of Proposition 4.10: The isomorphism part follows directly from Lemma
7.4. The inclusion K ⊂ X̃ follows from the fact that whenever Q ⊂ K, the

neither
◦
Q nor

◦
P is removed from X (note that if P ⊂ K, then also Q ⊂ K).

Proof of Proposition 4.13: The fact that F̃ is an upper semicontinuous cubi-
cal multivalued map follows directly from the way F̃ is constructed. Since for
every x ∈ X̃ its image F̃ (x) is constructed from F (x) with Algorithm 4.9, the
inclusion F̃ (x) ⊂ F (x) is obvious. Moreover, G̃ := G|

Ã
is a submap of F̃ , be-

cause whenever
◦
Q ⊂ Ã, its image by G is added to K so that F̃ (

◦
Q) contains it.

The acyclicity of F̃ and G̃ follows from Proposition 4.10, because each F̃ (
◦
Q) is

obtained from an acyclic set F (
◦
Q) with Algorithm 4.9.
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