
Z2-HOMOLOGY OF WEAK (n− 2)-FACELESS
n-PSEUDOMANIFOLDS MAY BE COMPUTED
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MATEUSZ JUDA AND MARIAN MROZEK

Abstract. We consider the class of weak (n−2)-faceless n-pseudo-
manifolds with bounded boundaries and coboundaries. We show
that in this class the Betti numbers with Z2 coefficients may be
computed in time O(n) and the Z2 homology generators in time
O(nm) where n denotes the cardinality of the n-pseudomanifold
on input and m is the number of homology generators.

1. Introduction

Many computer assisted proofs in nonlinear dynamics (see for in-
stance [1, 4, 5, 12]) are based on algorithmic computation of topologi-
cal invariants such as the Conley index [2, 13, 14]. This, in particular,
requires efficient algorithms computing homology groups and homol-
ogy generators. The demand for fast homology algorithms originated
about 20 years ago not only from rigorous numerics in nonlinear topo-
logical dynamics but also from problems in data and image analysis,
electromagnetic engineering, material science and robotics.

The task of computing homology may be easily reduced to finding
the Smith normal form of the matrices of the boundary maps [19, Sec.
1.11]. Unfortunately, the supercubical complexity of this process [20]
results in the failure of such an approach in the presence of large input.
The input in the mentioned applications usually consists of a collection
of simplices or, particularly in image analysis and rigorous numerics,
of cubical sets (see [10]) and its size is often measured in millions of
elements and more. The problem is additionally complicated by the
range of the required output, which varies from Betti numbers, through
homology generators to matrices of homology maps.
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Under specific conditions homology may be computed more effi-
ciently than by computing the Smith diagonalization. For instance,
Donald and Chang [7] formalize a measure of sparseness under which
the expected complexity is at most roughly quadratic in the size of
input and linear in the dimension. Delfinado and Edelsbrunner show
that the Betti numbers of simplicial subcomplexes of a triangulation
of S3 may be computed in time O(n log∗ n) where n is the size of the
triangulation and log∗ stands for the inverse of the Ackermann func-
tion. However, this requires the input triangulations to be orientable.
Moreover, representing a given complex as a subcomplex of S3, even if
such a representation exists, is not straightforward.

However, the recently proposed acyclic subspace homology algorithm
[16] and the coreduction homology algorithm [17] indicate via numeri-
cal experiments that at least for low dimensional spaces the homology
may be computed fast regardless of the embedding dimension. Unfor-
tunately, so far we have no theoretical understanding of the computa-
tional complexity of these algorithms.

In the special case of compact, connected, orientable surfaces without
boundary the computational complexity of computing Betti numbers
may be easily shown to be linear, because in this case it easily reduces to
computing the Euler characteristic. Indeed, if X is such a surface, then
its first Betti number is two minus the Euler characteristic of X and the
other two nonzero Betti numbers are one. Since the Euler characteristic
may be computed in time O(n), we conclude that for such surfaces the
Betti numbers may be computed in time O(n). Moreover, G. Vegter
and C.-K. Yap [21] proved that the generators of the fundamental group
and, via the Hurewicz Theorem, the generators of the first homology
group of a surface of genus g may be constructed in time O(n log n +
ng). In 2005 Erickson and Whittlesey [8] proved that the minimal
homology generators of connected, compact, orientable, 2-manifolds
without boundary with genus g may be computed in time O(n2 log n+
n2g + ng3).

In this paper we study the homology complexity of some n-pseudo-
manifolds in the purely combinatorial setting of S-complexes intro-
duced in [17]. Recall (see [11, Definition IX.8.1]) that a finite p-
pseudomanifold is a regular CW-complex such that the following three
conditions are satisfied

(i) Every cell is a face of some p-cell.
(ii) Every (p− 1)-cell is a face of exactly two p-cells.
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Figure 1. A CW-complex with the topology of a torus
Sr1 ×Sr2 (left) and a pseudomanifold which is not a sur-
face (right). The right-hand example may be obtained
from a representation of a 2-sphere and glueing together
the poles.

(iii) Any two p-cells may be joined by a sequence of p-cells such
that any two consecutive cells in the sequence have a com-
mon (p− 1)-face.

We say that a regular CW-complex is a weak p-pseudomanifold if it
satisfies the second property in the definition of a p-pseudomanifold
and has no q-cells for q > p.

By gluing together two or more vertices of a surface we obtain an
example of a 2-pseudomanifold which is not a surface (see Figure 1). By
gluing two or more surfaces or 2-pseudomanifolds in a vertex we get an
example of a weak 2-pseudomanifold which is not a 2-pseudomanifold
(see Figure 2).

We define the counterparts of the concepts of a p-pseudomanifold
and a weak p-pseudomanifold in the general setting of S-complexes
and present an algorithm wich computes the Z2-Betti numbers of a
weak (n− 2)-faceless n-pseudomanifold in O(n) time, with n denoting
the number of cells, and homology generators in O(nm) time, with
m denoting the number of homology generators. We then discuss the
complexity of a combination of the proposed algorithm with the core-
duction homology algorithm presented in [17]. This sheds some light on
the numerically observed high efficiency of the coreduction homology
algorithm.

The organisation of the paper is as follows. In Section 2 we recall the
definition and some properties of an S-complex. In the next section
we define and study the connected components of an S-complex. The
definition of a weak p-pseudomanifold in terms of S-complexes is given
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Figure 2. The CW-complex obtained by gluing the ex-
amples in Figure 1 in a point. It is an example of weak
pseudomanifold which is not a pseudomanifold, because
it does not satisfy the third condition in the definition of
a p-pseudomanifold.

in Section 4. In Section 5 we present the main results concerning weak
(n − 2)-faceless n-pseudomanifolds. We then recall the coreduction
homology algorithm and study some its properties in Section 6. In the
following section we present the concept and properties of a geometric
S-complex. Applications to the case of weak 2-pseudomanifolds are
presented in Section 8. The last section contains some final comments.

2. S-Complexes.

We begin with recalling from [17] the concept of an S-complex, a
reformulation of chain complex suitable for algorithmic setting. Let R
be a ring with unity. Given a finite set A let R(A) denote the free
module over R generated by A. To simplify the notation, in the sequel
we identify the product of the unity of R and an element a ∈ A with
a.

Let X be a finite set with a gradation Xq for q ∈ N. Then R(Xq) is a
gradation of R(X) in the category of moduli over the ring R. For every
element x ∈ X there exists a unique number q such that x ∈ Xq. This
number will be referred to as the dimension of x and denoted dim x.
For a subset A of X by Aq we mean { a ∈ A | dim a = q } and by the
dimension of A denoted dimA we mean the maximum dimension of its
elements. Let κ : X ×X → R be a map satisfying

κ(s, t) 6= 0 ⇒ dim s = dim t+ 1.

The map κ is referred to as the coincidence index. If κ(s, t) 6= 0, then
we say that t is a face of s and s is a coface of t.
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We define the boundary operator

∂κ : R(X)→ R(X)

given on a generator s ∈ X by

∂κ(s) :=
∑
t∈X

κ(s, t)t.

We also define the dual coboundary operator

δκ : R(X)→ R(X)

defined on a generator t ∈ X by

δκ(t) :=
∑
s∈X

κ(s, t)s.

We say that (X, κ) is an S-complex if (R(X), ∂κ) is a free chain complex
with base X.

We use the notation 〈·, ·〉 : R(X)×R(X)→ R for the scalar product
defined on generators by

〈t, s〉 :=

{
1 t = s,

0 otherwise

and extend it bilinearly to R(X)×R(X). Note that

〈∂s, t〉 = 〈s, δt〉 = κ(s, t).

Given A ⊂ X we put

bdX A := { t ∈ X | κ(s, t) 6= 0 for some s ∈ A },
cbdX A := { s ∈ X | κ(s, t) 6= 0 for some t ∈ A }.

By the homology of an S-complex (X, κ) we mean the homology
of the chain complex (R(X), ∂κ) and we denote it by H(X, κ) :=
H(R(X), ∂κ). The kernel and image of ∂κ, i.e. the module of cy-
cles and boundaries are denoted by Z(X, κ) and B(X, κ) respectively.
We drop κ and write H(X) and ∂ whenever κ is clear from the con-
text. However, to emphasize the ring R used we often write H(X,R)
for H(X, κ) with κ : X × X → R. The same convention applies to
Z(X, κ) and B(X, κ). By [z]X ∈ H(X, κ) we mean the homology class
of a cycle z and we write [z] when X is clear from the context. For
R = Z2 and a set A ⊂ X we identify A with the chain

∑
a∈A a.

In the sequel we drop the braces in { s }, bdX{s}, cbdX{s}, X \{ s },
and H({ s }, R) in the case of a singleton {s} ⊂ X and write s, bdX s,
cbdX s, X \ s, and H(s, R) respectively. Note that when κ is given
explicitly, for instance in the form of a matrix, then the S-complex is
simply a chain complex with a fixed basis. However, in the context of
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an S-complex we assume that κ is given implicitly, via some coding of
the elements of X. In particular, every simplicial complex and every
cubical complex is an example of an S-complex (see [17]).

A subset X ′ of an S-complex X is called regular if for all s, u ∈ X ′
and t ∈ X

t ∈ bdX s and u ∈ bdX t implies t ∈ X ′.

Proposition 2.1. (see [17, Theorem 3.1]) If X ′ is a regular subset of
an S-complex X then (X ′, κ′) where κ′ := κ|X′×X′ is also an S-complex.

If the map κ is clear from the context then by ∂X′ we mean ∂κ|X′×X′ .
We say that X ′ ⊂ X is closed in X if bdX X

′ ⊂ X ′. We say that
X ′ ⊂ X is open in X if X \X ′ is closed in X.

Proposition 2.2. (see [17, Theorem 3.2]) If X ′ ⊂ X is closed in X,
then X ′ and X \X ′ are regular.

Given A ⊂ X we define the geometric boundary of A by

gbdA :=
∞⋃
i=1

bdiA

where bdi is i-th functional power of bd. It is straightforward to observe
that the geometric boundary of any subset of an S-complex is closed.

As in [17] we say that a pair (a, b) of elements of X is an elementary
coreduction pair or briefly a coreduction pair if κ(b, a) is invertible in
R and bdX b = {a}. From [17, Theorem 4.1] and [17, Corollary 3.6] we
get the following proposition.

Proposition 2.3. If (a, b) is a coreduction pair in an S-complex X
then X ′ := X \ {a, b} is a regular subset of X and H(X) is isomorphic
to H(X ′). �

3. Connected components of S-complexes

We say that two elements a, b of an S-complex X are adjacent if
κ(a, b) 6= 0 or κ(b, a) 6= 0. This defines a symmetric relation on X. A
path P joining a, b ∈ X is a sequence (p1, p2, . . . , pk) of elements in X
such that pi is adjacent to pi+1 for i = 1, . . . , k − 1 and p1 = a, pk = b.
We say that such a path has length k. By the dimension of P we mean
the maximum dimension of its elements.

The reflexive and transitive closure of the adjacency relation is an
equivalence relation. The equivalence classes of this relation will be
referred to as the connected components of X. We say that an S-
complexX is connected if it is non-empty and has exactly one connected
component.
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Proposition 3.1. A connected component of an S-complex X is a
closed S-complex in X.

Proof: It is straightforward to verify that a connected component
of an S-complex is closed in X. The conclusion that it is an S-complex
follows immediately from Proposition 2.1 and Proposition 2.2. �

Lemma 3.2. Assume Y ⊂ X is a connected component of X. Then
the inclusion ι : Y → X induces the monomorphism

ι∗ : H(Y )→ H(X).

Proof: From Proposition 3.1 we know that Y is closed in X. There-
fore, by [17, Theorem 3.4] ι∗ is a well defined homomorphism. It suf-
fices to show ι∗[z]Y = 0 implies [z]Y = 0. Let z ∈ Z(Y ) and assume
ι∗[z]Y = 0. Then [z]X = 0, so there exists a c ∈ R(X) such that ∂c = z.
We may write c as c = cX\Y +cY where cX\Y ∈ R(X\Y ) and cY ∈ R(Y ).
Hence ∂c = ∂cX\Y + ∂cY and consequently ∂cX\Y = ∂c − ∂cY . Since
Y is a connected component of X, X \ Y is a sum of connected com-
ponents and by Proposition 3.1 the sets Y and X \ Y are closed in
X. Since ∂c = z ∈ R(Y ), we see that ∂c − ∂cY ∈ R(Y ). However,
∂cX\Y ∈ R(X\Y ) which is possible only when ∂c−∂cY = 0. Therefore,
∂c = ∂cY = z and [z]Y = 0. Thus, ι∗ is a monomorphism. �

Lemma 3.3. If X1 and X2 are two different connected components of
an S-complex X, c ∈ R(X1) and x ∈ X2, then 〈∂c, x〉 = 0.

Proof: Assume the conclusion does not hold. Since c =
∑

y∈X1〈c, y〉y,
we see that

0 6= 〈∂c, x〉 =
∑
y∈X1

〈c, y〉〈∂y, x〉.

Therefore 〈∂y, x〉 = κ(y, x) 6= 0 for some y ∈ X1. We get from Propo-
sition 3.1 that x ∈ X1, a contradiction. �

The homology of an S-complex splits as the direct sum of the ho-
mologies of its connected components. More precisely, we have the
following theorem.

Theorem 3.4. Let X be an S-complex with connected components

X1, X2, . . . , Xn.

Then

(1) H(X) ∼=
n⊕
i=1

H(X i).
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Proof: From Lemma 3.2 we get monomorphisms

ιi∗ : H(X i)→ H(X)

for i = 1, . . . , n. We will show that the required isomorphism is

ι∗ :
n⊕
i=1

H(X i) 3 (ξi)
n
i=1 →

n∑
i=1

ιi∗(ξi) ∈ H(X).

It is straightforward to observe that ι∗ is a monomorphism. To see
that it is an epimorphism take [z] ∈ H(X). Then z =

∑n
i=1 zi where

zi is a chain in X i. We will show that zi is a cycle in X i. Indeed,
if ∂Xi0zi0 6= 0 for some i0, then 〈∂Xi0zi0 , y〉 6= 0 for some y ∈ X i0 .
However, by Lemma 3.3 〈∂Xikzik , y〉 = 0 for k 6= 0, therefore

〈∂Xz, y〉 = 〈∂Xzi0 , y〉 = 〈∂Xi0zi0 , y〉 6= 0,

a contradiction. It follows that

ι∗([zi]Xi)ni=1 = [z]X .

�
We refer to an S-complex X as r-faceless if for all q ≤ r we have

Xq = ∅. A 0-faceless S-complex X will be also referred to as vertexless.

Lemma 3.5. Let p > 0 be a fixed integer. Let X be a p-dimensional,
(p − 2)-faceless S-complex and let a ∈ Xp−1. Then a and X \ a are
S-complexes, the map

∂̄p : Hp(X \ a,Z2) 3 [z]→ [∂Xz] ∈ Hp−1(a,Z2)

is well defined, Hk(X,Z2) = 0 for k 6∈ { p− 1, p } and

Hp(X,Z2) ∼=

{
Hp(X \ a,Z2) if ∂̄p = 0,

ker ∂̄p otherwise,
(2)

Hp−1(X,Z2) ∼=

{
Hp−1(a,Z2)⊕Hp−1(X \ a,Z2) if ∂̄p = 0,

Hp−1(X \ a,Z2) otherwise.
(3)

Proof: To prove that ∂̄p is well defined we first observe that a is
closed in X, because X is (p − 2)-faceless. Therefore a and X \ a are
S-complexes by Proposition 2.1 and Proposition 2.2. For z, z′ ∈ Zp(X \
a,Z2) such that [z]X\a = [z′]X\a we will show that ∂̄p[z]X\a = ∂̄p[z

′]X\a.
Since the homology classes of z and z′ in X \ a coincide, there exists a
Z2-chain c in X \ a such that ∂X\ac = z − z′. Therefore we get

∂Xz − ∂Xz′ = ∂X∂X\ac = ∂X\a∂X\ac+ 〈∂X∂X\ac, a〉a = 〈∂X∂X\ac, a〉a.

Hence [∂Xz]a = [∂Xz
′]a and consequently ∂̄p is well defined.
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Now consider the long exact sequence (see [17, Theorem 3.4])

(4) 0
ιp→ Hp(X,Z2)

πp→ Hp(X \ a,Z2)
∂̄p→

Hp−1(a,Z2)
ιp−1→ Hp−1(X,Z2)

πp−1→ Hp−1(X \ a,Z2)
∂̄p−1→ 0.

Obviously either im ∂̄p ∼= 0 or im ∂̄p ∼= Hp−1(a,Z2). In both cases the
exact sequence (4) splits into two short exact sequences. In the first
case the sequences are

0
ιp→ Hp(X,Z2)

πp→ Hp(X \ a,Z2)
∂̄p→ 0,(5)

0→ Hp−1(a,Z2)
ιp−1→ Hp−1(X,Z2)

πp−1→ Hp−1(X \ a,Z2)
∂̄p−1→ 0(6)

and in the other case the sequences are

0
ιp→ Hp(X,Z2)

πp→ Hp(X \ a,Z2)
∂̄p→ Hp−1(a,Z2)

ιp−1→ 0,(7)

0→ Hp−1(X,Z2)
πp−1→ Hp−1(X \ a,Z2)

∂̄p−1→ 0.(8)

Now, we obtain (2) from (5) and (7), and (3) from (6) and (8). �

4. Weak p-pseudomanifolds.

Now we extend the concept of weak p-pseudomanifolds from CW
complexes to S-complexes.

We say that an S-complex X is a weak p-pseudomanifold if Xq = ∅
for q > p and for each s ∈ Xp−1 the cardinality of cbdX s is exactly
two.

Given an element x ∈ X we denote by ccX(x) the connected compo-
nent of X to which x belongs.

Lemma 4.1. Let X be a (p − 2)-faceless weak p-pseudomanifold. If
a ∈ Xp−1 is such that cbd a = { b1, b2 } for some b1 6= b2, then for the
map ∂̄p defined in Lemma 3.5 we have

∂̄p 6= 0 if and only if ccX\a(b1) 6= ccX\a(b2).

Proof: Assume ∂̄p 6= 0. There exists a Z2-chain A in X \a such that
∂̄p[A] 6= 0. Therefore

0 6= 〈∂XA, a〉 = 〈A, δXa〉 = 〈A, b1〉+ 〈A, b2〉.
It follows that exactly one of the two elements b1, b2 belongs to A, i.e.

ccX\a(b1) 6= ccX\a(b2).

The proof of the reverse implication is analogous. �
Recall that for R = Z2 and a set A ⊂ X we identify A with the chain

c =
∑

a∈A a, so [A] = [c] ∈ H(X,Z2).
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Theorem 4.2. If X is a connected (p−2)-faceless weak p-pseudomanifold
then

Hp(X,Z2) = [Xp].

Proof: LetXp = {x1, . . . , xn }, Xp−1 = { y1, . . . , ym } and c =
∑n

i=1 εixi
for some εi ∈ Z2. We will show that c is a nonzero cycle if and only if
εi = 1 for every i ∈ { 1, 2, . . . , n }. For this end observe that

∂c =
∑
i

εi∂xi

=
∑
i

εi
∑
j

κ(xi, yj)yj

=
∑
j

(∑
i

εiκ(xi, yj)
)
yj

and the latter is zero if and only if

(9)
∑
i

εiκ(xi, yj) = 0

for every j ∈ { 1, 2, . . . ,m }.
Since X is a weak p-pseudomanifold, for every j ∈ { 1, 2, . . . ,m }

there exist exactly two indices i0(j), i1(j), such that

κ(xi0(j), yj) 6= 0 and κ(xi1(j), yj) 6= 0

and consequently the equation (9) becomes

εi0(j)κ(xi0(j), yj) + εi1(j)κ(xi1(j), yj) = 0

or

(10) εi0(j) + εi1(j) = 0.

Therefore, if εi = 1 for all i, then equation (9) is obviously satisfied,
because of the Z2 coefficients we use. To prove the opposite implication,
assume by contrary that there exist two nonempty subsets I0, I1 of
I := { 1, . . . , n } such that I0 ∪ I1 = I and εi = q for i ∈ Iq, q ∈ { 0, 1 }.
Since X is connected, for some i0 ∈ I0 and i1 ∈ I1 there exists a
path P = (pi)

k
i=1 ⊂ Xp ∪ Xp−1 between xi0 and xi1 . Without loss of

generality we may assume that P has length 3. Then p2 ∈ Xp−1, in
particular p2 = yj for some j ∈ { 1, 2, . . .m }. Since X is a weak p-
pseudomanifold, we get i0 = i0(j) and i1 = i1(j). It follows from (10)
that εi0 + εi1 = 0. However, by the choice of I0 and I1, we have

εi0 + εi1 = 0 + 1 = 1,
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and we get a contradiction. Therefore, Xp is the only nontrivial p-cycle
in X and since there are no q-chains in X for q > p, the conclusion
follows. �

We denote by C(X) the collection of connected components of X and
we put Cp(X) := {Ap | A ∈ C(X) }.

Corollary 4.3. If X is a (p− 2)-faceless weak p-pseudomanifold then

Hp(X,Z2) ∼=
⊕

A∈Cp(X)

[A].

Proof: The result follows immediately from Theorem 3.4 and The-
orem 4.2. �

5. The gluing algorithm

In this section we present the gluing algorithm which computes ho-
mology generators in dimension p and p − 1 for (p − 2)-faceless p-
pseudomanifold. The algorithm is based on the standard linked-list
representation of disjoint sets (see [3, Chapter 21.2]) which maintains
a collection S = {S1, . . . , Sk } of disjoint sets. Each set in S is identified
by a representative, which is a list node. The following operations may
be performed on the structure S

• S.makeSet(x) - creates a new set whose only member (and thus
representative) is x,
• S. find(x) - returns a pointer to the representative of the (unique)

set containing x,
• S. union(x, y) - unites the sets that contain x and y into a new

set that is the union of these two sets,
• S. size(x) - returns the size of a the set containing x.

Above operations may be implemented using a node for each element
of the sets. Each node is an element of a linked list and contains an
additional direct link to the first element in its list. The first element
is a representative for a set. In this setting operations S.makeSet(x)
and S. find(x), and S. size(x) may be implemented in O(1). The opera-
tion S. union(x, y) may be implemented in O(min(S. size(x), S. size(y)))
when the shorter list is attached at the end of the longer list and we
update pointers to the set representative in the shorter list. More in-
formation about the data structure is available in [3, Chapter 21.2].

For a (p−2)-faceless weak p-pseudomanifold X we consider the graph

G = (Xp, { { b1, b2 } | { b1, b2 } = cbd a for some a ∈ Xp−1 }).
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Algorithm 5.1. GetZ2Generators

function GetZ2Generators(S-complex X, integer p)

begin
S := empty structure for linked-list disjoint sets;

visited := an array of boolean indexed by elements of X;

foreach b in Xp do
S.makeSet(b);

foreach b in X do
visited[b] := false;

foreach b in Xp do begin
if visited[b] = true then continue;
Q := a queue of elements of Xp;

Q. push(b);
visited[b] := true;

while Q not empty do begin
b1 := Q. pop();
foreach a ∈ bd b1 do begin

if visited[a] = true then continue;
b2 := the element of cbd a different from b1;

new a: visited[a] := true;

if visited[b2] = false then
Q. push(b2);

visited[b2] := true;

if S. find(b1)=S. find(b2) then
S.makeSet(a);

else
S. union(b1, b2);

end;
end;

end;
return sets from S;

end;

Breadth-First Search (BFS) algorithm (see [3, Chapter 22.2]) for the
graph G together with Lemma 3.5 lead to Algorithm 5.1 for computing
homology groups of (p− 2)-faceless weak p-pseudomanifolds.

Let ai denote the contents of variable a on the ith pass through label
new a and let k be the number of times this label is passed. We know
from analysis of BFS in [3, Chapter 22.2] that this number is finite.
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Figure 3. An example of cubical vertexless 2-
pseudomanifold. The strips contain only cells of dimen-
sion 1 and 2.

Let X0 = Xp and for i = 1, 2, . . . k put

X i := Xp ∪ { a1, a2, . . . , ai }.

From [3, Theorem 22.5] we know that Xk = X. Let Si, bi1, bi2, and
visitedi denote the contents of the variables S, b1, b2, and visited

respectively at the end of the third foreach loop after the ith pass of
label new a for i > 0 and before the first pass of label new a for i = 0.

An example of a cubical vertexless 2-pseudomanifold T is presented
in Figure 3. In this example T2 consists of the set of grey rectangles and
T1 is the set of black bars. We label elements of T2 with A,B, . . . , O
in alphabetical order as in Figure 3 and we indicate elements of T1 as
pairs (α, β) where α, β ∈ T2, α < β and bdα ∩ bd β 6= ∅. Without loss
of generality we may assume that b0

1 = b1
1 = A, b0

2 = b1
2 = B, b2

2 = H,
b3

2 = I, b4
2 = O. When executing Algorithm 5.1 with T on input we

obtain:

S1 = { {A,B }, C, . . . , O },
S2 = { {A,B,H }, C, . . . , G, I, . . . , O },
S3 = { {A,B,H, I }, C, . . . , G, J, . . . , O },
S4 = { {A,B,H, I, O }, C, . . . , G, J, . . . , N }.

After a few iterations of the third foreach loop the algorithm performs
S.makeSet(.) for the first time. Then

S14 = { {A, . . . ,K,M,N,O }, L, (E,F ) }.
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And the algorithm completes with

S = { {A, . . . , O }, (E,F ), (L,M) }.

Lemma 5.1. For i = 0, . . . , k the set X i is an S-complex.

Proof: We proceed by induction on i. For i = k we have X =
Xk, so Xk is an S-complex. Assume that the lemma is true for some
i ∈ { 1, 2, . . . , k }. We will show that it holds also for i − 1. By the
induction assumption X i is an S-complex. Moreover, ai is closed in
X i, hence X i−1 is open in X i. By Proposition 2.1 and Proposition 2.2
the conclusion holds for i− 1. �

Lemma 5.2. For i = 0, 1, 2, . . . , k and for all S ∈ Si we have S ⊂ X i
p

or S ⊂ X i
p−1.

Proof: We proceed by induction on i. Consider first the case i = 0.
Before the first pass of label new a no S. union(·, ·) operation is applied
yet to the structure S. Therefore, S = { { b } | b ∈ Xp } and the lemma
holds true. Assume that it is true for i − 1. Let S ∈ Si. If S ∈ Si−1,
then the conclusion holds by the induction assumption. If S /∈ Si−1,
then S = { ai } or cbd ai = { bi1, bi2 } ⊂ S. In the first case the lemma is
obviously true. In the second case S is the union of S1 = Si−1. find(bi1)
and S2 = Si−1. find(bi2), but by the induction assumption S1, S2 ⊂ X i

p,

therefore, S = S1 ∪ S2 ⊂ X i
p. �

Lemma 5.2 allows us to define the dimension dimS of S ∈ Si as the
common dimension of the elements of S. We put

Siq := {S ∈ Si | dimS = q }.

Lemma 5.3. For i = 0, 1, 2, . . . , k and for all u, v ∈ Xp

(11) ccXi(u) = ccXi(v)

if and only if

(12) Si. find(u) = Si. find(v).

Proof: We proceed by induction on i. Before the first pass of la-
bel new a no S. union(·, ·) operation is applied yet to the structure S.
Therefore S = { { b } | b ∈ Xp } and the lemma holds true for i = 0.
Thus fix i > 0 and assume the conclusion holds true for j < i.

Let u, v ∈ Xp. First observe that properties (11) and (12) are mono-
tone with respect to i in the sense that if the property holds for some
i then it holds for i+ 1, because the algorithm only glues sets.

Assume ccXi(u) = ccXi(v). If ccXi−1(u) = ccXi−1(v), the conclusion
follows from the induction assumption and the monotonicity of (12).
Otherwise ccXi−1(u) 6= ccXi−1(v) and ccXi(u) = ccXi(v), so without loss
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of generality we may conclude that bi1 ∈ ccXi−1(u) and bi2 ∈ ccXi−1(v).
From the induction assumption

Si−1. find(u) = Si−1. find(bi1) 6= Si−1. find(bi2) = Si−1. find(v).

However, then the operation S. union(bi1, b
i
2) occurs, therefore

Si. find(u) = Si. find(v).

This proves that (11) implies (12).
To prove the opposite implication assume that Si. find(u) = Si. find(v).

If Si−1. find(u) = Si−1. find(v), then the conclusion follows from the in-
duction assumption and the monotonicity of (11). Otherwise

Si−1. find(u) 6= Si−1. find(v) and Si. find(u) = Si. find(v).

Without loss of generality we may assume that

Si−1. find(u) = Si−1. find(bi1) and Si−1. find(v) = Si−1. find(bi2),

so from the induction assumption u ∈ ccXi−1(bi1) and v ∈ ccXi−1(bi2).
Therefore:

ccXi(u) = ccXi(bi1) = ccXi(ai) = ccXi(bi2) = ccXi(v)

which proves that (12) implies (11). �
Recall that for R = Z2 and a set A ⊂ X we identify A with the chain

c =
∑

a∈A a, so [A] = [c] ∈ H(X,Z2).

Theorem 5.4. Algorithm 5.1 called with a (p − 2)-faceless weak p-
pseudomanifold X returns a collection of sets S such that

(13) H(X,Z2) ∼=
⊕
S∈S

[S].

Proof: It is sufficient to prove that for i = 0, 1, 2, . . . , k and for
q ∈ { p− 1, p }

Hq(X
i,Z2) ∼=

⊕
S∈Siq

[S].(14)

because we get (13) from (14) with i = k. Note that by Lemma 5.1
the homology Hq(X

i,Z2) is well defined.
We proceed by induction on i. Consider first the case i = 0. Before

the first pass of label new a no S. union(·, ·) operation is applied yet to
the structure S. Therefore (14) follows immediately from Corollary 4.3
if q = p while it is trivial if q = p − 1, since X0 does not contain
elements of dimension p− 1.

Fix i > 0 and assume (14) holds for j < i. We apply Lemma 3.5
and Lemma 4.1 with X = X i−1 and a = ai. Observe that in this case
X \ a = X i \ ai = X i−1. Let b1 = bi1 and b2 = bi2.
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Consider first the case when Si−1. find(b1) = Si−1. find(b2). Then, by
Lemmas 4.1 and 5.3, ∂̄p = 0. Therefore, we get from Lemma 3.5 and
the induction assumption

Hp(X
i,Z2) ∼= Hp(X

i−1,Z2)

∼=
⊕
S∈Si−1

p

[S] ∼=
⊕
S∈Sip

[S].(15)

By the same lemma we get

Hp−1(X i,Z2) ∼= Hp−1(X i−1,Z2)⊕Hp−1(a,Z2)

∼=
⊕

S∈Si−1
p−1

[S]⊕Hp−1(a,Z2).

Since in the considered case the algorithm performs S.makeSet(a), we
see that

(16) Hp−1(X i,Z2) ∼=
⊕

S∈Sip−1

[S].

Consider now the case Si−1. find(b1) 6= Si−1. find(b2). Then ∂̄p 6= 0,
and consequently

Hp−1(X i,Z2) ∼= Hp−1(X i−1,Z2)

∼=
⊕

S∈Si−1
p−1

[S] ∼=
⊕

S∈Sip−1

[S](17)

by Lemma 3.5 and the induction assumption. There remains to prove
that

Hp(X
i,Z2) ∼=

⊕
S∈Sip

[S].

Let Yj := ccXi−1(bj) for j = 1, 2. Observe that by Lemma 5.3 the sets
(Y1)p, (Y2)p ∈ Si−1

p . Let Y := X i−1 \ (Y1 ∪ Y2). Then

Hp(X
i−1) = Hp(Y )⊕Hp(Y1 ∪ Y2)

because of Theorem 3.4, and by Lemma 3.5

Hp(X
i,Z2) ∼= ker ∂̄p

∼= ker ∂̄p|Hp(Y,Z2)
⊕ ker ∂̄p|Hp(Y1∪Y2,Z2)

∼= Hp(Y,Z2)⊕ [(Y1)p ∪ (Y2)p].
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Therefore, by the induction assumption

Hp(X
i,Z2) ∼=

⊕
S∈Si−1

p \{ (Y1)p, (Y2)p }
[S]⊕ [(Y1)p ∪ (Y2)p]

∼=
⊕
S∈Sip

[S].

�

Lemma 5.5. For i = 0, 1, . . . , k if b ∈ Xp and visitedi[b] = false

then
Si. size(b) = 1.

Proof: Fix i ∈ { 0, 1, . . . , k }. Because the algorithm only glues
sets and because of the first foreach loop Si. size(b) ≥ 1. Assume
by contrary that Si. size(b) > 1. Let j ≤ i be an integer such that
Sj−1. size(b) = 1 and Sj. size(b) > 1. Then b ∈ { bj1, b

j
2 }. It means

that visitedj[b] = true. The algorithm cannot change the value, so
visitedi[b] = true and we get a contradiction. �

Theorem 5.6. Algorithm 5.1 runs in O(n) time, where n denotes the
cardinality of the S-complex on input.

Proof: We call S.makeSet(·) at most 2n times. We call S. union(·, ·)
and S. find(·) at most n times. By Lemma 5.5 each S. union(·, ·) op-
eration is called only when one of the sets has size 1, so takes O(1).
By [3, Chapter 22.2] the total running time of BFS is O(n) hence Al-
gorithm 5.1 runs in O(n) time. �

6. Coreduction

Algorithm 6.1 is a simple modification of the coreduction algorithm
[17, Algorithm 6.1]. The modification consists, in particular, in col-
lecting all coreduction pairs in a list. When the algorithm reduces a
coreduction pair, then we add the pair to a list L.

Let M > 0 be a fixed integer. By SM we denote the class of S-
complexes X such that for each a ∈ X the cardinalities of bd a and
cbd a are bounded by M . Note that chain complexes of cubical sets
(see [10]) embedded in Rd are elements of S2d.

Theorem 6.1. Let M > 0 be a fixed integer. Algorithm 6.1 called with
an S-complex X ∈ SM and a generator s ∈ X0 on input returns a pair
(Y, L) such that H(Y ) is isomorphic to H(X \ s) and L is a list of all
reduction pairs removed from X by the algorithm. The algorithm runs
in time O(n), where n denotes the cardinality of X.
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Algorithm 6.1. Coreduction ([17, Algorithm 6.1])

function Coreduction (S-complex S, a generator s)
begin

Q := empty queue of generators;

L := empty list of coreduction pairs;

enqueue(Q,s);
while Q 6= ∅ do begin

s := dequeue(Q);
if s /∈ S continue;

if bdS s contains exactly one element t then begin
S := S \ {s};
foreach u ∈ cbdS t do

if u 6∈ Q then enqueue(Q, u);
S := S \ {t};
pushBack(L, (t, s));

end
else if bdS s = ∅ then

foreach u ∈ cbdS s do
if u 6∈ Q then enqueue(Q, u);

end;
return (S, L);

end;

Proof: The fact that H(Y ) is isomorphic to H(X \ s) follows imme-
diately from Proposition 2.3. The fact that L is a list of all reduction
pairs removed from X is obvious. The fact that the algorithm ter-
minates, as well as the analysis of its complexity follow by the same
argument as in the case of [17, Algorithm 6.1] presented in [17, Corol-
lary 6.3]. �

Theorem 6.2. If X on input of Algorithm 6.1 is a weak 2-pseudomani-
fold, then also Y returned by the algorithm is a weak 2-pseudomanifold.

Proof: Let us assume that the Algorithm 6.1 reduces a sequence of
elementary coreduction pairs { (fi, ci) }ri=1 [17, Chapter 4]. We proceed
by induction on r to show that Y = X \

⋃r
i=0 { fi, ci } is a weak 2-

pseudomanifold.
For r = 0 we have Y = X and the assertion is obvious. Therefore fix

an r > 0 and assume Y j = X\
⋃j
i=0 { fi, ci } is a weak 2-pseudomanifold

for j < r. There are only three possibilities for { fr, cr }:
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(i) fr = ∅ and dim cr = 0
(ii) dim(fr) = 0 and dim cr = 1
(iii) dim(fr) = 1 and dim cr = 2

We have to show that for all e ∈ Y r
1 the cardinality of cbdY r e is exactly

two. In the cases (i) and (ii) cbdY r e = cbdY r−1 e for any e ∈ Y r
1 .

In the third case bdY r−1 cr = { fr }, because it is a coreduction pair.
Hence again cbdY r e = cbdY r−1 e for any e ∈ Y r

1 . It follows by the
induction assumption that the cardinality of cbdY r e is two for any
e ∈ Y r

1 . Therefore Y = Y r is a weak 2-pseudomanifold. �
It is straightforward to give examples for which Algorithm 6.1 cannot

reduce all input. For instance, the algorithm executed for a torus can-
not reduce two strips which are shown in Figure 3. These strips have
size proportional to the torus size, which means that for a big torus the
remaining complex might still be too big for the Smith diagonalization
algorithm. From numerical experiments we know that in most cases
Algorithm 6.1 reduces its input only partially. In the sequel we present
Algorithm 8.2 which can compute homology in that case much quicker
than the Smith diagonalization algorithm.

7. Geometric S-complexes.

We say that an S-complex X is geometric if the following three con-
ditions are satisfied:

(i) Xq = ∅ for q < 0,
(ii) for each a ∈ X1 the set bd a consists of exactly two elements

a−, a+ ∈ X0 such that κ(a, a−) = −κ(a, a+),
(iii) for each p ≥ 2 and for each b ∈ Xp the geometric boundary of

b is connected.

It is straightforward to observe that an S-complex generated by a
regular CW complex is geometric.

Theorem 7.1. Algorithm 6.1 called with a geometric, connected S-
complex X and a generator s ∈ X0 on input returns a pair (Y, L) such
that Y is a vertexless S-complex.

Proof: The algorithm deletes the vertex s provided on input. There-
fore, it is sufficient to prove that for any u, v ∈ X0 if the coreduction
algorithm deletes u, then it also deletes v. Since X is connected, there
exists a path joining u and v. Let P = (pi)

k
i=1 be such a path of

minimal dimension and let the dimension be q. We claim that q is
one. To see this, let pj ∈ Xq be a q-dimensional element of P . Then
pj−1, pj+1 ∈ bd pj and if q ≥ 2, then by the third property in the def-
inition of a geometric complex there exists a path P ′ in bd pj joining
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pj−1 and pj+1. Therefore, replacing pj in P by P ′ we obtain a new
path joining u and v of dimension q− 1, a contradiction. Thus we may
assume that P is of dimension one.

First consider the case k = 3. Since p1 = u is deleted, p2 is placed
in the queue Q. Suppose by contrary that v = p3 is not deleted. There
are two cases to consider. Either p2 is deleted by the algorithm or it
is not. The other case leads immediately to a contradiction, because
then (p2, p3) constitutes a coreduction pair, which is removed from X
when p2 is removed from the queue Q. Thus, assume that p2 is deleted.
Then it is deleted in a coreduction together with its face or its coface.
Since p2 ∈ X1 and X is geometric, the only face left for a coreduction
is p3, so in this case p3 is deleted. Thus, assume p2 is deleted together
with its coface c. Let T denote the contents of S variable on entering
the pass of the while loop on which the pair (p2, c) is deleted by the
algorithm. Since T is an S-complex and bdT c = { p2 },

0 = ∂T∂T c = κ(c, p2)∂Tp2 = κ(c, p2)κ(p2, p3)p3 6= 0,

a contradiction.
Now fix k > 3 and assume that the conclusion holds for all paths

of length less than k. Let P = (pi)
k
i=1 be a path of length k such

that p1 is deleted. Observe that pk−1 ∈ X1 and pk−2 ∈ X0. Using the
induction assumption for path P0 = (pi)

k−2
i=1 of length k−2 and for path

P1 = (pi)
k
i=k−2 of length 3 we conclude that pk is deleted. �

Theorem 7.2. If X is a geometric, connected S-complex, then H0(X)
is isomorphic to R.

Proof: First observe that since X is connected, it is nonempty and
since it is geometric, X0 6= ∅. Let v ∈ X0. Then v is closed in X, so
we have the following exact sequence

0→ H1(X)→ H1(X \ v)
∂̄1→ H0(v)→ H0(X)→ H0(X \ v)→ 0.

Let z ∈ Z1(X \ v). We have

∂Xz = ∂X\vz + αv

for some α ∈ R. Since z is a cycle in X \ v, we get

∂Xz = αv.

Consider the augmentation map ε : R(X0) → R defined on generator
u ∈ X0 by ε(u) = 1.

By assumption (ii) of a geometric S-complex we see that ε(∂Xz) = 0.
Therefore

α = ε(αv) = ε(∂Xz) = 0,
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Algorithm 8.1. WeakPseudomanifoldBettiNumbers

function WeakPseudomanifoldBettiNumbers(S-complex X)

begin
{X1, . . . , Xk } := ConnectedComponents(X);

foreach i ∈ { 1, . . . , k } do begin
ai := any vertex in X i

0;
(Y i, Li) := Coreduction(X i, ai);

end;

S := GetZ2Generators(
⋃k
i=1 Y

i, 2);
β0 := k;
β1 := card S1;

β2 := card S2;

return (β0, β1, β2);
end;

which means that ∂̄1 = 0. By Theorem 6.1 and Theorem 7.1 the
homology of X \ v is isomorphic to the homology of a vertexless S-
complex, so H0(X \ v) is zero. It follows that H0(X) is isomorphic to
H0(v) and hence isomorphic to R. �

8. Weak 2-pseudomanifolds.

In this section we show how the results of the preceding section may
be applied to computing homology of geometric weak 2-pseudomani-
folds. The proposed algorithm is based on Algorithm 5.1 and Algo-
rithm 6.1. We also use ConnectedComponents function which com-
putes connected components of an S-complex. Note that the problem
of finding the connected components of an S-complex is equivalent to
finding the connected components of the graph G = (X,E) where

E = { {x, y } ∈ X ×X | x is adjacent to y }.
For the graph we may use BFS or DFS approach presented in [3, Chapter
22.3] and in both cases the complexity is linear.

Theorem 8.1. Let M > 0 be a fixed integer. Algorithm 8.1 called with
a geometric weak 2-pseudomanifold X ∈ SM on input returns the Betti
numbers of H(X,Z2) in time O(n), where n denotes the cardinality of
X.

Proof: By Theorem 3.4 and Theorem 7.2 the number β0 returned by
the algorithm is indeed the 0th Betti number of X. Theorems 6.2 and
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Algorithm 8.2. WeakPseudomanifoldHomology

function WeakPseudomanifoldHomology(S-complex X)

begin
{X1, . . . , Xk } := ConnectedComponents(X);

L := empty list of coreduction pairs;

foreach i ∈ { 1, . . . , k } do begin
ai := any vertex in X i

0;

(Y i, Li) := Coreduction(X i, ai);
L.append(Li);

end;

S := GetZ2Generators(
⋃k
i=1 Y

i, 2);
G := ExtractCoreductionGenerators(S, L);

return G;

end;

7.1 imply that the input of algorithm GetZ2Generators satisfies the
assumptions of Theorem 5.4. Therefore, we get from Theorem 5.4 that
β1 and β2 are the first and second Betti numbers of X. By [3, Chapter
22.3] the ConnectedComponents function may be computed in time
O(n). Since Theorem 6.1 implies that the Coreduction function calls
have complexity O(n), we get from Theorem 5.6 the total complexity
of O(n). �

We can also get the generators of H(X,Z2) via a simple modifica-
tion of Algorithm 8.1. For this end we need the function Extract-

CoreductionGenerators which computes ια(g) for all g ∈ Y where

ια = ι(a1,b1) ◦ ι(a2,b2) ◦ · · · ◦ ι(an,bn)

for (ai, bi) ∈ L and

ι(a,b)(c) :=

{
c− 〈∂c,a〉〈∂b,a〉b if k = m,

c otherwise.

(see [18]).

Theorem 8.2. Algorithm 8.2 called with a geometric weak 2-pseudo-
manifold X ∈ SM on input returns the generators of H(X,Z2) in time
O(nm), where n denotes the cardinality of the S-complex on input and
m is the number of homology generators.
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Proof: By [3, Chapter 22.3] the ConnectedComponents function
may be computed in timeO(n). By [17, Corollary 6.3] the Coreduction
function calls have complexityO(n). By Theorem 5.6 GetZ2Generators
has complexity O(n). ExtractCoreductionGenerators may be com-
puted in O(nm) (see [18, Theorem 3.1]) which results in the total com-
plexity O(nm). �

9. Final comments

An implementation by the second author of the coreduction homol-
ogy algorithm, written in C++, is available from [15] and the web pages
of the Computer Assisted Proofs in Dynamics Project [23, 24] and the
Computational Homology Project [22]. An implementation by the first
author of the adaptation of the coreduction homology algorithm to
weak 2-pseudomanifolds presented in this paper is in preparation [9].

By using the elementary coreduction pairs together with elementary
reduction pairs it is possible to extend the results of this paper to 2-
dimensional S-complexes with the property that each edge has at most
two elements in its coboundary. The details will be presented in [9].
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