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Abstract. We introduce some modifications and extensions of
the concept od index pair in the Conley index theory. We then
show how these concepts may be used to overcome some difficulties
in obtaining efficient algorithms computing the Conley index. We
also present examples of applications to computer assisted proofs
in dynamics.
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1. Introduction.

Index pairs and the associated index maps constitute the main build-
ing blocks of the Conley index theory [1, 5]. The Conley index is a
topological invariant of dynamical systems used to investigate the ex-
istence and the internal structure of isolated invariant sets. In order
to construct the Conley index one proves that every isolated invariant
set admits at least one index pair and any two such pairs provide some
common topological information which constitutes the index. There
are various analytic techniques for computing the Conley index but in
many concrete problems the complexity of analytic computations is too
high for such an approach to be of practical value. In such situations
the index may be found rigorously with the help of the computer by
means of algorithmic computations. So far all algorithms computing
the Conley index are based on the explicit construction of an index
pair and an index map. This approach proved to be successful in many
cases [4, 19, 7, 13, 2] and first general algorithms were presented in
[9, 10, 19].

The efficiency of the algorithmic approach depends on the particu-
lar version of the definition of index pair. There are many different
definitions of index pairs ranging from the classical concept of index
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pair introduced by Conley [1] to the most general definition given by
Robbin and Salamon [14]. In general one observes the rule, that the
more restrictive is the definition of index pair, the easier is the proof
of the correctness of the construction of the Conley index but the less
effective is the algorithmic construction of such an index pair.

From this point of view the most general definition of index pairs
should be most appropriate for algorithmic computations. In par-
ticular, in the case of the dynamical systems induced by differential
equations, the amount of numerical computations necessary to find the
index significantly depends on the size of the exit set (second element
of the index pair). The smaller the exit set, the less numerical compu-
tations are necessary. The definition of index pair introduced in [14]
allows for the exit set to be a part of the boundary of the isolating
neighborhood, which means that the exit set may be very thin. This
makes this definition a good candidate for an effective algorithm. Un-
fortunately, for another reason this definition is practically useless from
the algorithmic point of view. This is because it requires the verifica-
tion of the continuity of a certain map, which is very difficult to achieve
in finite computation.

In this paper we introduce and study the concept of weak index
pair, which is a special case of the index pair in the sense of Robbin
and Salamon. This concept was already announced and used in [3].
Weak index pairs have the nice feature that the exit set may be a part
of the boundary of isolating neighborhood but, unlike the definition
of Robbin and Salamon, it is easily algorithmizable. We also address
systematically the question of the algorithmic construction of the index
map. So far only ad hoc methods of finding index maps, applicable only
to dimensions one and two, were used. In order to get a general method
for computing index maps we introduce the concept of index quadruple
and we show how one can obtain an index quadruple for various types
of index pairs and how the index quadruple may be used to obtain
the index map. All the constructions we present are algorithmizable
and allow us to present concrete algorithms for finding index pairs and
index quadruples.

The organization of the paper is as follows. We begin with recalling
the quotient functor as presented in [8] and prove some characteriza-
tion of continuity of certain quotient maps. In Section 3 we recall the
basic concepts of the Conley index theory. In Section 4 we introduce
and analyse the concept of weak index pairs. Index quadruples are
presented and studied in Section 5. In the following section we recall
the tools needed in raising the problem of algorithmic construction of
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index pairs and index maps to the combinatorial level treatable in fi-
nite computations. Section 7 presents the combinatorial analogue of
the concept of index pair. The main results of the paper concerning the
construction of weak index pairs and associated index quadruples via
combinatorial index pairs are contained in Section 8. The next section
discusses an important special case: the case of isolating blocks. We
present here an approach which enables algorithmic computation of the
Conley index by finding the bounds of the flow only on the boundary
of an isolating block. This approach is essential in situations when
finding bounds for the flow is computationally expensive. Sample al-
gorithms based on the theory introduced in the paper are presented
in Section 10. Finally in the last section we discuss two examples.
The first example concerns the Hénon map and shows the results of
algorithmic computations based on weak index pairs which yield the
existence of a chaotic invariant set. A similar example, but without
the necessary theoretical background introduced in this paper, was al-
ready presented in [3]. The other example shows the usefulness of the
algorithms based on the concept of an isolating block. The example is
discussed only briefly. All the details will be presented in [11].

Throughout the paper Z, Z+, Z−, R denote respectively the sets of
integers, non-negative integers, non-positive integers and real numbers.
Given a subset A ⊂ Rd by cl A, int A, ext A, bd A we denote respectively
the closure, the interior, the exterior and the boundary of A. For
A ⊂ X ⊂ Rd the notation bdX A stands for the boundary of A in X.

2. The category of Pairs and the Quotient Functor.

Let us recall the category Prs, introduced in [8] and defined as
follows. The objects of Prs are pairs of compact topological spaces
(P1, P2) such that P2 ⊂ P1. The set of morphisms from P = (P1, P2)
to Q = (Q1, Q2) consists of all partial continuous maps h : P1−→◦ Q1

such that

dom h is closed in P1(1)

h(P2) ⊂ Q2(2)

h(bdP1(dom h)) ⊂ Q2(3)

Observe that the identity map id : P1 → P1 is the identity morphism
of P = (P1, P2) in Prs.

Given α : P → Q and β : Q → R morphisms in Prs, we take as the
composition βα the mapping

βα : α−1(dom β) 3 x → β(α(x)) ∈ R1
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It is straightforward to verify that Prs constitutes a category. Given
a topological space X we will denote by PrsX the subcategory of pairs
(P1, P2) satisfying P1 ⊂ P2 ⊂ X.

Let ∗ denote a point, which does not belong to X. Given a subset
A ⊂ X let A∗ denote A ∪ {∗}.

Let P ∈ PrsX . The quotient space P1/P2 is defined as the set of
equivalence classes of the smallest equivalence relation in P ∗

1 containing
all the pairs (x, ∗) for all x ∈ P2. It is straightforward to verify that
the equivalence class of x ∈ P ∗

1 is

[x] =

{
{x} if x ∈ P1 \ P2,

P ∗
2 = [∗] otherwise.

In the quotient space P1/P2 we introduce the strongest topology
under which the map

qP : P ∗
1 3 x → [x] ∈ P1/P2

is continuous.
The following proposition is straightforward.

Proposition 2.1. A map g : P1/P2 → Z is continuous if and only if
gqP is continuous.

For P, Q ∈ Prs and h : P → Q, a morphism in Prs put

P∧ := (P1/P2, P
∗
2 )

h∧([x]) :=

{
qQ(h(x)) for x ∈ dom h,

Q∗
2 otherwise.

Let Comp∗ denote the category of compact pointed spaces. We define
a functor Quot : Prs → Comp∗ by

Quot(P ) := P∧ for P ∈ Prs

Quot(h) := h∧ for h ∈ Prs(P, Q).

Proposition 2.2. ([8, Corollary 5.3]) Quot : Prs → Comp∗ is a well
defined covariant functor.

Let f : P → Q be a continuous map of pairs. We say that f is
excisive if f is closed and f restricted to P1 \ P2 is a homeomorphism
onto Q1 \ Q2. One can easily verify the following characterization of
excisive inclusions.

Proposition 2.3. Assume P, Q ∈ Prs are such that P ⊂ Q. The
inclusion i : P ↪→ Q is excisive if and only if one of the following
conditions is satisfied

P1 \ P2 = Q1 \Q2
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or

Q1 \ P1 = Q2 \ P2.

In the sequel excisive inclusions will be briefly called excisions.
Let T : Prs → E be a functor. We say that T is excisive if T (f) is

an isomorphism for every excisive map f .

Theorem 2.4. ([8, Theorem 5.5]) The functor Quot : Prs → Comp∗
is excisive.

Assume f : X → X is a continuous map. Let P = (P1, P2) ∈ Prs
and define fP : P1/P2 → P1/P2 by

(4) fP ([x]) :=

{
[f(x)] if x ∈ P1 ∩ f−1(P1)

P ∗
2 otherwise.

Lemma 2.5. The map fP is well defined if and only if

(5) f(P2) ∩ P1 ⊂ P2.

Proof: If fP is well defined, then for any y ∈ f(P2)∩P1 there exists
an x ∈ P2 such that

y = f(x) ∈ [f(x)] = fP ([x]) = fP ([∗]) = P ∗
2 = P2 ∪ {∗}.

But y 6= ∗, therefore (5) is proved.
To prove the opposite implication it is enough to show that fP ([x]) =

P ∗
2 for x ∈ P2, which is obvious if f(x) 6∈ P1 and follows from (5) if

f(x) ∈ P1. �
Given a set A ⊂ X, define its f -boundary by

bdf A := cl A ∩ cl(f(A) \ A).

Lemma 2.6. Assume f : X → X is continuous and N ⊂ X is com-
pact. Then

f(bdN(N \ f−1(N))) ⊂ bdf N.

Proof: Let x ∈ bdN(N \ f−1(N)). Since

bdN(N \ f−1(N)) = cl(N \ f−1(N)) ∩N ∩ f−1(N),

it follows that f(x) ∈ N . On the other hand there exists a sequence
{xn} ⊂ N \ f−1(N) such that xn → x. Therefore f(x) = lim f(xn) ∈
cl(f(N) \N) and consequently f(x) ∈ bdf N . �

Lemma 2.7. The map fP is continuous if and only if

(6) bdf P1 ⊂ P2.
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Proof: Take a y ∈ bdf P1. Then we can choose a sequence {xn} ⊂
P1 \f−1(P1), convergent to some x ∈ P1 and such that y = lim f(xn) =
f(x). If fP is continuous, then

[y] = [f(x)] = fP ([x]) = lim fP ([xn]) = lim [∗] = P ∗
2 .

Thus y ∈ P2, which proves (6).
Assume in turn that (6) is satisfied. Then

(7) bdP1(P1 ∩ f−1(P1)) ⊂ f−1(P2).

Indeed, if x ∈ bdP1(P1 ∩ f−1(P1)) = bdP1(P1 \ f−1(P1)), then by
Lemma 2.6 we get f(x) ∈ bdf P1 ⊂ P2.

Define maps

f̃1 : P1 ∩ f−1(P1) 3 x → [f(x)] ∈ P1/P2,

f̃2 : cl(P1 \ f−1(P1)) 3 x → P ∗
2 ∈ P1/P2.

Obviously these maps are continuous and

dom f̃1 ∩ dom f̃2 = bdP1(P1 ∩ f−1(P1)).

It follows from (7) that f̃1(x) = f̃2(x) for x ∈ bdP1(P1 ∩ f−1(P1)).

Therefore we have a well defined and continuous map f̃ : P ∗
1 → P1/P2

given by

f̃(x) :=


f̃1(x) if x ∈ P1 ∩ f−1(P1),

f̃2(x) if x ∈ cl(P1 \ f−1(P1)),

P ∗
2 if x ∈ {∗}.

It is straightforward to verify that f̃ = fP qP , therefore the conclusion
follows from Proposition 2.1. �

3. Isolating neighborhoods and the Conley index.

Let X denote a fixed, locally compact, metrizable space. By a local
discrete semidynamical system on X we mean a continuous map

f : U → X

defined on some open subset U of X. We say that the function σ :
Z → X is a solution to f through x in N ⊂ X if f(σ(i)) = σ(i + 1)
for all i ∈ Z, σ(0) = x and σ(i) ∈ N for all i ∈ Z. The invariant part
of N ⊂ X with respect to f is defined as the set of all x ∈ N which
admit a solution to f through x in N . It will be denoted by Inv(N, f).
The set S is said to be invariant if f(S) = S. This is easily seen to
be equivalent to S = Inv(S, f). The set S is called isolated invariant,
if it admits a compact neighborhood N such that S = Inv(N, f). The
neighborhood N is then called an isolating neighborhood of S.
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Let N ⊂ X be an isolating neighborhood for f . The following defi-
nition of index pair for discrete dynamical systems is modelled on the
classical definition of Conley [1].

Definition 3.1. A pair of compact sets P = (P1, P2), where P2 ⊂ P1 ⊂
N is called an index pair for f in N if the following three properties
are satisfied.

(i) f(Pi) ∩N ⊂ Pi,
(ii) P1 \ f−1(P1) ⊂ P2,
(iii) Inv(N, f) ⊂ int(P1 \ P2).

One can prove that every isolating neighborhood admits at least one
index pair [8].

For P , an index pair for f , we have an associated object

(P∧, fP ) ∈ Endo(Quot(Prs)),

which we will denote by Pf . This object carries all the information
needed to define the Conley index. To do so we need to recall first
some concepts. Let E be a category. By Endo(E) we mean the category
whose objects are the endomorphisms of E and morphisms are the
morphisms of E which commute with the endomorphisms. By Auto(E)
we mean the restriction of Endo(E) to automorphisms (see [8] for the
detailed definitions).

Let T : Comp∗ → E be a homotopy invariant functor. In the sequel,
in order to fix the notation, we assume that T is covariant. How-
ever, it is straightforward to obtain analogous results for contravari-
ant functors. The functor T extends in a natural way to a functor
T : Endo(Comp∗) → Endo(E) denoted by the same letter. Assume also
that C ⊂ Endo(Comp∗) is a subcategory such that T (Endo(Comp∗)) ⊂
C. Let L : C → Auto(E) be a normal functor as defined in [8]. Let
LT := L ◦T : Endo(Comp∗) → Auto(E) denote the composite functor.

Theorem 3.2. [8, Theorem 1.7] Assume S is an isolated invariant set
with respect to f . Then LT (Pf ) and LT (Qf ) are isomorphic objects in
Auto(E) for any isolating neighborhoods N, M of S and index pairs P
in N and Q in M .

The common value LT (Pf ) for all index pairs P of S is called the
(L, T )-Conley index of S and denoted by CL,T (S, f).

The Conley index is used to detect the existence of invariant sets and
to study their internal structure. As observed by Szymczak [18], when
the isolating neighborhood decomposes into a finite union of compact
sets, one can refine the information carried by the Conley index by
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taking into account the decomposition in the construction of the index.
We briefly recall this construction.

Given a finite set A and a category E let E (A) denote the category
whose objects are the objects of E and morphisms are collections of
morphisms in E indexed by finite sequences of elements of A (see [18]
for the details).

Let K be a compact set. A finite collection {Kj}j∈J of pairwise
disjoint compact subsets of K is called a decomposition of K if K =⋃
{Kj | j ∈ J}.
Assume we are given a fixed decomposition S := {Sj}j∈J of an iso-

lated invariant set S. Let P ∈ Prs. We say that P is S-compatible
if cl(P1 \ P2) admits a decomposition {Kj}j∈J such that Sj = S ∩Kj

for every j ∈ J . Given an S-compatible pair P it is straightforward to
verify that for j ∈ J the formula

(8) rj(x) = x for x ∈ Kj.

defines a morphism rj : P−→◦ P in the category Prs. Assume that fP

is well defined and continuous. Then

fP,J := {fP,j}j∈J ,

where

fP,j := fP rj for j ∈ J,

is a morphism in Prs(J), which gives rise to an object LT (P∧, f∧P,J) of
Auto(E (J)). Note that the morphisms rj and consequently also fP,J

may depend on a particular decomposition of cl(P1 \ P2) compatible
with the decomposition of S.

We have now the following refinement of Theorem 3.2.

Theorem 3.3. [18, Theorem 3.1] Assume S is an isolated invariant set
with respect to f and S = {Sj}j∈J is a fixed decomposition of S. Then
LT (P∧, f∧P,J) and LT (Q∧, f∧Q,J) are isomorphic objects in Auto(E (J))
for any isolating neighborhoods N, M of S, S-compatible index pairs
P in N and Q in M , and respective decompositions of cl(P1 \ P2) and
cl(Q1 \Q2).

The common value LT (P∧, f∧P,J) for all S- compatible index pairs P
is called the (L, T )-Conley index for decompositions of S and denoted
by CL,T (S, f).

Given a finite sequence θ = (θ1, θ2, . . . θk) of elements of A we define
the morphism fP,θ : P−→◦ P as the composition

fP,θ := fP,θk
◦ fP,θk−1

◦ · · · ◦ fP,θ1 .
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The usefulness of this map comes from the fact that if T is a homol-
ogy or cohomology functor and the space X is a compact ANR then a
nonzero Lefschetz number of T (fP,θ) implies the existence of a periodic
point x in S following the itinerary given by θ (see [18, Theorem 4.5]).

4. Weak index pairs.

Sometimes it is convenient to consider the concept of index pair
independently of a particular isolating neighborhood. For this reason
we recall the following definition.

Definition 4.1. An index pair for f is a pair of compact sets P =
(P1, P2), where P2 ⊂ P1, satisfying the following three properties:

(i) f(P2) ∩ P1 ⊂ P2,
(ii) P1 \ f−1(P1) ⊂ P2,
(iii) Inv(cl(P1 \ P2), f) ⊂ int(P1 \ P2).

It is straightforward to observe that if P is an index pair for f then
cl(P1 \ P2) is an isolating neighborhood for f .

Note that condition (ii) of Definition 4.1 forces the set P2 in an index
pair (P1, P2) to be relatively thick. It must be thick enough to catch
every trajectory which leaves P1. As a consequence, an algorithmic
construction of such an index pair may be computationally expensive.
To overcome this difficulty we first recall the definition of index pair
introduced in [14]. The pair P = (P1, P2) is called an index pair in the
sense of Robbin and Salamon if the map

(9) P1/P2 3 [x] →

{
[f(x)] if x ∈ (P1 \ P2) ∩ f−1(P1 \ P2)

P ∗
2 otherwise.

is continuous. The advantage of this type of index pairs is the fact that
P2 may be only a part of the boundary of P1. The disadvantage lies in
the difficulty of verifying algorithmically the continuity condition. For
this reason we introduce the concept of weak index pair, which shares
the nice features of Robbin-Salamon index pairs but at the same time,
as we show in the sequel, may be constructed algorithmically.

Definition 4.2. A weak index pair for f is a pair of compact sets
P = (P1, P2) ∈ Prs satisfying conditions (i), (iii) of Definition 4.1
together with

(ii’) bdf P1 ⊂ P2.

This definition of weak index pair is motivated by [15]. By Lemma 2.5
and Lemma 2.7 the map fP in the case of a weak index pair is well
defined and continuous. In particular the object Pf is also well defined.



10 MARIAN MROZEK

By Definition 4.1(i) fP coincides with the map defined by (9). There-
fore weak index pairs constitute a special case of the index pairs in the
sense of Robbin and Salamon.

Let S be an isolated invariant set for f . We say that P is a (weak)
index pair for f and S if P is a (weak) index pair for f and S =
Inv(cl(P1 \ P2), f).

Proposition 4.3. Every index pair for f and S is a weak index pair
for f and S.

Proof: Take a y ∈ bdf P1. Then we can find a sequence {xn} ⊂
P1 \ f−1(P1) convergent to some x ∈ P1 and such that y = lim f(xn) =
f(x). By Definition 4.1(ii) we have {xn} ⊂ P2. Hence x ∈ P2 and by
Definition 4.1(i) we get y = f(x) ∈ P2. �

Another concept of index pair was introduced by Szymczak. A pair
of compact sets P = (P1, P2), where P2 ⊂ P1 is an index pair in the
sense of Szymczak [19] if it satisfies conditions (i), (iii) of Definition 4.1
and

(ii”) f(P1 \ P2) ∩ (P1 \ P2) ⊂ int P1.

Theorem 4.4. Every index pair in the sense of Szymczak is a weak
index pair.

Proof: Let (P1, P2) be an index pair for f in the sense of Szymczak.
We need to verify (ii’). Let y ∈ bdf P1. Then y ∈ P1 and there exists
a sequence {xn} ⊂ P1 converging to x ∈ P1 such that y = lim f(xn) =
f(x). If x ∈ P2 then y ∈ f(P2) ∩ P1 ⊂ P2. Otherwise y ∈ f(P1 \ P2)
and from (ii”) we also conclude that y ∈ P2. �

The converse of Theorem 4.4 is not true as the following two examples
show.

Example 4.5. Consider f : R → R defined by

f(x) :=

{
6x− 2 if x ≤ 1/2,

−6x + 4 if x ≥ 1/2,.

Let P1 = [0, 1] and P2 = {0}. Then P := (P1, P2) is a weak index pair
for f but P is not an index pair in the sense of Szymczak, because
1 ∈ f(P1 \ P2) ∩ (P1 \ P2) but 1 6∈ int[0, 1].

Example 4.6. Consider f : R → R given by f(x) := x − 1. Let
P1 := [0, 1] ∪ {2} and P1 := {0}. Then (P1, P2) is a weak index pair
for f but it is not an index pair in the sense of Szymczak, because
1 ∈ f(P1 \ P2) ∩ (P1 \ P2) but 1 6∈ int P1.
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Assume P = (P1, P2) and Q = (Q1, Q2) are weak index pairs for f .
Define the partial map fPQ : P1−→◦ Q1 by

dom fPQ := P1 ∩ f−1(Q1)

and

fPQ(x) := f(x) for x ∈ dom fPQ.

We have the following

Proposition 4.7. If P ⊂ Q are weak index pairs for f such that

P2 ∩ f−1(Q1) ⊂ f−1(Q2),

then fPQ is a morphism in Prs(P, Q).

Proof: Since obviously dom fPQ is closed in P1, we need to verify
only properties (2) and (3). We have

fPQ(P2) = f(P2 ∩ f−1(Q1)) ⊂ f(f−1(Q2)) ⊂ Q2

which proves (2). By Lemma 2.6 and Definition 4.1(ii’)

f(bdP1(dom fPQ)) = f(bdP1(P1 ∩ f−1(Q1))) =

f(P1 ∩ f−1(Q1) ∩ cl(P1 \ f−1(Q1)) ⊂
f(Q1 ∩ f−1(Q1) ∩ cl(Q1 \ f−1(Q1)) =

f(bdQ1(Q1 \ f−1(Q1))) = bdf Q1 ⊂ Q2

which proves (3). �

Proposition 4.8. If P is a weak index pair for f then fPP is a mor-
phism in Prs(P, P ). Moreover, f∧PP = fP .

Proof: Proposition 4.7 implies that fPP is a morphism in Prs(P, P ).
The fact that f∧PP = fP follows from the definition of the quotient
functor and (4). �

The following two lemmas show how a weak index pair may be re-
constructed to an index pair and vice versa.

Lemma 4.9. Assume P = (P1, P2) is a weak index pair for f and S.
Then P+ := (P1, P

+
2 ), where

P+
2 := cl(P1 \ f−1(P1)) ∪ P2,

is an index pair for f and S and

(10) LT (Pf ) ∼= LT (P+
f ).

Moreover, if cl(P1 \ P2) = P1, then P1 is an isolating neighborhood for
f isolating S and P+ is an index pair in P1.
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Proof: First we will show that P+ is an index pair for f . To prove
(i) take y ∈ f(P+

2 ) ∩ P1. Then y = f(x) for some x ∈ P+
2 . If x ∈ P2,

then by the relative positive invariance of P2 we get y ∈ P2 ⊂ P+
2 .

Thus assume x 6∈ P2. Then x ∈ cl(P1 \f−1(P1)) and since x ∈ f−1(P1),
we see that x ∈ bdP1(P1 \ f−1(P1)). It follows from Lemma 2.6 that
f(x) ∈ bdf P1 ⊂ P2 ⊂ P+

2 . Thus (i) is proved.
Property (ii) is immediate. Before we prove (iii) let us observe that

(11) Inv(cl(P1 \ P+
2 ), f) ⊂ Inv(cl(P1 \ P2), f)

and by (iii) applied to P

(12) Inv(cl(P1 \ P2), f) ⊂ int(P1 \ P2) = int P1 \ P2.

We will prove that

(13) Inv(cl(P1 \ P2), f) ⊂ int(P1 \ P+
2 ).

Assume the contrary. Then there exists an x ∈ Inv(cl(P1 \ P2), f)
such that x 6∈ int(P1 \ P+

2 ) = int P1 \ P+
2 . It follows from (12) that

x ∈ P+
2 \ P2, therefore x ∈ cl(P1 \ f−1(P1)). Since x ∈ P1 ∩ f−1(P1)

we see that x ∈ bdP1(P1 \ f−1(P1)). Thus f(x) ∈ bdf (P1) ⊂ P2 by
Lemma 2.6. Again by (12) we get f(x) 6∈ Inv(cl(P1 \ P2), f), which
contradicts x ∈ Inv(cl(P1 \P2), f) and proves (13). Properties (11) and
(13) imply (iii) and

Inv(cl(P1 \ P+
2 ), f) = Inv(cl(P1 \ P2), f).

This in particular shows that P+ is an index pair for f and S.
By Proposition 4.7 there are well defined morphisms fPP , fPP+ and

fP+P+ . Let ι : P ↪→ P+ denote the inclusion map. We have the
following commutative diagram of morphisms in Prs.

P+ P+

P P

-
fP+P+

6

ι

�
�

�
�

��
fPP+

-
fPP

6

ι

Applying [8, Theorem 1.4] we conclude (10).
Now, since cl(P1\P2) is an isolating neighborhood for f , the assump-

tion cl(P1 \ P2) = P1 implies that P1 is an isolating neighborhood for
f . It is straightforward to verify that in this case P+ is an index pair
in P1. �
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Lemma 4.10. Assume P = (P1, P2) is an index pair for f and S.
Then P− := (P−

1 , P−
2 ), where

P−
1 := cl(P1 \ P2),

P−
2 := P2 ∩ P−

1 ,

is a weak index pair for f and S such that

(14) cl(P−
1 \ P−

2 ) = P−
1

and

(15) LT (Pf ) ∼= LT (P−
f ).

Proof: First we will show that P− is a weak index pair. We begin
with verifying (i). Let x ∈ P−

2 be such that f(x) ∈ P−
1 . Then x ∈ P2

and f(x) ∈ P1. Therefore f(x) ∈ P2 and consequently f(x) ∈ P2 ∩
P−

1 = P−
2 .

In order to prove (ii’) take x ∈ bdf (P
−
1 ). Then x ∈ P−

1 and we can
select a sequence {un} ⊂ P−

1 such that f(un) → x and f(un) 6∈ P−
1 ,

which implies f(un) 6∈ P1 or f(un) ∈ P2. Passing to a subsequence,
if necessary, we may assume that un converges to some u ∈ P−

1 and
either f(un) 6∈ P1 for all n or f(un) ∈ P2 for all n. In the first case we
get from (ii) applied to P that un ∈ P2 for all n. It follows that u ∈ P2,
and by (i) x = f(u) ∈ P2. In the other case we get immediately that
x = f(u) ∈ P2. Since x ∈ P−

1 , we see that x ∈ P2 ∩ P−
1 = P−

2 and (ii’)
is proved. Now observe that

(16) P−
1 \ P−

2 = P−
1 \ P2 = cl(P1 \ P2) \ P2 = P1 \ P2.

Thus we get cl(P−
1 \ P−

2 ) = cl(P1 \ P2) = P−
1 , which proves (14).

Moreover,

Inv(cl(P−
1 \ P−

2 ), f) = Inv(cl(P1 \ P2), f) ⊂
int(P1 \ P2) = int(P−

1 \ P−
2 ),

which proves (iii). From (16) we conclude that P− is an index pair for
f and S.

It remains to prove (15). By Proposition 4.7 there are well defined
morphisms fPP , fP−P and fP−P− . Let ι : P− ↪→ P denote the inclusion
map. We have the following commutative diagram of morphisms in Prs.

P− P−

P P

-
fP−P−

@
@

@
@

@R

fP−P

?

ι

?

ι

-
fPP
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Applying [8, Theorem 1.4] we conclude (15). �
Now we are able to prove a theorem which justifies the use of weak

index pairs in the computation of the Conley index.

Theorem 4.11. Assume S is an isolated invariant set for f and P =
(P1, P2) is a weak index pair for f such that Inv(cl(P1 \ P2), f) = S.
Then

(17) ConL,T (S, f) = LT (Pf ).

Proof: Put P ′ := P+ and P ′′ := (P ′)− and P ′′′ := (P ′′)+. By
Lemmas 4.9 and 4.10

LT (Pf ) ∼= LT (P ′
f )
∼= LT (P ′′

f ) ∼= LT (P ′′′
f ).

Moreover, cl(P ′′
1 \ P ′′

2 ) = P ′′
1 by Lemma 4.10. Thus Lemma 4.9 implies

that P ′′′ is an index pair in P ′′
1 , which is an isolating neighborhood for S.

Therefore the conclusion follows from [8, Theorem 1.7 and Definition
1.8] �

The above theorem may be easily extended to the case of decompo-
sitions of isolated invariant sets. More precisely, we have the following
theorem, whose proof is analogous to the proof of Theorem 4.11 and
we leave it to the reader.

Theorem 4.12. Assume S is an isolated invariant set for f , S :=
{Sj}j∈J is a decomposition of S and P = (P1, P2) is an S- compatible
weak index pair for f and S. Then

(18) ConL,T (S, f) = LT (P∧, fP,J).

�

5. Index quadruples.

From the computational point of view the process of taking the quo-
tient is not a useful tool. Therefore, when passing with an index pair
to the algebraic level by means of a (co)homology functor, it is conve-
nient to replace the quotient by the relative (co)homology. However,
this raises the question if it is possible to change the definition of the
index map in this setting in a way, which would enable the computation
of the Conley index. For the same reason we would like to eliminate the
quotients of the partial maps rj in the definition of the Conley index
of decompositions of isolated invariant sets. In order to answer these
questions let us introduce the concept of an index quadruple.

Definition 5.1. A pair of pairs (P, P̄ ) is a (weak) index quadruple for
f and S if P is a (weak) index pair for f and S, P ⊂ P̄ , the inclusion
map ι : P ↪→ P̄ is an excision and f(P ) ⊂ P̄ .
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Theorem 5.2. Assume T is an excisive covariant functor. Let (P, P̄ )
be a weak index quadruple for f and S. Then

ConL,T (S, f) ∼= L(T (P ), T (fPP̄ )T (ι)−1).

Proof: First observe that for every x ∈ P ∗
1 we have

ι∧f∧PP ([x]) = f∧PP̄ ([x]).

Indeed, this is obvious if x 6∈ P1 \ f−1(P1) and for x ∈ P1 \ f−1(P1) we
have f(x) ∈ P̄1 \ P1 = P̄2 \ P2 ⊂ P̄2, which implies f∧

PP̄
([x]) = P̄∧

2 =
ι∧f∧PP ([x]). Therefore we have the following commutative diagram in
Prs.

P P̄ P

P̄∧

P∧ P∧

-
fPP̄

?

q

?

q̄

� ι

?

q

�
�

���f∧
PP̄

-
f∧PP

@
@

@@I ι∧

Applying functor T we get the following commutative diagram

T (P ) T (P̄ ) T (P )

T (P̄∧)

T (P∧) T (P∧)

-
T (fPP̄ )

?

T (q)

?

T (q̄)

�
T (ι)

?

T (q)

�
�

�
�
��

T (f∧
PP̄

)

-
T (f∧PP )

@
@

@
@

@I
T (ι∧)

Notice that since T is excisive and the projection q is an excisions, the
morphisms T (fPP̄ )T (ι)−1 and T (f∧PP ) are conjugate. The conclusion
follows now from [8, Theorem 1.4] �

The above theorem allows us to replace quotients by relative ho-
mology or cohomology in the process of computing the Conley index.
Consider in turn the question how to eliminate the quotients of the
partial maps rj in the case of decompositions of isolated invariant sets.
To answer this question assume S = {Sj}j∈J is a decomposition of an
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isolated invariant set S and P is an S-compatible pair with a decom-
position {Kj}j∈J of cl(P1 \ P2). For j ∈ J put

K∗
j :=

⋃
i6=j

Ki

and consider the following inclusions:

αj : P ↪→ (P1, K
∗
j ∪ P2)

κj : (Kj, Kj ∩ P2) ↪→ (P1, K
∗
j ∪ P2)

ιj : (Kj, Kj ∩ P2) ↪→ P

It is straightforward to verify that κj is an excision, therefore T (κj) is
an isomorphism. We leave to the reader the proof of the following easy
proposition, which shows again that the quotient may be avoided.

Proposition 5.3. The maps T (r∧j ) and T (ιj)T (κj)
−1T (αj) are conju-

gate.

�
There remains the question how to construct the index quadruples.
Let S be an isolated invariant set for f . The following two proposi-

tions follow immediately from the definition of the index pair.

Proposition 5.4. Assume X is compact, N is an isolating neighbor-
hood for f and P = (P1, P2) is an index pair for f in S. Let

P̄ := (P1 ∪X \ int N, P2 ∪X \ int N).

Then (P, P̄ ) is an index quadruple.

�

Proposition 5.5. Assume P = (P1, P2) is an index pair for f and S.
Let

P̄ := (P1 ∪ f(P2), P2 ∪ f(P2)).

Then (P, P̄ ) is an index quadruple.

�
The next proposition shows how one can construct a weak index

quadruple.

Proposition 5.6. Assume P = (P1, P2) is a weak index pair for f .
Let

P̄ := (P2 ∪ f(P1), P2 ∪ (f(P1) \ P1)).

Then (P, P̄ ) is a weak index quadruple.
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Proof: Obviously P̄1 is a compact set. To show that P̄2 is compact,
it is enough to prove that

(19) P2 ∪ (f(P1) \ P1) = P2 ∪ cl(f(P1) \ P1).

Obviously the left-hand side of (19) is contained in the-right hand side.
To prove the opposite inclusion take an x ∈ P2∪cl(f(P1)\P1). If x ∈ P2,
then x belongs to the left-hand side. Thus assume x ∈ cl(f(P1)\P1)\P2.
If x 6∈ f(P1) \ P1, then x ∈ P1, that is x ∈ bdf P1 ⊂ P2. This is a
contradiction, which proves (19). Obviously f(P1) ⊂ P̄1. To show that
f(P2) ⊂ P̄2, assume the contrary. Then there exists an x ∈ P2 such
that y := f(x) 6∈ P̄2. It follows that y 6∈ P2 and y ∈ f(P2) ⊂ f(P1).
Since y 6∈ f(P1) \ P1, we get y ∈ P1 and from the relative positive
invariance of P2 in P1 we conclude that y ∈ P2. This is a contradiction,
which proves that f(P2) ⊂ P̄2.

We also have

P̄1 \ P1 = (P2 ∪ f(P1)) \ P1 = f(P1) \ P1 = f(P1) \ P1 \ P2 =

(P2 ∪ (f(P1) \ P1)) \ P2 = P̄2 \ P2,

which proves excision. �

6. Combinatorial Enclosures.

In the last two sections we reformulated the main concepts of the
Conley index theory in order to meet the needs of effective algorithmic
constructions. Now we want to present such algorithmic constructions
of weak index pairs and index quadruples. Since sets constitute the
expected outcome of these algorithms, we need a countable class of sets
which admit a convenient finite representation. A general framework
for such an approach is presented in [10]. For the sake of simplicity
we present here a more concise approach, based on cubes of size one.
This approach was also used in [3]. Obviously, in concrete applications
families of cubes of arbitrary size are necessary but this is only the
question of a suitable rescalling.

An elementary interval is an interval [k, l] ⊂ R such that k, l ∈ Z
and l = k + 1 or l = k. In the latter case we say that the interval is
degenerate. Otherwise it is nondegenerate. By an elementary cube Q
in Rd we mean a finite product

I1 × I2 × · · · × Id ⊂ Rd,

of elementary intervals. The number of nondegenerate intervals in this
product is called the dimension of Q and the number of degenerate
intervals is called the codimension of Q. We denote the set of all ele-
mentary cubes in Rd by K and the set of elementary cubes of dimension
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k by Kk. An elementary cube is full if its dimension is d. Obviously
the set of all full elementary cubes in Rd is Kd. Note that the family
Kd is an example of a grid [10, Definition 2.5].

With every elementary cube Q = I1 × I2 × · · · × Id we associate the

cell
◦
Q given by

◦
Q :=

◦
I1 ×

◦
I2 × · · · ×

◦
Id,

where
◦

[k, l]:=

{
(k, l) if k < l,

[k, k] otherwise.

Note that the family of all cells in Rd coincides with the family of
elementary representable sets over the grid Kd in the sense of [10].

Given a family A ⊂ K of elementary cubes we will use the notation

|A| :=
⋃
{A | A ∈ A}.

Let A ⊂ Rd be an arbitrary set and let X ⊂ K. Define

K(A) := {Q ∈ K | Q ⊂ A },
KX (A) := {Q ∈ X | Q ⊂ A },
o(A) := {Q ∈ K | Q ∩ A 6= ∅ },

od(A) := {Q ∈ Kd | Q ∩ A 6= ∅ },
oX (A) := {Q ∈ X | Q ∩ A 6= ∅ }.

The set A ⊂ Rd is called cubical if there exists a finite family A ⊂ K
such that A = |A|. Then the family A is referred to as a representation
of A. Obviously A may have many representations but one can easily
check that there is a unique minimal representation, which will be
denoted by Kmin(A) and called the minimal representation of A.

A cubical set is called a full cubical set if its minimal representation
consists only of full elementary cubes. A familyA ⊂ K is called semifull
if |A| is a full cubical set. Note that a semifull family may contain some
elementary cubes which are not full

Proposition 6.1. Assume X is a cubical set. Then

(i) int X = {x ∈ Rd | o(x) ⊂ K(X) } =
{x ∈ Rd | od(x) ⊂ Kmin(X) }.

Additionally, if X is a full cubical set, then

(ii) Every x ∈ bd X belongs to a full cube in K(X) and a full cube
not in K(X).

(iii) Every Q ∈ Kmin(bd X) is the intersection of a unique full cube
in K(X) and a unique full cube not in K(X).
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(iv) bd X is a cubical set whose minimal representation consists of
elementary cubes of dimension d− 1.

Proof: To prove (i) we need to show three inclusions. First take
x ∈ int X and assume that there is a Q ∈ o(x) \ K(X). Then we can

choose a sequence (xn) in
◦
Q such that xn → x. By [10, Theorem 3.3] we

have
◦
Q ∩X = ∅. Therefore xn 6∈ X and consequently x 6∈ int X. This

is a contradiction, which proves that the first set in (i) is contained in
the second. To prove that the second set is contained in the third take
x ∈ Rd such that o(x) ⊂ K(X). Then obviously od(x) ⊂ o(x) ⊂ K(X).
Since each full cube contained in X belongs to Kmin(X), we get od(x) ⊂
Kmin(X). There remains to be proved that the third set is contained
in the first. For this end assume x ∈ Rd is such that od(x) ⊂ Kmin(X).
Then by [10, Lemma 3.8]

x ∈ int |o(x)| = int |od(x)| ⊂ int X

and (i) is proved.
Now take x ∈ bd X. Since bd X ⊂ X and X is a full cubical set, we

can find an R ∈ od(x) ∩ K(X). Since x 6∈ int X, by (i) we can find an
R̄ ∈ od(x) \ K(X). This proves (ii).

To prove (iii) take x ∈
◦
Q and select an R ∈ od(x) ∩ K(X) and an

R̄ ∈ od(x)\K(X). Let R = I1×I2×· · ·×Id and let R̄ = Ī1×Ī2×· · ·×Īd.
Put

Rk := Ī1 × Ī2 × · · · × Īk × Ik+1 × · · · × Id.

Then R0 = R ∈ K(X) and Rd = R̄ 6∈ K(X). It follows that there exists
a k such that Rk ∈ K(X) and Rk+1 6∈ K(X). Obviously Rk ∩ Rk+1 ⊂
bd X. By [10, Theorem 3.3] we get Q ⊂ Rk ∩ Rk+1, which implies
Q = Rk ∩Rk+1, because otherwise Q 6∈ Kmin(bd X). The uniqueness is
obvious.

Property (iv) is an immediate consequence of (iii). �
In the sequel we assume that X is a fixed full cubical set and X is

a fixed representation of X. We do not assume that X is the minimal
representation, that is we allow for the situation when X contains more
elements than Kmin(X). As will be seen in the sequel, we do this to
enable exact representations of boundaries of full cubical sets, which is
important in some situations to ensure effectiveness of algorithms.

We say that a family A ⊂ X is X -complete if

A ∈ A, Q ∈ X , Q ⊂ A ⇒ Q ∈ A.

The following two propositions are easy to prove.
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Proposition 6.2. A family A ⊂ X is X -complete if and only if

(20) KX (|A|) = A.

�

Proposition 6.3. If A ⊂ X is X -complete and for some A ⊂ Rd we
have od(A) ⊂ A, then oX (A) ⊂ A.

�
Let N ⊂ X be a full cubical set. It is straightforward to verify that

KX (N) is a representation of N , although it needn’t be the minimal
representation. Put N := KX (N).

Proposition 6.4. Assume A,B ⊂ X . If B is X -complete or |A| is
full, then

|A| ∩ int |B| ⊂ |A ∩ B|.

Proof: Take x ∈ |A| ∩ int |B|. Let A ∈ A be such that x ∈ A. By
Proposition 6.1(i) we have o(x) ⊂ K(|B|), hence A ⊂ |B|. Therefore
A ⊂ B for some B ∈ B. If B is X -complete, then A ∈ B. If |A| is full
then A may be chosen to be a full cube. However in that case A = B,
so A ∈ B too. Therefore A ∈ A ∩ B and x ∈ |A ∩ B|. �

For Q ∈ Kmin(bd N) let bX (Q) denote Q if Q ∈ X and the unique
full elementary cube R in N such that Q ⊂ R otherwise. Obviously
Q ⊂ bX (Q) for every Q ∈ Kmin(bd N). We will use the following
notation

bdX N := {bX (Q) | Q ∈ K(bdN )}
intX N := N \ bdX (N ).

The following proposition is straightforward.

Proposition 6.5. If N is a full cubical set and N := KX (N), then

(21) bd N ⊂ | bdX N|.

Proposition 6.6. If N ⊂ X ⊂ Kd then

(22) | intX N| ⊂ int |N |.

Proof: Since we assume that X consists only of full cubes, we have
bdX N ⊂ N ⊂ Kd. It follows that

bdX N = {Q ∈ N | Q ∩ bd |N | 6= ∅ }

and consequently

(23) intX N = {Q ∈ N | Q ∩ bd |N | = ∅ }.
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To prove (22), assume the contrary. Then there exists an x ∈ | intX N|\
int |N |. It follows that x ∈ bd |N |. On the other hand x ∈ Q for some
Q ∈ intX N . By (23) we get x 6∈ bd |N |, a contradiction. �

The next thing to do is to discuss a suitable finite representation for
dynamics. There is no practical way to have an exact finite represen-
tation of interesting dynamics, but using multivalued maps defined on
families of elementary cubes we can obtain rigorous, and as we will see
later, useful bounds. Of course, to get appropriate bounds, the family
of elementary cubes must be first rescaled to a suitable size.

Definition 6.7. By a combinatorial multivalued map on X we mean
a multivalued map F : X −→→X such that the following two conditions
are satisfied

(i) for every Q ∈ X the set |F(Q)| is full and F(Q) is X -complete
(ii) F is monotone i.e. Q,R ∈ X , Q ⊂ R ⇒ F(Q) ⊂ F(R).

Let F : X −→→X be a multivalued combinatorial map. Let A ⊂ X .
The image of A is defined by

F(A) :=
⋃

Q∈A
F(Q).

The inverse of F is the combinatorial multivalued map F−1 : X −→→X
defined by

F−1(R) := {Q ∈ X | R ∈ F(Q) }.
It is straightforward to verify that for A ⊂ X

F−1(A) = {Q ∈ X | F(Q) ∩ A 6= ∅}.

The following definition is a variant of [19, definition (2.1)].

Definition 6.8. A combinatorial multivalued map F : X −→→X is a
combinatorial enclosure of f : X → X if for every Q ∈ X

(24) od(f(Q)) ⊂ F(Q).

In this case we say that f is a selector of F .

For a discussion of algorithms constructing combinatorial enclosures
of a given f : X → X we refer the reader to [12].

Proposition 6.9. Assume F : X → X is a combinatorial enclosure of
f : X → X. Then for any Q ∈ X

oX (f(Q)) ⊂ F(Q).
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Proof: Let Q ∈ X and R ∈ oX (f(Q)). Then R ⊂ P for some
P ∈ Kd and consequently P ∈ od(f(Q)) ⊂ F(Q). It follows from
Definition 6.7(i) and Proposition 6.3 that R ∈ F(Q). �

The following proposition is an immediate consequence of Defini-
tion 6.8 and Proposition 6.1(i).

Proposition 6.10. Assume F : X → X is a combinatorial enclosure
of f : X → X. Then for every Q ∈ X

f(Q) ⊂ int |F(Q)|.

The way we want to obtain an algorithmic construction of weak
index pairs and index quadruples is to find some combinatorial coun-
terparts of these concepts for the combinatorial enclosures and then
to prove that the counterparts, after some natural identification, fulfil
the respective definitions for the original dynamics. For this end we
introduce the following definitions.

Definition 6.11. Let I be an interval in Z containing 0. A solution
through Q ∈ K under F is a function Γ : I → K satisfying the following
two properties:

(1) Γ(0) = Q,
(2) Γ(n + 1) ∈ F(Γ(n)) for all n such that n, n + 1 ∈ I.

Definition 6.12. Assume N ⊂ K is finite. The invariant part of N
under F , denoted Inv(N ,F), consists of Q ∈ N such that there exists
a full solution Γ : Z → N through Q under F . Similarly we define the
positively invariant part, Inv+(N ,F) and the negatively invariant part,
Inv−(N ,F), of N under F by replacing Z by Z+ and Z− respectively.

Let FN : N −→→N denote the map given by

(25) FN (Q) := F(Q) ∩N .

Theorem 6.13. The following formulas hold for all p > cardN

Inv+(N ,F) =
∞⋂
i=0

F−i

N (N ) = F−p

N (N )(26)

Inv−(N ,F) =
∞⋂
i=0

F i

N (N ) = Fp

N (N )(27)

Inv(N ,F) = Inv−(N ,F) ∩ Inv+(N ,F).(28)

Proof: To prove (26) first take a Q ∈ Inv+(N ,F) and Γ : Z+ →
N , a solution through Q under F . Then Γ(n) ∈ Fn

N (Q) for any

n ∈ Z+, therefore Q ∈ F−n

N (N ), which shows that the first set of
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(26) is contained in the second set. To prove that the second set is
contained in the first set observe that since the sequence F−n

N (N ) is

descending, it becomes constant after at most cardN+1 steps. Finally,
if Q ∈ F−p

N (N ), then it is straightforward to construct a solution Γ :

{ 0, 1, . . . , p } → N under F through Q. If p > cardN , then Γ(p) =
Γ(q) for some q < p and consequently Γ may be extended to a solution
Γ̄ : Z+ → N . Thus Q ∈ Inv+(N ,F).

The proof of (27) is similar and (28) is obvious. �

7. Combinatorial Index Pairs.

In this section we introduce the combinatorial counterparts of the
concepts of isolating neighborhood and index pair.

We say that a subsetN of X is a combinatorial isolating neighborhood
for F : X −→→X and S if N is finite, X -complete and

(29) S = Inv(N ,F) ⊂ intX N .

The proof of the following easy proposition is left to the reader.

Proposition 7.1. If X consists only of full elementary cubes and N
is a combinatorial isolating neighborhood for F : X −→→X and S, then
od(S) is also a combinatorial isolating neighborhood for F : X −→→X and
S.

Definition 7.2. We say that (P1,P2) is a combinatorial index pair for
F in N if P2 ⊂ P1 are N -complete subfamilies of N and the following
three conditions are satisfied.

(i) F(P i) ∩N ⊂ P i for i = 1, 2,
(ii) F(P1) ∩ bdX N ⊂ P2,
(iii) Inv(N ,F) ⊂ P1 \ P2.

Theorem 7.3. Assume N ⊂ X is an isolating neighborhood for F .
Let

P1 := Inv−(N ,F),

P2 := Inv−(N ,F) \ Inv+(N ,F).

Then (P1,P2) is a combinatorial index pair for F in N . Moreover, if
X consists only of full cubes then

|P1| \ |P2| ⊂ int |N |.

Proof: To show that P1 is N -complete take a Q ∈ N and an R ∈ P1

such that Q ⊂ R. Let Γ : Z− → N be a solution through R. Since
Q ⊂ R = Γ(0) ∈ F(Γ(−1)) and F(Γ(−1)) is X -complete, we get
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Q ∈ F(Γ(−1)). Therefore replacing Γ(0) by Q we obtain a solution on
Z− through Q, which shows that Q ∈ P1.

Assume in turn that Q ⊂ P ∈ P2. If Q 6∈ P2, then Q ∈ Inv+(N ,F).
Let Λ : Z+ → N be a solution through Q. Since F is monotone, we get
Λ(1) ∈ F(Λ(0)) = F(Q) ⊂ F(P ). Therefore replacing Λ(0) by P we
get a solution on Z+ through P . This contradicts P ∈ P2 and shows
that P2 is N -complete.

Next we will verify properties (i)-(iii) of Definition 7.2. To verify
property (i) for i = 1, take Q ∈ F(P1) ∩ N . Then there exists a
solution Γ : Z− → N , such that Q ∈ F(Γ(0)). Putting

Γ̄(n) :=

{
Q for n = 0,

Γ(n + 1) for n < 0.

we obtain a solution Γ̄ : Z− → N through Q. Thus Q ∈ Inv−(N ,F) =
P1. Assume in turn that Q ∈ F(P2) ∩ N . Then Q ∈ F(R) for
some R ∈ P2. To prove that Q ∈ P2, assume the contrary. Then
Q ∈ Inv(N ,F), i.e. we can take Γ : Z → N , a solution to F through
Q in N . Define Γ̄ : Z+ → N by

Γ̄(n) :=

{
R for n = 0,

Γ(n− 1) for n > 0.

It is straightforward to verify that Γ̄ : Z+ → N is a solution through
R, therefore R ∈ Inv+(N ,F) and R 6∈ P2, a contradiction. Thus (i) is
proved.

Assume in turn that Q ∈ F(P1) ∩ bdX N . Then Q ∈ P1. If Q 6∈
P2, then Q ∈ Inv(N ,F), which contradicts Q ∈ bdX N . Therefore
Q ∈ P2.

To prove (iii) observe that

Inv(N ,F) = Inv−(N ,F) ∩ Inv+(N ,F) = P1 \ P2.

In particular, we also get

P1 \ P2 = Inv(N ,F) ⊂ intX N .

Therefore, if X ⊂ Kd, then by Proposition 6.6

|P1| \ |P2| ⊂ |P1 \ P2| ⊂ | intX N| ⊂ int |N |.
�

8. Weak Index Pairs from Combinatorial Index Pairs.

Now we will show how the combinatorial index pair for F may be
used to obtain a weak index quadruple for any selector f of F .
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For A,B ⊂ X define

A∩̄B := {P ∩Q | P ∈ A, Q ∈ B }
and let A⊂̄B denote that for every A ∈ A there exists a B ∈ B such
that A ⊂ B.

Theorem 8.1. Assume N is an isolating neighborhood for F and
(P1,P2) is a combinatorial index pair for F in N . Then (|P1|, |P2|)
is a weak index pair for any selector f of F .

Moreover, if M⊂ X is such that

(30) F(P1) ⊂M

(31) M∩N ⊂ P1

and one of the following conditions is satisfied

(32) |P1| \ |P2| ⊂ int |N |
or

(33) M∩̄ bdX N ⊂̄ P2,

then (|P1|, |P2|, |P1∪M|, |P2∪M\P1|) is a weak index quadruple for
any selector f of F .

Proof: We need to prove properties (i),(ii’),(iii) of Definition 4.1.
Let Pi := |P i| for i = 1, 2. In order to prove (i) fix x ∈ P2 such that
f(x) ∈ P1. Then x ∈ Q for some Q ∈ P2 and f(x) ∈ R for some
R ∈ P1. Thus, by Proposition 6.9

R ∈ oX (f(x)) ⊂ oX (f(Q)) ⊂ F(Q) ⊂ F(P2)

and by Definition 7.2(i) we get R ∈ P2. It follows that f(x) ∈ P2.
Put N := |N |. For proving (ii), we will show first that

f(P1) ∩N ⊂ P1.

Indeed, f(P1) = f(|P1|) ⊂ int |F(P1)|. Since F(P1) is X -complete as
the union of X -complete sets, we get from Proposition 6.4

f(P1) ∩N ⊂ int |F(P1)| ∩ |N | ⊂ |F(P1) ∩N| ⊂ |P1| = P1.

In particular we obtain f(P1) \ P1 ⊂ Rd \N , therefore

bdf P1 = cl(f(P1) \ P1) ∩ P1 ⊂ cl(Rd \N) ∩N = bd N.

Thus we get from Proposition 6.10, Proposition 6.5, Proposition 6.4
and Definition 7.2(ii)

bdf P1 ⊂ f(P1) ∩ bd N ⊂ int |F(P1)| ∩ | bdX N| ⊂
|F(P1) ∩ bdX N| ⊂ |P2| = P2.
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which proves (ii). Before we prove property (iii) let us show that

(34) cl(Q \ P2) = Q for Q ∈ P1 \ P2

and

(35) cl(P1 \ P2) = |P1 \ P2|.

To prove (34) take Q ∈ P1\P2. We have
◦
Q∩P2 = ∅, because otherwise

Q ⊂ P2 and Q ∈ P2 by the N -completeness of P2. Therefore

Q = cl
◦
Q = cl(

◦
Q \ P2) ⊂ cl(Q \ P2) ⊂ cl Q = Q,

which shows (34). Now we have

P1 \ P2 = |P1| \ P2 =
⋃

Q∈P1

Q \ P2 =
⋃

Q∈P1\P2

Q \ P2

Therefore by (34)

cl(P1 \ P2) =
⋃

Q∈P1\P2

cl(Q \ P2) =
⋃

Q∈P1\P2

Q = |P1 \ P2|.

Thus (35) is proved.
Now put M := cl(P1 \ P2) and assume property (iii) is not satisfied.

Then there exists an x ∈ Inv(M, f) ⊂ P1 such that x 6∈ int(P1 \ P2).
We will show that

(36) o(x) ∩
(
(N \ P1) ∪ bdX N ∪ P2

)
6= ∅.

Since int(P1 \ P2) = int P1 \ P2, either x ∈ P2 or x ∈ bd P1. If x ∈ P2,
then there exists a Q ∈ o(x) such that Q ∈ P2, therefore (36) is
satisfied. Thus consider the case x ∈ bd P1. If x 6∈ int N , then x ∈ bd N
and we get from Proposition 6.5 that x ∈ | bdX N|, which implies (36).
Thus assume x ∈ int N . Then, by Proposition 6.1(i)

(37) od(x) ⊂ Kmin(N) ⊂ N .

Since x ∈ bd P1 implies x 6∈ int P1, by Proposition 6.1(i) we can select
an R ∈ od(x) \ P1. From (37) we get R ∈ od(x) \ P1 ⊂ o(x)∩ (N \P1)
and (36) is proved.

Now, let γ : Z → M be a solution through x under f . Since γ(n) ∈
|P1 \ P2| ⊂ |N |, for every n ∈ Z we can choose Γ(n) ∈ N such that
γ(n) ∈ Γ(n). Moreover, by (36)

(38) Γ(0) ∈ (N \ P1) ∪ bdX N ∪ P2.

By Proposition 6.9

Γ(n + 1) ∈ oX (γ(n + 1)) = oX (f(γ(n))) ⊂ oX (f(Γ(n))) ⊂ F(Γ(n)),
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which shows that Γ : Z → N is a full solution through Q under F .
Therefore Γ(n) ∈ Inv(N ,F) ⊂ P1 \ P2 for every n ∈ Z. In partic-
ular Γ(0) ∈ F(Γ(−1)) ⊂ F(P1). On the other hand, by (38) and
Definition 7.2(i-ii)

Γ(0) ∈ F(P1) ∩
(
(N \ P1) ∪ bdX N ∪ P2

)
⊂ P2,

a contradiction. Thus (iii) is proved.
Put P̄1 := P1 ∪M, P̄2 := P2 ∪M \ P1 and P̄i := |P̄ i| for i = 1, 2.

To complete the proof we need to show that

f : (P1, P2) 3 x → f(x) ∈ (P̄1, P̄2),

ι : (P1, P2) 3 x → x ∈ (P̄1, P̄2)

are well defined maps of pairs and ι is an excision. For this end we will
first prove that

(39) F(P i) ⊂ P̄ i for i = 1, 2.

The property is obvious for i = 1. To prove it for i = 2 let Q ∈
F(P2). If Q ∈ F(P1) \ P1, the conclusion is obvious. Thus assume
that Q 6∈ F(P1) \ P1. Then Q ∈ P1. Therefore by Definition 7.2(i) we
get Q ∈ P2 and (39) is proved. It follows now from Proposition 6.10
that f(|P i|) ⊂ |P̄ i|. It remains to be proved that ι is an excision. To
achieve this we will first show that

(40) Q ∈M \ P1 ⇒ Q \ P2 = Q \ P1.

Let Q ∈ M \ P1. Obviously Q \ P1 ⊂ Q \ P2. Assume the opposite
inclusion does not hold. Then there exists an x ∈ Q \P2 such that x 6∈
Q \P1. It follows that x ∈ P1 \P2. If (32) is satisfied, then x ∈ int |N |
and by Proposition 6.1(i) and Proposition 6.3 we get oX (x) ⊂ N . In
particular Q ∈ N and since Q ∈ M, we get from (31) that Q ∈ P1,
a contradiction. Thus (30) is proved, when (32) is satisfied. Hence
consider the case when (33) holds. If Q ∈ N , we can proceed as in
the previous case. If Q 6∈ N , then x ∈ bd |N | and by Proposition 6.5
we get x ∈ | bdX N|. Select an R ∈ bdX N such that x ∈ R. Then
Q ∩ R ∈ M∩̄ bdX N and by (33) the intersection Q ∩ R is contained
in an element of P2. Since x ∈ Q ∩ R, it follows that x ∈ P2, a
contradiction. Thus (40) is proved.

Now observe that

P̄1 \ P1 =
⋃

Q∈ ¯P1

Q \ P1 =
⋃

Q∈ ¯P1\P1

Q \ P1



28 MARIAN MROZEK

and since P̄2 = P2 ∪ (P̄1 \ P1), we also have

P̄2 \ P2 =
⋃

Q∈ ¯P2

Q \ P2 =
⋃

Q∈P2∪(
¯P1\P1)

Q \ P2 =
⋃

Q∈ ¯P1\P1

Q \ P2.

Therefore we conclude from (30) that P̄1 \ P1 = P̄2 \ P2 and by Propo-
sition 2.3 the inclusion ι is an excision. �

The following straightforward proposition provides the simplest choice
of M in Theorem 8.1.

Proposition 8.2. The conditions (30) and (31) of Theorem 8.1 are
satisfied for M := F(P1).

9. Isolating blocks.

As we shall see in the sequel, Theorem 7.3 may be used to obtain an
algorithm finding combinatorial index pairs. However, the efficiency
of such an algorithm will crucially depend on the amount of computa-
tions needed to find a good combinatorial enclosure F of f |N . In some
situations, especially when the dynamical system is induced by a dif-
ferential equation, this may be a serious drawback. For this reason we
discuss in this section an alternative approach, based on the concept
of isolating block.

Definition 9.1. An X -complete subset N of X is an isolating block
for F : X −→→X if

(41) F−1(N ) ∩N ∩ F(N ) ⊂ intX N .

Given N ⊂ X we define its exit set N− by

N− := {Q ∈ bdX N | F(Q) ∩N = ∅ }.

Theorem 9.2. The set N is an isolating block for F if and only if

(42) F(N ) ∩ bdX N ⊂ N−.

Proof: Assume N is an isolating block for F . Let Q ∈ F(N ) ∩
bdX N . Then Q 6∈ intX N and from (41) we see that Q 6∈ F−1(N ),
which means that Q ∈ N−. Thus (42) is satisfied. Assume in turn that
(42) is satisfied and N is not an isolating block. Then we can find a
Q ∈ F−1(N )∩N ∩F(N )∩bdX N . It follows from (42) that Q ∈ N−,

i.e. F(Q) ∩N = ∅, which contradicts Q ∈ F−1(N ). �

Theorem 9.3. Assume N is an isolating block for F . Then N is an
isolating neighborhood for F and (N ,N−) is a combinatorial index pair
for F in N .
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Proof: Obviously

Inv(N ,F) = Inv−(N ,F) ∩ Inv+(N ,F) ⊂
F−1(N ) ∩N ∩ F(N ) ⊂ intX N .

Thus N is an isolating neighborhood. The proof that (N ,N−) is a
combinatorial index pair for F is straightforward. �

The above theorem shows how to obtain a combinatorial index pair
from an isolating block but as in the previous construction it requires
the knowledge of a combinatorial enclosure F of f |N . Our goal now is
to present a construction, which requires only an enclosure of f |bd N .
For this end we need first some lemmas.

Assume X ⊂ Rd is bounded. Then Rd\X has exactly one unbounded
connected component. Denote it by ucc(X) and denote the union of
all bounded components of Rd \X by bcc(X).
Lemma 9.4.

(i) If Y ⊂ X ⊂ Rd are bounded, then ucc(X) ⊂ ucc(Y )
(ii) If X ⊂ Rd is compact, then ucc(bd X) = ucc(X).

Proof: Obviously ucc(X) ⊂ Rd \ X ⊂ Rd \ Y . Therefore, as a
connected set, ucc(X) is contained in a connected component W of
Rd \ Y . Since ucc(X) is unbounded, so is W . It follows that ucc(X) ⊂
W = ucc(Y ), which proves (i). To prove (ii) observe that

ucc(bd X) ⊂ Rd \ bd X = int X ∪ ext X

Since int X, ext X are disjoint, open sets and ucc(bd X) is connected,
we see that either ucc(bd X) ⊂ int X or ucc(bd X) ⊂ ext X. The first
case is impossible, because ucc(bd X) is unbounded. Therefore

ucc(bd X) ⊂ ext X = Rd \X.

Hence, as a connected, unbounded set, ucc(bd X) must be contained
in the connected, unbounded component of Rd \ X, i.e. ucc(bd X) ⊂
ucc(X). The opposite inclusion follows from (i). �

For a bounded set X we will now consider the set bcf(X) := Rd \
ucc(X), called the bounded complement component filling of X.

Lemma 9.5. Assume Y,X are bounded subsets of Rd. Then

(i) X ⊂ bcf(X),
(ii) Y ⊂ X ⇒ bcf(Y ) ⊂ bcf(X),
(iii) bcf(int X) ⊂ int bcf(X).
(iv) If X ⊂ Rd is compact, then bcf(X) is compact
(v) If X ⊂ Rd is full cubical, then bcf(X) is full cubical.
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Proof: Properties (i) and (ii) are obvious. To prove property (iii)
first observe that ucc(int X), as a connected component of a closed
set in Rd is closed. Therefore bcf(int X), as a complement of a closed
set is open. Since by (ii) bcf(int X) ⊂ bcf(X), we get bcf(int X) ⊂
int bcf(X), which proves (iii).

Now assume that X is compact. Since Rd is a locally connected
space, the set ucc(X) is open as a connected component of an open
set. Therefore bcf(X) is closed. Let B be a closed ball such that
X ⊂ B. Then Rd \B ⊂ ucc(X). Therefore bcf(X) = Rd \ucc(X) ⊂ B,
i.e. bcf(X) is bounded. Thus bcf(X) is compact.

Finally assume that X is full cubical. In order to show that bcf(X)
is full cubical it is enough to show that

(43) X ′ := {Q ∈ Kd | Q ∩ ucc(X) = ∅ }

is finite and

(44) bcf(X) =
⋃
X ′.

To show that X ′ is finite take a closed ball B such that X ⊂ B. Then
by Lemma 9.4(i) ucc(B) ⊂ ucc(X), therefore

X ′ ⊂ {Q ∈ Kd | Q ∩ ucc(B) = ∅ }

However, since B is a closed ball, ucc(B) = Rd \B, which implies that
X ′ ⊂ Kd(B) and proves that X ′ is finite.

To prove (44) first observe that obviously
⋃
X ′ ⊂ bcf(X). Thus

take x ∈ bcf(X). If x ∈ X, then x ∈ Q for some Q ∈ Kd(X) ⊂ X ′, so
that x ∈

⋃
X ′. Therefore assume that x 6∈ X, i.e. x ∈ bcc(X). Fix a

Q ∈ od(x). Then ∅ 6= Q ∩ bcc(X) = cl
◦
Q ∩ bcc(X), and since bcc(X)

is open we get
◦
Q ∩ bcc(X) 6= ∅. We will show that

(45) Q ∩ ucc(X) = ∅.

Indeed, if (45) is not true, then a similar argument shows that
◦
Q ∩

ucc(X) 6= ∅. Since
◦
Q is a connected set, we conclude that

◦
Q ∩X 6= ∅,

which implies Q ⊂ X, a contradiction. Thus (45) shows that Q ∈ X ′,
i.e. x ∈

⋃
X ′ �

The following proposition is straightforward.

Proposition 9.6. If A ⊂ X , then A ⊂ KX (bcf(|A|))

�
Assume U ⊂ Rd is open. We will now consider a map f : U → Rd

which is a homeomorphism onto f(U).
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Theorem 9.7. If X ⊂ U is compact, then

(46) f(X) ⊂ bcf(f(bd X)).

Proof: Since f is a homeomorphism, we get from Lemma 9.4(ii)

ucc(f(bd X)) = ucc(bd f(X)) = ucc(f(X))

and from Lemma 9.5(i)

f(X) ⊂ bcf(f(X)) = Rd \ ucc(f(X)) =

Rd \ ucc(f(bd X)) = bcf(f(bd X)).

�
Now we are ready to present a theorem, which may be used to con-

struct index quadruples on the basis of a combinatorial enclosure of
f |bd N .

Theorem 9.8. Assume N ⊂ X is X -complete, N := |N | and G :
bdX N : −→→X is a combinatorial enclosure of f |bd N . If M ⊂ X is
such that

(47) KX (bcf(|G(bdX N )|)) ⊂M
and

(48) M∩̄ bdX N ⊂̄N−,

then N is an isolating block for f and (|N |, |N−|, |N ∪M|, |N−∪(M\
N )| is a weak index quadruple for f in N .

Proof: Let us define the map F : X −→→X by putting

F(Q) := oX (f(Q)) ∪
⋃
{ G(R) | R ∈ bdX N , R ⊂ Q }.

It is a lengthy but straightforward task to verify that F is a well defined
combinatorial enclosure of f and F|

bdX N = G.

We will show that

(49) F(N ) ⊂M.

Let P ∈ F(N ). If P ∈ G(R) for some R ∈ bdX N , then P ∈
G(bdX N ) ⊂ M by Proposition 9.6 and (47). Otherwise P ⊂ P ′ ∈
od(f(Q)) for some Q ∈ N . We have from Theorem 9.7, Proposition 6.10
and Lemma 9.5(ii-iii) that

f(N) ⊂ bcf(f(bd N)) ⊂ bcf(int |F(bdX N|) ⊂ int bcf(|F(bdX N|)
Since P ′ ∩ f(Q) 6= ∅, we get

P ′ ∩ int bcf(|F(bdX N|) 6= ∅.
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However, by Lemma 9.5(v) the set bcf(|F(bdX N|) is full cubical, so
that by Proposition 6.1(i) we get

P ′ ⊂ bcf(|F(bdX N|).
It follows that P ⊂ bcf(|F(bdX N|), i.e. P ∈ KX (bcf(|G(bdX N )|))
and by (47) P ∈M, which proves (49).

We will show that

(50) M∩ bdX N ⊂ N−.

Let Q ∈ M ∩ bdX N . Then Q ∈ M∩̄ bdX N and by (48) we have
Q ⊂ Q′ for some Q′ ∈ N−. By Definition 6.7(ii) we get Q ∈ N−.

Now properties (49) and (50) imply that F(N ) ∩ bdX N ⊂ N−.
Therefore N is an isolating block for F by Theorem 9.2 and (N ,N−)
is a combinatorial index pair for F by Theorem 9.3. Since

F(N )∩̄ bdX N ⊂M∩̄ bdX N ⊂̄ N−,

the conclusion follows now from Theorem 8.1 �

10. Algorithms.

Theorems presented in the previous sections lead to easy to imple-
ment algorithms. In this section we present some examples. We assume
that there are given data structures set and combinatorialMap which
allow us to store respectively families of elementary cubes and combi-
natorial multivalued maps.

Algorithm 10.1. Negative Invariant Part
function negativeInvariantPart(set N, combinatorialMap F)
F := FN;
S := N;
repeat

S′ := S;
S := F(S);

until (S = S′);
return S;

Proposition 10.2. Assume Algorithm 10.1 is called with N represent-
ing a collection of cubes N and F representing a combinatorial multi-
valued map F . Then it always stops and returns the positive invariant
part of F in N .

Proof: The algorithm stops, because the sequence containing the
consecutive values of variable S is decreasing. The conclusion follows
now from Theorem 6.13. �
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Algorithm 10.3. Index Quadruple
function indexQuadruple(set N, combinatorialMap F)
S− := negativeInvariantPart(N, F);
S+ := negativeInvariantPart(N, F−1);
if S− ∩ S+ ⊂ int(N) then

P1 := S−; P2 := S− \ S+;
P̄1 := P1 ∪ F(P1); P̄2 := P2 ∪ F(P1) \ P1;
return (P1, P2, P̄1, P̄2);

else
return ”Failure”;

endif;

Theorem 10.4. Let f : U → Rd be a continuous map defined on
an open subset of Rd and let N ⊂ U be a full cubical set. Assume
Algorithm 10.3 is called with N representing a collection of cubes N
such that |N | = N and F representing a combinatorial enclosure F of
f . If it does not fail, then it returns a weak index quadruple for f and
N .

Proof: The conclusion follows immediately from Theorem 7.3, The-
orem 8.1 and Proposition 8.2. �

Similarly to Algorithm 10.3 one can obtain an algorithm for weak
index quadruples based on isolating blocks Theorem 9.8. Details are
left to the reader.

11. Examples

Example 11.1. Consider the Hénon map h : R2 → R2 given by the
formula

h(x, y) := (1 + y/5− ax2, 5bx)

at the parameter values a = 1.4 and b = 0.2. Figure 1 presents a
family M of full cubes (dark and light gray) and its invariant part
S := Inv(M,H) (light gray) for a combinatorial enclosure H of h.

Clearly, M is a combinatorial isolating neighborhood of H, so that
we can now apply Algorithm 10.3 to M. However, by Proposition 7.1
the family N := od(S) is also an isolating neighborhood isolating S, so,
to avoid excessive computations, it is worth to apply Algorithm 10.3
to N . The resulting combinatorial index quadruple (P1,P2, P̄1, P̄2) is
indicated in Figure 2. Theorem 10.4 implies that

(P1, P2, P̄1, P̄2) := (|P1|, |P2|, |P̄1|, |P̄2|)
is an index quadruple for h. The figure also presents the decomposition
of cl(P1 \ P2) into eight compact connected components consisting of
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Figure 1. An isolating neighborhood M for a multival-
ued enclosure of the Hénon map with the invariant part
S indicated in light gray.

full cubical sets Ki = |Ki| for i = 1, 2, . . . 8. Computing the transition
matrix A = (aij), where aij := sgn cardKj ∩H(Ki), we obtain

A =

2
66666666664

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0

3
77777777775

.

The zeros in this matrix indicate which itineraries of h through the
decomposition

⋃8
j=1 Kj are excluded. To show that all the others are

allowed we first compute the matrices of the homology of the inclusion
map ι : (P1, P2) ↪→ (P̄1, P̄2) and using the combinatorial multivalued
map H also the matrices of the homology of the induced map hPP̄ :
(P1, P2) → (P̄1, P̄2). We do so using the algorithm described in [6].
The computation results in all matrices being zero except the matrices
in dimension one.
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Figure 2. An index quadruple (P1,P2, P̄1, P̄2) for a
combinatorial enclosure of the Hénon map. The set P1

consists of all light gray and black cubes, the set P2

consists of all black cubes, the set P̄1 consists of all white,
light gray and black cubes and the set P̄2 consists of all
white and black cubes. All cubes except the whites cubes
constitute the combinatorial isolating neighborhoodN =
o(S).

The matrix A shows that the following three periodic itineraries are
not excluded

θ1 := (2, 7), θ2 := (4, 5, 1, 8), θ3 := (4, 5, 1, 8, 2, 7)

To prove that h indeed possesses such periodic orbits we use [18, The-
orem 4.5]. For this end it is enough to verify that the Lefschetz
numbers of the maps Θi induced in homology by hP,θi

are non zero.
Given the computed matrices of the maps induced in homology by
ι : (P1, P2) ↪→ (P̄1, P̄2) and hPP̄ : (P1, P2) → (P̄1, P̄2) it is a straight-
forward computational task to find that these Lefschetz numbers are
indeed non zero. Moreover, one can also verify that the composition of
any two of the three maps Θi is, up to a sign, one of these maps again.
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Figure 3. Projections onto the complex plane of two
sample components of an isolating block for a Poincaré
map of the dynamical system induced in R3 by the equa-
tion (51). The picture is artificially rescaled for better
visualization.

This implies that for any concatenation of the sequences θi there ex-
ists a periodic point in S following this concatenation as its itinerary.
Therefore we have proved the following theorem.

Theorem 11.2. Let S be the invariant part of
⋃8

j=1 Kj under the
Hénon map at parameter values a = 1.4 and b = 0.2. Then there
exists a semiconjugacy ρ : S → ΣA onto the set of biinfinite sequences
on 8 symbols admissible under the matrix A such that for each periodic
sequence θ ∈ ΣA with period p, ρ−1(θ) contains a periodic orbit with
period p.

Example 11.3. Consider the following differential equation in the
complex plane

(51) z′ = (1 + eiϕt|z|2)z̄.
The system induces a semidynamical system in R3 (with t as the third
variable). It can be proved analytically [16] that for small positive ϕ
the 2π/ϕ-translation map exhibits chaotic dynamics. A similar fact
for θ = 1 may be obtained via a computer assisted proof. The proof
requires non standard computational techniques, because the quadratic
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term on the right hand side of the equations causes that practically
all the trajectories of the system escape to infinity in a very short
time. To make things worse, for the short time segment when the
trajectories can be enclosed numerically an extremely strong expansion
is observed. The techniques introduced in this paper, in particular
Theorem 9.8, constitute one of the two tools needed in overcoming this
difficulty. The big square in Figure 3 is the projection onto the complex
plane of a sample component N 1 of a multicomponent combinatorial
isolating block N constructed in rigorous numerical computation for
a combinatorial multivalued representation F of some Poincaré map
of the dynamical system induced in R3 by the equation (51). The
combinatorial boundary of N 1 is represented by a cubical set consisting
of elementary cubes of dimension one (in the picture the cubes are
inflated to dimension two for better visualization). The gray part of
the boundary of N 1 is the restriction of N− to N 1. The restriction
of F(N ) ∩ bdN to N 1 is marked in black. The picture indicates
that for N 1 the condition (42) is satisfied. The smaller square is the
projection of another component N 2. It is the only component of N
intersecting F(N 1). The small rectangles aligned along a closed curve
intersecting N 2 in two pieces constitute the values of F on the one
dimensional elementary intervals covering the boundary of N 1. The
values grow very rapidly and the computations break down when the
cubes covering the boundary are taken to be two dimensional instead
of one dimensional. The number of components of N needed in the
actual computation was of order 100.

The proof with all the details will be presented in [11].
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[12] M. Mrozek, P. Zgliczyński, Set arithmetic and the enclosing problem in dy-
namics, Annales Polonici Mathematici 74(2000), 237-259.

[13] P. Pilarczyk, Computer assisted method for proving existence of periodic orbits,
Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 365–377.

[14] J.W. Robbin and D. Salamon, Dynamical systems, shape theory and the Con-
ley index, Erg. Th. and Dynam. Sys. 8*(1988), 375–393.

[15] R. Srzednicki, Generalized Lefschetz Theorem and a Fixed Point Index For-
mula, Topology & Appl. 81(1997), 207-224.
for detecting chaotic dynamics, J. Diff. Equ. 135(1997), 66–82.

[16] R. Srzednicki and K. Wójcik, A geometric method for detecting chaotic dy-
namics, J. Diff. Equ. 135(1997), 66–82.

[17] A. Szymczak, The Conley index for discrete dynamical systems, Topology and
its Applications 66(1995) 215–240.

[18] A. Szymczak, The Conley index for decompositions of isolated invariant sets,
Fundamenta Mathematicae 148 (1995), 71–90.

[19] A. Szymczak, A combinatorial procedure for finding isolating neighborhoods
and index pairs Proc. Royal Soc. Edinburgh, Ser. A 127A(1997) 1075–1088.

Institute of Computer Science, Jagiellonian University, ul. Nawo-
jki 11, 30-072 Kraków, E-mail: Marian.Mrozek@ii.uj.edu.pl.


