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Abstract

We apply the concept of the Euler-Poincaré characteristic and the
periodicity number to the index map of an isolated invariant set in
order to obtain a new criterion for the existence of periodic points of
a continuous map in a given set.

1 Introduction

Among the fundamental problems in discrete dynamical systems is the search
of fixed and periodic points. The Lefschetz Fixed Point Theorem is a classical
example how a topological invariant, the Lefschetz number, may be used
to guarantee the existence of fixed points. In 1953 F. Fuller [7] showed
that every homeomorphism of a connected polyhedron with Euler-Poincaré
characteristic different from zero has a periodic point. This was generalized in
1969 by C. Bowszyc [2] who introduced the Euler number and the periodicity
number of a continuous map of a compact polyhedron and showed that if one
of these numbers is nonzero then the map has a periodic point. The aim of
this note is to generalize these results to the case of an isolated invariant set.

Let X be a compact metric space and let f : X → X be a continuous
map. An isolated invariant set S of f is a compact invariant set of f , which
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is maximal in some its open neighborhood. For such a set its cohomological
Conely index (see e.g. [15]) takes the form of the pair (E, e), where E is a
graded vector space and e is an automorphism acting on E, called the index
automorphism. If X is an ANR (cf. [3]), for instance if X is a polyhedron,
then E is of finite type, i.e. all Ek have finite dimension and almost all are
zero (see [14]). For such an E one defines its Euler-Poincaré characteristic
by

χ(E) :=
∞∑

k=0

(−1)k dimEk. (1)

The main result of this paper is the following theorem.

Theorem 1 Assume S is an isolated invariant set of a continuous map
f : X → X acting on a compact ANR X. If the Euler-Poincaré characteristic
of the Conley index of S is non-zero, then f has a periodic point in S.

The Euler-Poincaré characteristic of the Conley index reduces to the Euler
number of the map in the special case when X is a compact polyhedron
and the isolated invariant set S coincides with the whole space X. It re-
duces to the Euler-Poincaré characteristic of the polyhedron if additionally
one assumes that f is a homeomorphism. Theorem 1 is a straightforward
consequence of a more general result based on an extension of the Bowszyc’s
concept of periodicity number to the index automorphism of the Conley in-
dex.

The results of Fuller and Bowszyc are global in the sense that no infor-
mation is given about the existence of fixed points or periodic points of a
map in a prescribed set. In 1968 C. Bowszyc [1] presented a relative version
of the Lefschetz Fixed Point Theorem, which may be considered as a step
towards localization of this theorem. In [11] and [13] index pairs were chosen
as a tool for obtaining a Lefschetz Fixed Point Type Theorem working on a
set. The essential difference when compared to the Bowszyc’s result is that
in the case of an index pair there is no requirement that the map maps the
pair into itself.

Using the language of [6] one can say that the Bowszyc’s relative result
works in the filtration setting, whereas the index pairs may be viewed as a
tool to reduce the problem to a filtration setting. However, an obstacle is the
need to work with ANRs to ensure that the Euler-Poincar’e characteristic
makes sense. The existence of index pairs consisting of ANRs is proved for
isolated invariant sets in the Euclidean space [22] and in the Hilbert cube
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[19] but for a general ANR X the answer is not known. Moreover, it is easy
to give examples of isolated invariant sets in a compact ANR X for which
exist index pairs consisting of sets which are not ANRs. The homology of
such index pairs may not be of finite type despite the fact that the Conley
index of S is (see [14]). To overcome this difficulty we use open index pairs
introduced in [13], because open subsets of ANRs are always ANRs. Since it
has not been proved so far that open index pairs may be used to compute the
Conley index, we prove that in every neighborhood of an isolated invariant
set there exists a pair of index pairs, one open and one closed, whose index
automorphisms are conjugate. This does not prove that every open index
pair may be used to compute the Conley index but it is sufficent to prove
Theorem 1.

The referee suggested to us a different approach to the proof. When work-
ing with the Conley index, the easiest way to achieve the filtration setting
is to quotient out the second set in the index pair. In order to guarantee
that the quotient is an ANR it is enough to take an index pair consisting
of compact ANRs, because the quotient of two compact ANRs is a compact
ANR (see [9], chapter VI, Theorem 1.2). To overcome the problem with the
existence of index pairs consisting of compact ANRs one can lift the map f
to some open subset of the Hilbert cube, similarly to the proof of Theorem 6
in [19] and then project back the periodic point to the original space. How-
ever, the lifting requires non trivial results on approximating compact sets in
normal linear spaces, so our feeling is that our approach is more elementary.
Even more important is the fact that although both the process of taking
the quotient and the lifting to an infinite dimensional space are convenient
tools for proofs, they are hard on the algorithmic side [16]. On the other
hand, taking into account the results of [16] and [17], the process of comput-
ing the relative homology of an index pair is easily algorithmizable, therefore
the proof we present may be turned into an algorithm computing the Euler-
Poincaré characteristic of the Conley index of an isolated invariant set. Since
the computer assisted proofs in dynamics are more and more common [10],
this may lead to broader scope of potential applications.

For the sake of simplicity we present the results for compact spaces. How-
ever, a generalization to locally compact spaces and even to maps of compact
attraction on non compact metric ANRs along the lines in [18] is straight-
forward.
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2 Preliminaries

In this section we briefly recall main definitions and results used in this note.
Throughout the paper R, Z and N are used to denote the sets of all

reals, integers and positive integers, respectively. For a topological space
X and A ⊂ X we denote the interior and the closure of A respectively by
intX(A) and clX(A). When the space X is clear from the context, we drop
the subscript X in this notation.

Let X be a compact ANR (see [3]). Assume f : X → X is continuous.
The function σ : Z→ X is called a solution to f through x if f(σ(i)) = σ(i+1)
for i ∈ Z and σ(0) = x. We define Inv(N, f), the invariant part of N ⊂ X, as
the set of all x ∈ N which admit a solution σ to f through x with σ(Z) ⊂ N .
The setN is called invariant (with respect to f) if Inv(N, f) = N . A compact
set N ⊂ X is called an isolating neighborhood if Inv(N, f) ⊂ int(N). A set S
which admits an isolating neighborhood N such that S = Inv(N, f) is called
an isolated invariant set.

Definition 1 (cf. [11, 13]) Let S ⊂ X be an isolated invariant set. A
pair P = (P1, P2) of subsets of X will be called an index pair for S if the
following conditions are satisfied:

P2 ∩ f−1(P1) ⊂ P2, (2)

P1 \ f−1(P1) ⊂ P2, (3)

S = Inv(P1, f) ⊂ int(P1 \ P2). (4)

The index pair is called closed (open) if both P1, P2 are closed (open) in X.
In the sequel every index pair will be assumed to be closed unless explicitly
specified as an open index pair. The index pair (P1, P2) is called regular if

cl(f(P2) \ P1) ∩ cl(P1 \ P2) = ∅ (5)

and there exists a set U open in P1 such that

clP1P2 ⊂ U and f(U \ P2) ⊂ P2. (6)

Every isolated invariant set admits an index pair and the Conley index
captures the common information present in various index pairs. There are
many ways to define the Conley index (see e.g. [20, 15, 21, 6]). We need
an algebraic Conley index, so we will use the definition based on the Leray
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reduction (see [12]). Let ϕ = {ϕk} be an endomorphism of a graded vector
space E = {Ek} over the field of rational numbers. The generalized kernel
of ϕ is defined as gker(ϕ) :=

⋃
{kerϕn | n ∈ N}. We call ϕ the Leray

endomorphism provided the quotient space E ′ := E/ gker(ϕ) is of a finite
type. It is straightforward to verify that for every Leray endomorphism ϕ
there is a well defined induced graded automorphism ϕ′ = {ϕ′k} consisting of
induced automorphisms ϕ′k : E ′

k → E ′
k. It is called the Leray reduction of ϕ.

The following proposition is an immediate consequence of the definition
of the index pair.

Proposition 1 (cf. [11], Lemma 1 and [13], Proposition 4) Assume P =
(P1, P2) is a regular index pair or a regular open index pair for S. Then f
maps the pair (P1, P2) into (P1 ∪ f(P2), P2 ∪ f(P2)) and the inclusion

iP : (P1, P2)→ (P1 ∪ f(P2), P2 ∪ f(P2))

induces an isomorphism in singular homology with rational coefficients.

Let H∗ denote the functor of singular homology with rational coefficients.
The above proposition enables us to define the index map of the index pair
IP : H∗(P1, P2) → H∗(P1, P2) by IP := (iP )−1

∗ ◦ (fP )∗, where fP denotes the
mapping f considered as a mapping of the pair (P1, P2) into (P1∪f(P2), P2∪
f(P2)).

We have the following theorem, which follows from Theorem 6.2 in [15]
and Theorem 3 in [14]

Theorem 2 Assume X is a compact ANR and S is an isolated invariant
set of a continuous map f : X → X. If P and Q are two index pairs of S
then IP and IQ are Leray endomorphisms and the Leray reductions of IP and
IQ are conjugate.

Since every isolated invariant set always admits at least one index pair
(see [11], Theorem 2 and 3), the above theorem allows us to define IS, the
index autmorphism of S, as the conjugacy class of IP for any index pair P of
S.

3 Main results

Given α : E → E, an endomorphism of a vector space E, let L(α) denote
the set of all complex, nonzero eigenvalues of α and for λ ∈ L(α) let m(λ, α)
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denote the multiplicity of λ as an eigenvalue of α. If E is finitely dimensional,
then let tr(α) denote the trace of α. We have for every integer n ≥ 1 (cf.
e.g. [4], Section 7, Proposition 1.2.)

tr(αn) =
∑

λ∈L(α)

m(λ, α)λn. (7)

Note that the above equality is also true for n = 0 under the assumption
that α0 = idE.

Now let ϕ = {ϕk} be a Leray endomorphism of a graded vector space
E = {Ek}. We define the Lefschetz number of ϕ as the alternating sum of
the traces of Leray reductions of ϕk

Λ(ϕ) :=
∞∑

k=0

(−1)ktr(ϕ′k).

Note that the sum is finite, because in the case of a Leray endomorphism
ϕ′k = 0 for almost all k.

Let L(ϕ) := ∪k L(ϕk) and for a λ ∈ L(ϕ) put

s(λ, ϕ) :=
∞∑

k=0

(−1)km(λ, ϕk).

Since obviously L(ϕk) = L(ϕ′k), from (7) we obtain for every n ∈ N

Λ(ϕn) :=
∞∑

k=0

∑
λ∈L(ϕk)

(−1)km(λ, ϕk)λ
n =

∑
λ∈L(ϕ)

s(λ, ϕ)λn. (8)

The number
χ(ϕ) := Λ(ϕ0)

is called the Euler-Poincaré characteristic of ϕ. Since ϕ0
k = idEk

, we get

χ(ϕ) =
∞∑

k=0

(−1)k dimEk.

Therefore the Euler Poincaré characteristic of a map is compatible with (1)
in the setting of the Conley index, i.e. when E is a Conley index and ϕ is
the corresponding index automorphism. Moreoveor, by (8) we have

χ(ϕ) =
∑

λ∈L(ϕ)

s(λ, ϕ). (9)

6



We define the periodicity number of ϕ by

τ(ϕ) := card {λ ∈ L(ϕ) | s(λ, ϕ) 6= 0 }.

From (9) we get
χ(ϕ) 6= 0 ⇒ τ(ϕ) 6= 0. (10)

It is straightforward to verify that the Euler-Poincaré characteristic, Lef-
schetz number and periodicity number of an endomorphism ϕ of a graded
vector space do not depend on the conjugacy class of ϕ, which allows us to
extend these concepts to conjugacy classes of endomorphisms. In particular
they make sense for the Conley, which is defined only up to a conjugacy class.

Property (10) shows that in order to prove Theorem 1 it suffices to prove
the following theorem.

Theorem 3 Let X be a metric ANR. Assume S is an isolated invariant
set of a continuous map f : X → X. If τ(IS) 6= 0 then f has a periodic point
in S.

We postpone the proof of this theorem to Section 5. The following ex-
ample serves as an elementary illustration of Theorem 1.

Example 1 Consider the logistic map f : [0, 1] → [0, 1] given for x ∈ [0, 1]
by

f(x) := 4x(1− x).
It is a lengthy but straightforward task to verify that N = [1

4
, 1

2
] ∪ [13

16
, 15

16
] is

an isolating neighborhood for f isolating an isolated invariant set S whose
Conley index is nontrivial only in dimension one with the index map

IS =

[
0 −1
1 0

]
.

Therefore χ(IS)=-2. It follows that f has a periodic point in S. Obviously,
the existence of this periodic point may be easily established by a direct
computation. However, it is straightforward to generalize this example to
the case of the map g : R× Rd → R× Rd given for (x, y) ∈ R× Rd by

g(x, y) := (f(x) + µ(x, y), ν(x, y)),

where µ, ν : R× Rd → Rd are some continuous functions. Let B denote the
unit ball in Rd centered at the origin. It is straightforward to verify that for
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µ, ν sufficiently small N×B is an isolating neighborhood for g with the same
Conley index as the Conley index of S. It follows that g has a periodic point
in N ×B.

Concrete applications of Theorems 1 and 3 are for isolating neighborhoods
computed algorithmically by means of rigorous numerics (see [22, 16]). This is
because the Conley indices obtained algorithmically may be very complicated
and the Euler-Poincaré characteristic may serve as an elementary indicator,
that an interesting dynamics is detected.

4 Auxiliary results and proofs

In the sequel ind(f, V ) will denote the fixed point index of f in V (see [5]).
The following theorem is a special case of Theorem 3 in [13]

Theorem 4 (cf. [13], Theorem 3) Let X be a compact ANR and let S be
an isolated invariant set of a continuous map f : X → X. If (P1, P2) is a
regular open index pair for S then IP is a Leray endomorphism. Moreover,
for every n ∈ N there exists U , an open neighborhood of S, such that if
P1 ⊂ U , then

ind(fn, int(P1 \ P2)) = Λ(In
P ). (11)

Note that the localization of the index pair in a sufficiently small neighbor-
hood of the isolated invariant set S is crucial for the validity of (11).

The following proposition follows directly from Lemma 2.1 in [8].

Proposition 2 Assume φ, ψ are two endomorphisms of graded vector
spaces such that φ = gh, ψ = hg for some morphisms h : E → F , g : F → E
(this is in particular satisfied if φ and ψ are conjugated). If one of them is a
Leray endomorphism then so is the other and Λ(φk) = Λ(ψk) for all natural
k.

We have the following

Lemma 1 Let P2 ⊂ P1 be open subsets of X and let A ⊂ X satisfy
A ∩ P1 ⊂ P2 and cl(P1 \ P2) ∩ A = ∅. Then i : (P1, P2) ↪→ (P1 ∪ A,P2 ∪ A)
is an excision, i.e. it induces an isomorphism in homology.
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Proof: Observe that the excised set is (P1 ∪ A) \ P1 = A \ P1 = A \ P2 =
(P2∪A)\P2. Since A\P1 is closed in P1∪A and P2∪A is open in P1∪A, we
observe that clP1∪A(A \ P1) = A \ P1 ⊂ P2 ∪A = intP1∪A(P2 ∪A). Therefore
the standard excision property of the singular homology implies that i is an
excision. 2

Let U be an open neighborhood of an isolated invariant set S of f . We
say the function κ : U → [0,∞) increases along trajectories of f on U if

κ(x) > 0, f(x) ∈ U ⇒ κ(f(x)) > κ(x).

and decreases along trajectories of f on U if

κ(x) > 0, f(x) ∈ U ⇒ κ(f(x)) < κ(x).

Consider functions φ, γ : U → [0,∞]. We say (cf. [11]) that the pair (φ, γ) is
a Lyapunov pair for S if the following conditions are satisfied

(i) φ decreases and γ increases along trajectories of f on U,

(ii) S ⊂ φ−1(0) ∩ γ−1(0),

(iii) for every neighborhood W of K there exists an ε > 0 such that the set

H(ε, φ, γ) := {x ∈ U | φ(x) < ε, γ(x) < ε}

satisfies the condition
clH(ε, φ, γ) ⊂ W.

We say that (φ, γ) is a continuous Lyapunov pair for S if (φ, γ) is a
Lyapunov pair for S and both φ an γ are continuous.

Theorem 5 Let X be a compact ANR. Assume f : X → X is a contin-
uous map and S is an isolated invariant set of f . For every neighborhood
U of S there exist an open index pair P = (P1, P2) and a closed index pair
Q = (Q1, Q2) such that P ⊂ Q, Q1 ⊂ U , both IQ and IP are Leray endomor-
phisms and for every n ∈ N

Λ(In
Q) = Λ(In

P ).
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Proof: Let (ϕ, γ) be a continuous Lyapunov pair for S on some its neighbor-
hood (the existence of such a pair follows from Theorem 1 and Theorem 2 in
[11]). For small enough ε > 0 let P = (P1, P2) and Q = (Q1, Q2) be given by

P1 := ϕ−1([0, ε)) ∩ γ−1([0, ε)), P2 :=
{
x ∈ P1 : γ(f(x)) >

ε

2

}
(12)

and

Q1 := ϕ−1([0, ε]) ∩ γ−1([0, ε]), Q2 :=
{
x ∈ Q1 : γ(f(x)) ≥ ε

2

}
. (13)

It is proved respectively in [11] and [13] that P and Q are regular index pairs
for S. Clearly Q is closed, P is open, P ⊂ Q and Q1 ⊂ U .

Consider x ∈ Q1 with f(x) /∈ P1. Then ϕ(x) ≤ ε and γ(x) ≤ ε. Since
ϕ(f(x)) < ϕ(x) ≤ ε and f(x) /∈ P1, we have γ(f(x)) ≥ ε which means that
x ∈ Q2. Thus f(Q1) ⊂ P1 ∪ f(Q2). Consequently f maps the pair (Q1, Q2)
into (P1 ∪ f(Q2), P2 ∪ f(Q2)).

Next we will prove that

cl(P1 \ P2) ∩ f(Q2) = ∅. (14)

Assume the contrary and consider x ∈ cl(P1\P2)∩f(Q2). Let {xn} ⊂ P1\P2

be such that xn → x. Observe that then γ(f(xn)) ≤ ε
2

and consequently
γ(x) < γ(f(x)) ≤ ε

2
. On the other hand, taking into account u ∈ Q2 with

x = f(u) we have γ(x) = γ(f(u)) ≥ ε
2

which brings a contradiction.
Let us consider x ∈ f(Q2) ∩ P1. Then x = f(u) with some u ∈ Q2

which implies γ(x) = γ(f(u)) ≥ ε
2
. Moreover, since γ(f(x)) > γ(x), we have

x ∈ P2. This shows that
f(Q2) ∩ P1 ⊂ P2. (15)

Consider now the following commutative diagram

(P1 ∪ f(P2), P2 ∪ f(P2))
f ↗ ↓ k1 ↖ i1

(P1, P2)
f−→ (P1 ∪ f(Q2), P2 ∪ f(Q2))

i2←↩ (P1, P2)
↓ i4 f ↗ ↓ k2 ↓ i4

(Q1, Q2)
f−→ (Q1 ∪ f(Q2), Q2 ∪ f(Q2))

i3←↩ (Q1, Q2)

in which mappings denoted by f are induced by f treated as a mapping of
a suitable pair and i1, i2, i3, i4, k1, k2 are inclusions. Taking into account (14)
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and (15) and applying Lemma 1 to f(Q2) we see that i2 : (P1, P2) ↪→ (P1 ∪
f(Q2), P2∪f(Q2)) induces an isomorphism in homology. Both i1 : (P1, P2) ↪→
(P1∪ f(P2), P2∪ f(P2)) and i3 : (Q1, Q2) ↪→ (Q1∪ f(Q2), Q2∪ f(Q2)) induce
isomorphisms in homology as (Q1, Q2) and (P1, P2) are regular index pairs.

Finally, observe that IP and IQ satisfy assertions of Proposition 2. More-
over, by Theorem 4 IP is a Leray endomorphism, therefore so is IQ and for
every n ∈ N we have Λ(In

Q) = Λ(In
P ). This completes the proof. 2

5 Proof of Theorem 3

Proof of Theorem 3. By Theorem 2 the index map IS is a Leray endomor-
phism. Let L(IS) = {λ1, λ2, . . . , λp}. We will show that there exists n ∈ N
such that Λ(In

S ) 6= 0. Assume the contrary. Then by (8)

p∑
i=1

s(λi, IS)λn
i = 0 for n ∈ N.

This shows that the numbers s(λi, IS) for i = 1, 2, . . . , p satisfy the system
of linear equations

λ1x1 + λ2x2 + · · · + λpxp = 0
λ2

1x1 + λ2
2x2 + · · · + λ2

pxp = 0
· · · · · · · · · · ·

λp
1x1 + λp

2x2 + · · · + λp
pxp = 0.

One can verify that the determinant of this system is∣∣∣∣∣∣∣∣
λ1 λ2 · · · λp

λ2
1 λ2

2 · · · λ2
p

· · · · · ·
λp

1 λp
2 · · · λp

p

∣∣∣∣∣∣∣∣ =

p∏
i=1

λi

∏
1≤i<j≤p

(λj − λi) .

Since λ ∈ L(IS) are distinct, the determinant is nonzero. This implies
s(λ, IS) = 0 for each λ ∈ L(IS). Therefore τ(IS) = 0, a contradiction.

Thus there exists an n ∈ N such that Λ(In
S ) 6= 0. For such an n select

U , an open neighborhood of S, such that the conclusion of Theorem 4 is
satisfied.
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By Theorem 5 one can find an open index pair P = (P1, P2) and a closed
index pair Q = (Q1, Q2) such that P ⊂ Q and Q1 ⊂ U and

Λ(In
Q) = Λ(In

P ).

Is is straightforward to verify that, taking a smaller U if necessary, we also
have

{x ∈ U | fn(x) = x } ⊂ S. (16)

Since P is an index pair of S, by definition IS is the conjugacy class of
IP , therefore

Λ(In
S ) = Λ(In

Q).

Thus it follows from Theorem 4 that

ind(fn, int(P1 \ P2)) = Λ(In
P ) = Λ(In

Q) = Λ(In
S ) 6= 0.

and the fundamental property of the fixed point index implies that fn has a
fixed point in int(P1 \ P2). By (16) the fixed point is in S, which completes
the proof. 2
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