
HOMOLOGY ALGORITHM BASED ON ACYCLIC
SUBSPACE

MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

Abstract. We present a new reduction algorithm for the efficient
computation of the homology of a cubical set. The algorithm is
based on constructing a possibly large acyclic subspace, and then
computing the relative homology instead of the plain homology. We
show that the construction of acyclic subspace may be performed
in linear time. This significantly reduces the amount of data that
needs to be processed in the algebraic way, and in practice it proves
itself to be significantly more efficient than other available cubical
homology algorithms.

1. Introduction

In this paper we introduce a new method for the computation of the
homology of a cubical set X. The method is based on the elementary
observation that

Hn(X) ∼=

{
Hn(X, A) for n ≥ 1

Z⊕Hn(X,A) for n = 0

if A is an acyclic subset of X. By an acyclic set we mean a set whose
homology is the same as the homology of the space consisting of just
one point. The key part of the presented method is the construction of
a possibly large acyclic cubical subset A of X in an efficient way. Then
we compute the relative homology of the pair (X, A) in order to obtain
H∗(X). Due to the excision property of the relative homology the cost
of this computation depends only on the amount of cubes in X which
are not in A, so it is relatively small when A is large.

We present our method for cubical homology, but it is straightfor-
ward to extend the method to simplicial homology.

2000 Mathematics Subject Classification. Primary 55-04, 55N35; Secondary
52B99.

Key words and phrases. homology algorithm, cubical set, cubical homology,
acyclic subspace, Smith diagonalization.

The first and the third author are partially supported by KBN, Grant N201 037
31/3151. The second author is partially supported by the DARPA TDA project
and the Department of Energy grant no. 97891.

1

2 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

1.1. Motivation. Among the first applications of the homology algo-
rithm of triangulations were problems in computer-aided design [11].
Although in the classical homology theory simplicial complexes con-
stitute the traditional combinatorial representation of sets, in many
present day applications cubical structure is more natural and conve-
nient. For instance, in digital imaging the data is usually acquired and
stored as a bitmap of pixels or voxels. In rigorous numerics of dynamical
systems computations are performed by means of interval arithmetic
[28], which also leads in a natural way to cubical sets. The need to
compute the homology of a cubical set appeared probably for the first
time in the computer assisted proof of chaos in the Lorenz equations
[25, 26]. In that case, just in lack of a better method, the homology
was found just by a visual inspection. This was possible, because the
set was planar and although it was large, its topology was very simple.
However, this paper indicated the need for efficient cubical homology
algorithms and in 1999 the first working implementations [35, 22] of
such algorithms appeared. This, together with new algorithms trans-
lating the problems in dynamics to problems in topology of cubical
sets [38, 39, 10, 29], enabled more advanced computer assisted proofs
in dynamics [34, 8, 9, 2]. On the other hand, the availability of cubi-
cal homology software enabled direct applications to image processing
and recognition [1, 33, 23, 43]. Other areas of applications of compu-
tational homology are: pattern classification [18, 17], sensor networks
[36], and materials science [40]. In many of these applications the num-
ber of cubes or simplices is counted in hundreds of thousands or even
millions. All this creates the demand for faster homology algorithms.

1.2. Prior work. The classical homology algorithms reduce the prob-
lem to Smith diagonalization [32, Section 1.11]. The best available
Smith diagonalization algorithms have supercubical complexity [37].
This is in general not sufficient when the number of building blocks
of the topological space (cubes, simplices) is counted in thousands
or more. The problem of efficient computation of homology groups
has been addressed by many authors and from various points of view
[11, 14, 19, 24, 3, 13, 12, 20, 42].

An alternative to various improvements of the Smith Normal Form
algorithm, including probabilistic algorithms, are the methods of reduc-
tion originally proposed in [19] and then developed in [24, 20, 34, 27].
The reduction methods consist in iterating the process of replacing the
chain complex or even the topological space by a smaller one with the
same homology and computing the homology only when no more reduc-
tions are possible. This way one postpones the process of computing the

HOMOLOGY VIA ACYCLIC SUBSPACE 3

homology of the chain complex until the complex is small. Moreover,
if the reduction process is applied directly to the topological space,
then also the expensive process of constructing the chain complex is
postponed until the space is small. Of course, one can profit from the
reduction process only if one step of the reduction is computationally
inexpensive and the reduction is significant. The present work may be
characterized as an essentially new, fast and deep method of reducing
the topological space.

We will use three earlier implementations of reduction methods as a
reference point for the presented new method. (All these implementa-
tions are available from the web page of the Computational Homology
Project [45]).

PP Algebraic elementary reductions by P. Pilarczyk [35], based on
[19].

BK Geometrically controlled algebraic reductions by W. Kalies [22],
based on [24].

AR Algebraic elementary reductions by M. Mrozek [31], based on
[19].

In the case of a cubical set the matrices of boundary maps are sparse.
Unfortunately this is not very helpful, because of the fill-in process in
the Smith algorithm. Nevertheless, it is reasonable to use this fact and
all three implementations PP, BK, AR use an appropriate technique
(respectively hashing tables, trees and lists) to avoid unnecessary ma-
nipulation of zeros.

1.3. Outline. We begin with recalling the concepts of cubical sets and
cubical homology in Section 2. Then, in Section 3, an algorithm for the
construction of an acyclic subspace is presented. In Section 4 we show
how to use this algorithm to construct an efficient homology algorithm.
Various algorithms for the acyclicity test used in Section 3 are discussed
in Section 5. In Section 6 we show how to efficiently use the acyclic sub-
space homology algorithm in the presence of more than one connected
component. In Section 7 we discuss a related method of preprocessing
cubical sets, called by us shaving, which in some situations improves
the speed of homology computations. Then, in Section 8, we present
the implementation of the method for cubical sets. This implementa-
tion is compared with earlier implementations in Section 9, where some
numerical experiments and benchmarks are presented. In Section 10 we
compare our software with some other homology packages, not avail-
able from [45]. In the last section we present conclusions.

4 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

2. Preliminaries

In the paper we assume that the reader is familiar with the concepts
of homology theory, in particular the homology theory of cubical sets,
as presented in [20]. However, to facilitate the understanding of the
main results, we recall the basic notation and basic concepts.

2.1. Cubical Sets. Throughout the paper the sets of natural numbers,
integers, rational numbers and real numbers are denoted respectively
by N, Z, Q and R. For a finite set Z its cardinality is denoted by card Z.
Given sets A ⊂ X ⊂ Rd we denote by intX A the interior of A in X.

An elementary interval in R is an interval of the form [k, k + δ],
where k ∈ Z and δ ∈ {0, 1}. If δ = 0, the interval is called degenerate.
Let d ∈ N be fixed. The Cartesian product of d elementary intervals
is called an elementary cube in Rd. The dimension of the elementary
cube Q is the number of elementary intervals in the product which are
not degenerate. The family of all q-dimensional elementary cubes in
Rd is denoted by Kd

q and the family of all elementary cubes in Rd is
denoted by Kd. The elements of Kd

0 and Kd
1 are referred to respectively

as vertices and edges.
A subset X ⊂ Rd is called a cubical set if it is a finite union of

elementary cubes. A finite subfamily of Kd is called a cubical family.

2.2. Cubical Homology. A q-chain is a function c : Kd
q → Z which

vanishes at all but a finite number of cubes. The support of the chain
c is given by

|c| :=
⋃
{Q ∈ Kd

q | c(Q) 6= 0 }.

Given a cubical set X put

Cq(X) := { c ∈ Cq | |c| ⊂ X }.

Then Cq(X) with the argumentwise addition is a free abelian group.
The set of all elementary chains of the form

Q̂(P) =

{
1 if P = Q

0 otherwise

for all Q ∈ Kd
q such that Q ⊂ X, is a basis of Cq(X). Given two

elementary cubes P ∈ Kd
q1

and Q ∈ Kd
q2

we define the cubical product
of the chains P̂ , Q̂, by

P̂ � Q̂ := P̂ ×Q

and we extend this definition linearly to arbitrary chains.

HOMOLOGY VIA ACYCLIC SUBSPACE 5

We define the boundary operator as the homomorphism ∂ : Cq →
Cq−1 given recursively on generators by

∂Q̂ :=


0 if Q = [l],

[̂l + 1]− [̂l] if Q = [l, l + 1].

∂Î � P̂ + (−1)dim I Î � ∂P̂ if Q = I × P

for I ∈ K1 and P ∈ Kd−1.

One can verify that for every cubical set X we have an induced
boundary operator ∂X

q : Cq(X) → Cq−1(X) and ∂X
q ∂X

q+1 = 0. Therefore,
Bq(X) := im ∂X

q+1, the image of ∂X
q+1 is a subgroup of Zq(X) := ker ∂X

q ,
the kernel of ∂X

q . The quotient group

Hq(X) := Zq(X)/Bq(X)

is called the qth cubical homology group of X. By the homology of X
we mean the collection of all homology groups H(X) := {Hq(X)}.

2.3. Full Cubical Sets. A d-dimensional elementary cube in Rd is
called a full elementary cube. The family of all full elementary cubes
will be denoted by Hd or simply by H. A special case of a cubical set is
the full cubical set, i.e. a finite union of full elementary cubes. Similarly,
a full cubical family is a cubical family consisting of full cubical sets.
For every full cubical set X there exists a unique full cubical family
X ⊂ H such that

|X | :=
⋃
X = X.

Then X is called the representation of X and X is called the geometric
realization of X . In what follows we emphasize the formal difference
between the cubical sets and cubical families by denoting the latter
with calligraphic letters. However, we often freely carry over the termi-
nology from cubical sets to their representations as families of cubes.
For instance, by the homology of X ⊂ H we understand the homology
of |X | and we say that X is acyclic meaning that |X | is acyclic.

A d-dimensional bitmap is a d-dimensional array of bits which cor-
respond to pixels, voxels, or higher-dimensional “boxes” which we will
simply call pixels, independently of their dimension. A bitmap repre-
sents a cubical set in the following way: The pixel with the coordinates
(k1, . . . , kd) corresponds to the cube [k1, k1 + 1]× · · · × [kd, kd + 1], and
the set represented by the bitmap is the union of all the cubes whose
corresponding pixels are set to 1.

A full elementary cube P is said to be a neighbor of a full elementary
cube Q if P ∩Q 6= ∅. In terms of the corresponding pixels, this means
that all their coordinates differ by no more than 1. The full elementary

6 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

cube P is called a neighbor of a full cubical family X ⊂ H if P is a
neighbor of at least one cube Q ∈ X . A neighborhood of Q is the set

o(Q) := {P ∈ H : P ∩Q 6= ∅}

and for a full cubical family X we define oX (Q) := X ∩ o(Q).
Because of the way the geometric realization of a cubical family is

defined, two cubes that intersect along lower dimensional faces, such as
vertices or edges, are treated as adjacent. In the imaging literature, this
is often referred to as considering (3d − 1)-neighborhoods rather than
2d-neighborhoods, where d is the dimension of the underlying space.

Since in the sequel we consider only full elementary cubes, we drop
the words full and elementary when referring to full elementary cubes.
We also drop the word full, when referring to full cubical sets and full
cubical families.

3. Acyclic Subspace Construction

In this section we present the algorithm for the construction of an
acyclic cubical subset of a given cubical set.

The idea of the algorithm is to begin with a set A that contains
a single cube selected arbitrarily from X and extending this set by
gradually adding cubes Q ∈ X \ A such that |A| ∪ Q is acyclic. This
may be considered as a variant of Algorithm 4.5 in [27]. We use a
queue to store the neighbors of cubes added to A, as these are potential
candidates for addition to A in the next step.

All our tests for the acyclicity of |A| ∪Q presented in Section 5 are
based on the following elementary observation.

Lemma 1. If A is an acyclic cubical family and Q ∈ H \ A, then
|A| ∪Q is acyclic if and only if |A ∩ o(Q)| is acyclic.

Proof. Put A′ := A ∩ o(Q). By [34, Lemma 9] the set |A′| ∩ Q is a
deformation retract of |A′|. Since obviously |A| ∩ Q = |A′| ∩ Q, we
conclude that |A|∩Q is a deformation retract of |A∩o(Q)|. Therefore,
by [20, Theorems 6.65 and 6.69], the set |A|∩Q is acyclic if and only if
|A∩o(Q)| is acyclic and it remains to be proved that |A|∪Q is acyclic
if and only if |A| ∩Q is acyclic.

Since |A| is acyclic by assumption and Q is acyclic by [20, Theo-
rem 2.76], the acyclicity of |A|∪Q follows from the acyclicity of |A|∩Q
by [20, Theorem 2.78]. Now assume that |A| ∪ Q is acyclic. It follows
from Mayer-Vietoris Theorem (see [20, Theorem 9.29]) that

Hk(|A| ∩Q) ∼= Hk+1(|A| ∪Q) = 0 for k ∈ N.

HOMOLOGY VIA ACYCLIC SUBSPACE 7

Thus we need to prove only that H0(|A| ∩ Q) ∼= Z. Let V1, V2 be two
vertices in |A| ∩ Q. Since |A| and Q are acyclic, there exists chains
c1 ∈ C1(|A|) and c2 ∈ C1(Q) such that ∂c1 = V̂1 − V̂2 = ∂c2. Then
z := c1 − c2 ∈ Z1(|A| ∪ Q). Since |A| ∪ Q is acyclic, there exists a
d ∈ C2(|A|∪Q) such that ∂d = z. By [20, Proposition 2.77] there exist
d1 ∈ C2(|A|) and d2 ∈ C2(Q) such that d = d1 + d2. Then

c1 − c2 = z = ∂d1 + ∂d2

and
u := c1 − ∂d1 = c2 + ∂d2 ∈ C1(|A| ∩Q).

Therefore, ∂u = ∂c1 = V̂1 − V̂2, which implies that V̂1 and V̂2 are
homologous in |A| ∩Q and consequently H0(|A| ∩Q) ∼= Z. �

In the following formal description of the acyclic subspace algorithm,
it is assumed that the function AcyclicityTest(A, Q) is admissible in
the sense that it either returns true meaning that A∩o(Q) is acyclic or
it returns false meaning that it failed to prove that A∩ o(Q) is acyclic.

Several possible choices for this function are described in detail in
Section 5.

Algorithm 2. AcyclicSubspace

function AcyclicSubspace (cubical family X)
begin

Q := any cube from X;
A := {Q};
Q := empty queue of cubes;
for each P ∈ X \ {Q} ∩ o(Q) do

enqueue(Q,P);
while Q 6= ∅ do begin

Q := dequeue(Q);
if AcyclicityTest(A,Q) then begin

A := A ∪ {Q};
for each P ∈ (X \ A) ∩ o(Q) do

if P 6∈ Q then
enqueue(Q,P);

end;
end;
return A;

end;

Note that in the actual implementation one might use two parallel
data structures to represent Q: a set and a queue, because in addition
to the standard queue operations, in the algorithm we also need to

8 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

verify whether a given cube is already contained in the queue or not,
and this operation is normally not very efficient for queues.

Every time a cube is added to the constructed acyclic subset, all
its neighbors from X \ A are enqueued. This construction has two
advantages. First, only the cubes whose addition to A preserves its
connectedness are considered in the next step, which prevents from
analysing cubes disjoint from |A|. Second, the oldest neighbors in the
queue are processed first, which helps grow the set A in a balanced
way.

Theorem 3. Assume that the function AcyclicityTest in Algorithm 2
is admissible. Then Algorithm 2 called with a nonempty cubical family
X ⊂ H returns an acyclic subset A of X . Moreover, the “while” loop
is passed at most (3d − 1) cardX times.

Proof. Put

K := {k ∈ N | the “while” loop is passed at least k times}.

For k ∈ K let Ak and Qk denote respectively the contents of variable
A and Q on entering the kth pass of the “while” loop. Since the family
A1 contains just one cube from X , it is acyclic by [20, Theorem 2.76].
If k − 1, k ∈ K, then either Ak = Ak−1 or Ak = Ak−1 ∪ {Qk}. The
latter case only happens when the function AcyclicityTest called
with Ak−1 and Qk−1 returns true. The admissibility of the function
AcyclicityTest and Lemma 1 imply that the set Ak is acyclic in this
case, too. By induction, all the sets Ak for k ∈ K are acyclic. It remains
to be shown that the “while” loop runs only at most (3d − 1) cardX
times. Let q0 := 0 and for k ∈ K let qk and ak denote respectively
the number of elements in the queue Q and the number of elements
in the set A on entering the kth pass of the “while” loop. Note that
ak+1 − ak ∈ {0, 1} whenever k, k + 1 ∈ K. For i ∈ N put

ki := max{l ∈ K | al ≤ i}.

Let I := {i ∈ N | ki < ki+1}. Observe that i ∈ I implies that the
acyclicity test succeeds on the kith pass of the “while” loop, aki

= i
and aki+1 = i+1. For i ∈ I let si denote the number of cubes added to
the queue Q inside the block following the acyclicity test on the kith
pass of the “while” loop.

For k ∈ K such that k + 1 ∈ K define rk := qk+1 − qk. Observe that

rk =

{
−1 + si if k = ki for some i ∈ I,
−1 otherwise.

HOMOLOGY VIA ACYCLIC SUBSPACE 9

Now we have for k ∈ K

(1) qk =
k∑

i=0

rk = −k+

ak∑
i=1

si ≤ −k+ak(3
d−1) ≤ −k+(3d−1) cardX .

Therefore, there exists a k0 ∈ N such that qk0 = 0. This implies that
the “while” loop terminates on the k0th pass of the “while” loop.
Moreover, it follows from (1) that k0 ≤ (3d−1) cardX , which completes
the proof. �

As an immediate corollary we get

Corollary 4. Assume the space dimension d is fixed and the function
AcyclicityTest in Algorithm 2 runs in constant time. Let n denote
the cardinality of the cubical family on input of Algorithm 2. Then Al-
gorithm 2 runs in O(n) time when the cubical families are implemented
as bit arrays (bitmaps) and in O(n log n) time when the cubical families
are implemented as binary search trees.

4. Acyclic Subspace Homology Algorithm

Assume that Homology(X ,A) is a function which, given on input cu-
bical families A ⊂ X , returns the relative homology H∗(|X |, |A|) (for
examples of algorithms which may be used to implement such a func-
tion see [20, 30]). As we explained in the introduction, the computation
of the homology of |X | may be replaced by the computation of the rel-
ative homology of the pair (|X |, |A|) for some subfamily A such that
|A| is acyclic. As we show in the proof of Theorem 6, the computation
of H∗(|X |, |A|) may be replaced by the computation of H∗(|X0|, |A0|),
where A0 := o(X \ A) ∩ A and X0 := X \ A ∪ A0. This is where we
profit from our approach, because when X \ A is small, then also X0

and A0 are small compared to X and in consequence the homology of
the pair (|X0|, |A0|) may computed much faster than the homology of
|X |.

Therefore the cubical homology algorithm based on acyclic subspace
construction is as follows:

Algorithm 5. Acyclic Subspace Homology Algorithm

function AS_Homology(cubical family X)
begin

A := AcyclicSubspace(X);
Z := X \ A;
A0 := o(Z) ∩ A;
X0 := Z ∪A0;
return Homology(X0,A0);

10 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

end;
Theorem 6. Algorithm 5 called with a cubical family X on input re-
turns the reduced homology of |X |.
Proof. Let X, A,X0, A0 denote the geometric realizations of X ,A,X0

and A0 respectively. It follows from the acyclicity of A and from the
exact sequence of the pair (X, A) (see [20, Corollary 9.26]) that the
homology groups Hn(X) and Hn(X,A) are isomorphic for n > 0 and
the sequence

0 → Z → X0(X) → X0(X, A) → 0

is exact. Therefore, H0(X, A) is isomorphic to H0(X)/Z, i.e. it is iso-
morphic to the 0th reduced homology of X.

Now put U := intX |A \A0|. One can easily verify that X0 = X \U ,
A0 = A \ U and U is a representable set in the sense of [20, Defini-
tion 6.1]. Therefore, it follows from [20, Theorem 9.14] that the inclu-
sion ι : (X0, A0) → (X, A) induces an isomorphism between H∗(X0, A0)
and H∗(X, A). �

5. Acyclicity Tests

In this section we present some algorithms which may be used to
implement the function AcyclicityTest(A, Q). Recall that we only
require this function to be admissible. In other words, we assume that
the test is a partial test: when the function returns true, then the
family A ∪ o(Q) is acyclic but when it returns false, it does not imply
that A∪ o(Q) is not acyclic. Of course, a total test, when the function
returns true if and only if the family A ∪ o(Q) is acyclic, might seem
to be a better choice, but as we will see in the sequel this is not true
in general, because a total test may be computationally expensive.

5.1. Direct Computation. The simplest and most straightforward
choice for a total acyclicity test is to use an independent homology
algorithm to make the verification if A ∩ o(Q) is acyclic. Using a slow
homology algorithm to construct a faster homology algorithm need
not be a total nonsense, especially in low dimensions, because the slow
homology algorithm will be applied only to A∩ o(Q), which is small in
low dimensions. Unfortunately, as we will see in Section 9, numerical
experiments do not indicate that one can profit from this approach.

5.2. Direct Homology Computation via Tabulated Configura-
tions. In theory, one can index all the subsets (configurations) of o(Q),
compute their homology to determine their acyclicity, store this infor-
mation in a table AcyclicConfigTest and use the table for the acyclic-
ity test.

HOMOLOGY VIA ACYCLIC SUBSPACE 11

Algorithm 7. Tabulated Configurations

function TabConfTest(cubical family A,cube Q)
begin

N := o(Q) ∩ A;
n := index of N;
return AcyclicConfigTest[n];

end;

The number of such configurations in d-dimensional space is cd :=
23d−1. Starting from dimension 4, when c4 = 280, the method is of no
practical value but in dimensions 2 and 3 the method may be imple-
mented, and it leads to an extremely fast version of Algorithm 5, as we
will show in Section 9.

5.3. Simple Intersection. Since every polyhedron is homeomorphic
to a cubical sub-complex of the boundary of a cube (see [5, Part
III, Theorem 1.1] or [20, Theorem 11.17]), a total acyclicity test would
essentially have to contain a complete homology algorithm. Therefore,
a well chosen partial test might turn out to be a better choice for
dimension where we cannot tabulate all the neighborhood configura-
tions. Probably the simplest nontrivial partial test for the acyclicity of
a family A consists in verifying whether the intersection of the family
is nonempty.

Algorithm 8. Simple Intersection

function SimpleIntersection(cubical family A,cube Q)
begin

N := o(Q) ∩ A;
return

⋂
N 6= ∅;

end;

Theorem 9. Assume Algorithm 8 is called with a family A ⊂ H and
a cube Q ∈ H \ A. If it returns true, then |A| ∩Q is acyclic.

Proof. Assume Algorithm 8 returns true. This implies that there
exists an x ∈

⋂
N . Therefore, |N | is star-shaped in the sense of [20,

Definition 2.82]. Thus it is acyclic by [20, Proposition 2.84]. �
The function SimpleIntersection(A,Q) is fast, but obviously it is

very far from a total criterion. Nevertheless, as we will show in Sec-
tion 9, even this simple function may lead to a significant improvement
in the computation of the homology of cubical sets.

12 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

5.4. Recursive Approach. Further improvement may be obtained
by calling the function AcyclicSubspace implemented on the basis
of some simple partial test for acyclicity to obtain a better test for
acyclicity.

Algorithm 10. Recursive Test

function RecursiveTest (cubical family A, cube Q)
begin

if AcyclicityTest(A,Q) then
return true;

else begin
C := A ∩ o(Q);
return C = AcyclicSubspace (C);

end;
end;

Theorem 11. Assume AcyclicityTest is admissible and Algorithm
10 is called with a family A ⊂ H and a cube Q ∈ H \ A. If it returns
true, then |A| ∩Q is acyclic.

Proof. The algorithm returns true either if AcyclicityTest(A, Q) suc-
ceeds or when AcyclicSubspace applied to C := A ∩ o(Q) returns C.
If AcyclicityTest(A,Q) succeeds, then |A| ∩ Q is acyclic by the ad-
missibility of AcyclicityTest. If AcyclicSubspace(C) returns C, then
obviously A ∩ o(Q) = C is acyclic, too. �

6. Connected Components

Obviously, an acyclic subset of a set X is contained in a connected
component of X. Therefore, if X has more than one connected compo-
nent, then it is reasonable to construct an acyclic subspace for every
component separately, use the acyclic subspaces to find the homology
of the components and then take the direct sum of the homology of
the components to get the homology of X. However, to speed up the
computations, one can combine the algorithm for the acyclic subspace
with the algorithm for the connected components.

Algorithm 12. Connected Component

function ConnectedComponent (cubical family X, A)
begin

Q := empty queue of cubes;
for each Q ∈ A do

enqueue (Q, Q);
while Q 6= ∅ do begin

HOMOLOGY VIA ACYCLIC SUBSPACE 13

Q := dequeue (Q);
A := A ∪ {Q};
for each p ∈ (X \ A) ∩ o(Q) do

if p 6∈ Q then
enqueue (Q, p);

end;
return A;

end;

Theorem 13. Algorithm 12 called with a cubical family X and its
nonempty subset A such that |A| is connected returns the family B
such that |B| is a connected component of |X |, and A ⊂ B. Moreover,
the loop is passed at most cardX times.

Proof. The inclusion A ⊂ B is obvious. Since each cube Q ∈ X
is enqueued at most once into the queue Q, and on each pass of the
“while” loop exactly one cube is dequeued from this queue, the number
of passes of the “while” loop does not exceed the number of cubes in
X . Let n denote the total number of passes of the “while” loop.

We will now prove that |B| is a connected component of |X |. By
[20, Corollary 2.57] it is enough to prove that |B| is an edge connected
component of |X |. Let V be a vertex of |A| and let E denote the edge
connected component of V in |X |. For i = 1, 2, . . . n let Ai−1 denote
the value of the variable A just before the ith pass of the “while”
loop and let Qi denote the value of the variable Q in the ith pass of
the loop. Obviously, A0 ⊂ Ai−1 ⊂ Ai and Ai = Ai−1 ∪ {Qi} for each
i = 1, . . . , n. Suppose |Ak−1| is connected for some k ∈ N. Since |Ak| =
Qk∪|Ak−1|, to show the connectedness of |Ak| it is enough to prove that
Qk ∩ |Ak−1| 6= ∅. This is true, because Qk, as an element of the queue
Q was either enqueued as an element of A0 ⊂ Ak−1 or as a neighbor
of the cube Qj for some j < k and then Qk ∩ |Ak−1| ⊃ Qk ∩ Qj 6= ∅.
Since the connectedness of |A0| = |A| is assumed in the theorem, by
induction |B| = |An| is connected. In particular |B| ⊂ E.

Now assume that the opposite inclusion does not hold. Since E is
a cubical set (see [20, Proposition 2.56 and Corollary 2.57]), we can
choose a vertex W in E \ |B|. Let V0, V1, . . . Vm be an edge path in
E such that V0 = V , Vm = W and let i be the last index such that
the edge joining Vi−1 and Vi is contained in |B|. Then there exists a
cube P such that Vi ∈ P \ |B| and an index k such that Vi ∈ Qk.
It follows that P ∈ o(Qk), which implies that P is enqueued to the
queue Q on some pass of the “while” loop. This implies that P ∈ |B|,
a contradiction. �

14 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

After having constructed the whole connected component of X con-
taining A, we remove this component and repeat this procedure for the
remaining family until we obtain the empty set. Algorithm 5 combined
with this idea is as follows:

Algorithm 14. Acyclic Subspace Homology and Conn. Components

function AS_Homology_C2 (cubical family X)
begin

result := 0;
while X 6= ∅ do begin

A := AcyclicSubset(X); (Algorithm 2)
B := ConnectedComponent(X,A); (Algorithm 12)
result := result⊕H∗(B,A);
X := X \ B;

end;
return result;

end;

7. Shaving

We will say that Q ∈ X is removable from X if Q ∩ |X \ {Q}| is
acyclic.

Proposition 15. (see [27, Lemma 7.1]) If Q ∈ X ⊂ H is removable
from X , then the homology of X \ {Q} is isomorphic to the homology
of X .

Therefore, cubes removable from X may be removed from X without
changing the homology of X . Of course, after removing a removable
cube Q from X , the removability status of the remaining cubes may
change, so the removability condition of the remaining cubes needs
to be checked with respect to X \ {Q}. By iterating the procedure
of removing the removable cubes we obtain the process which we will
call shaving. Shaving is not a new idea (see [34, Algorithm 10], for
example). Gameiro and Nanda [16] modified Kalies’ homology software
BK [22] by preprocessing the homology computations with shaving.
The modified software was used in [15]. A variant of shaving in the
case of relative homology was used in [27].

The advantage of shaving is the fact that the removable cubes may
be searched in an arbitrary order, so there is no need to keep a queue
of neighbors as in the case of constructing an acyclic subspace. The
simplest reduction algorithm based on removing the removable cubes
is as follows.

HOMOLOGY VIA ACYCLIC SUBSPACE 15

Algorithm 16. Shave

function Shave (var cubical family X)
begin

for each Q ∈ X do
if AcyclicityTest(X \ {Q},Q) then

X := X \ {Q};
end;

It follows immediately from Proposition 15 that the homology of
X remains constant in course of running Algorithm 16. In many sit-
uations running this algorithm as a preprocessor to any other homol-
ogy algorithm is a good idea, because the algorithm is very fast and
may substantially reduce the original cubical family, speeding up the
homology computations. Obviously, Algorithm 16 does not guarantee
that the resulting cubical family does not admit a removable cube any-
more, so one might run this algorithm a few times. The question how
many times crucially depends on the particular cubical family. Actu-
ally, if the family contains very few removable cubes, preprocessing
homology computations with any kind of shaving may slow down the
computations. We will compare various versions of the acyclic subspace
construction with and without shaving in Section 9.

8. Implementation

The acyclic subspace cubical homology algorithms based on the four
variants of the acyclicity test described in Section 5 have been imple-
mented by the first author. These implementations are
ASH – based on direct homology computations (Section 5.1)

ASLT – based on lookup tables (Section 5.2)
AS – based on simple intersection (Section 5.3)

ASR – based on recursive approach (Section 5.4)
All four implementations use the AR implementation of [19] after the
acyclic subspace is constructed.

The implementations together with the benchmark programs used
to prepare the timings presented in Section 9 are available at [31].
These implementations also constitute a part of the Computer Assisted
Proofs in Dynamics (CAPD) software library [46] and Computational
Homology Project (CHOMP) software library [45].

The implementations are written in C++ using the techniques of
templates and generic programming to ensure both high efficiency (to
guarantee the good performance) and high level abstraction (to ensure

16 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

the reusability of the general code in various settings). For the mo-
ment, the software is available for cubical sets implemented as bitmaps.
Bitmaps provide a memory-efficient and access-time-efficient method of
storing cubical sets. For example, a 3-dimensional rectangular area of
the size 256×256×256 filled with cubes in 50% , i.e. containing about
8 million cubes as in the case of cubical sets described in Section 9.4
takes up merely 2 MB of memory. The same amount of memory used
to store a cubical set as a list of triples of one byte coordinates would
allow for only 2/3 of a million cubes and the access time to the cubes
would be essentially slower. This makes cubical sets and bitmaps a per-
fect marriage, which is not possible for other types of sets, for instance
sets of simplices and general polyhedra. However, the generic approach
to writing the code enables its adaptation to other methods of storing
cubical sets and, with some more effort, to simplicial homology. This
work is in progress.

9. Experiments

In this section we will compare the performance of the implemen-
tations ASH, ASLT, AS and ASR in various settings with the per-
formance of the implementations PP, BK and AR described in Sec-
tion 1.2. Let us emphasize that all these implementations are com-
patible in the sense that they all constitue part of the Computational
Homology Project [45] and may be easily compiled together with the
benchmark software in one executable, which makes the comparison
straightforward and reliable. To make the experiments we used gcc
compiler version 3.4.2 ported for MS Windows XP. The timings pre-
sented in this section were obtained on a 3.6GHz Pentium PC with
2GB RAM running MS Windows XP. The size of cubical sets in the
tables we present is measured as the amount of full elementary cubes
in the set.

9.1. Torus. In our first experiment we rescale a two dimensional cubi-
cal torus in directions parallel to its surface at six different scales and
compute the homology. The computation times in seconds for various
scales and algorithms are gathered in Table 1.

This table shows that the implementations ASLT, ASR and AS
significantly outperform in this case the other implementations. As one
can expect, the winner is ASLT, which runs about four orders of magni-
tude faster than the slowest implementation and more than two orders
of magnitude faster than the quickest implementation not based on
acyclic subspace construction. The bottom row of Table 1 contains an
approximate measure of complexity α of the implementations obtained

HOMOLOGY VIA ACYCLIC SUBSPACE 17

Size ASLT ASR AS BK ASH AR PP
80000 0.2 3.94 9.08 43.48 132 131.31 566.92
115200 0.28 5.75 14.08 60.27 184.77 226.31 1143.67
156800 0.36 7.53 20.63 75.95 250.2 361.34 2095.89
204800 0.45 9.97 25.72 122.44 327.53 547.59 3604.52
259200 0.58 13.39 33.92 213.8 420.72 785.78 5908.92
320000 0.69 18.83 43.16 246.41 537.78 1137.06 9197.56

α 0.9 1.1 1.1 1.3 1.0 1.6 2.0

Table 1. Homology computation times in seconds for
two-dimensional torus

by finding the best fit of the data to the function T = cnα. For all
the implementations of the acyclic subspace homology algorithm these
numbers are close to one, which indicates that the complexity of these
algorithms is close to linear.

The size of the constructed acyclic subset for the four implementa-
tions based on Algorithm 2 is about 50% of the original size in the
case of AS but it exceeds 99% in all the other cases. It is surprising
that in the case of ASR the reduction is exactly the same as in the
case of ASLT and ASH. The implementations ASLT and ASH use
a total acyclicity test, but we cannot claim that ASR uses a total
acyclicity test. Nevertheless, it seems that at least in low dimensions
the acyclicity test used by ASR might behave in practice as good as a
total acyclicity test.

A cubical torus has few removable cubes. There are about 2.5% re-
movable cubes at the lowest rescaling factor and this goes down to
1.25% for the largest rescaling factor. Therefore, one should not ex-
pect a substantial gain from preprocessing the algorithms by shaving
in this case. Actually, in experiments one even observes an increase in
computation time which may go above 400% in the case of ASR and
above 35% in the case of ASLT. This is understandable: when running
shaving, every cube is tested for removability and if the cube is not re-
movable, then it contributes to the total computation time only on the
side of expenses. Therefore, the cost is especially visible in algorithms
in which the acyclicity test is particularly expensive.

9.2. Bing’s House. Our next experiment concerns the cubical Bing’s
house [4] presented in Figure 1. Bing’s house is a deformation retract
of a cube in R3; therefore, it is acyclic. However, one can show that the
acyclic subset of Bing’s house constructed by Algorithm 2 cannot be

18 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

Figure 1. Cubical Bing’s house with two front faces removed.

Size ASLT ASR AS BK ASH AR PP
74341 0.16 4.64 11.38 31.53 96.17 41.47 572.39
132321 0.27 8.34 20.8 57.86 166.98 104.64 1811.13
206901 0.41 13.74 33.66 76.31 256.95 212.41 4180.47
298081 0.59 20.77 50.88 182.41 370.59 358.31 7431.42
405861 0.86 29.56 69.63 221.33 504.7 602.91 12647.3
530241 1.11 39.19 90.61 384.99 654.49 - 17527.7

α 1.0 1.1 1.1 1.3 1.0 1.6 1.8

Table 2. Homology computation times in seconds for
Bing’s house

equal to the whole Bing’s house. This is related to the fact that Bing’s
house is an example of a contractible cubical set which is not collapsible.
Therefore, this example constitutes some challenge to Algorithm 2.

Similarly as in the previous experiment, we rescale the Bing’s house
and compute the homology. The computation times in seconds for var-
ious scales and algorithms are gathered in Table 2.

Despite the challenging character of the Bing’s house example, the
outcome of this experiment is very similar to the previous one. The

HOMOLOGY VIA ACYCLIC SUBSPACE 19

graphical comparison of the three best implementations of the acyclic
subspace homology algorithm with the best implementation not based
on acyclic subspace is presented in Figure 2. The constructed acyclic
subset is again about 50% of the original size in the case of AS. In the
case of the three other acyclic subspace algorithms this number varies
from 97.6% in the case of the smallest rescaling to 99.7% in the case of
the largest rescaling. Again, as one may expect, shaving does not speed
up the computations in this case but actually it slows them down by
factors similar to the case of the torus.

Figure 2. Graphical comparison of ASLT, ASR, AS
and BK in the case of Bing’s House. The slower imple-
mentations are not presented.

9.3. Klein Bottle. Let us turn now our attention to dimension four
and consider the Klein bottle. We apply the same procedure of rescaling
as in the two preceding examples. The resulting computation times in
seconds are gathered in Table 3. The ASLT implementation in not

20 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

Size ASR AS AR BK PP
1382 0.94 0.47 1.7 2.83 1.3
12522 2.89 4.5 20.17 30.52 28.73
34830 7.28 13.88 67.89 98.36 265.34
68306 13 28.53 157.64 217.88 1165.16
112950 20.89 48.66 306.86 373.83 2997.63
168762 31.48 73.91 - 578.59 6190.05

α 0.7 1.1 1.2 1.1 1.8

Table 3. Homology computation times in seconds for
Klein bottle

available in dimension four, because the lookup tables are too large
in this dimension, so we do not run this test. We also skip the ASH
implementation, because it is very slow. The table shows that also in
this case the construction of acyclic subspace substantially speeds up
the homology computations.

Figure 3. An unmasked (left) and masked (right) ex-
ample from Cahn-Hilliard equation.

9.4. Cahn-Hilliard Equations. Cahn-Hilliard equation [6] is a phe-
nomenological model used to describe phase separation in binary alloys.
The solution of the equation is a function of the time t and location x,
which represents the relative concentration difference between the two
materials at time t and location x. The change in time of the topol-
ogy of the set P (t) of locations where the function is positive (or of

HOMOLOGY VIA ACYCLIC SUBSPACE 21

Size ASLTsh BKsh ASLT BK
8392997 6.55 137.28 195.83 22952.0

Table 4. Homology computation times in seconds for
the unmasked example from Cahn-Hilliard equation.

the set N(t) where the function is negative) may be used to identify
and distinguish the evolving microstructures described by the Cahn-
Hilliard equation [18]. Figure 3 presents two cubical sets, both on a
cubical grid 256 × 256 × 256. The set on the left is a cubical approx-
imation to a sample set P (t). Gameiro [15] found that typically such
sets are connected (the 0th Betti number is one), have no voids (the
second Betti number is zero) and have many tunnels (the first Betti
number is large). Homology computation times for one such set consist-
ing of 8, 392, 997 three-dimensional cubes are presented in Table 4 for
two implementations in two variants: preceded with shaving (ASLTsh
and BKsh) and without shaving (ASLT and BK). As one can see,
shaving dramatically speeds up the computations. Actually, there are
8, 302, 485 removable cubes in this case (almost 99% of the total number
of cubes), so the speeding up should not be surprising. Nevertheless,
there are still 90, 512 cubes left for further processing. Shaving takes in
this case 5.36 sec of processor time. Taking into account only the time
needed by ASLTsh and BKsh after shaving, one can again see that
ASLT is two orders of magnitude faster than BK.

As we already mentioned, the simulations together with homology
computations indicate the presence of many tunnels and no voids in
the sets P (t) and N(t). By inserting a number of equally separated,
parallel full planes into these sets (referred to as masks) one obtains
what we call a masked set. An example of such a set is visible on the
right-hand side of Figure 3. The homology of the masked sets may
provide some rough measure of the size of the tunnels. The reason is
that if the masks are close enough one to the other, then they close
the tunnels, which results in the appearance of voids not present in the
original sets. Therefore, the second Betti number of the masked sets
counts the number of tunnels which close after inserting the mask.

The outcome of an experiment in which mask were inserted respec-
tively in the distance of 64, 16 and 4 voxels are gathered in Table 5.
The table shows that the tunnels in general are rather short.

Of more interest to us are the computation times for the masked
examples. They are gathered in Table 6. The unshaved implementations
are skipped due to long computation times. The interesting thing one

22 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

Distance 64 16 4
Second Betti number 0 1 130

Table 5. Second Betti numbers for the masked example
from Cahn-Hilliard equation.

Distance Size ASLTsh BKsh
64 8524217 8.02 196
16 8917371 9.55 237.73
4 10490025 147.69 1193.31

Table 6. Homology computation times in seconds for
the masked examples from Cahn-Hilliard equation.

can observe is the dramatic increase in the computation times for the
cases of masks separated only by 4 voxels. This increase cannot be
attributed to the increase of the size of the set. What happens is that in
this case shaving reduces the set only to 2, 316, 567 cubes. This process
takes 7.75 seconds. The acyclic subset of 2, 012, 701 is constructed in
5.55 seconds. This leaves still 303, 866 cubes for further processing by
the relative homology software.

We finish this example with an intriguing diagram. The mask sep-
arated by 10 voxels were inserted into the sets P (t) for a sequence of
100 consecutive times t. For every such set the homology was com-
puted. The ratio of the second to the first Betti number is presented
in Figure 4. The ratio may be treated as some measure of the number
of long tunnels to all tunnels. Of course, the explanation of the visible
oscillations of this measure is beyond the area of the present research.
Let us only mention, that the total homology computations needed to
produce this graph took less than 2000 seconds.

10. Comparison with other packages

The comparison of various homology algorithms presented in the pre-
vious section concern only implementations available from the Compu-
tational Homology Project webpage [45]. As we already mentioned, in
this cases the tests are reliable, becuase all these implementations may
be compiled together with the benchmark software in one executable.
However, other homology algorithms and other homology software are
described in the literature.

HOMOLOGY VIA ACYCLIC SUBSPACE 23

Figure 4. Ratio β2/β1 in masked examples from Cahn-
Hilliard equation as the function of time.

In this section we present some comparison of the compare homology
software available from CHOMP web page [45] with two other homol-
ogy algorithms, not included in CHOMP. We presents these compar-
isons seperately, becasue they are not as reliable as the comparisons
presented in the previous section due to difficulties in compiling the
software together or differences in the accepted input.

10.1. LinBox library. LinBox project [47] is a project devoted to
exact computational linear algebra. In particulat the LinBox library
contains software for Smith diagonalization based on recent advances
in Smith diagonalization algorithms. The LinBox library is very large,
so it is not easy to compile it together with other packages. Recently
A. Urbańska [41] compared AR and ASLT algorithms with homology
algorithms utilizing sparse implementations of Smith diagonalization
algorithms available in the LinBox library [47]. The experiments where
performed on SGI Altix with 64 Itanium 2 processors. She found that
without some form of preliminary reduction the algorithms in LinBox
cannot compete with AS or even AR, at least not for the class of
problems, where the complex is large and the homology to be computed
is simple.

24 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

Size AR LS
380 0.380 0.348
866 0.971 0.929

1682 1.974 1.957
2487 3.146 3.349

10128 15.87 24.95
42323 87.12 608.3

Table 7. Homology computation time in seconds of
Klein bottle in various sizes for AR and LS.

Size ASLTsh LS
8393324 10.94 15022.9

Table 8. Comparison of ASLTsh and LS on an un-
masked example from Cahn-Hilliard equation.

Table 7 compares AR against LS, the best performing homology
algorithm based on LinBox software for Smith Normal Form combined
with a simple form of reduction based on eliminating rows and columns
with exactly one non-zero entry. The table shows that the performance
of AR and LS is comparable for small sizes of our four dimensional
representation of Klein bottle, but AR is significantly better for large
sizes. As pointed out in [41], this is because the reduction algorithm de-
scribed in [19] uses cascade type eliminations of generators between the
dimensions whereas the standard Smith Normal Form algorithm does
not benefit from the possible cancellations of generators in different
dimensions.

Another test performed by A. Urbańska concerns a direct compar-
ison of ASLTsh and LS on one of the sets coming from numerical
simulations of Cahn-Hillard equations performed by M. Gameiro [15].
The timings are gathered in Table 8

10.2. Persistence homology algorithm. The Klein bottle example
gives a possibility of a very rough comparison of the acyclic subspace
homology algorithm with the persistence homology algorithm [42] by
Zomorodian and Carlsson. The implementation of this algorithm is for
various field coefficients. The case of Z2 coefficents is special, because
there is no need to store coefficients and the authors have a specialized
implementation for this case, which is much faster than the general

HOMOLOGY VIA ACYCLIC SUBSPACE 25

fields. However, Z2 coefficients are not good when one is interested
in torsion. To detect torsion one needs Z coefficients or at least Zp

coefficients for some p > 2. Integer coefficients are better, because they
guarantee that in every case all torsion is picked up.

Zomorodian and Carlsson present in [42] the timings resulting from
the 2.2 GHz Pentium processor homology computations of a simplicial
representation of Klein bottle consisting of 12000 simplices. The timings
are 0.01 sec for Z2 coefficients, 0.23 sec for Z3, Z5 and Z3203 coefficients
and 0.5 sec for rational coefficients.

Our cubical representation of Klein bottle presented in the first row
of Table 3 (for the rescaling factor 1) consists of 1382 four dimensional
cubes. This in constrast to the Zomorodian and Carlsson representa-
tion, which is two dimensional. When all the lower dimensional faces
are counted as in the case of Zomorodian and Carlsson, the number is
49500. The computation time by AS implementation is 0.47 sec, but
this would be 0.77 sec when rescaled to the speed of 2.2GHz processor
and 0.19 sec when rescaled to the size of 12000 simplices. These rough
estimates suggest that in the case of Klein bottle the performance of
our algorithm may be slightly better or similar to the perfomance of
the persistence homology algorithm except the case of Z2 coefficients.
However, this does not take into account that our representation con-
sists of four dimensional cubes, whereas the Zomorodian and Carlsson
representation is built of two dimensional simplices.

The true comparison of acyclic subspace homology algorithm with
the persistence homology algorithm of Zomorodian and Carlsson will
be possible only after the acyclic subspace algorithm in various versions
is implemented for simplicial complexes and the computations are com-
pared on the same hardware for various rescalings of Klein bottle and
other sets.

11. Conclusions

In the paper we introduced a new homology algorithm based on the
construction of an acyclic subspace. We proved that the complexity of
the construction of the acyclic subspace is linear. We considered four
tests for the acyclicity, leading to four different variants of the acyclic
subspace homology algorithm. Then we presented several numerical
experiments with the implementation of the four variants for cubical
homology. The tests clearly indicate that the implementation of the
version based on lookup tables for dimensions two and three signifi-
cantly outperform other available software for cubical homology. This

26 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

applies both to purely artificial tests based on rescaled, simple topo-
logical spaces and to a test based on data gathered from numerical
investigation of differential equations. In dimensions higher than three
the superiority is not so strong. This is because the number of neigh-
bors of a cube grows exponentially with dimension. In particular, in
dimension higher than three we cannot use lookup tables. A method
to circumvent this problem will be presented in [30].

On the theoretical side it would be nice to understand how deep the
reduction based on acyclic subspace construction may be. The numeri-
cal tests, even in the case of Bing’s house, indicate that the reduction is
very substantial. But we are not able to exclude the existence of spaces
with complicated simple homotopy type [7] (for instance along the lines
of Bing’s house), for which it is not possible to construct a large acyclic
subspace despite the fact that their homology is simple. However, let
us mention the following conjecture concerning Algorithm 2

Conjecture 17. ([21]) Let Xn be a sequence of cubical families such
that cardXn → ∞ and for any two n, m ∈ N the sets |Xn| and |Xm|
are homeomorphic. Then

lim
n→∞

card AcyclicSubspace(Xn)

cardXn

= 1.

If the conjecture is true, then together with Theorem 3 it would imply
that the homology of a cubical set of a fixed topology type may be
computed in linear time. An analogous conjecture may be formulated
for simplicial complexes.

Apart from trying to understand the theoretical aspects of the con-
struction of acyclic subspace, there are several directions in which the
present research may be continued. The first thing to do is to adapt the
available implementation to simplicial homology and compare it with
the available software for simplicial homology. This work is in progress.
Also in progress is the adaptation of the method to the computation of
homology of inclusions [44]. Definitely it is worth to investigate some
other methods of testing for acyclicity, better than the simple inter-
section method described in this paper, but still computationally inex-
pensive. This is left for future investigation.

Acknowledgment

We express our thanks to M. Gameiro for the permission to use the
results of his numerical simulations of the Cahn-Hilliard equation in
the experiments presented in this paper. Gameiro’s simulations were
performed with the support of a DARPA grant.

HOMOLOGY VIA ACYCLIC SUBSPACE 27

References

[1] M. Allili, K. Mischaikow, A. Tannenbaum, Cubical homology and the
topological classification of 2D and 3D imagery, IEEE International Conference
on Image Processing 2(2001), 173–176.

[2] Z. Arai, K. Mischaikow, Rigorous Computations of Homoclinic Tangencies
SIAM Journal on Applied Dynamical Systems 5(2006), 280–292

[3] S. Basu, On bounding the Betti numbers and computing the Euler character-
istic of semi-algebraic sets, Discrete and Computational Geometry 22(1999),
1–18.

[4] R.H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré
Conjecture, Lectures on Modern Mathematics II, T.L. Saaty ed., Wiley (1964),
93–128

[5] J. Blass, W. Holsztyński, Cubical polyhedra and homotopy, I, II, III, IV, V,
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 50(2)(1971), 131–138;
50(6)(1971), 703–708; 53(8)(1972), 275–279; 53(8)(1972), 402–409; 54(1973),
416–425.

[6] J. W. Cahn and J. E. Hilliard, Free Energy of a Nonuniform System. I.
Interfacial Free Energy, J. Chem. Phys. 28(1958), 258–267.

[7] M. Cohen, A course in simple-homotopy theory, Graduate Texts in Mathe-
matics 10, Springer-Verlag, New York-Berlin, 1973.

[8] S. Day, Towards a rigorous numerical study of the Kot-Schaffer model, Dy-
namic Systems and Applications 12(2003), 87–98.

[9] S. Day, O. Junge, and K. Mischaikow, A Rigorous Numerical Method
for the Global Analysis of Infinite Dimensional Discrete Dynamical Systems,
SIAM Dynamical Systems 3(2004), 117–160.

[10] M. Dellnitz, O. Junge, The algorithms behind GAIO - set oriented nu-
merical methods for dynamical systems, Ergodic theory, analysis, and efficient
simulation of dynamical systems, Springer, Berlin, 2001, 145–174, 805–807.

[11] B.R. Donald and D.R. Chang, On the complexity of computing the ho-
mology type of a triangulation. In Proc. 32nd Ann. IEEE Sympos. Found.
Comput. Sci.(1991), 650–661.

[12] J.-G. Dumas, F. Heckenbach, D. Saunders and V. Velker, Computing
Simplicial Homology Based on Efficient Smith Normal Form Algorithms, In
Algebra, Geometry and Software Systems(2003), 177–207.

[13] H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological Persistence
and Simplification, Discrete and Computational Geometry 28(2002), 511–533.

[14] J. Friedman, Computing Betti Numbers via Combinatorial Laplacians, In
Proc. 28th Ann. ACM Sympos. Theory Comput.(1996), 386–391.

[15] M. Gameiro, Numerical simulations of the 3D Cahn-Hilliard equation, per-
sonal communication.

[16] M. Gameiro, V. Nanda, Modifications to Kalies’ homology software, per-
sonal communication.

[17] M. Gameiro, W. Kalies, and K. Mischaikow, Topological characteriza-
tion of spatial-temporal chaos Physical Review E 70, Article 035203 (Rapid
communication), 2004.

[18] M. Gameiro, K. Mischaikow and Th. Wanner, Evolution of pattern
complexity in the Cahn-Hilliard theory of phase separation, Acta Materialia
53(2005), 693–704.

28 MARIAN MROZEK, PAWEŁ PILARCZYK, AND NATALIA ŻELAZNA

[19] T. Kaczynski, M. Mrozek, M. Ślusarek, Homology computation by re-
duction of chain complexes, Computers and Math. Appl. 35(1998), 59–70.

[20] T. Kaczynski, K. Mischaikow, M. Mrozek, Computational homology, Ap-
plied Mathematical Sciences 157, Springer-Verlag, New York, 2004.

[21] T. Kaczynski, M. Mrozek, R. Srzednicki, personal communication.
[22] W. Kalies, chom - A Cubical Homology Program, 1999:

http://www.math.fau.edu/kalies/chom.html.
[23] W. Kalies, M. Niethammer, K. Mischaikow, and A. Tannenbaum, On

the detection of simple points in higher dimensions using cubical homology,
IEEE Transactions on Image Processing, 15(2006), 2462–2469.

[24] W. Kalies, K. Mischaikow, and G. Watson, Cubical Approximation and
Computation of Homology, in: Conley Index Theory, Banach Center Publica-
tions 47(1999), 115–131.

[25] K. Mischaikow, M. Mrozek, Chaos in Lorenz equations: a computer as-
sisted proof, Bull. Amer. Math. Soc. (N.S.) 33(1995), 66–72.

[26] K. Mischaikow, M. Mrozek, Chaos in the Lorenz equations: a computer
assisted proof, Part II: details, Mathematics of Computation 67(1998), 1023–
1046.

[27] K. Mischaikow, M. Mrozek, P. Pilarczyk, Graph approach to the com-
putation of the homology of continuous maps, Foundations of Computational
Mathematics 5(2005), 199–229.

[28] R.E. Moore, Interval analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J.,
1966.

[29] M. Mrozek, Index Pairs Algorithms, Foundations of Computational Mathe-
matics, 6(2006), 457–493.

[30] M. Mrozek, B. Batko, The coreduction homology algorithm, preprint.
[31] M. Mrozek, Homology Software, 2006:

http://www.ii.uj.edu.pl/~mrozek/software/homology.html.
[32] J.R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.
[33] M. Niethammer, A. N. Stein, W. D. Kalies, P. Pilarczyk, K. Mis-

chaikow, A. Tannenbaum, Analysis of Blood Vessel Topology by Cubi-
cal Homology, Proceedings of International Conference on Imagine Processing
2(2002), 969–972.

[34] P. Pilarczyk, Computer assisted method for proving existence of periodic
orbits, TMNA 13 (1999), 365–377.

[35] P. Pilarczyk, Homology Computation - Software and Examples, 1999:
http://www.pawelpilarczyk.com/homology.htm

[36] V. de Silva and R. Ghrist, Coordinate-free coverage in sensor net-
works with controlled boundaries via homology, preprint available at
http://www.math.uiuc.edu/~ghrist/preprints/

[37] A. Storjohann, Near Optimal Algorithms for Computing Smith Normal
Form of Integer Matrices, In Proceedings of the 1996 international symposium
on symbolic and algebraic computation, ISAAC 1996, (1996), 267–274.

[38] A. Szymczak, A combinatorial procedure for finding isolating neighborhoods
and index pairs , Proc. Royal Soc. Edinburgh, Ser. A 127A(1997), 1075–1088.

[39] A. Szymczak, Index pairs: From dynamics to combinatorics and back, Ph.D.
Thesis, Georgia Inst. Tech., Atlanta, 1999.

HOMOLOGY VIA ACYCLIC SUBSPACE 29

[40] T. Teramoto, Morphological Characterization of Diblock Copolymer Prob-
lem and Topological Computation, conference presentation available at
http://www.math.gatech.edu/~chomp/workshop/

[41] A. Urbańska, Smith Normal Form Algorithms for Sparse Matrices with Ap-
plications to Homology Computations, M.Sc. Thesis, Jagiellonian University,
Kraków, 2007 (in Polish, with English Abstract).

[42] A. Zomorodian, G. Carlsson, Computing Persistent Homology, Discrete
and Computational Geometry, 33(2005), 249–274.

[43] M. Żelawski, Pattern recognition based on homology theory, Machine
Graphic and Vision, 14(2005), 309–324.

[44] N. Żelazna, Computing homology of inclusions via acyclic subspace construc-
tion, preprint.

[45] Computational Homology Project:
http://www.math.gatech.edu/~chomp/

[46] Computer Assisted Proofs in Dynamics:
http://capd.wsb-nlu.edu.pl

[47] Project LinBox: Exact computational linear algebra:
http://www.linalg.org

Marian Mrozek, Institute of Computer Science, Jagiellonian Uni-
versity, ul. Nawojki 11, 30-072 Kraków, Poland

E-mail address: Marian.Mrozek@ii.uj.edu.pl

Paweł Pilarczyk, Institute of Computer Science, Jagiellonian Uni-
versity, ul. Nawojki 11, 30-072 Kraków, Poland and Georgia Institute
of Technology, Atlanta, GA 30332-0160, U.S.A., Current address: Ky-
oto University, Department of Mathematics, Kyoto 606-8502, Japan.

E-mail address: Pawel.Pilarczyk@ii.uj.edu.pl

Natalia Żelazna, Institute of Computer Science, Jagiellonian Uni-
versity, ul. Nawojki 11, 30-072 Kraków, Poland

E-mail address: zelazna@ii.uj.edu.pl

