# publications:

**Book:**

- S. Migorski, A. Ochal, M. Sofonea,
*Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems*, series "Advances in Mechanics and Mathematics", vol. 26, Springer, New York, 2013, pages: 287, ISBN: 978-1-4614-4231-8

**Papers:**

- L. Gasinski, A. Ochal, Dynamic viscoelastic problem with temperature, friction and damage,
*Nonlinear Analysis Real World Applications,*21 (2015), 63-75 - X. Cheng, S. Migorski, A. Ochal, M. Sofonea, Analysis of two quasistatic
history-dependent contact models,
*Discrete and Continuous Dynamical Systems B.,*19 (2014), 2425-2445, doi: 10.3934/dcdsb.2014.19.2425 - S. Migorski, A. Ochal, M. Shillor, M. Sofonea, A model of a spring-mass-damper
system with temperature-dependent friction,
*European Journal of Applied Mathematics,*25 (2014), 45-64, doi: 10.1017/S0956792513000272 - S. Migorski, A. Ochal, M. Sofonea, History-dependent hemivariational inequalities with applications
to Contact Mechanics,
*Annals of the University of Bucharest. Mathematical Series,*4 (LXII) (2013), 193-212 - S. Migorski, A. Ochal, M. Sofonea, Weak solvability of two quasistatic viscoelastic
contact problems,
*Mathematics and Mechanics of Solids,*18 (2013), 745-759 doi: 10.1177/1081286512448185 - S. Migorski, A. Ochal, M. Sofonea, History-dependent subdifferential inclusions and hemivariational
inequalities in contact mechanics,
*Nonlinear Analysis Series B: Real World Applications*, 12 (2011), 3384-3396 - S. Migorski, A. Ochal, M. Sofonea, Analysis of a quasistatic contact problem for piezoelectric materials,
*Journal of Mathematical Analysis and Applications*, 382 (2011), 701-713 - Z. Denkowski, S. Migorski, A. Ochal, A class of optimal control problems for piezoelectric
frictional contact models,
*Nonlinear Analysis Series B: Real World Applications,*12 (2011), 1883-1895 - S. Migorski, A. Ochal, M. Sofonea, Analysis of Frictional Contact Problem for
Viscoelastic Materials with Long Memory,
*Discrete and Continuous Dynamical Systems, Series B*, 15(3) (2011), 687-705 - S. Migorski, A. Ochal, M. Sofonea, Analysis of lumped models with contact and friction,
*Zeitschrift für angewandte Mathematik und Physik*, 62 (2011), 99-113 - S. Migorski, A. Ochal, M. Sofonea, Variational analysis of fully coupled electro-elastic
frictional contact problems,
*Mathematische Nachrichten*, 283(9) (2010), 1314-1335 - S. Migorski, A. Ochal, M. Sofonea, Analysis of a dynamic contact problem for electro-viscoelastic
cylinders,
*Nonlinear Analysis Series A: Theory Methods and Applications,*73 (2010), 1221-1238 - S. Migorski, A. Ochal, An inverse coefficient problem for a parabolic hemivariational inequality,
*Applicable Analysis*, 89 (2) (2010), 243-256 - S. Migorski, A. Ochal, M. Sofonea, A dynamic frictional contact problem for piezoelectric materials,
*Journal of Mathematical Analysis and Applications*, 361 (2010), 161-176 - S. Migorski, A. Ochal, M. Sofonea, Weak solvability of antiplane frictional
contact problems for elastic cylinders,
*Nonlinear Analysis Series B: Real World Applications*, 11 (2010), 172-183 - S. Migorski, A. Ochal, M. Sofonea, An evolution problem in nonsmooth elasto-viscoplasticity,
*Nonlinear Analysis Series A: Theory Methods and Applications,*71 (2009), e2766-e2771 - S. Migorski, A. Ochal, M. Sofonea, Modeling and analysis of an antiplane piezoelectric contact problem,
*Mathematical Models and Methods in Applied Sciences*, 19(8) (2009), 1295-1324 - S. Migorski, A. Ochal, Quasistatic hemivariational inequality via vanishing acceleration approach,
*SIAM Journal on Mathematical Analysis*, 41 (2009), 1415-1435 - S. Migorski, A. Ochal, M. Sofonea, Solvability of dynamic antiplane frictional contact
problems for viscoelastic cylinders,
*Nonlinear Analysis Series A: Theory Methods and Applications*, 70 (2009), 3738-3748 - S. Migorski, A. Ochal, M. Sofonea, Weak solvability of a piezoelectric
contact problem,
*European Journal of Applied Mathematics*, 20 (2009), 145-167 - S. Migorski, A. Ochal, Dynamic bilateral contact problem for viscoelastic piezoelectric
materials with adhesion,
*Nonlinear Analysis Series A: Theory Methods and Applications*, 69 (2008), 495-509 - S. Migorski, A. Ochal, M. Sofonea, Analysis of a dynamic elastic-viscoplastic contact
problem with friction,
*Discrete and Continuous Dynamical Systems, Series B*, 10 (4) (2008), 887-902 - S. Migorski, A. Ochal, M. Sofonea, Integrodifferential hemivariational
inequalities with applications to viscoelastic frictional contact,
*Mathematical Models and Methods in Applied Sciences,*18(2) (2008), 271-290 - Z. Liu, S. Migorski, A. Ochal, Homogenization of boundary hemivariational
inequalities in linear elasticity,
*Journal of Mathematical Analysis and Applications,*340 (2008), 1347-1361 - Z. Denkowski, S. Migorski, A. Ochal, Optimal control for a class of mechanical
thermoviscoelastic frictional control problems,
*Control and Cybernetics*, 36(3) (2007), 611-632 - S. Migorski, A. Ochal, Navier-Stokes problems modeled by evolution hemivariational
inequalities,
*Discrete and Continuous Dynamical Systems*, Supplement 2007, 731-740 - S. Migorski, A. Ochal, Nonlinear impulsive evolution inclusions of second
order,
*Dynamic Systems and Applications,*16 (2007), 155-174 - S. Migorski, A. Ochal, Vanishing viscosity for hemivariational inequality
modeling dynamic problems in elasticity,
*Nonlinear Analysis Series A: Theory Methods and Applications,*66(8) (2007), 1840-1852 - Z. Denkowski, S. Migorski, A. Ochal, Existence and uniqueness to a dynamic
bilateral frictional contact problem in viscoelasticity,
*Acta Applicandae Mathematicae,*94(3) (2006), 251-276 - S. Migorski, A. Ochal, A unified approach to dynamic contact problems
in viscoelasticity,
*Journal of Elasticity,*83(3) (2006), 247-276 - S. Migorski, A. Ochal, Existence of solutions for second order evolution
inclusions with application to mechanical contact problems,
*Optimization,*55 (2006), 101-120 - A. Ochal, Viscoelastic bilateral contact problem involving
Coulomb friction law,
*WSEAS Transactions on Mathematics,*1(5) (2006), 63-68 - H. Frankowska, A. Ochal, On singularities of value function
for Bolza optimal control problem,
*Journal of Mathematical Analysis and Applications,*306 (2005), 714-729 - S. Migorski, A. Ochal, Hemivariational inequalities for stationary
Navier-Stokes equations,
*Journal of Mathematical Analysis and Applications,*306 (2005), 197-217 - S. Migorski, A. Ochal, Hemivariational inequalities for viscoelastic contact
problem with slip dependent friction,
*Nonlinear Analysis Series A: Theory Methods and Applications,*61 (2005), 135-161 - A. Ochal, Existence results for evolution hemivariational inequalities
of second order,
*Nonlinear Analysis Series A: Theory Methods and Applications,*60 (2005), 1369-1391 - S. Migorski, A. Ochal, Boundary hemivariational inequality of parabolic type,
*Nonlinear Analysis Series A: Theory Methods and Applications,*57 (2004), 579-596 - A. Ochal, Optimal control in superpotential for evolution hemivariational
inequality,
*WSEAS Transactions on Mathematics,*1(1) (2003), 48-53 - S. Migorski, A. Ochal, Optimal control of parabolic hemivariational
inequalities,
*Journal of Global Optimization,*17 (2000), 285-300 - A. Ochal, Domain identification problem for elliptic hemivariational
inequalities,
*Topological Methods in Nonlinear Analysis,*16 (2000), 267-278

**Book chapters:**

- S. Migorski, A. Ochal, Inverse Coefficient Problem for Elliptic Hemivariational
Inequality, Chapter 11 in:
*Nonconvex Optimization and its Applications, Nonsmooth/ Nonconvex Mechanics,*2001, Kluwer Academic Publishers, Netherlands, 247-261 - S. Migorski, A. Ochal, Nonconvex Inequality Models for Contact Problems of
Nonsmooth Mechanics, Chapter 3 in:
*Computer Methods in Mechanics,*Advanced Structured Materials, M. Kuczma, K. Wilmanski (Eds.), Vol. 1, 2010, Springer, Berlin, Heidelberg, 43-58

**Proceedings:**

- S. Migorski, A. Ochal, Evolution hemivariational inequalities for Navier-Stokes type operators, Proceedings of the International Conference on Nonsmooth/Nonconvex Mechanics with Applications in Engineering, II. NNMAE 2006, Thessaloniki, Greece, July 7-8, 2006, Baniotopoulos C.C., (ed.), 93-98
- S. Migorski, A. Ochal, Existence of solutions to boundary parabolic hemivariational inequalities, Proceedings of the International Conference on Nonsmooth/Nonconvex Mechanics with Applications in Engineering, I. NNMAE 2002, Thessaloniki, Greece, July 5-6, 2002, Baniotopoulos C.C., (ed.), 53-60
- A. Ochal, Optimal control problems for hemivariational inequalities, Third Polish Conference on Methods and Computer Systems in Scientific Researches and Engineering Design, Krakow, Poland, November 19-21, 2001, Tadeusiewicz R., Ligeska A., Szymkat M., (eds), 15-18

**Others:**

- S. Migorski, A. Ochal, M. Sofonea, Analysis of a piezoelectic contact problem with
subdifferential boundary condition,
*The Royal Society of Edinburgh Proceedings A (Mathematics),*2014, in press - S. Migorski, A. Ochal, M. Sofonea, A class of history-dependent inclusions with
applications to contact problems, in: Springer Book for the OCA5 Conference
*Advances in Optimization and Control with Applications,*2014, in press - L. Gasinski, Z. Liu, S. Migorski, A. Ochal, Z. Peng, Hemivariational inequality approach
to evolutionary constrained problems on star-shaped sets,
*Journal of Optimization Theory and Applications,*2014, doi: 10.1007/s10957-014-0587-6 - L. Gasinski, A. Ochal, M. Shillor, Variational-hemivariational approach to a quasistatic
viscoelastic problem with normal compliance, friction and material damage,
*Journal for Analysis and its Applications (ZAA),*2013, submitted - K. Bartosz, P. Kalita, S. Migorski, A. Ochal, M. Sofonea, History-dependent problems with
applications to contact models for elastic beams,
*Applied Mathematics and Optimization,*2014, submitted - S. Migorski, A. Ochal, M. Sofonea, History-dependent variational-hemivariational
inequalities in contact mechanics,
*Nonlinear Analysis Real World Applications,*2014, submitted - S. Migorski, A. Ochal, M. Sofonea, Existence and uniqueness results for evolutionary
inclusions with applications to hemivariational inequalities,
in: Springer book "Advances in Variational and Hemivariational Inequalities with Applications"
(in Springer Science+Business Media Series
*Advances in Mechanics and Mathematics (AMMA)),*2014, in preparation - S. Migorski, A. Ochal, M. Sofonea, Two dynamic history-dependent contact problems,
in: Springer book "Advances in Variational and Hemivariational Inequalities with Applications"
(in Springer Science+Business Media Series
*Advances in Mechanics and Mathematics (AMMA)),*2014, in preparation - L. Gasinski, S. Migorski, A. Ochal, Existence results for evolutionary inclusions and
variational-hemivariational inequalities,
*Applicable Analysis,*2014, doi: 10.1080/00036811.2014.940920