publications:

Book:
  1. S. Migorski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, series "Advances in Mechanics and Mathematics", vol. 26, Springer, New York, 2013, pages: 287, ISBN: 978-1-4614-4231-8


Papers:
  1. L. Gasinski, A. Ochal, M. Shillor, Quasistatic thermoviscoelastic problem with normal compliance, multivalued friction and wear diffusion, Nonlinear Analysis Real World Applications, 27 (2016), 183-202, doi: 10.1016/j.nonrwa.2015.07.006
  2. L. Gasinski, A. Ochal, M. Shillor, Variational-hemivariational approach to a quasistatic viscoelastic problem with normal compliance, friction and material damage, Journal for Analysis and its Applications (ZAA), 34(3) (2015), 251-275
  3. L. Gasinski, S. Migorski, A. Ochal, Existence results for evolutionary inclusions and variational-hemivariational inequalities, Applicable Analysis, 94(8) (2015), 1670-1694, doi: 10.1080/00036811.2014.940920
  4. S. Migorski, A. Ochal, M. Sofonea, History-dependent variational-hemivariational inequalities in contact mechanics, Nonlinear Analysis Real World Applications, 22 (2015), 604-618, doi:10.1016/j.nonrwa.2014.09.021
  5. L. Gasinski, Z. Liu, S. Migorski, A. Ochal, Z. Peng, Hemivariational inequality approach to evolutionary constrained problems on star-shaped sets, Journal of Optimization Theory and Applications, 164(2) (2015), 514-533, doi: 10.1007/s10957-014-0587-6
  6. L. Gasinski, A. Ochal, Dynamic viscoelastic problem with temperature, friction and damage, Nonlinear Analysis Real World Applications, 21 (2015), 63-75
  7. S. Migorski, A. Ochal, M. Sofonea, Analysis of a piezoelectic contact problem with subdifferential boundary condition, Proceedings of the Royal Society of Edinburgh (Mathematics), 144A (2014), 1007-1025
  8. X. Cheng, S. Migorski, A. Ochal, M. Sofonea, Analysis of two quasistatic history-dependent contact models, Discrete and Continuous Dynamical Systems B., 19 (2014), 2425-2445, doi: 10.3934/dcdsb.2014.19.2425
  9. S. Migorski, A. Ochal, M. Shillor, M. Sofonea, A model of a spring-mass-damper system with temperature-dependent friction, European Journal of Applied Mathematics, 25 (2014), 45-64, doi: 10.1017/S0956792513000272
  10. S. Migorski, A. Ochal, M. Sofonea, History-dependent hemivariational inequalities with applications to Contact Mechanics, Annals of the University of Bucharest. Mathematical Series, 4 (LXII) (2013), 193-212
  11. S. Migorski, A. Ochal, M. Sofonea, Weak solvability of two quasistatic viscoelastic contact problems, Mathematics and Mechanics of Solids, 18 (2013), 745-759, doi: 10.1177/1081286512448185
  12. S. Migorski, A. Ochal, M. Sofonea, History-dependent subdifferential inclusions and hemivariational inequalities in contact mechanics, Nonlinear Analysis Series B: Real World Applications, 12 (2011), 3384-3396
  13. S. Migorski, A. Ochal, M. Sofonea, Analysis of a quasistatic contact problem for piezoelectric materials, Journal of Mathematical Analysis and Applications, 382 (2011), 701-713
  14. Z. Denkowski, S. Migorski, A. Ochal, A class of optimal control problems for piezoelectric frictional contact models, Nonlinear Analysis Series B: Real World Applications, 12 (2011), 1883-1895
  15. S. Migorski, A. Ochal, M. Sofonea, Analysis of Frictional Contact Problem for Viscoelastic Materials with Long Memory, Discrete and Continuous Dynamical Systems, Series B, 15(3) (2011), 687-705
  16. S. Migorski, A. Ochal, M. Sofonea, Analysis of lumped models with contact and friction, Zeitschrift für angewandte Mathematik und Physik, 62 (2011), 99-113
  17. S. Migorski, A. Ochal, M. Sofonea, Variational analysis of fully coupled electro-elastic frictional contact problems, Mathematische Nachrichten, 283(9) (2010), 1314-1335
  18. S. Migorski, A. Ochal, M. Sofonea, Analysis of a dynamic contact problem for electro-viscoelastic cylinders, Nonlinear Analysis Series A: Theory Methods and Applications, 73 (2010), 1221-1238
  19. S. Migorski, A. Ochal, An inverse coefficient problem for a parabolic hemivariational inequality, Applicable Analysis, 89 (2) (2010), 243-256
  20. S. Migorski, A. Ochal, M. Sofonea, A dynamic frictional contact problem for piezoelectric materials, Journal of Mathematical Analysis and Applications, 361 (2010), 161-176
  21. S. Migorski, A. Ochal, M. Sofonea, Weak solvability of antiplane frictional contact problems for elastic cylinders, Nonlinear Analysis Series B: Real World Applications, 11 (2010), 172-183
  22. S. Migorski, A. Ochal, M. Sofonea, An evolution problem in nonsmooth elasto-viscoplasticity, Nonlinear Analysis Series A: Theory Methods and Applications, 71 (2009), e2766-e2771
  23. S. Migorski, A. Ochal, M. Sofonea, Modeling and analysis of an antiplane piezoelectric contact problem, Mathematical Models and Methods in Applied Sciences, 19(8) (2009), 1295-1324
  24. S. Migorski, A. Ochal, Quasistatic hemivariational inequality via vanishing acceleration approach, SIAM Journal on Mathematical Analysis, 41 (2009), 1415-1435
  25. S. Migorski, A. Ochal, M. Sofonea, Solvability of dynamic antiplane frictional contact problems for viscoelastic cylinders, Nonlinear Analysis Series A: Theory Methods and Applications, 70 (2009), 3738-3748
  26. S. Migorski, A. Ochal, M. Sofonea, Weak solvability of a piezoelectric contact problem, European Journal of Applied Mathematics, 20 (2009), 145-167
  27. S. Migorski, A. Ochal, Dynamic bilateral contact problem for viscoelastic piezoelectric materials with adhesion, Nonlinear Analysis Series A: Theory Methods and Applications, 69 (2008), 495-509
  28. S. Migorski, A. Ochal, M. Sofonea, Analysis of a dynamic elastic-viscoplastic contact problem with friction, Discrete and Continuous Dynamical Systems, Series B, 10 (4) (2008), 887-902
  29. S. Migorski, A. Ochal, M. Sofonea, Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact, Mathematical Models and Methods in Applied Sciences, 18(2) (2008), 271-290
  30. Z. Liu, S. Migorski, A. Ochal, Homogenization of boundary hemivariational inequalities in linear elasticity, Journal of Mathematical Analysis and Applications, 340 (2008), 1347-1361
  31. Z. Denkowski, S. Migorski, A. Ochal, Optimal control for a class of mechanical thermoviscoelastic frictional control problems, Control and Cybernetics, 36(3) (2007), 611-632
  32. S. Migorski, A. Ochal, Navier-Stokes problems modeled by evolution hemivariational inequalities, Discrete and Continuous Dynamical Systems, Supplement 2007, 731-740
  33. S. Migorski, A. Ochal, Nonlinear impulsive evolution inclusions of second order, Dynamic Systems and Applications, 16 (2007), 155-174
  34. S. Migorski, A. Ochal, Vanishing viscosity for hemivariational inequality modeling dynamic problems in elasticity, Nonlinear Analysis Series A: Theory Methods and Applications, 66(8) (2007), 1840-1852
  35. Z. Denkowski, S. Migorski, A. Ochal, Existence and uniqueness to a dynamic bilateral frictional contact problem in viscoelasticity, Acta Applicandae Mathematicae, 94(3) (2006), 251-276
  36. S. Migorski, A. Ochal, A unified approach to dynamic contact problems in viscoelasticity, Journal of Elasticity, 83(3) (2006), 247-276
  37. S. Migorski, A. Ochal, Existence of solutions for second order evolution inclusions with application to mechanical contact problems, Optimization, 55 (2006), 101-120
  38. A. Ochal, Viscoelastic bilateral contact problem involving Coulomb friction law, WSEAS Transactions on Mathematics, 1(5) (2006), 63-68
  39. H. Frankowska, A. Ochal, On singularities of value function for Bolza optimal control problem, Journal of Mathematical Analysis and Applications, 306 (2005), 714-729
  40. S. Migorski, A. Ochal, Hemivariational inequalities for stationary Navier-Stokes equations, Journal of Mathematical Analysis and Applications, 306 (2005), 197-217
  41. S. Migorski, A. Ochal, Hemivariational inequalities for viscoelastic contact problem with slip dependent friction, Nonlinear Analysis Series A: Theory Methods and Applications, 61 (2005), 135-161
  42. A. Ochal, Existence results for evolution hemivariational inequalities of second order, Nonlinear Analysis Series A: Theory Methods and Applications, 60 (2005), 1369-1391
  43. S. Migorski, A. Ochal, Boundary hemivariational inequality of parabolic type, Nonlinear Analysis Series A: Theory Methods and Applications, 57 (2004), 579-596
  44. A. Ochal, Optimal control in superpotential for evolution hemivariational inequality, WSEAS Transactions on Mathematics, 1(1) (2003), 48-53
  45. S. Migorski, A. Ochal, Optimal control of parabolic hemivariational inequalities, Journal of Global Optimization, 17 (2000), 285-300
  46. A. Ochal, Domain identification problem for elliptic hemivariational inequalities, Topological Methods in Nonlinear Analysis, 16 (2000), 267-278


Book chapters:
  1. S. Migorski, A. Ochal, M. Sofonea, Evolutionary inclusions and hemivariational inequalities, Chapter 2 in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, (Advances in Mechanics and Mathematics (AMMA)), Springer Science+Business Media Series, W. Han, S. Migorski, M. Sofonea (Eds.), vol. 33, 2015, 39-64
  2. S. Migorski, A. Ochal, M. Sofonea, Two history-dependent contact problems, Chapter 14 in: Advances in Variational and Hemivariational Inequalities. Theory, Numerical Analysis, and Applications, (Advances in Mechanics and Mathematics (AMMA)), Springer Science+Business Media Series, W. Han, S. Migorski, M. Sofonea (Eds.), vol. 33, 2015, 355-379
  3. S. Migorski, A. Ochal, M. Sofonea, A class of history-dependent inclusions with applications to contact problems, Chapter 3 in: Optimization and Control Techniques with Applications, Springer Proceedings in Mathematics & Statistics, H. Xu, K.L. Teo, Y. Zhang (Eds.), vol. 86, 2014, 45-74
  4. S. Migorski, A. Ochal, Nonconvex Inequality Models for Contact Problems of Nonsmooth Mechanics, Chapter 3 in: Computer Methods in Mechanics, Advanced Structured Materials, M. Kuczma, K. Wilmanski (Eds.), vol. 1, 2010, Springer, Berlin, Heidelberg, 43-58
  5. S. Migorski, A. Ochal, Inverse Coefficient Problem for Elliptic Hemivariational Inequality, Chapter 11 in: Nonconvex Optimization and its Applications, Nonsmooth/ Nonconvex Mechanics, 2001, Kluwer Academic Publishers, Netherlands, 247-261


Proceedings:
  1. S. Migorski, A. Ochal, Evolution hemivariational inequalities for Navier-Stokes type operators, Proceedings of the International Conference on Nonsmooth/Nonconvex Mechanics with Applications in Engineering, II. NNMAE 2006, Thessaloniki, Greece, July 7-8, 2006, Baniotopoulos C.C., (ed.), 93-98
  2. S. Migorski, A. Ochal, Existence of solutions to boundary parabolic hemivariational inequalities, Proceedings of the International Conference on Nonsmooth/Nonconvex Mechanics with Applications in Engineering, I. NNMAE 2002, Thessaloniki, Greece, July 5-6, 2002, Baniotopoulos C.C., (ed.), 53-60
  3. A. Ochal, Optimal control problems for hemivariational inequalities, Third Polish Conference on Methods and Computer Systems in Scientific Researches and Engineering Design, Krakow, Poland, November 19-21, 2001, Tadeusiewicz R., Ligeska A., Szymkat M., (eds), 15-18


Others:
  • L. Gasinski, A. Ochal, Modeling of quasistatic thermoviscoelastic frictional problem with normal compliance and damage effect, Journal of Coupled Systems and Multiscale Dynamics, 2015, in press
  • K. Bartosz, P. Kalita, S. Migorski, A. Ochal, M. Sofonea, History-dependent problems with applications to contact models for elastic beams, Applied Mathematics and Optimization, 2015, doi: 10.1007/s00245-015-9292-6

back