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Abstract

We introduce bio-inspired artificial neural networks consisting of neurons that are
additionally characterized by spatial positions. To simulate properties of biological
systems we add the costs penalizing long connections and the proximity of neurons
in a two-dimensional space. Our experiments show that in the case where the
network performs two different tasks, the neurons naturally split into clusters,
where each cluster is responsible for processing a different task. This behavior not
only corresponds to the biological systems, but also allows for further insight into
interpretability or continual learning.

1 Introduction

Figure 1: Top-down view of all neurons
in the proposed spatial network. The
network naturally forms two clusters of
neurons corresponding to each task, rep-
resented by different colors.

Neurons in the human brain naturally group into intercon-
nected regions, forming the full neural system [1]. In this
paper, we would like to construct an analogical mechanism
in the case of artificial neural networks. To put this idea
into practice, we supply each neuron with spatial coordi-
nates. Motivated by biological neural systems, we impose
the cost of signal transmission between connected neurons,
which grows linearly with the distance between them. In
consequence, we obtain artificial groups specialized in dif-
ferent tasks, each group containing neurons that are placed
close to each other.

The proposed model is examined in a double classifica-
tion task, where a single network has to classify examples
from two different datasets (MNIST and Fashion-MNIST).
At test time, we split the network into two subnetworks
based on the structure of weights, where each subnetwork
represents one task. The resulting models perform their
respective tasks only slightly worse than the original net-
work, in contrast to the large performance drop observed
after splitting a standard fully connected network. Our
model offers a natural interpretation of neurons’ respon-
sibilities and is analogous to biological neural systems.

Our model is related to continual and multi-task learn-
ing [2] and parameter reduction models for deep neural networks [3]. In particular, the effect is
slightly similar to the one obtained in [4]. Authors focus on splitting network weights into a set
of groups, where each is associated with a class (task). In contrast to our biologically inspired
mechanism, [4] use a specialized weight regularization technique and strive towards a different
goal. In [5], a nested sparse network is constructed and different forms of knowledge are learned
at each level, enabling solving multiple tasks with a single neural network. Checking the response
of different groups in our proposed spatial network could be considered useful for interpreting the
network predictions, which is also an open problem [6].
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2 Spatial neural network

In this section, we introduce our spatial network model and describe its components.

Setting. Let us consider a typical fully-connected neural network. Each neuron n is then additionally
characterized by two-dimensional spatial features p(n) ∈ R2, which describe its position in the
space of the layer it belongs to. The positions are parameters of the model (i.e. we update them
during gradient descent iterations) and the initial coordinates are sampled from a standard Gaussian
distribution. To encourage movement and grouping of the neurons, we introduce additional loss
functions to the final cost function of the model.

Transport cost. In biological systems transferring information over a long distance is not energeti-
cally efficient and may cause unnecessary delays [7]. Inspired by this fact, we want to penalize strong
connections between neurons that are far away from each other. Thus, in a given layer l we use the
spatial L1 penalty, which takes into account the distance between the neurons:

T (l) = 1
Nl

∑
n1→n2,n2∈l

|an1n2 | · ‖p(n1)− p(n2)‖.

where Nl is the number of neurons in the layer l, n1 → n2 denotes that we consider the connection
from the neuron n1 to n2, an1n2 denotes the weight of the connection and n2 ∈ l means that the
neuron n2 belongs to the layer l.

Density of neurons. On the other hand, the neurons should not be packed too densely. To avoid
this we add, as it is common, a loss component based on the negative force between neurons (defined
by a potential). The density cost for the layer l is then defined as:

V (l) = 1
N2

l

∑
n1,n2∈l

exp(−‖p(n1)− p(n2)‖),

where Nl is the number of neurons in the layer l.

We apply those costs only to the set L of selected layers to allow the network more flexibility. The
final loss function of our spatial network model is then:

Lspatial = L+ 1
|L|

∑
l∈L

αT (l) + βL(l),

where L is the original loss function of the model, and α and β are hyperparameters used for
weighting out the components of the loss function.

Activation function. We have chosen to use the sigmoidal activation function. This is in part
because of its connection to the biological systems, but also because of the rescaling invariance of
the most commonly used ReLU. In the case of the said activation function, we can jointly rescale
the weights without changing the final result of the network. Consequently, the network could easily
minimize the loss function without changing its spatial structure. This hypothesis seemed to be
confirmed by our preliminary experiments.

3 Experiments

We measure how the spatial network performs on a double classification task – i.e. the network
has to simultaneously classify examples belonging to two different datasets, MNIST and Fashion-
MNIST. We have chosen those due to similarities in their structure (the same number of classes and
input dimensions) and different semantics (i.e. disjoint classes). Since the classification tasks are
mostly independent, we hypothesize that the network should be able to split its neurons into groups
representing each task.

Implementation details. Our method was tested with three different ways of passing the inputs to
the network:
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Table 1: Averaged accuracy on test sets before and after splitting the network into independent
groups of neurons. We compare our spatial network to the regular network for three different input
representations. Each experiment was run three times – means and standard deviations are provided.

Concatenation Mixing Sequential
Regular Spatial Regular Spatial Regular Spatial

Full network 0.92 ± 0.04 0.92 ± 0.04 0.88 ± 0.04 0.89 ± 0.04 0.92 ± 0.05 0.92 ± 0.05
Split network 0.80 ± 0.13 0.92 ± 0.04 0.70 ± 0.17 0.89 ± 0.03 0.33 ± 0.20 0.84 ± 0.08

Acc. drop 0.11 ± 0.15 0.00 ± 0.00 0.19 ± 0.20 0.00 ± 0.00 0.60 ± 0.20 0.07 ± 0.07

1. Concatenated inputs – input is a vector of dimension 1568 obtained by concatenating
flattened examples from MNIST and Fashion-MNIST (one from each dataset).

2. Mixed inputs – input is a vector of dimension 784, which is a linear combination of a
MNIST and a Fashion-MNIST example (i.e. element-wise addition).

3. Sequential inputs – input is a single example randomly sampled from both datasets.

In all three cases, the network outputs a 20-dimensional vector, which is then divided into two
10-dimensional vectors. The softmax function is then separately applied to both vectors to obtain
class probabilities for each task.

The same network architecture is used for all tasks: n − 128 − 128 − 128 − 256 − 20, where n
represents the dimension of input vector and integers are the numbers of neurons in consecutive
layers. We apply the spatial penalties starting from the third hidden layer and we also only split
those layers. Hyperparameters are kept the same for all tasks: α = 1, β = 3, learning rate is set to
0.005, batch size is 256. As a baseline, we use an analogical network without transport and density
penalties1.

Splitting the network. Our goal is to check whether in the described setting we would be able
to observe the formation of disjoint regions (similar to those forming in the brain). To do so, we
split the network into two subnetworks responsible for different tasks, based on the structure of the
connections. Then we evaluate each subnetwork (i.e. we disable the neurons that were not assigned
to it) and compare its performance on its respective task to the full network.

We have chosen a simple greedy method of splitting the network. Since we use separate outputs
for each task, the assignment of neurons in the last layer is given and we can proceed recursively
by propagating the split backward. Then, we assign each neuron to the task it has the strongest
connection to, which we measure as the sum of absolute weights of connections going from that
neuron to the neurons in the next layer responsible for the given task. In other words, if M is the
number of desired regions, then the neuron assignment g(n) ∈ {1, . . . ,M} is given by:

g(n) = argmax
i=1,...,M

∑
n→m,g(m)=i

|anm|.

In our case M = 2 for all experiments. Intuitively, if the network’s neurons are in fact forming two
disjoint clusters representing each task, then the inter-task connections should be close to zero, and
thus the neuron will be assigned to the corresponding group2.

Results. Performance of models in terms of classification accuracy before and after the
split is presented in Table 1 (we only split the layers from the set L for which the spa-
tial losses were applied). The results show that the spatial network can divide the neu-
rons into task-specific subgroups in a more efficient manner than the regular network3.
We suspect that this is because the network places neurons representing different tasks
into separate clusters, which would make the task of dividing the network straightforward.

1The full code will be made public soon.
2We have also tried splitting based on spectral clustering and using network activation statistics, but those

methods failed completely, e.g. all outputs were assigned to the same task.
3It is also worth noting that the additional loss functions added to the spatial network do not negatively

impact the performance of the model before the split.
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Figure 2: Three-dimensional perspective
of the network shown in Figure 1. Each
slice represents a different layer of the
network, the rightmost being the output
layer.

Visual inspection of the neurons’ positions seems to con-
firm this assumption. Figure 2 shows a scatter plot of the
neurons in the split layers and their group assignments
obtained by our greedy method4. Neurons in the output
layer representing different tasks are clearly separated,
with groups in the previous layers mirroring this arrange-
ment. The top-down view of the same network presented
in Figure 1 shows that the neurons are indeed mostly di-
vided into two groups with a number of outsiders around.
This behavior resembles the region-forming processes in
the brain that we wanted to mimic.

The method of presenting the input strongly affects the
results. Even the regular network is able to perform well
after the split when using the concatenated input – presum-
ably because this imposes a structural prior encouraging
the network to form two separate parts. On the other hand,
the sequential task is the most difficult – we hypothesize
that since the network does not perform both tasks at the
same time, it is more inclined to use neurons for both tasks,
which leads to a decrease in performance after the split.

4 Conclusion

We have presented a connection between neuroscience and machine learning, which to our best
knowledge has not yet been explored. Experiments show that our proposed spatial artificial neural
network manifests behavior similar to the region-forming processes in the brain.
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