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1 Introduction

Deep generative models have achieved impressive success in recent years.
In particular, Generative Adversarial Networks (GANs) [5] and Variational
Autoencoders (VAEs) [7], as powerful frameworks for deep generative model
learning, have largely been considered as two distinct paradigms.

Our aim is to present an AutoEncoder based alternative to VAE. More
precisely we present an easy to implement generative AutoEncoder. The con-
struction comes from our study of the following important scienti�c question:

Does the generative AE based model has to be so complicated as VAE?

The problem is that the basic aim of VAE is to just enforce that the
autoencoder is normal in the latent space. Why to do this one has to use
variational approach and nontrivial optimization? Clearly, to deal with such
task, a �rst basic natural approach is to take an AE, and add to cost a part
measuring the distance from normality (in the case of VAE this is in a sense
done by variational approach and KL-divergence).

However, in practice the above idea cannot be applied as there is no mea-
sure of normality which is well-suited with dealing with highly dimensional
data with dimension D ≥ 20. Considered the best, the most popular mea-
sures of normality known in the statistical society are BHEP (and its special
case Bowman-Foster) and Mardia skewness and curtosis test [6]. However,
both this tests are not suitable for use as a measure of normality in high
dimensions, see Remark 1.1.

Thus to realize our scienti�c aim we decided to construct an index of
normality well-adapted to highly dimensional data. Our idea comes from the
well-known Cramer-Wold Theorem [2], which states that a Borel probability
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measure on Euclidean space is determined by the values it assigns to all
half-spaces (equivalently, by its projections to lines through the origin).

This theorem is a basic step in many methods which rely on the reduc-
tion of the high-dimensional problem to many separate one-dimensional, in
particular it serves as a crucial step in the proof of universal approximation
theorem [3]. Since for one-dimensional data we have reliable kernel density
estimation, we can easily use any measure of the distance from the standard
univariate normal density. By integrating over all one dimensional projec-
tions to lines we obtain our �nal measure of non-normality NICW(·). Thus
we arrive at the normality index which has the following properties:

• NICW(X) > 0, if NICW(X) is close to zero then the data X is close to
the normal distribution,

• for large dimensions D ≥ 20 it has simple asymptotic form.

Thus our �nal generative model is the standard AE with the addition of
NICW(·).

In our experiments we apply only the limiting formula (except for the
one illustrative experiment with 2-dimensional case). It occurs that due to
simplicity GAE, compared to VAE, learns better and obtains normality at
the smaller cost of reconstruction error.

1.1 Normality tests

For the survey on the normality tests we refer the reader to [1, 6]. We discuss
here the most important tests.

The BHEP and Bowman-Foster test
We �x β (a smoothing parameter, with default setting β = 0.5), and put

Tn,β =
1

n2

n∑
j,k=1

exp(−β
2

2
‖xj−xk‖2)−

2

n
(1+β2)−d/2

n∑
j=1

exp(− β2‖xj‖2

2(1 + β2)
)+(1+2β2)−d/2.

Now the closer Tn,β is to zero, the more given sample is considered to be close
to normal distribution.

The BHEP test can be seen as the application of the standard kernel den-
sity estimation, when one measures the L2 distance between the regularized
sample and regularized normal density [6]:

Tn,β =
(2π)D/2

βD
‖N(0, 2β

2+1
2β2 I)− 1

n

n∑
i=1

N(xi,
1

2β2 I)‖2. (1)
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Thus β has the role of smoothing parameter.
Bowman-Foster test is special case of BHEP, where the parameter β is

chosen so that the associated kernel density estimation in (1) is optimal (in
the sense of the Silverman's rule of thumb1 [8, 4]):

βB.-F. =
1√

2hopt
where hopt = ( 4

n(D+2)
)1/(D+4).

Observe, that for large dimensionD, even for large sample sizes, hopt becomes
close to 1.

Mardia tests
Mardia's skewness b1,D(·) and curtosis b2,D(·) of a sample X = (xi)i=1..n ⊂

RD are given by

b1,D(X) =
1

n2

n∑
j,k=1

(xTj xk)
3, b2,D(X) =

1

n

n∑
j=1

‖xj‖4.

The expected Mardia's skewness is 0 for a multivariate normal distribution
and higher values indicate a more severe departure from normality, while the
expected Mardia's kurtosis is D(D+2) for a multivarite normal distribution.
Thus the high values of either b1,D or |b2,D − D(D + 2)| implicate that the
sample is not normal.

Remark 1.1. At the end of this section let us explain why both this tests
cannot be successfully applied as a valid normality index in high dimensions.

- BHEP test can be seen a the generalized application of kernel density
estimation, is consistent, and consequently it can distinguish normal density
from any other (for su�ciently large sample). It works well in small dimen-
sionsD < 10, but as show our preliminary studies, dramatically fails for large
D and standard sample size. The reason is that the number of datapoints
needed to estimate reliably the density by kenrel methods increases faster
then exponentially with the dimension [8].

- Mardia tests measure whether the data skewness and curtosis coincide
with that of normal density. In our preliminary research they performed
better as compared to BHEP, but they, contrary to BHEP, have the failure
that they cannot be used as a distance from normality, as they are not
consistent, i.e. do not distinguish normal density from some other spherical

1In the �rst edition of Silverman's book is the wrong formula which is ?poprawiona in

the following editions.
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densities [6]. The lack of consistency is not a tragic problem in the standard
tests of normality, where we want to study some prede�ned datasets. The
real problem arises in the optimization since then the neural net can easily
learn to pass the test while not being normal.

2 Cramer-Wold Normality Index

2.1 Basic idea

If X has density f , then we use the notation fv to denote the density of v
TX.

Theorem 2.1 (Cramer-Wold Theorem). Let f, g be densities (or in general
integrable functions). If

fv = gv for every v ∈ SD−1(0, 1),

then
f = g.

As a direct corollary of Cramer-Wold Theorem we obtain that the den-
sity g on RD is equal to the standard normal density N(0, I) i� its projection
on the line though zero is the one dimensional density N(0, 1). A natural
informal consequence is that a set X ⊂ RD was generated from the stan-
dard multivariate normal density N(0, I) i� vTX comes from the normal
density N(0, 1) for every v : ‖v‖ = 1. So we reduce the problem to the one-
dimensional case, where as we know the classical kernel density estimation
works very well.

To formalize the above we thus need to be able to calculate the distance
from N(0, 1) for scalar data S ⊂ R. We use the simplest idea and apply the
L2 norm between the kernel density estimation on S and N(0, 1) (with the
kernal width assumed for the standard deviation 1).

2.2 Calculations

Dla dwóch g¦sto±ci f, g (zakªadamy, »e jeden ma kow. bliska I) kªadziemy

d2(f, g) =

∫
v∈S(0,1)

‖fv − gv‖2dv
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Naszym celem jest policzenie powy»szego wspóªczynnika w szczególnej
sytuacji gdy mamy próbk¦ X = (xi)i=1..N ⊂ RD i rozkªad normalny N(0, I).
Stosujemy kernelowa estymacje w sytuacji jednowymiarowej kªad¡c h ze
wzoru Silvermana

h = hopt = (
4

3N
)1/5.

dostajemy wzór na indeks normalno±ci dla zbioru X (im bli»szy zera, tym
lepiej):

NI(X) =

∫
v:‖v‖=1

‖fv − gv‖2dv =

∫
v:‖v‖=1

‖ 1

N

N∑
i=1

N(vTxi, h)−N(0, 1)‖2dv.

Teraz mamy

‖ 1

N

N∑
i=1

N(xi, h
2)−N(0, 1)‖2

=
1

N2

N∑
i,j=1

N(xi − xj, 2h2)(0) +N(0, 2)(0)− 2

N

N∑
i=1

N(xi, 1 + h2)(0).

Je»eli zde�niujemy funkcj¦ pomocnicz¡

Φ(z,H) =

∫
v∈S

N(vT z,H)(0)dv,

to nasz ko«cowy wzór na indeks normalno±ci redukuje si¦ do

NI(X) =
1

N2

N∑
i,j=1

Φ(yi − yj, 2h2) + Φ(0, 2)− 2

N

N∑
i=1

Φ(yi, 1 + h2)(0).

2.3 Wzór asymptotyczny na Φ

W konsekwencji wystarczy nam policzyc

Φ(z,H) =

∫
v∈S

N(vT z,H)(0)dv.

Po nietrywialnych przeliczeniach mo»na pokaza¢, »e

Φ(z,H) =
2π

D−1
2

√
2H

1

Γ(D
2

)
1F1

(
1

2
;
D

2
;−‖z‖2/(2H)

)
,
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gdzie 1F1 to odpowiednia funkcja specjalna (patrz https://en.wikipedia.
org/wiki/Confluent_hypergeometric_function, tam oznaczone przezM)

Wzór ten powy»ej warto±ci teoretycznej, jest dla nas praktycznie maªo
warto±ciowy, gdy» funkcji 1F1 nie ma w TensorFlow. Oznacza to, »e przy-
datne b¦dzie przybli»enie. Skorzystam z dziwno±cie sytuacji wysokowymi-
arowej, gdzie rozkªad normalny N(0, I) koncentruje si¦ w okolicy sfery o
promieniu

√
D, co oznacza, »e N(0, 1

D
I) koncentruje si¦ wokóª S(0, 1) = {v :

‖v‖ = 1}, a jak zauwa»yli±my wcze±niej to nas wªa±nie interesuje.

Twierdzenie 2.1. Mamy w du»ych wymiarach

Φ(z,H) ≈ 1√
2π

1√
H + ‖z‖2/D

.

Proof. Kªadziemy r = ‖z‖, i liczymy:

Φ(z,H) ≈
∫
RD

N1(〈v, z〉, H)(0) ·ND(0, 1
D
I)(v)dv

=

∫ ∞
−∞

N1(0, H)(rs)
ND(0, 1

D
I)(s z

‖z‖)

ND−1(0,
1
D
I)(0)

∫
RD−1

ND−1(0,
1
D
I)(w)dw ds

=

∫ ∞
−∞

N1(0, H)(rs)
ND(0, 1

D
I)(s z

‖z‖)

ND−1(0,
1
D
I)

ds

=

∫ ∞
−∞

1√
2πH

exp(− 1

2h
(rs)2) ·

√
D√
2π

exp(−1

2
Ds2)ds

=

√
D

2π
√
H

∫ ∞
−∞

exp(−1

2
(r2/H +D)s2)ds

=

√
D

2π
√
H

1

N(0, H
r2+HD

)(0)

∫ ∞
−∞

N(0, H
r2+HD

)(s)ds

=

√
D

2π
√
H

√
2π

√
H

r2 +HD
=

1√
2π

1√
H + r2/D

.
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W ko«cowej de�nicji indeksu opuszczamy 1/
√

2π bo staªa, i na koniec
dostajemy nasz indeks normalno±ci zbioru X = (xi)i=1..N ⊂ RD ju» w formie
gotowej do wrzucenia do AE:

NICW(X) =
1

N2

N∑
i,j=1

1√
2h2 + ‖xi − xj‖2/D

+
1√
2
− 2

N

N∑
i=1

1√
1 + h2 + ‖xi‖2/D

,

gdzie h = ( 4
3N

)1/5. Je»eli NICW(X) jest bliskie zera, to zbiór X jest bliski
bycia rozkªadem normalnym.
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