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1 Introduction

The topological notion of the covering relation (Easton’s ’correctly aligned win-
dows’ [E1, E2] without any differentiability assumptions) originating from the
theory of the Conley index, see [GiZ] and the references given there, has been
successfully applied to establish the existence of symbolic dynamics for such
systems as: the Henon map[Ga1, ZN, GaZ2, CGB], the Chua circuit[Ga2], the
Lorenz equations[GaZ1], the Rössler equations[ZN], the Henon-Heiles hamiltonian[AZ],
PR3BP [A, WZP] or the Michelson system [W1, W2]. In all the examples listed
above we are talking about the computer assisted proofs. There exist also some
nontrivial applications of covering relations, not related to any computer assisted
proofs, like the stability of Sharkovski order and estimates for the topological
entropy for multidimensional perturbations of one-dimensional maps [MZ, ZS],
the delay differential equations with small delays [WoZ] or to the Arnold diffu-
sion [GiL, GiR].

However the topological tools are inadequate to handle the questions of local
uniqueness of some periodic orbits, the sensitive dependence on initial conditions
or the hyperbolicity.

The goal of the present paper to address the following question: how to
effectively link the covering relations with the cone conditions of some kind,
so that the covering relations will be used to prove that some dynamically
interesting objects exist and the cone conditions will be used establish their
properties implied by the hyperbolicity. The standard way to establish the hy-
perbolic behavior is usually through the cone fields in the tangent space which
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are mapped into itself by the tangent map and/or its inverse, see [T] and the
references given there. In this paper we introduce a different approach, which is
based on the two point Lapunov function for a map f , by which we understand
the function of two variables L(z1, z2), satisfying locally the following condi-
tion L(f(z1), f(z2)) > L(z1, z2) for z1 6= z2. For uniformly hyperbolic systems
the proposed approach appears to be equivalent to the standard one, but our
method does not require the uniform hyperbolicity. The proposed approach has
been already applied to the study (a computer assisted proof) of the cocoon
bifurcation in the Michelson system in [KWZ].

The main application of the proposed approach discussed in this paper is a
new ’geometric’ proof of the existence of the (un)stable manifold for a hyperbolic
fixed point for a map or an ODE. The stable manifold theorem goes back to
Poincaré, Hadamard and Perron, see [Ha] and the references given there, but
there still appear new proofs in the literature, the recent ones are [C, HL, McS].
The interesting feature of our approach is that the whole proof in made in
the phase space, is local and gives explicit bounds on the size of the (un)stable
manifolds. A proof, similar in sprit, but not in the realization, has been proposed
by Hartman in [Ha, Exercises 5.3 and 5.4].

Our geometric approach to the proof of the stable manifold theorem should
be contrasted with the standard approach see [Ha, Hal, I70, I80, Ro, C, HL],
where the problem of the existence of stable manifold is rephrased as a question
of the existence of fixed point in a suitable Banach space of graphs of functions
or sequences. Moreover, our approach does not require that the fixed point is
hyperbolic, the essential assumption is the existence of the two-point Lapunov
function. In Section 6 we analyze a non-hyperbolic example of this type.

The results about the (un)stable manifolds for hyperbolic fixed points stated
and proved in this paper are weaker than those obtained using the Perron-Irwin
method [I70, I80, C] as we did not get the smoothness of the invariant manifolds,
in our proof we obtain only that they are Lipschitz manifolds for C1 maps and
analytic for the analytic maps. Also contrary to the results from [I70, I80, C],
which are valid in Banach space, we restrict ourselves to the finite dimensional
case, but it clear that our proof can be easily adapted to compact maps on the
Banach space. Both, our proof and others proofs, consist of two parts, the first
one is about the existence of graph of the function, which is contained in the
(un)stable set of the fixed point and in the second part, it is shown that in fact
this graph contains the whole local (un)stable set. It turns out, that when using
our approach the conditions required for both parts of the proof are different
one from another, while in the standard approach the conditions necessary for
the first part might be so strong that they imply the cone conditions necessary
for the second one. It turns out that this results with weaker conditions, when
using our method. This is illustrated by examples in Section 7. This is especially
important when the explicit estimates for the invariant manifold are required,
as it is for example in the context of computer assisted proofs.

Let us finish this introduction with the short description of the paper by list-
ing the content of its sections. Section 2 contains the definitions and theorems
about the covering relations. Section 3 is about the cone conditions expressed
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in terms of two-point Lapunov functions and its interactions with the notion
of covering relations. Section 4 contains main theorems about (un)stable sets
for chains of covering relations satisfying the cone conditions. In Section 5 we
apply the tools developed in previous sections to prove the (un)stable manifold
theorem for hyperbolic fixed points of maps. In Section 6 we discuss a planar ex-
ample with an non-hyperbolic fixed points and its (un)stable manifold. Section 7
contains some quantitative comparisons of the range of the existence of stable
manifold for a map using our approach and the standard approach. In Section 8
we prove a theorem about the continuous and Lipschitz dependence of stable
manifold of hyperbolic fixed point with respect to the parameters. Section 9
contains a proof that for an analytic map the (un)stable manifold of hyperbolic
fixed point is analytic and depends analytically on parameters. In Section 10
we prove the stable manifold theorem for hyperbolic fixed point for ODEs. In
Section 11 we prove that for a linear map our cone conditions expressed in terms
of two-point Lapunov function are equivalent to the hyperbolicity.

1.1 Notation

By N, Z, Q, R, C we denote the set of natural, integer, rational, real and
complex numbers, respectively. Z− and Z+ are negative and positive integers,
respectively. By S1 we will denote a unit circle on the complex plane.

For Rn we will denote the norm of x by ‖x‖ and when in some context the
formula for the norm is not specified, then it means that any norm can be used.
Let x0 ∈ Rs, then Bs(x0, r) = {z ∈ Rs | ‖x0 − z‖ < r} and Bs = Bs(0, 1).

For z ∈ Ru × Rs we will call usually the first coordinate, x, and the second
one y. Hence z = (x, y), where x ∈ Ru and y ∈ Rs. We will use the projection
maps πx(z) = x(z) = x and πy(z) = y(z) = y.

Let z ∈ Rn and U ⊂ Rn be a compact set and f : U → Rn be continuous
map, such that z /∈ f(∂U). Then the local Brouwer degree [S] of f on U at z is
defined and will be denoted by deg(f, U, z).

Let A : Rn → Rn be a linear map. By Sp(A) we denote the spectrum of
A, which is the set of λ ∈ C, such that there exists x ∈ Cn \ {0}, such that
Ax = λx.

2 Covering relations, horizontal and vertical disks

The goal of this section is to recall from [GiZ, WZ] the notions of h-sets, covering
relations, horizontal and vertical disks.

Definition 1 [GiZ, Definition 1] An h-set, N , is a quadruple
(|N |, u(N), s(N), cN ) such that

• |N | is a compact subset of Rn

• u(N), s(N) ∈ {0, 1, 2, . . . } are such that u(N) + s(N) = n
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• cN : Rn → Rn = Ru(N) × Rs(N) is a homeomorphism such that

cN (|N |) = Bu(N) ×Bs(N).

We set

dim(N) := n,

Nc := Bu(N) ×Bs(N),

N−
c := ∂Bu(N) ×Bs(N),

N+
c := Bu(N) × ∂Bs(N),

N− := c−1
N (N−

c ), N+ = c−1
N (N+

c ).

Hence an h-set, N , is a product of two closed balls in some coordinate system.
The numbers u(N) and s(N) are called the nominally unstable and nominally
stable dimensions, respectively. The subscript c refers to the new coordinates
given by homeomorphism cN . Observe that if u(N) = 0, then N− = ∅ and if
s(N) = 0, then N+ = ∅. In the sequel to make notation less cumbersome we
will often drop the bars in the symbol |N | and we will use N to denote both
the h-sets and its support.

Definition 2 [GiZ, Definition 3] Let N be a h-set. We define a h-set NT as
follows

• |NT | = |N |
• u(NT ) = s(N), s(NT ) = u(N)

• We define a homeomorphism cNT : Rn → Rn = Ru(NT ) × Rs(NT ), by

cNT (x) = j(cN (x)),

where j : Ru(N) × Rs(N) → Rs(N) × Ru(N) is given by j(p, q) = (q, p).

Observe that NT,+ = N− and NT,− = N+. This operation is useful in the
context of inverse maps.

Definition 3 [W2, Definition 2.2] Assume that N, M are h-sets, such that
u(N) = u(M) = u and let f : N → Rdim(M) be continuous. Let fc = cM◦f◦c−1

N :
Nc → Ru × Rs(M).

Let w be a nonzero integer. We say that

N
f,w
=⇒ M

(N f -covers M with degree w) iff the following conditions are satisfied
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1. there exists a continuous homotopy h : [0, 1]×Nc → Ru × Rs, such that the
following conditions hold true

h0 = fc, (1)
h([0, 1], N−

c ) ∩Mc = ∅, (2)
h([0, 1], Nc) ∩M+

c = ∅. (3)

2. If u > 0, then there exists a map A : Ru → Ru, such that

h1(p, q) = (A(p), 0), for p ∈ Bu(0, 1) and q ∈ Bs(0, 1), (4)
A(∂Bu(0, 1)) ⊂ Ru \Bu(0, 1). (5)

Moreover, we require that

deg(A,Bu(0, 1), 0) = w, (6)

Observe that in the above definition s(N) and s(M) can be different, this is the
only difference compared to [GiZ, Definition 6].

Remark 1 Observe, that since for any norm in Rn the closed unit ball is home-
omorphic to [−1, 1]n, therefore for h-sets and covering relations we will use
different norms in different contexts.

Remark 2 If the map A in condition 2 of Def. 3 is a linear map, then condition
(5) implies, that

deg(A, Bu(0, 1), 0) = ±1.

Hence condition (6) is in this situation automatically fulfilled with w = ±1.
In fact, this is the most common situation in the applications of covering

relations.

Most of the time we will not interested in the value of w in the symbol
N

f,w
=⇒ M and we will often drop it and write N

f
=⇒ M , instead. Sometimes

we may even drop the symbol f and write N =⇒ M .

Definition 4 [GiZ, Definition 7] Assume N, M are h-sets, such that u(N) =
u(M) = u and s(N) = s(M) = s. Let g : Rn ⊃ Ω → Rn. Assume that
g−1 : |M | → Rn is well defined and continuous. We say that N

g⇐= M (N

g-backcovers M ) iff MT g−1

=⇒ NT .

Definition 5 [WZ, Definition 10] Let N be an h-set. Let b : Bu(N) → |N | be
continuous and let bc = cN ◦ b. We say that b is a horizontal disk in N if there
exists a homotopy h : [0, 1]×Bu(N) → Nc, such that

h0 = bc (7)
h1(x) = (x, 0), for all x ∈ Bu(N) (8)

h(t, x) ∈ N−
c , for all t ∈ [0, 1] and x ∈ ∂Bu(N) (9)
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Definition 6 [WZ, Definition 11] Let N be an h-set. Let b : Bs(N) → |N | be
continuous and let bc = cN ◦ b. We say that b is a vertical disk in N if there
exists a homotopy h : [0, 1]×Bs(N) → Nc, such that

h0 = bc

h1(x) = (0, x), for all x ∈ Bs(N)

h(t, x) ∈ N+
c , for all t ∈ [0, 1] and x ∈ ∂Bs(N). (10)

Definition 7 Let N be an h-set in Rn and b be a horizontal (vertical) disk in
N .
We will say that x ∈ Rn belongs to b, when b(z) = x for some z ∈ dom(b).

By |b| we will denote the image of b. Hence z ∈ |b| iff z belongs to b.

The theorem below contains a slight generalization of Theorem 9 in [GiZ]

Theorem 3 Assume Ni, i = 0, . . . , k, Nk = N0 are h-sets and for each i =
1, . . . , k we have either

Ni−1
fi,wi=⇒ Ni (11)

or
Ni ⊂ dom(f−1

i ) and Ni−1
fi,wi⇐= Ni. (12)

Then there exists a point x ∈ intN0, such that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ intNi, i = 1, . . . , k (13)
fk ◦ fk−1 ◦ · · · ◦ f1(x) = x (14)

Proof: Under additional assumption that s(Ni) = s for i = 1, . . . , k this theo-
rem was proved in [GiZ].

The situation of different s(Ni) can be reduced to the previous one as follows.
Let s = maxi=1,...,k−1 si.

Let us fix the norm ‖x‖ = maxi |xi|.
We define new h-sets Ñi and maps f̃i as follows

|Ñi| = |Ni| × [−1, 1]s−si , u(Ñi) = u(Ni), s(Ñi) = s (15)
cÑi

(x, y, ỹ) = (cNi(x, y), ỹ), where (x, y) ∈ Rdim(Ni), ỹ ∈ Rs−si (16)

For direct covering proceed as follows. Let hi be the homotopy from the
covering relation Ni−1

fi=⇒ Ni. We define a new homotopy h̃i and f̃i by

h̃i(t, (x, y, ỹi−1)) = hi(t, (x, y))× {0}s−s(Ni)

f̃i(x, y, ỹi−1) = fi(x, y)× {0}s−s(Ni)

Observe that for i = 1, . . . , k such that we have direct covering (11) we have

Ñi−1
f̃i,wi=⇒ Ñi (17)
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For backcovering (i.e. (12)) by definition we know that s(Ni−1) = s(Ni),
therefore we just add s−s(Ni−1) contracting directions (which will be expanding
for inverse map). We define

h̃i(t, (x, y, ỹi)) = (hi(t, (x, y)), 2ỹi)
f̃−1

i (x, y, ỹi) = (f−1
i (x, y), 2ỹi).

The assertion now follows from Theorem 9 in [GiZ].

Theorem 4 Let k ≥ 1. Assume Ni, i = 0, . . . , k, are h-sets and for each
i = 1, . . . , k we have either

Ni−1
fi,wi=⇒ Ni (18)

or
Ni ⊂ dom(f−1

i ) and Ni−1
fi,wi⇐= Ni. (19)

Assume that b0 is a horizontal disk in N0 and be is a vertical disk in Nk.
Then there exists a point x ∈ intN0, such that

x = b0(t), for some t ∈ Bu(N0)(0, 1) (20)
fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ intNi, i = 1, . . . , k (21)
fk ◦ fk−1 ◦ · · · ◦ f1(x) = be(z), for some z ∈ Bs(Nk)(0, 1) (22)

Proof: Just as in the case of Theorem 3, the assertion was proved in [WZ,
Thm. 4] under the assumption that s(Ni) = s is independent of i.

We can reduce the current case exactly in the same way as in the proof of
Theorem 3. We define f̃i and Ñi as it was done there. For disks let h0 and
he be the homotopies from definitions of b0 and be, respectively. We define the
horizontal disk b̃0 and the vertical disk b̃e and their homotopies h̃0 and h̃e as
follows

dom(b̃0) = dom(b0), b̃0(x) = b0(x)× {0}s−s(N0)

h̃0(t, x) = h(t, x)× {0}s−s(N0)

dom(b̃e) = dom(be)× [−1, 1]s−s(Nk), b̃e(y, ỹ) = (be(y), ỹ),
h̃e(t, y, ỹ) = (he(y), ỹ).

Now we apply Theorem 4 from [WZ].

3 Cone conditions

The goal of this section is to introduce a method, which will allow to handle rel-
atively easily the hyperbolic structure on h-sets. Some of this material has been
already presented in [KWZ], but is included here to make this paper reasonably
self-contained.
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Definition 8 Let N ⊂ Rn be an h-set and Q : Rn → R be a quadratic form

Q((x, y)) = α(x)− β(y), (x, y) ∈ Ru(N) × Rs(N), (23)

where α : Ru(N) → R, and β : Rs(N) → R are positive definite quadratic forms.
The pair (N,Q) we be called an h-set with cones.
We will refer to the quadratic forms α and β as positive and negative parts

of Q, respectively.
If (N,Q) is an h-set with cones, then we define a function LN : Rn×Rn → R

by
LN (z1, z2) = Q(cN (z1)− cN (z2)) (24)

Quite often we will drop Q in the symbol (N, Q) and we will say that N is
an h-set with cones.

3.1 Cone conditions for horizontal and vertical disks

Definition 9 Let (N, Q) be a h-set with cones.
Let b : Bu → |N | be a horizontal disk.
We will say that b satisfies the cone condition (with respect to Q ) iff for

any x1, x2 ∈ Bu, x1 6= x2 holds

Q(bc(x1)− bc(x2)) > 0. (25)

Definition 10 Let (N,Q) be a h-set with cones.
Let b : Bs → |N | be a vertical disk.
We will say that b satisfies the cone condition (with respect to Q ) iff for

any y1, y2 ∈ Bs, y1 6= y2 holds

Q(bc(y1)− bc(y2)) < 0. (26)

Lemma 5 Let (N,Q) be a h-set with cones and let b : Bu → |N | be a horizontal
disk satisfying the cone condition.

Then there exists a Lipschitz function y : Bu → Bs such that

bc(x) = (x, y(x)). (27)

Analogously, if b : Bs → |N | is a vertical disk satisfying the cone condition,
then there exists a Lipschitz function x : Bs → Bu

bc(y) = (x(y), y)). (28)

Proof: We will prove only the first assertion, the proof of the other one is
analogous.

In the first part of this proof we will show that for any x ∈ intBu(N) there
exists z ∈ intBu(N) and yx ∈ Bs(N), such that

bc(z) = (x, yx). (29)
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For this we will use the local Brouwer degree.
In the second part using the cone condition we will show that yx is uniquely

defined and its dependence on x is Lipschitz. Then we extend the definition of
y(x) to x ∈ ∂Bu.

Let h be the homotopy from the definition of the horizontal disk b.
To prove (29) consider the homotopy π1 ◦ h : [0, 1]×Bu(N) → Bu(N), where

π1 : Ru(N) × Rs(N) → Ru(N) is a projection on the first component. Let us
fix x ∈ intBu(N). It is easy to see that, since x /∈ π1 ◦ h(t, ∂Bu(N)) the local
Brouwer degrees in the formula below are defined and the stated equalities are
satisfied by the homotopy property of the local Brouwer degree

deg(π1 ◦ bc, Bu(N), x) = deg(π1 ◦ h1, Bu(N), x) = deg(Id, Bu(N), x) = 1. (30)

This proves (29).
To prove the uniqueness of yx, assume that there exist z1, z2 ∈ intBu(N) and

y1, y2 ∈ Bs(N), y1 6= y2 such that

bc(z1) = (x, y1), bc(z2) = (x, y2). (31)

From the cone condition for b it follows that

0 < Q(bc(z1)− bc(z2)) = α(0)− β(y1 − y2) < 0 (32)

which is a contradiction. Hence we have a well defined function

y(x) = yx, for x ∈ intBu(N). (33)

Observe that from the cone condition it follows that for any
x1, x2 ∈ intBu(N), x1 6= x2 holds

A‖x1 − x2‖2 ≥ α(x1 − x2) > β(y(x1)− y(x2)) ≥ B‖y(x1)− y(x2)‖2, (34)

where A,B are some positive constants related to quadratic forms α and β,
respectively.

This proves the Lipschitz condition, which allows to continuously extend the
function y(x) to the boundary of Bu(N). Observe that from the closeness of |b|
it follows that (x, y(x)) ∈ |b| for x ∈ ∂Bu(N).

3.2 Cone conditions for maps

Definition 11 Assume that (N, QN ), (M, QM ) are h-sets with cones, such that
u(N) = u(M) = u and let f : N → Rdim(M) be continuous. Assume that

N
f

=⇒ M . We say that f satisfies the cone condition (with respect to the pair
(N, M)) iff for any x1, x2 ∈ Nc, x1 6= x2 holds

QM (fc(x1)− fc(x2)) > QN (x1 − x2). (35)
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Definition 12 Assume that (N, QN ), (M, QM ) are h-sets with cones, such that
u(N) = u(M) = u and s = s(N) = s(M) and let f : N → Ru+s be continuous.

Assume that N
f⇐= M . We say that f satisfies the cone condition (with respect

to the pair ((N, QN ), (M,QM ))) iff for any y1, y2 ∈ Mc, y1 6= y2 holds

QM (y1 − y2) > QN (f−1
c (y1)− f−1(y2)). (36)

Observe that Definition 12 is equivalent to Definition 11 applied to map f−1

with respect to pair (MT ,−QM ), (NT ,−QN )).
The cone condition in Definition 11 is expressed in coordinates associated to

h-sets, in the phase space it implies that

LM (f(z1), f(z2)) > LN (z1, z2), for z1 6= z2, z1, z2 ∈ N . (37)

Below we state and prove two basic theorems relating covering relations and
the cone conditions

Theorem 6 Assume that for i = 0, . . . , k − 1 either

Ni
fi=⇒ Ni+1 (38)

or
Ni+1 ⊂ dom(f−1

i ) and Ni
fi⇐= Ni+1, (39)

where all h-sets are h-sets with cones and fi for i = 0, . . . , k − 1 satisfies the
cone condition.

Assume that b : Bs(Nk) → Nk is a vertical disk in Nk satisfying the cone
condition.

Then the set of points z ∈ N0 satisfying the following two conditions

fi−1 ◦ fi−2 ◦ · · · ◦ f0(z) ∈ Ni, for i = 1, . . . , k (40)
fk−1 ◦ · · · ◦ f0(z) ∈ |b| (41)

is a vertical disk satisfying the cone condition.

Proof: For the proof it is enough to consider the case of k = 1, only. For k > 1
the result follows by induction.

Without any loss of the generality we can assume that N0 = N0,c = Bu(N0)×
Bs(N0), N1 = N1,c = Bu(N1) ×Bs(N1), f0 = f0,c.

Consider a family of horizontal disks in N0 dy : Bu(N0) → N0 for y ∈ Bs(N0)

dy(x) = (x, y). (42)

From Theorem 4, applied to chain N0
f0=⇒ N1 and disks dy in N0 and b in N1

it follows that each y ∈ Bs(N0) there exists x ∈ Bu(N0), such that

f0(x, y) ∈ |b|. (43)
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Let us fix y ∈ Bs(N0). We will show that there exists only one x satisfying
(43). For the proof assume the contrary, hence we have x1 6= x2 and x1, x2 both
satisfy (43).

Observe that QN0((x1, y)− (x2, y)) > 0, hence from the fact that f0 satisfies
the cone condition it follows that

QN1(f0(x1, y)− f0(x2, y))) > QN0((x1, y)− (x2, y)) > 0. (44)

But the above inequality is in a contradiction with the cone condition for b.
Hence (43) defines a function x(y) in a unique way.

It is easy to see that function x(y) is continuous. Namely, from the compact-
ness argument it follows that it is enough to prove that if we have a sequence
of pairs (xn, yn), where yn ∈ Bs, yn → ȳ for n → ∞ and xn = x(yn), xn → x̄,
then f0(x̄, ȳ) ∈ |b|, but this is an obvious consequence of the continuity of f0

and the compactness of |b|.
Obviously, b0 : Bs → Bu × Bs defined by b0(y) = (x(y), y) is a vertical disk

in N0. It remains to show that it satisfies the cone condition.
We will prove this by a contradiction. Assume that we have y1 and y2 such

that
QN0((x(y1), y1)− (x(y2), y2)) ≥ 0, (45)

then
QN1(f0(x(y1), y1)− f0(x(y2), y2)) > 0, (46)

hence the points f0(x(y1), y1) and f0(x(y2), y2) cannot both belong to b, because
the cone condition is violated.

Theorem 7 Assume that for i = 0, . . . , k − 1 either

Ni
fi=⇒ Ni+1 (47)

or
Ni+1 ⊂ dom(f−1

i ) and Ni
fi⇐= Ni+1, (48)

where all h-sets are h-sets with cones and fi for i = 0, . . . , k − 1 satisfies the
cone condition.

Assume that b : Bn(N0) → N0 is a horizontal disk in N0 satisfying the cone
condition.

Then exists a set Z ⊂ |b|, such that for all z ∈ Z holds

fi−1 ◦ fi−2 ◦ · · · ◦ f0(z) ∈ Ni, for i = 1, . . . , k (49)

and fk−1◦fi−2◦· · ·◦f0(Z) a horizontal disk in Nk satisfying the cone condition.

Proof: It is enough consider k = 1. Consider first the case of N0
f0⇐= N1.

By the definition we have NT
1

f−1
0=⇒ NT

0 and the statement follows directly from
Theorem 6.
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Consider now the case of direct covering N0
f0=⇒ N1. Without any loss of the

generality we can assume that N1 = N1,c = Bu(N1)× = Bs(N1). Then from the
cone condition for this covering relation it follows that for all z1, z2 ∈ f(N0∩|b|),
z1 6= z2 holds

QN1(z1 − z2) > 0. (50)

This implies that for any x ∈ Bu(N1) there exists at most one y ∈ Bs(N1), such
that (x, y) ∈ f(N0 ∩ |b|) ∩ N1. From Theorem 4 it follows that such y = y(x)
indeed exists. We define the horizontal disk by x 7→ (x, y(x)). By (50) it satisfies
the cone condition.

3.3 Verification of cone conditions

Assume that (N,QN ) and (M, QM ) are h-sets with cones and a map f : N →
Rdim(M) is C1.

Observe that for x2 → x1

QM (fc(x2)− fc(x1))−QN (x2 − x1) → 0. (51)

Hence there is no chance that the cone condition can be verified rigorously on
computer [N, KWZ], by direct evaluation in interval arithmetics of QM (f(x2)−
f(x1))−QN (x2 − x1).

Our intention is to give a condition, which will imply the cone condition and
will be verifiable on computer.

Definition 13 Let U ⊂ Rn and let g : U → Rn be a C1 map. We define the
interval enclosure of Dg(U) by

[Dg(U)] =
{

A ∈ Rn×n | ∀ijAij ∈
[

inf
x∈U

∂gi

∂xj
(x), sup

x∈U

∂gi

∂xj
(x)

]}
(52)

Let [dfc(Nc)] be the interval enclosure of dfc on Nc. Observe that when
dim(M) 6= dim(N) this is not a square matrix.

Lemma 8 Assume that for any B ∈ [dfc(Nc)], the quadratic form

V (x) = QM (Bx)−QN (x) (53)

is positive definite, then for any x1, x2 ∈ Nc such that x1 6= x2 holds

QM (fc(x1)− fc(x2)) > QN (x1 − x2). (54)

Proof: Let us fix x1, x2 in Nc. We have

fc(x2)− fc(x1) =
∫ 1

0

dfc(x1 + t(x2 − x1))dt · (x2 − x1). (55)

Let B =
∫ 1

0
dfc(x1 + t(x2 − x1))dt. Obviously B ∈ [dfc]. Hence

fc(x2)− fc(x1) = B(x2 − x1). (56)
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We have

QM (fc(x2)− fc(x1))−QN (x2 − x1) =
QM (B(x2 − x1))−QN (x2 − x1) = V (x2 − x1) > 0.

In the light of the above lemma the verification of the cone conditions can
be reduced to checking that the interval matrix corresponding to the quadratic
form V for various choices of B ∈ [dfc(Nc)] given by

V = [dfc(Nc)]T QM [dfc(Nc)]−QN (57)

is positive definite.
Observe that, since the set of positive definite matrices in an open subset of

the set symmetric matrix, then if V given by (57) is positive definite, then there
exist 0 < a < 1 < b, such that

V = [dfc(Nc)]T QM [dfc(Nc)]− (1 + ε)QN (58)

is positive definite for 1 + ε ∈ (a, b). We expect that this implies uniform
hyperbolicity, see also Section 11.2 where this question is treated for linear
maps.

4 Stable and unstable manifolds trough cover-
ing relations

The goal of this section and Section 5 is to prove the existence of stable and un-
stable manifolds for hyperbolic fixed point for maps. The proofs are topological
and do not assume that the map under consideration is invertible.

We proceed as follows. In this section we prove general theorems about stable
and unstable manifolds under assumption of the existence of self-covering (i.e.

N
f

=⇒ N) satisfying the cone condition. This part does not require that the
fixed (periodic) point is hyperbolic. Parts of this material appeared already in
[KWZ].

In Section 5 we will show that in the neighborhood of the hyperbolic fixed
point of the map we can build an h-sets, which covers itself and the cone condi-
tion holds for this relation. Then from results of Section 4 we obtain the stable
and unstable manifold theorems for the fixed point under consideration.

Definition 14 Consider the map f : X ⊃ dom(f) → X.
Let x ∈ X. Any sequence {xk}k∈I , where I ⊂ Z is a set containing 0 and

for any l1 < l2 < l3 in Z if l1, l3 ∈ I, then l2 ∈ I, such that

x0 = x, f(xi) = xi+1, for i, i + 1 ∈ I (59)

will be called an orbit through x. If I = Z−, then we will say that {xk}k∈I is a
full backward orbit through x.

13



Definition 15 Let X be a topological space and let the map f : X ⊃ dom(f) →
X be continuous.

Let Z ⊂ Rn, x0 ∈ Z, Z ⊂ dom(f). We define

W s
Z(z0, f) = {z | ∀n≥0f

n(z) ∈ Z, lim
n→∞

fn(z) = z0}
Wu

Z (z0, f) = {z | ∃ {xn} ⊂ Z a full backward orbit through z, such that
lim

n→−∞
xn = z0}

W s(z0, f) = {z | lim
n→∞

fn(z) = z0}
Wu(z0, f) = {z | ∃ {xn} a full backward orbit through z, such that

lim
n→−∞

xn = z0}
Inv+(Z, f) = {z | ∀n≥0f

n(z) ∈ Z}
Inv−(Z, f) = {z | ∃ {xn} ⊂ Z a full backward orbit through z }

If f is known from the context, then we will usually drop it and use W s(z0),
W s

Z(z0) etc instead.

Definition 16 Let f : Rn ⊃ dom(f) → Rn be a continuous map.
Loop of covering relations (for f) is collection of h-sets Ni, i = 0, . . . , k,

Nk = N0 and covering relations, such that for each i = 1, . . . , k we have either

Ni−1
f

=⇒ Ni (60)

or
Ni ⊂ dom(f−1) and Ni−1

f⇐= Ni. (61)

k will be called the length of the loop.
Let L be a loop of covering relations, if additionally Ni are h-sets with cones

Qi, such that Qk = Q0 and each covering relation in the loop L we assume the
cone condition. In this situation we will say that L satisfies cone conditions.

The following notation will be used for loops of covering relations L =
(N0, N1, . . . , Nk−1).

Definition 17 Let L = (N0, N1, . . . , Nk−1) is a loop of covering relations for
f . We define

SL = N0 ∩ f−1(N1) ∩ · · · ∩ f−(k−2)(Nk−2) ∩ f−(k−1)(Nk−1). (62)

It is easy to see that S(N0,N1,...,Nk−1) consists of points in N0, such that

f i(x) ∈ Ni, for i = 1, . . . , k − 1. (63)

Lemma 9 Let f : Rn → Rn be a continuous map.
Assume that L = (N0, . . . , Nk−1) is a loop of covering relations for f satis-

fying the cone conditions.
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Then there exists a unique z0 ∈ SL, such that

fk(z0) = z0, (64)
Inv+(SL, fk) = W s

SL
(z0, f

k), (65)

Inv−(SL, fk) = Wu
SL

(z0, f
k). (66)

Proof: The existence of z0 satisfying (64) follows directly from Theorem 3. Let
us fix one such z0.

To prove (65) it is enough to show that, if f lk(z) ∈ SL for all l ≥ N, then
liml→∞ f lk(z) = z0.

From the cone conditions for the loop L it follows that the function V (z) =
QN0(cN0(z)− cN0(z0)) is a Lapunov function on SL for fk, i.e. is increasing on
nonconstant orbits of fk in SL. By the standard Lapunov function argument it
is easy to show that Inv(SL, fk) = {z0} and liml→∞ f lk(z) = z0. This finishes
the proof of (65).

To prove (66) it is enough to show, that any backward orbit for fk in SL,
{xk}k∈Z− converges to z0. But this is true by the same Lapunov function
argument as in the previous paragraph.

Theorem 10 Let f : Rn → Rn be a continuous map.
Assume that L = (N0, . . . , Nk−1) is a loop of covering relations for f satis-

fying the cone conditions.
Then there exists a unique z0 ∈ SL, such that W s

SL
(z0, f

k) is a vertical disk
in N0 satisfying the cone condition.

Therefore, if cN0 is an affine map, then W s
SL

(z0, f
k) can be represented as a

graph of a Lipschitz function over the nominally stable space in N0.

Proof: First we show that for all y ∈ Bs there exists x ∈ Bu, such that

z = c−1
N0

(x, y) ∈ W s
SL

(z0). (67)

By Lemma 9 it is equivalent to showing that

fkl(z) ∈ N0, for l ∈ N. (68)

Consider a family of horizontal disks in N0 dy : Bu(N0) → N for y ∈ Bs(N0)

dy(x) = (x, y). (69)

The proof is the same for both direct- and backcovering, therefore we will
just consider direct covering.

Consider an infinite chain of covering relations consisting of replicas of loop
L

N0
f

=⇒ N1
f

=⇒ · · · f
=⇒ Nk−1

f
=⇒ N0

f
=⇒ · · ·N0

f
=⇒ · · · (70)

From Theorem 4 applied to dy, an arbitrary vertical disk bv in N0 and finite

chains N0
f

=⇒ N1
f

=⇒ N
f

=⇒ · · · f
=⇒ N0 of increasing length using the com-

pactness argument one can show (see [W2, Col. 3.10]) that for every y ∈ Bs

there exists x ∈ Bu, such that (68) holds for z = c−1
N0

(x, y).
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The next step is to prove that such x is unique. Let us assume the contrary,
then there exists y ∈ Bs and x1, x2 ∈ Bu, x1 6= x2, such that zi = c−1

N0
(xi, y) for

i = 1, 2 satisfies condition (68). Observe that

QN0(cN0(z1)− cN1(z2)) = α(x1 − x2) > 0, (71)

hence from the cone condition and (68) it follows that

QN0(cN0(f
lk(z1))− cN0(f

lk(z2)) > α(x1 − x2), for l ∈ N. (72)

Passing to the limit l →∞ we obtain

0 = QN0(cN0(z0)− cN0(z0)) =
lim
l→∞

QN0(cN0(f
lk(z1))− cN0(f

kl(z2))) > α(x1 − x2) > 0.

This is a contradiction. Hence we have a well defined function x(y) on Bs.
Obviously W s

SL
(x0, f

k) = {c−1
N (x(y), y) |y ∈ Bs}. Now we prove the cone

condition for W s
SL

(x0, f
k). This will imply that the map b : Bs → N , given by

b(y) = c−1
N (x(y), y) defines a vertical disk in N .

We have to check whether

QN (cN0(z1)− cN0(z2)) < 0, for all z1, z2 ∈ W s
SL

(x0, f
k), z1 6= z2 (73)

Assume that (73) is not satisfied for some z1, z2 ∈ W s
SL

(x0, f
k), z1 6= z2. We

have
QN0(cN0(z1)− cN0(z2)) ≥ 0. (74)

From the cone condition it follows that for l > 1 holds

QN0(cN0(f
lk(z1))− cN0(f

lk(z2))) > QN0(cN0(f(z1))− cN0(f(z2))) > 0.

Passing to the limit l →∞ we obtain

0 = QN0(cN0(z0)− cN0(z0)) = lim
l→∞

QN0(cN0(f
kl(z1))− cN0(f

kl(z2))) >

QN0(cN0(f(z1))− cN0(f(z2))) > 0.

Which is a contradiction. This proves (73).

The following remark will be used, when we will tackle the question of the
analyticity of the stable manifold for analytic maps.

Remark 11 The proof of above theorem suggests that function x : Bs → Bu

used to parameterize W s
sL

(z0, f
k) is a limit of functions xl : Bs → Bu defined

for l = 1, 2, . . . by implicit equation

πx ◦ cN0 ◦ f lk ◦ c−1
N0

(xl(y), y) = 0. (75)

and under the constraint

f ik ◦ c−1
N0

(xl(y), y) ∈ SL, i = 0, . . . , l − 1. (76)
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Now we would like to prove the theorem about unstable manifolds. Observe
that in the case of f being non-invertible we cannot apply previous theorem
to f−1 to obtain statement about the unstable manifold, therefore we need a
different proof.

Theorem 12 Let f : Rn → Rn be a continuous map.
Assume that L = (N0, . . . , Nk−1) is a loop of covering relations for f satis-

fying the cone conditions.
Then there exists a unique z0 ∈ SL, such that Wu

SL
(z0, f

k) is a horizontal
disk in N0 satisfying the cone condition.

Therefore, if cN0 is an affine map, then Wu
SL

(z0, f
k) can be represented as a

graph of a Lipschitz function over the nominally unstable space in N0.

Proof: We will prove the theorem for the trivial loop L = (N). The modifica-
tions necessary to consider loops of arbitrary length are rather obvious, see the
proof of Theorem 10.

Without any loss of the generality we can assume that N = Bu × Bs and
cN = id.

We will prove that for any x ∈ Bu there exists y ∈ Bs, such that (x, y) ∈
Wu

N (x0). For any x ∈ Bu let vx be a vertical disk given by

vx(y) = (x, y).

Let h : Bu → Bu ×Bs be a horizontal disk given by h(x) = (x, 0).
The proof is the same for both direct- and backcovering, therefore we will

just consider direct covering.
Consider a chain of covering relations consisting of k replicas of

N
f

=⇒ N . It follows from Theorem 4 it follows that there exists a finite orbit
{wk

−k, wk
−k+1, . . . , w

k
−1, w

k
0}, such that

wk
−k, wk

−k+1, . . . , w
k
−1, w

k
0 ∈ N

f(wk
l ) = wk

l+1, l = −k, . . . ,−1

wk
−k ∈ |h|, wk

0 ∈ |vx|.
By applying the diagonal argument we can find an infinite backward orbit
{wl}l∈Z−∪{0}, such that

wl ∈ N, l = 0,−1,−2, . . . (77)
f(wl) = wl−1, l < 0 (78)

w0 ∈ |vx|. (79)

Since V (z) = QN (z − z0) is increasing on orbits for z 6= z0 (is a Lapunov
function), therefore

lim
l→−∞

wl = z0. (80)

We have proved that
w0 ∈ Wu

N (z0) ∩ |vx|. (81)
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We will prove that w0 in (81) is uniquely defined. Let p0 also satisfies
the above condition, hence there exists a backward orbit in N through p0

{pl}l∈Z−∪{0}. We have

QN (p0 − w0) = −β(y(p0)− y(w0)) < 0. (82)

From the cone condition for map f it follows that the function QN (pl − wl) is
increasing for l < 0, hence

0 > QN (p0−w0) > QN (pl−wl) > lim
l→−∞

QN (pl−wl) = QN (z0−z0) = 0. (83)

Which is a contradiction, therefore w0 in (81) is uniquely defined.
We define a horizontal disk d : Bu → Bu ×Bs, by d(x) = (x, w0). From the

above considerations it follows that

Wu
N (z0) = |d|. (84)

We will show that d is satisfy the cone condition (which also implies the
continuity of d)

QN (w − p) > 0, for all w, p ∈ |d|, w 6= p. (85)

Assume that (85) does not hold. Then there exists two full backward orbits
{wl}, {pl} in N through w and p and

QN (w − p) ≤ 0. (86)

We have for any l ∈ Z−
0 ≥ QN (w0 − p0) > QN (wl − pl) > lim

l→−∞
QN (wl − pl) = QN (z0 − z0) = 0.

But this is a contradiction, hence (85) is satisfied.

The following remark will be used, when we will tackle the question of the
analyticity of the unstable manifold for analytic maps.

Remark 13 The proof of above theorem suggests that function y : Bu → Bs

used to parameterize Wu
SL

(z0, f
k) is as a limit of functions yl : Bu → Bs defined

for l = 1, 2, . . . by

yl(x) = πy ◦ cN0 ◦ f lk ◦ c−1
N0

(xl(x), 0), (87)

where xl : Bu → Bu for l = 1, 2, . . . is defined by implicit equation

πx ◦ cN0 ◦ f lk ◦ c−1
N0

(xl(x), 0) = x. (88)

with the constraint

f ik ◦ c−1
N0

(xl(x), 0) ∈ SL, i = 0, . . . , l − 1. (89)
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4.1 Example - multidimensional horseshoe

Assume that (Ni, Qi) for i = 0, 1 are h-sets with cones. Assume that the
following covering relations hold together with cone conditions

Ni
f

=⇒ Nj , i, j = 0, 1. (90)

From Theorems 10 and 12 it follows that for any σ = (σ0, . . . , σk−1) ∈ {0, 1}k

that there exists a unique periodic point zσ ∈ Nσ0 , such that

f i(zσ) ∈ Nσi , i = 0, 1, . . . , k − 1 fk(z0) = z0 (91)

and local stable and unstable sets of zσ for fk are respectively vertical and
horizontal disks in Nσ0 . We would like to stress here, that we have a uniform
bounds for both stable and unstable manifolds for periodic orbits independent
of the period, just as in the case of two-dimensional horseshoe.

As example let us consider for any u, s ∈ N+ the h-sets with cones Ni ⊂
Ru+s, i = 0, 1, defined as follows. Let ui = u, si = s, pi = ((−1)i ·2, 0, . . . , 0) and
c−1
Ni

(x, y) = pi+(x, y) for (x, y) ∈ Ru×Rs. On Ni we define QNi(x, y) = x2−y2.
We define the map f : N0 ∪N1 → Ru+s as follows

f(x, y) = (Ai(5 · (x− πxpi)), 0) + pi, for (x, y) ∈ Ni, for i = 0, 1

where Ai : Ru → Ru are for i = 0, 1 arbitrary isometries (with respect to
Euclidean metric).

Observe that f|Ni
is a uniform expansion by the factor of 5 in the Ru×{0}s

and retraction onto 0 in the stable direction. Observe that for any of the covering
relations Ni

f
=⇒ Nj the derivative is a constant linear map given by

dfc(x, y) = (5Aix, 0). (92)

From Lemma 8 it follows that the cone conditions will be satisfied if the matrix
[

5AT
i 0

0 0

]
·
[

I 0
0 −I

]
·
[

5Ai 0
0 0

]
−

[
I 0
0 −I

]
=

[
24I 0
0 I

]
(93)

is positively defined, which is clearly the case.
Since both covering relations and being positive definite are stable with

respect to small perturbations, then for sufficiently small in C1-norm maps
h : N0 ∪N1 → Ru+s we obtain

Ni
f+h
=⇒ Nj , i, j = 0, 1 (94)

and for all these covering relations the cone conditions are satisfied. There-
fore we obtain uniform bounds for (un)stable manifolds for infinite number of
periodic orbits of unbounded periods.
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5 Stable and unstable manifolds for hyperbolic
fixed points

In this section we apply theorems proved in Section 4 to obtain the existence
of the unstable and unstable manifold for hyperbolic fixed point. The result,
concerning the smoothness, is rather weak, when compared to classical results in
the literature, see [HPS, I70, I80, C] and references given there, as we have only
the Lipschitz condition and a suitable tangency at the fixed point. In Section 8
we will prove the continuous and Lipschitz dependence of parameters, which
again are classical results.

Definition 18 Let f : Rn → Rn be C1. Let z0 ∈ Rn. We say that z0 is a
hyperbolic fixed point for f iff f(z0) = z0 and Sp(Df(z0)) ∩ S1 = ∅, where
Df(z0) is the derivative of f at z0.

Theorem 14 Let f : Rn → Rn be a C1 map. Assume that z0 is a hyperbolic
fixed point of f .

Let Z ⊂ Rn be an open set, such that z0 ∈ Z.
Then there exists an h-set N with cones, such that z0 ∈ intN , N ⊂ Z and

• N
f

=⇒ N and if f is a local diffeomorphism in the neighborhood of z0 then
N

f⇐= N ,

• Wu
N (z0) is a horizontal disk in N satisfying the cone condition

• W s
N (z0) is a vertical disk in N satisfying the cone condition.

Moreover, Wu
N (z0) can be represented as a graph of a Lipschitz function

over the unstable space for the linearization of f at z0 and tangent to it at z0.
Analogous statement is also valid for W s

N (z0).

Proof: Let L be a linearization of f at z0, hence L(z) = z0 + df(z0)(z − z0).
Let u be the dimension of the unstable manifold and s of the stable manifold of
L at z0.

Then there exists a coordinate system on Rn and a scalar product (·, ·) such
that following holds

df(z0) =
[

A 0
0 U

]
, (95)

where A : Ru → Ru and U : Rs → Rs are linear isomorphisms, such that

Wu(z0, L) = {z0}+ Ru × {0}s, W s(z0, L) = {z0}+ {0}u × Rs (96)
‖Ax‖ > ‖x‖, for x ∈ Ru \ {0} (97)
‖Uy‖ < ‖y‖, for y ∈ Rs \ {0}, (98)

where the norms are ‖x‖ =
√

x2 and ‖y‖ =
√

y2. We will use these coordinates
in our proof.
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Observe that (97) and (98) imply that matrices AT A − Id and Id − UT U
are positive definite.

For any r > 0 we define

N(r) = {z0}+ Bu(0, r)×Bs(0, r). (99)

We define the homotopy

fλ(z) = (1− λ)f(z) + λ(df(z0)(z − z0) + z0), where λ ∈ [0, 1] and z ∈ Rn.
(100)

It is easy to see that f0 = f and f1(x, y) = df(z0)(z − z0) + z0.
Let Q((x, y)) = αx2 − βy2, where x ∈ Ru and y ∈ Rs and α > 0, β > 0 are

arbitrary positive reals.
We will need the following lemma, which will be proved after we complete

the current proof.

Lemma 15 There exists r0 > 0, such that for any 0 < r ≤ r0 for all z1, z2 ∈
N(r0), z1 6= z2 holds

Q(fλ(z1)− fλ(z2)) > Q(z1 − z2). (101)

Moreover, for any z ∈ N(r) holds

(πxfλ(z)− πxz0)2 > r, if ‖πx(z − z0)‖ = r (102)
(πyfλ(z)− πyz0)2 < r, if ‖πy(z − z0)‖ = r (103)

Continuation of the proof of Theorem 14: Let us fix any r ≤ r0, where r0 is as
in Lemma 15.

We define an h-set N with cones as follows: we set |N | = N(r), cN (z) =
1
r (z − z0), u(N) = u, s(N) = s and QN (z′) = Q(c−1

N (z′)) for z′ ∈ Nc.
From Lemma 15 it follows that the following conditions are satisfied for any

λ ∈ [0, 1]

QN (fλ,c(z1)− fλ,c(z2)) > QN (z1 − z2), z1, z2 ∈ Nc, z1 6= z2 (104)
πxfλ(N) ⊂ Rn \ πxN = Rn \Bu(πxz0, r) (105)
πyfλ(N) ⊂ Bs(πyz0, r) (106)

We will prove that
N

f
=⇒ N. (107)

For this we need a suitable homotopy. We define H : [0, 1] × N → Ru+s as
follows

H(λ, z) =

{
f2λ(z) for λ ∈ [

0, 1
2

]
,

(A(πx(z − z0), (−2λ + 2)Uπy(z − z0)) + z0 for λ ∈ [
1
2 , 1

]
.

Observe that

H0 = f, H1(z) = (A(πx(z − z0)), 0) + z0 (108)
πxHλ(N) ⊂ Rn \ πxN = Rn \Bu(πxz0, r) (109)
πyHλ(N) ⊂ Bs(πyz0, r). (110)
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It is immediate to check that the homotopy h(λ, z) = cN (H(λ, c−1
N (z)) satisfies

all conditions for the covering relation N
f,w
=⇒ N , where w = ±1 due to linearity

of h1.

When df(z0) is an isomorphism, then analogous reasoning leads to NT f−1

=⇒
NT (we may need to decrease further r in the construction.)

The remaining assertions, with the exception of the one the concerning the
tangency to Wu,s(z0, L) at z0, follow directly from Theorems 10 and 12.

To prove the tangency of Wu(z0, f) to z0 + Ru × {0}s at z0 = (x0, y0) it
is enough to prove that for any ε > 0, there exists r > 0, such that for any
z = (x, y(x)) ∈ Wu

N(r)(z0, f) holds

‖y(x)− y0‖ ≤ ε‖x− x0‖. (111)

For given α, β the set Wu
N(r)(z0, f) for r sufficiently small is a horizontal disk

satisfying the cone condition with respect to the quadratic form Q(x, y) = αx2−
βy2. Therefore we have

Q((x, y(x))− (x0, y0)) > 0
β‖y(x)− y0‖2 < α ‖x− x0‖2
‖y(x)− y0‖ <

√
α/β ‖x− x0‖,

which proves (111).
The proof of the tangency for W s(z0, f) to z0 +{0}u×Rs at z0 is analogous.

Proof of Lemma 15: To see that (101) is indeed satisfied for zi close to z0,
we derive some other condition, which forces it (compare Lemma 8). For this
end let Q be a symmetric matrix corresponding the quadratic form Q. Then

Q(fλ(z1)− fλ(z2))−Q(z1 − z2) =
(fλ(z1)− fλ(z2))T Q(fλ(z1)− fλ(z2))− (z1 − z2)T Q(z1 − z2) =

(z1 − z2)T CT QC(z1 − z2)− (z1 − z2)T Q(z1 − z2) =
(z1 − z2)T (CT QC −Q)(z1 − z2),

where

C = C(λ, z1, z2) =
∫ 1

0

dfλ(z1 + t(z2 − z1))dt =

(1− λ)
∫ 1

0

dfλ(z1 + t(z2 − z1))dt + λdf(z0)

Observe that for z1, z2 → z0 the matrix C(λ, z1, z2) converges to df(z0)
uniformly with respect to λ ∈ [0, 1]. Therefore it is enough to show that the
symmetric matrix V = df(x0)T Qdf(x0)−Q is positive definite.

We have

V =
[

α(AT A− Id), 0
0, β(Id− UT U)

]
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Since α > 0, β > 0 and AT A− Id and Id−UT U are positive definite, hence V
is positive definite. From this is follows that there is r0, such that (101) holds
for z1, z2 ∈ N(r0), z1 6= z2.

Now we prove condition (102). We have

(πxfλ(z)− πz0)2 = (πxfλ(z)− πxfλ(z0))2 =
(C11(πxz − πxz0) + C12(πyz − πyz0))2, (112)

where

C11 = C11(λ, z1, z0) =
∫ 1

0

∂πxfλ

∂x
(z0 + t(z − z0))dt =

∂πxfλ

∂x
(z0) + O(‖z − z0‖) = A + O(‖z − z0‖),

C12 = C12(λ, z1, z0) =
∫ 1

0

∂πxfλ

∂y
(z0 + t(z − z0))dt =

∂πxfλ

∂y
(z0) + O(‖z − z0‖) = O(‖z − z0‖).

Let us fix 0 < r ≤ r0 and λ ∈ [0, 1]. Let z = (x, y) ∈ N(r), z0 = (x0, y0) and
‖x− x0‖ = r. We have

(πxfλ(z)− x0)2 = (C11(x− x0))
2 + (C12(y − y0))

2 +
2(x− x0)T CT

11C12(y − y0) ≥ (1 + a−O(r))r2 −
O(r)2r2 − 2(‖A‖+ O(r))O(r)r2 = (1 + a−O(r))r2

where a > 0 is such that xT AT Ax ≥ (1 + a)x2. Hence (102) holds provided r0

is small enough.
The justification of (103) is analogous.

5.1 Propagation of stable and unstable manifolds of hy-
perbolic fixed points for a map

Assume that zi, i = 0, 1 are a fixed (or periodic) points of the map f : Rn → Rn

and that we have (Ni, Qi) h-set with cones, such that zi ∈ Ni and Ni
f

=⇒ Ni.
Assume that we would like to show that Wu(z0, f) and W s(z1, f) intersect
transversally.

Theorems 10 and 12 give us information of pieces of Wu(z0, f) and W s(z1, f)
in terms of N0 and N1, respectively. Usually the sizes of N0 and N1 are rela-
tively small and we need to be able to get information of much larger pieces of
Wu(z0, f) and W s(z1, f). Using the tools developed in previous sections this
can be achieved as follows.

First we need some approximate heteroclinic orbit, i.e. a sequence of points
v0, v1, . . . , vK , such that f(vi) ≈ vi+1, for i = 0, . . . ,K − 1 and v0 close to z0

and vK is close to z1. Next step is find h-sets with cones (Mi, QMi) such that,
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vi ∈ intMi, the following covering relations are satisfied together with cone
conditions

N0
f

=⇒ N0
f

=⇒ M0
f

=⇒ M1
f

=⇒ · · · f
=⇒ MK

f
=⇒ N1

f
=⇒ N1 (113)

From Theorems 10 and 6 it follows that W s(z1, f)∩N0 contains a vertical disk
satisfying the cone condition. Since by Theorem 12 Wu

N0
(z0, f) is a horizontal

disk in N0 satisfying the cone conditions, therefore we obtain a transversal
intersection of W s(z1, f) and Wu

N0
(z0, f). In fact to talk about transversality

we need at least structure of C1-manifold on W s(z1, f) and Wu
N0

(z0, f), which
is not proved in this paper, but it is known for f ∈ C1 from [I70, I80] and the
cone conditions imply that then this intersection is indeed transversal.

The obvious question arises: how to find Mi’s satisfying (113). Without the
cone conditions this was discussed and successfully used in [AZ] on the example
of Henon-Heiles hamiltonian, but we believe that the same discussion applies
also to the cone condition.

6 Non-hyperbolic example

The goal of this section is to provide a simple example illustrating that our
theorems from Section 4 to obtain stable and unstable manifolds for the fixed
point, which has a nonhyperbolic linear part.

In this contexts one should mention here papers [BF, F] (and an earlier
paper [Mc]), where under suitable assumptions the stable set of the fixed point
has been proved, using the mixture of topological and analytic arguments in the
phase space, to have a manifold structure, but the analytic part there (replacing
our cone conditions expressed in terms of Lapunov function) is much more
elaborate and subtle and leads to results in situations, where our approach may
fail.

Consider the following map f : R2 → R2

f(x, y) = (x + x3, y − y3) + P (x, y), (114)

where P (x, y) is a polynomial, such that the degree of all nonzero terms in P is
at least 4.

Observe that z0 = (0, 0) is a non-hyperbolic fixed point, but a look at the
dominant terms (x + x3, y − y3), suggests that nevertheless z0 will have a one
dimensional stable and unstable manifolds tangent at z0 to the coordinate axes.

We will prove the following theorem

Theorem 16 Consider the map f given by (114).
There exists an h-set N with cones, such that z0 ∈ intN , N ⊂ Z and

• N
f

=⇒ N ,

• Wu
N (z0) is a horizontal disk in N satisfying the cone condition
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• W s
N (z0) is a vertical disk in N satisfying the cone condition.

Moreover, Wu
N (z0) is at z0 tangent to the line y = 0 and W s

N (z0) is at z0 tangent
to the line x = 0.

Let us fix α > 0, β > 0 and consider a quadratic form Qα,β : R2 → R

Qα,β(x, y) = αx2 − βy2. (115)

The first step in the proof of Theorem 16 is the following lemma showing
the cone condition for small z1, z2.

Lemma 17 There exists δ > 0, such that if |xi| ≤ δ and |yi| ≤ δ for i = 1, 2,
then

Qα,β(f(z1)− f(z2)) > Qα,β(z1 − z2), (116)

where zi = (xi, yi) for i = 1, 2.

Proof: Let us denote f(z) = (f1(z), f2(z)) and let us set

N(a, b) = a2 + ab + b2. (117)

Obviously we have
a2 + b2

2
≤ N(a, b) ≤ 3(a2 + b2)

2
(118)

Observe that

f1(z1)− f1(z2) =
x1 − x2 + (x3

1 − x3
2) + C1,1(z1, z2)(x1 − x2) + C1,2(z1, z2)(y1 − y2) =

(x1 − x2) (1 + N(x1, x2) + C1,1(z1, z2)) + C1,2(z1, z2)(y1 − y2),

and

f2(z1)− f2(z2) =
y1 − y2 − (y3

1 − y3
2) + C2,1(z1, z2)(x1 − x2) + C2,2(y1 − y2) =

(y1 − y2) (1−N(y1, y2) + C2,2(z1, z2))) + C2,1(z1, z2)(x1 − x2)

where

Cj,1(z1, z2) =
∫ 1

0

∂Pj

∂x
(z2 + t(z1 − z2))dt

Cj,2(z1, z2) =
∫ 1

0

∂Pj

∂y
(z2 + t(z1 − z2))dt.

It is easy to see that
Cj,i(z1, z2) = O(r3), (119)

where r = maxi=1,2 |xi|, |yi|.
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Hence there exists constants Dk > 0, for k = 1, 2, . . . , such that for ‖zi‖∞ ≤
r holds

(f1(z1)− f2(z2))2 − (x1 − x2)2 ≥

(x1 − x2)2
((

1 +
r2

2
−D1r

3

)2

− 1

)
−D2r

3|x1 − x2| · |y1 − y2| ≥

(x1 − x2)2D3r
2 −D4r

3
(
(x1 − x2)2 + (y1 − y2)2

) ≥
(x1 − x2)2D3r

2 −D5r
5

Observe that D3 ≈ 1/2.
Analogously for the second coordinate of f we obtain, for some positive

constants Hi and r sufficiently small

(y1 − y2)2 − (f2(z1)− f2(z2))2 ≥

(y1 − y2)2
(

1− (1− r2

2
+ H1r

3)2
)
−H2r

3|x1 − x2| · |y1 − y2| ≥

(y1 − y2)2
(
1− (1−H3r

2)2
)−H2r

3|x1 − x2| · |y1 − y2| ≥
(y1 − y2)2H4r

2 −H2r
3|x1 − x2| · |y1 − y2| ≥
(y1 − y2)2H4r

2 −H5r
5

Observe that H4 ≈ 1/2.
Now we are ready to verify the cone condition

Qα,β(f(z1)− f(z2))−Q(z1 − z2) = α
(
(f1(z1)− f1(z2))2 − (x1 − x2)2

)
+

β
(
(y1 − y2)2 − (f2(z1)− f2(z2))2

) ≥
αD3r

2(x1 − x2)2 − αD5r
5 + βH4r

2(y1 − y2)2 − βH5r
5 ≥

min(αD3, βH4)r4 − (αD5 + βH5)r5 > 0

for r > 0 sufficiently small.

For r > 0 we define an h-set N(r) ⊂ R2 as follows: u = s = 1, |N(r)| =
[−r, r]2, cN (z) = z

r .

Lemma 18 For r sufficiently small N(r)
f

=⇒ N(r).

Proof: Since we have only one unstable direction, then from [GiZ, Thm. 16] it
follows that it is enough to prove that

f1(r, y) > r, f1(−r, y) < −r, for |y| ≤ r (120)
|f2(x, y)| < r, for (x, y) ∈ N(r) (121)

Let r be such that, the following inequalities hold for any (x, y) ∈ N(r)

|Pi(x, y)| < r3, i = 1, 2 (122)

1− 3y2 +
∂P2

∂y
(x, y) > 0. (123)
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It is easy to see that (122) implies (120).
To prove (121) observe that from (123) it follows that |f2(x, y)| achieves its

maximum value on N(r) at (x0,±r). Condition (121) now follows immediately
from (122).

Proof of Theorem 16 Let us choose α = β = 1. From the above lemmas
it follows that we can take N = N(r) for r sufficiently small. The statements
about the existence and the cone conditions on Wu,s

N (0, f) follow directly from
Theorems 10 and 12.

The tangency of Wu,s(0, f) to coordinate axes is obtained as in the proof of
Theorem 14, because we have a freedom to choose any α and β (we may need
to decrease further an r).

7 Comparisons with other approaches

Usually in the literature discussing the stable manifold theorem there is not
much stress on explicit bounds. But when one tries to establish the existence
transversal homoclinic intersection this issue becomes very important. This
issue was treated by Neumaier and Rage in [NR] for the standard map and
Neumaier, Rage and Schlier in [RNS] for some hamiltonian ODE in 4D. How-
ever any detailed comparison of theirs method with the one advocated in this
paper on the examples considered in papers [NR, RNS] is outside the scope of
the present paper, mainly because in those papers the stress is on the propaga-
tion of the invariant manifolds and no explicit data about the size of the good
neighborhood are given.

In paper [O] by Ombach the Peron-Irwin method was discussed with the
stress on obtaining the possibly weakest conditions for the range of the existence
of the stable and unstable manifold of the hyperbolic fixed point, as the graph
of the function over stable and unstable subspace for the linearization.

Below we present some tests for two-dimensional map comparing the bounds
for the stable manifold obtained using our method with the ones for the Perron-
Irwin approach from paper by Ombach [O] and the version of Hartman approach
from paper by Neumaier and Rage [NR]. This test shows that usually we can
obtain bounds on larger set using our approach. But we should stress here that
the real power of our approach is in the situation when we consider stable and
unstable manifolds of periodic points of high period - see Section 4.1.

In this section we will follow the convention used in papers [O, NR] and order
coordinates so that first coordinate xs corresponds to stable directions and the
second denoted by xu is the unstable ones.

For the comparison we will use the following two-dimensional example is
considered in [O]

F (xs, xu) = (Fs(xs, xu), Fu(xs, xu)) = (−0.4xs+x2
s+x2

u, 1.5xu+x3
u−x3

s). (124)

It is easy to see that the origin point is hyperbolic fixed point for (124) with
coordinate axes diagonalizing the linear part.
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Let ε > 0 and ρ > 0. We define N = [−ρ, ρ] × [−ερ, ερ]. In tests reported
below we will look for function ys : [−ρ, ρ] → [−ερ, ερ], such that W s

N (0, F ) =
{(xs, ys(xs) | xs ∈ [−ρ, ρ]} and

|ys(x1)− ys(x2)| ≤ L|x1 − x2|, (125)

with the main objective of maximizing ρ and the secondary objective of mini-
mizing L.

7.1 Estimates based on our method

We will treat N as an h-set with s(N) = u(N) = 1 with xu being the unstable
direction and xs being the stable one. To have N

F=⇒ N it is enough to check
the following conditions (see [GiZ, Thm. 16])

Fu(xs, ερ) > ερ, Fx(xs,−ερ) < −ερ, for all |xs| ≤ ρ (126)
|Fs(xs, xu)| < ρ, for (xu, yu) ∈ N. (127)

Easy computations show that above conditions are equivalent to the set con-
sisting from the following two conditions

(ε ≥ 1) or ρ2 ≤ ε

2(1− ε3)
(128)

ρ <
0.6

1 + ε2
(129)

Case ε = 1. Conditions (128) and (129) imply that ρ < 0.3.
To verify the cone condition for the quadratic form Q(xs, xu) = x2

u − x2
s

according to Lemma 8 we have to check wether the interval matrix

V = [dF (N)]T Q[dF (N)]−Q (130)

is positive definite. A necessary and sufficient condition for this is positiveness of
all main minors of V . Hence in our two-dimensional case we look for the largest ρ
such that V11 > 0 and det(V ) > 0. This is a nonlinear condition on ρ, therefore
we performed computer search for ρ. Using interval arithmetic we obtained
ρ = 0.21, for which we have V11 ⊂ [0.327, 1.034] and det(V ) ⊂ [0.0377, 2.097].

Obviously in this case L = 1.
Case ε = 0.1. In this case from conditions (128) and (129) we obtain that

ρ < 0.22371.
We will try to find the quadratic form Q(xs, xu) = αx2

u − x2
s, where α > 0,

so that N
F=⇒ N satisfies the cone condition with respect to this form. In this

case we will have the Lipschitz constant for yu(xs) estimated by 1√
α
. The goal

is for a given ρ satisfying conditions (128) and (129) find the largest α so the
matrix V given by (130) is positive definite. Below we list some results, the α’s
for which we tested the positive definiteness of V are 1 and the numbers of the
form 100/2n for n = 0, . . . , 6 .

28



Table 1: Computations for ε = 0.1. α is the parameter in the quadratic form.
ρ is the size of domain parameterizing the stable manifold for (124), L is the
Lipschitz constant for this manifold parameterization. V11 and det(V ) have to
be positive for cone conditions to be satisfied.

ρ α L V11 det(V )
0.22 6.25 0.4 [0.2944,1.16537] [0.340752,9.19017]
0.21 6.25 0.4 [0.3276,1.1258] [0.931013,8.86914]
0.2 12.5 0.2828 [0.36,1.18] [0.408682,18.5656]
0.19 12.5 0.2828 [0.3916,1.14621] [1.86745,18.0189]
0.18 12.5 0.2828 [0.4224,1.1165] [3.1731,17.5381]
0.17 25 0.2 [0.4524,1.18432] [3.3898,37.171]
0.16 25 0.2 [0.4816,1.14106] [6.6133,35.7918]
0.15 50 0.1414 [0.51,1.21781] [6.0094,76.3445]
0.14 50 0.1414 [0.5376,1.15847] [13.9679,72.592]
0.13 100 0.1 [0.5644,1.23745] [12.4131,155.001]

7.2 Estimates based on the Perron-Irwin method

First let us recall results from [O]. Consider a map

F (xs, xu) = (fs(xs, xu), µxu + gu(xs, xu)) (131)

where (xs, xu) ∈ Rs×Ru (in [O] they in fact belong to balls in Banach spaces),
µ : Ru → Ru is a linear expanding map and F (0, 0) = (0, 0). On Rs × Ru we
use the max-norm ‖(xs, xu)‖ = max{‖xs‖, ‖xu‖}.

Let ρ > 0 and B = Bs(0, ρ)×Bu(0, ρ). The conditions implying the existence
of functions ys : Bs(0, ρ) → Bu(0, ρ), yu : Bu(0, ρ) → Bs(0, ρ), such that

W s
B(0, F ) = {(xs, ys(xs)) | xs ∈ Bs(0, ρ)}

Wu
B(0, F ) = {(yu(xu), xu) | xu ∈ Bu(0, ρ)}

are
as < 1, (bu + 1)‖µ−1‖ < 1, (132)

where

as = sup{‖Dfs(z)‖ | z ∈ B}, bu = sup{‖Dgu(z)‖ | z ∈ B}. (133)

Moreover, in this case L = 1.
We would like to stress here, the same condition is used to establish the

existence of the graph of function being part of the (un)stable set, and then to
prove that this graph is the whole local (un)stable set.

In [O] it is shown that conditions (132) for map (124) hold for ρ < 0.15. We
will redo the computations from [O], but we add parameter ε in order to try
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to get better Lipschitz constant for W s(0). We introduce new coordinates by
(x̄s, x̄u) = (xs, xu/ε). In these we coordinates (we drop bars) map F becomes

F (xs, xu) = (−0.4xs + x2
s + ε2x2

u, 1.5xu + ε2x3
u − x3

s/ε, ). (134)

Easy computations show that

as = 0.4 + 2ρ + 2ε2ρ (135)

µ = 1.5, bu = 3ρ2

(
1
ε

+ ε2
)

. (136)

Conditions (132) assume the following form

ρ <
0.3

1 + ε2
, ρ2 <

1
6

(
1
ε + ε2

) . (137)

It is easy to see that for ε = 1 we obtain ρ < 0.15 with L = 1 and for ε = 0.1
we get ρ < 0.129 with L = ε = 0.1.

Summarizing in the Perron-Irwin approach the number conditions to check
(given by (132)) is smaller than in our approach, but in fact they turn out to
be unnecessary strong.

7.3 The Neumaier and Rage approach

Let us start with recalling the Neumaier and Rage theorem from [NR, Thm. 1].

Theorem 19 Let mapping F : Rn ⊃ Ω → Rn be Lipschitz continuous with
fixed point x∗ ∈ Ω, and let A ⊂ Rn×n be interval matrix such that

F (y)− F (x) ∈ A(y − x), for all x, y ∈ Ω. (138)

For some nonsingular matrix Q ∈ Rn×n, let

Q−1(AQ) =
[

B11 B12

B21 B22

]
(139)

with interval matrices B11, B12, B21 and B22 of sizes p × p, p × q, q × p and
q × q. respectively, where n = p + q. For some nonsingular matrix C ∈ Rq×q

and some interval matrix L ⊂ Rq×p, put

D := I + C(LB12 −B22), (140)
E := C(LB11 −B21), (141)

K := Q

[
I
L

]
, (142)

M := B11 + B12L. (143)

If the closure conditions

‖D‖p + ‖C‖q · ‖M‖p ≤ β < 1, (144)
DL + E ⊂ L (145)
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hold for suitable norms ‖ ·‖p in Rp and ‖ ·‖q in Rq, then, for any subset Σ ⊂ Rq

with

0 ∈ Σ,Mt ⊂ Σ, for t ∈ Σ (146)
x∗ + Kt ⊂ Ω, for t ∈ Σ (147)

there are unique Lipschitz continuous functions x : Σ → Ω, g : Σ → Rq, and
σ : Σ → Σ such that

F (x(t)) = x(σ(t)), for t ∈ Σ, (148)

x(t) = x+ + Q

[
t

g(t)

]
, for t ∈ Σ, (149)

x(0) = x∗, x(s)− x(t) ∈ K(s− t), for s, t ∈ Σ (150)
g(0) = 0, g(s)− g(t) ∈ L(s− t), for s, t ∈ Σ (151)

σ(0) = 0, σ(s)− σ(t) ∈ M(s− t), for s, t ∈ Σ (152)

Some comments are necessary to elucidate the meaning of the above theorem.
x∗ is an hyperbolic fixed point with p-dimensional unstable manifold and q-
dimensional stable one. For F ∈ C1 matrix A is the interval enclosure for df(x)
for x ∈ Ω. The function x : Σ → Ω parameterizes the stable manifold of x∗.
The matrix Q is the coordinate change diagonalizing (approximately) dF (x∗).
In this new coordinates the stable manifold of x∗ is as graph of the function g.
Condition (146) implies that B11 is a contraction. Conditions (150,151) are ’the
cone conditions’ satisfied by W s(x∗) and the Lipschitz constant for W s is given
by ‖L‖.

Let us apply to example (124). In this case x∗ = 0 and Q = I. We take
Ω = N = [−ρ, ρ]× [−ερ, ερ].

We have

A = [dF (Ω)] =
[

B11 = −0.4 + 2ρ[−1, 1] B12 = 2ερ
B21 = −3[0, ρ2] B22 = 1.5 + 3ε2ρ2[0, 1]

]
(153)

where [dF (Ω)] is the interval enclosure according to Def. 13. As suggested in
[NR] we chose

C =
2
3
≈ B−1

22 , L = [−ε, ε]. (154)

This means that if assumptions of above theorem are satisfied, then ε is the
Lipschitz constant from (125).
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We compute

D = 1 + C(LB12 −B22) = −ε2ρ2 +
(

4
3
ε2ρ + ε2ρ2

)
[−1, 1]

E = C(LB11 −B21) = ρ2 +
(

4ε

15
+

4ρε

3
+ ρ2

)
[−1, 1]

K =
[

1
[−ε, ε]

]

M = B11 + B12L = −0.4 + (2ρ + 2ε2ρ)[−1, 1],

|D|+ |C| · |M | = 2ε2ρ2 +
4
3
ε2ρ +

2
3

(
0.4 + 2ρ + 2ε2ρ

)
=

4
15

+ 2ε2ρ2 +
8
3
ε2ρ +

4
3
ρ

From the above computations it follows that condition (144) is equivalent to
condition

2ε2ρ2 +
8
3
ε2ρ +

4
3
ρ ≤ 11

15
. (155)

It is easy to see that (145) that is equivalent to the following condition

2ρ2 + 2ε3ρ2 +
4
3
ε2ρ +

4
3
ρε ≤ 11

15
ε (156)

The condition (146) is in our case just |M | ≤ 1 and leads to

ρ + ε2ρ ≤ 0.3. (157)

Observe that condition (147) is automatically satisfied due to our initial
choices of Ω and L.

Therefore we have to satisfy three inequalities (155–157) to apply Theo-
rem 19.

We will consider two cases ε = 1 and ε = 0.1.
Case ε = 1. Condition (157) implies that ρ ≤ 0.15 and it is easy to check

that the remaining inequalities also hold for ρ = 0.15 and the Lipschitz constant
is 1. We see here that we obtained considerably better result using our method
in this case.

Case ε = 0.1. In this case it turns out that condition (156) imposes that
maximal possible ρ belong to the interval (0.15, 0.16) and L = 0.1. Observe
that in this case we obtained results on larger domain than for ε = 1.0. This
is not a paradox, because it turned out that our set Ω used it this setting was
smaller in xs-direction (which resulted in better bounds), but it happened that
it contained the whole local stable set. Now let us compare this result with
Table 1 summarizing the bounds obtained by using covering relations. We see
that using our method we can obtain larger ρ (by a factor of 1.5) , but at the
price of larger Lipschitz constant. For the value of ρ for which Neumaier-rage
method works we get L ≈ 0.1414 > 0.1. This also suggest that probably the
cone conditions from Definition 11 are probably too strong.
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8 Dependence on parameters of invariant man-
ifolds of hyperbolic fixed point

8.1 Continuous dependence

Theorem 20 Let Λ ⊂ Rk and V ⊂ Rn be open sets. Assume that f : Λ× V →
Rn, where Λ ⊂ Rk be such that

• ∀λ ∈ Λ fλ is C1

• f and ∂f
∂z are continuous on Λ× Rn

• z0 is a hyperbolic fixed point of fλ0 .

Then there exist sets C ⊂ Λ and U ⊂ V , such (λ0, z0) ∈ int(C × U) and a
continuous function p : C → U , such that p(λ) is a hyperbolic fixed point for fλ,
p(λ0) = z0 and Wu,s

U (p(λ), fλ) depend continuously on λ, for λ ∈ C.
The continuity of sets Wu,s(p(λ), fλ) with respect to λ ∈ C means that they

are given as graphs of some functions depending continuously on λ.

Proof: The existence of p(λ) follows immediately from the implicit function
theorem.

By proceeding as in the proof of Theorem 14, namely by using the diago-
nalizing coordinates for ∂fλ0

∂z (z0) we can construct arbitrarily small h-set with
cones (N, Q), N = N(r), such that

N
fλ0=⇒ N (158)

and the interval quadratic form given by

V = [dfλ0,c]T Q[dfλ0,c]−Q (159)

is positive definite.
Observe that conditions (158,159) are both stable with respect to small

change of map fλ0 , therefore there exists a set C ⊂ Λ, such that λ0 ∈ intC
and

N
fλ=⇒ N (160)

and the interval quadratic form given by

V = [dfλ,c]T Q[dfλ,c]−Q (161)

is positive definite.
Theorems 10 and 12 imply that Wu,s(p(λ), fλ) are horizontal or vertical

disks in N , respectively.
It remains to prove the continuity of Wu,s

N (p(λ), fλ). From now on we will
use the coordinates given by the h-set N .
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Let us first consider the case of the stable manifold. From the previous
reasoning it follows that there exists a function x : C ×Bs → Bu, such that

z ∈ W s
N (p(λ), fλ)) iff z = (x(λ, y), y), for some y ∈ Bs. (162)

We need to prove that the function x(λ, x) is continuous with respect to both
arguments. Let (λk, yk) ∈ C × Bs for k ∈ N be a sequence converging to
(λ̄, ȳ) ∈ C×Bs. Due to compactness of the range of function x(λ, y) it is enough
to show for any subsequence of {(λki

, yki
)}, such that x(λki

, yki
) converges to

some u, must hold that
(u, y) ∈ W s

N (p(λ, fλ)), (163)

which by (162) implies that u = x(λ̄, ȳ).
To obtain (163) observe that by passing to the limit we obtain that f l

λ̄
(u, y) ∈

N for all l ∈ N. Therefore (u, y) ∈ Inv+(N, fλ̄). From Lemma 9 it follows that
(163) holds.

Now we treat the continuity of unstable manifolds. Observe first that since
we don’t have the invertibility of fλ we cannot just apply the proof for the stable
manifold to f−1

λ .
We know that there exists a function y : C ×Bu → Bs, such that

z ∈ Wu
N (p(λ), fλ)) iff z = (x, y(λ, x)), for some x ∈ Bu. (164)

It is enough to prove that the function y(λ, x) is continuous with respect to
both arguments. Let (λk, xk) ∈ C × Bu for k ∈ N be a sequence converging to
(λ̄, x̄) ∈ C ×Bu. Let us define ȳ = y(λ̄, x̄), zk = (xk, y(λk, xk)).

Consider the sequence yk = y(λk, xk) we need to show that limk→∞ yk = ȳ.
Observe that yk ∈ Bs, hence we can pick up convergent subsequences. The
proof will be completed, when we show that any convergent subsequence of
{yk} converges to ȳ.

Let {ykn} be a subsequence of {y} convergent to u0. For each n there is
full backward orbit of fλkn

in N through (xkn , ykn). Let us denote it by zl
kn

for
l ∈ Z−. This means that

fλkn
(zl

kn
) = zl+1

kn
, l = 0,−1,−2, . . . z0

kn
= (xkn , ykn). (165)

From the sequence z−1
kn

we can pick up a subsequence convergent to z̄−1. From
the continuity f it follows that

fλ̄(z̄−1) = z̄ = (x̄, u0). (166)

From this subsequence we can further pickup convergent subsequences to obtain
a full backward orbit for map fλ in N for the point z̄.

Therefore z̄ ∈ Inv−(N, fλ̄). From Lemma 9 it follows that z̄ ∈ Wu
N (p(λ̄), fλ̄).

Now from (164) it follows that u0 = ȳ.
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8.2 The Lipschitz dependence of invariant manifolds of a
hyperbolic fixed point on parameters

The goal of this subsection is to improve Theorem 20. Namely, we want to
show that if the dependence on parameters is Lipschitz, then also the stable
and unstable manifolds depend in the Lipschitz way on parameters. The theo-
rem below does not contain in its statements a precise formula for the Lipschitz
constant with respect to the parameter, but it can be quite easily inferred from
the proof. We believe that this kind of estimates will allow to effectively imple-
ment computer assisted proofs of the existence of the homoclinic tangency for
low dimensional ODEs depending on parameters.

Theorem 21 The same assumptions as in Theorem 20 and we additionally
assume that f is locally Lipschitz with respect to λ. By this we understand the
following statement:
for any compact set C × V ⊂ Λ × Rn, there exists L, such that for any λ ∈ C
and z ∈ V holds

‖fλ1(z)− fλ2(z)‖ ≤ L‖λ1 − λ2‖.
Then there exists sets C ⊂ Λ and U ⊂ V , such (λ0, z0) ∈ int(C × U) and a
continuous function p : C → U , such that p(λ) is a hyperbolic fixed point for fλ,
p(λ0) = z0 and W s

U (p(λ), fλ) depend in a Lipschitz way on λ, for λ ∈ C.
The Lipschitz dependence of set W s(p(λ), fλ) with respect to λ ∈ C means

that it is given as a graph of some function, which satisfies the Lipschitz condi-
tion with respect to λ.

If we additionally assume that ∂f
∂z (λ0, z0) is invertible and the dependence

of f−1
λ on λ is locally Lipschitz, then the same statement is valid also for

Wu
U (p(λ), fλ).

Proof: We will provide the proof for the stable manifold, only. The unstable
case is obtained by considering the inverse map.

Let (N,Q) be an h-set with cones as in the proof of Theorem 20, we also
assume that we use the coordinates given by h-set N . Let C ⊂ Λ be as in the
proof of Theorem 20.

We have a continuous function x : C ×Bs → Bu, such

z ∈ W s
N (p(λ), fλ)) iff z = (x(λ, y), y), for some y ∈ Bs. (167)

Moreover, from (161) if follows that there exists a constant A > 0, such that
for z1, z2 ∈ N holds

Q(fλ(z1)− fλ(z2))−Q(z1 − z2) ≥ A‖z1 − z2‖2 (168)

In fact since the positive definiteness is an open condition, it follows that for
some ε sufficiently small holds a stronger form of (168). Namely, we have

Q(fλ(z1)− fλ(z2))− (1 + ε)Q(z1 − z2) ≥ A‖z1 − z2‖2 (169)

Let us fix ε > 0, such that (169) holds.
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Let B be the bilinear form associated with Q, i.e. Q(z) = B(z, z).
Observe that for λ1, λ2 ∈ C and z1, z2 ∈ N holds

Q(fλ1(z1)− fλ2(z2))− (1 + ε)Q(z1 − z2) =
Q(fλ1(z1)− fλ1(z2))− (1 + ε)Q(z1 − z2) +

2B(fλ1(z1)− fλ1(z2), fλ1(z2)− fλ2(z2)) + Q(fλ1(z2)− fλ2(z2)) ≥
A‖z1 − z2‖2 − 2M‖z1 − z2‖ · ‖λ1 − λ2‖ − cL2‖λ1 − λ2‖2

where

M = ‖B‖ · L · sup
(λ,z)∈C×N

∥∥∥∥
∂fλ

∂z

∥∥∥∥
β(y) ≤ c‖y‖2, y ∈ Bs.

In the above formula ‖B‖ is the norm of the bilinear form B and β is the
negative part of Q.

We want to show that if

‖λ1 − λ2‖ ≤ Γ‖z1 − z2‖ (170)

with some Γ is small enough, then

A‖z1 − z2‖2 − 2M‖z1 − z2‖ · ‖λ1 − λ2‖ − cL2‖λ1 − λ2‖2 > 0. (171)

Observe that (171) is implied by the following inequality

A‖z1 − z2‖2 − 2MΓ‖z1 − z2‖2 − cL2Γ2‖z1 − z2‖2 > 0, (172)

which is satisfied for Γ small enough. Let us fix such Γ.
We have proved that, if ‖λ1 − λ2‖ ≤ Γ‖z1 − z2‖, then

Q(fλ1(z1)− fλ2(z2)) > (1 + ε)Q(z1 − z2). (173)

We would like to infer from (173) that

Q(fn
λ1

(z1)− fn
λ2

(z2)) > (1 + ε)nQ(z1 − z2), (174)

but the condition (173) does not imply that ‖λ1 − λ2‖ ≤ Γ‖fλ1(z1)− fλ2(z2)‖,
therefore we cannot iterate (173).

To fix this we will use a different condition. For δ > 0 we define a set G(δ)
by

G(δ) = {((λ1, z1), (λ2, z2)) ∈ (C ×N)2 | ‖λ1 − λ2‖2 ≤ δQ(z1 − z2)}. (175)

Observe that if ((λ1, z1), (λ2, z2)) ∈ G(δ), then

‖λ1 − λ2‖2 ≤ δQ(z1 − z2) ≤ δα(x1 − x2) ≤ δD‖z1 − z2‖2,
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where D is a constant satisfying

α(πxz) ≤ D‖z‖2. (176)

We set δ = Γ2/D.
Observe that, if ((λ1, z1), (λ2, z2)) ∈ G(δ), then

Q(fλ1(z1)− fλ2(z2)) > (1 + ε)Q(z1 − z2) (177)

and if fλ1(z1) ∈ N and fλ2(z2) ∈ N , then

((λ1, fλ1(z1)), (λ2, fλ2(z2))) ∈ G(δ). (178)

Therefore by the induction argument we obtain the following

Lemma 22 Let ((λ1, z1), (λ2, z2)) ∈ G(δ) be such that for j = 1, . . . , n and
i = 1, 2

f j
λi

(zi) ∈ N.

Then for j = 1, . . . , n
(
(λ1, f

j
λ1

(z1)), (λ2, f
j
λ2

(z2))
)

∈ G(δ), (179)

Q(f j
λ1

(z1)− f j
λ2

(z2)) > (1 + ε)jQ(z1 − z2). (180)

Lemma 23 Let λ1 6= λ2, λi ∈ C. Let zi = (x(λi, y), y) ∈ W s(p(λi), fλi) for
i = 1, 2. Then

‖λ1 − λ2‖2 > δQ(z1 − z2). (181)

Proof: Assume that (181) is not satisfied for some pair ((λ1, z1), (λ2, z2)). Let
us fix this pair for the remainder of the proof. We have

‖λ1 − λ2‖2 ≤ δQ(z1 − z2), (182)

therefore ((λ1, z1), (λ2, z2)) ∈ G(δ) and x(λ1, y) 6= x(λ2, y). Observe that by the
definition of zi, f j

λi
(zi) ∈ N for all j positive. From Lemma 22 it follows that

for all j > 0

Q(f j
λ1

(z1)−f j
λ2

(z2)) > (1+ε)jQ(z1−z2) ≥ (1+ε)jα(x(λ1, y)−x(λ2, y)) (183)

Let us consider the limit j →∞. We have

Q(f j
λ1

(z1)− f j
λ2

(z2)) → Q(p(λ1)− p(λ2))

(1 + ε)jα(x(λ1, y)− x(λ2, y)) →∞.

We obtain a contradiction. Therefore condition (181) is satisfied.

Conclusion of the proof of Theorem 21: From Lemma 23 it follows that

‖λ1 − λ2‖2 > δQ((x(λ1, y), y)− (x(λ2, y), y)) ≥
δα(x(λ1, y)− x(λ2, y)) ≥ Γa‖x(λ1, y)− x(λ2, y)‖2
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where a > 0 is such that
α(x) ≥ a‖x‖2. (184)

Finally, we obtain

‖x(λ1, y)− x(λ2, y)‖ <
1
δa
‖λ1 − λ2‖. (185)

9 Analyticity of (un)stable manifolds for ana-
lytic maps

The goal of this section is improve results from Section 5 and to prove that when
the map f under consideration is real-analytic and x0 is a hyperbolic fixed point,
then the local stable and unstable manifolds of x0 are real-analytic manifolds.

Theorem 24 Let f : Rn → Rn be a real-analytic map. Assume that z0 is a
hyperbolic fixed point of f .

Let Z ⊂ Rn be an open set, such that z0 ∈ Z.
Then there exists an h-set N with cones, such that z0 ∈ intN , N ⊂ Z and

• N
f

=⇒ N and if f is local diffeomorphism in the neighborhood of z0 then
N

f⇐= N ,

• Wu
N (z0) is a horizontal disk in N satisfying the cone condition

• W s
N (z0) is a vertical disk in N satisfying the cone condition.

Moreover, Wu
N (z0) can be represented as a graph of an real-analytic function

over the unstable space for the linearization of f at z0 and tangent to it at z0.
Analogous statement is also valid for W s

N (z0).

Proof: The bulleted part of the assertion follows directly from Theorem 14, but
we will need to alter the proof of this theorem in order to get the analyticity. We
will follow the proof of Theorem 14 to construct complex version of N , covering
relation N

f
=⇒ N and cone condition on N . Then we will start redoing proofs of

Theorems 10 and 12, for stable and unstable manifolds, respectively, modifying
them using observations made in Remarks 11 and 13.

Let u and s be the (real) dimensions of unstable and stable manifolds of
df(z0). We start as in the proof of Theorem 14 with the linear (hence real-
analytic) coordinate change. From now on we will work in these coordinates
in Cn. We will now complexify the construction of the h-set with cones (N,Q)
from the proof of Theorem 14.

On Cu and Cs we will use euclidian norms and the scalar product given by
(w|v) = w̄v , we set

NC(r) = {z0}+ B
C
u(0, r)×B

C
s (0, r) (186)

QC(x, y) = αx̄x− βȳy, α, β ∈ R, α > 0, β > 0. (187)
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where
BCn(0, ρ) = {x ∈ Cn | ‖x‖ ≤ ρ}.

In the sequel we will also use the following notation BCn = BCn(0, 1).
We will treat NC(r) as an (real) h-set, with s(NC(r)) = 2s and u(NC(r)) =

2u and the map cNC(r) being the complexification of cN(r). With these conven-
tions by proceeding as in the proof of Theorem 14 we obtain r0 > 0 and ε > 0,
such that for any δ ∈ [−ε, ε]

NC(r0)
f

=⇒ NC(r0) (188)
QC(f(z1)− f(z2)) > (1 + δ)QC(z1 − z2), z1 6= z2 ∈ NC(r0), (189)

QC(dfc(z)v) > (1 + δ)QC(v), z ∈ NC(r0),v ∈ Cn \ {0}. (190)

Now following the line of the proof of Theorem 14 we will redo proofs of The-
orems 10 and 12, to obtain the analyticity of stable and instable manifolds,
respectively.

To simplify the notation we set N = NC(r0), Q = QC and assume by passing
to coordinates given by cN that z0 = 0, N = B

C
u ×B

C
s and f = fc.

Let us first focus on the stable manifold. As was suggested in Remark 11 we
consider for any l > 0 function xl : B

C
s → B

C
u defined for l = 1, 2, . . . by implicit

equation
πxf l(xl(y), y) = 0. (191)

and under the constraint

f i(xl(y), y) ∈ N, i = 0, . . . , l − 1. (192)

Observe that the existence for a given y ∈ B
C
s of x ∈ B

C
u, such that

πxf l(x, y) = 0 and f i(x, y) ∈ N, i = 0, . . . , l − 1 (193)

follows directly from Theorem 4 applied to the chain of covering relations N
f

=⇒
N

f
=⇒ . . . N of length l, horizontal disk dy(x) = (x, y) and vertical disk b0(y) =

(0, y). We will show now that such x is unique. Let x1, x2 ∈ B
C
u, such that

x1 6= x2 and f i(xj , y) ∈ N for i = 0, . . . , l − 1. Then from (189) it follows that

α‖πxf l(x1, y)− πxf l(x2, y)‖2 ≥ Q(f l(x1, y)− f l(x2, y)) ≥
Q((x1, y)− (x2, y)) = α‖x1 − x2‖2 > 0.

Hence we have well defined function xl : B
C
s → B

C
u satisfying conditions (191,192).

We would like to use the implicit function theorem to prove that xl is ana-
lytic. For this it is enough to show, that ∂

∂xπxf l(x, y) is an isomorphism for
(x, y) ∈ N satisfying f i(x, y) ∈ N for i = 1, . . . , l − 1. To obtain this we show
that ∂

∂xπxf l(x, y) · v 6= 0 for any v ∈ Cu \ {0}. Namely, from (190) it follows
that

α

∥∥∥∥
∂

∂x
πxf l(x, y) · v

∥∥∥∥
2

= α‖πx(df l(x, y) · (v, 0))‖2 ≥

Q(df l(x, y) · (v, 0)) > Q((v, 0)) = α‖v‖2 > 0.
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From the implicit function theorem (over complex field) we obtain xl : B
C
s →

B
C
u, a family of analytic functions, which are of course real on Rs. Now we will

show that they converge uniformly.
From (189) it follows that for any l, m > 0 holds

Q(f l(xl+m(y), y)− f l(xl(y), y)) ≥ (1 + ε)lQ((xl+m(y)− xl(y), 0)) =
(1 + ε)lα‖xl+m(y)− xl(y)‖2.

But f l(xl+m(y), y) ∈ N for m ≥ 0 and Q is continuous, hence expression the
right hand side of the inequality is bounded by M = maxz1,z2∈N Q(z1 − z2).
Therefore we obtain

‖xl+m(y)− xl(y)‖2 ≤ α−1(1 + ε)−lM. (194)

Hence sequence xl satisfies the Cauchy condition, therefore it is uniformly con-
vergent to an analytic function x∗ : B

C
s → B

C
u. From condition (192) it follows

immediately that for any y ∈ B
C
s the point (x∗(y), y) ∈ Inv+(N, f) and we

continue as in the proof of Theorem 10.
Now we treat the unstable manifold. Following Remark 13 we will investigate

the convergence of functions yl : B
C
u → B

C
u defined by the following conditions

πxf l(xl(x), 0) = x (195)
f i(xl(x), 0) ∈ N, for i = 0, . . . , l (196)

yl(x) = πyf l(xl, 0). (197)

The existence of a point xl(x) satisfying (195,196) follows immediately from

Theorem 4 applied to chain of covering relations N
f

=⇒ N
f

=⇒ N · f
=⇒ N of

lenght l, horizontal disk b0(z) = (z, 0) and vertical disk be(y) = (y, x). The
uniqueness is obtained as follows: for x1 6= x2 and such that f i(xj , 0) ∈ N for
j = 1, 2 and i = 1, . . . , l − 1 holds

α‖πxf l(x1, 0)− πxf l(x2, 0)‖2 ≥
Q(f l(x1, 0)− f l(x2, 0)) > Q((x1 − x2), 0) = α‖x1 − x2‖2 > 0,

which proves that xl(x) is uniquely defined. We have already shown, when
discussing the stable manifold, that ∂

∂ πxf l(x, 0) is an isomorphism for x ∈ B
C

u ,
such that f i(x, 0) ∈ N for i = 1, . . . , l. Therefore xl and also yl are analytic
function (real on Bu).

Now we prove that yl converges uniformly. Let l, m > 0. We have

0 ≥ −β‖yl(x)− yl+m(x)‖2 = Q((x, yl(x))− (x, yl+m(x))) =
Q(f l(xl(x), 0)− f l(xl+m(x), 0)) ≥ (1− ε)lQ((xl, 0)− fm(xl+m(x), 0))

and we obtain

‖yl(x)− yl+m(x)‖2 ≤ β−1(1− ε)l max
z1,z2∈N

Q(z1 − z2). (198)
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Therefore yl is a Cauchy sequence converging to an analytic function y∗ : B
C
u →

B
C
u. It is easy to see that y∗(x) = w0, where w0 is defined in (79) in the proof

of Theorem 12. We continue with the proof as in Theorem 12.

By combination of the reasoning contained in the proof of Theorem 20 (cov-
ering relations and cone conditions are stable with respect to C1-perturbations)
with the the proof of Theorem 24 (the stable and unstable manifolds are defined
by limits of uniformly converging analytic functions) one can easily obtain the
following result

Theorem 25 Let Λ ⊂ Rk and V ⊂ Rn be open sets. Assume that f : Λ× V →
Rn, where Λ ⊂ Rk, is real analytic and z0 is a hyperbolic fixed point of fλ0 .

Then there exist sets C ⊂ Λ and U ⊂ V , such (λ0, z0) ∈ int(C × U) and
an analytic function p : C → U , such that p(λ) is a hyperbolic fixed point for
fλ, p(λ0) = z0 and Wu,s

U (p(λ), fλ) depend analytically on λ, for λ ∈ C, which
means that in suitable coordinates holds

W s(p(λ), fλ) = {p(λ) + (x(λ, y), y) | y ∈ Bs(0, ρ1)} (199)
Wu(p(λ), fλ) = {p(λ) + (x, y(λ, x)) | x ∈ Bu(0, ρ2)} (200)

where x(λ, y) and y(λ, x) are real analytic functions.

10 The stable and unstable manifolds of hyper-
bolic fixed points for ODEs.

Consider an ordinary differential equation

z′ = f(z), z ∈ Rn, f ∈ C2(Rn,Rn). (201)

Let us denote by ϕ(t, p) the solution of (201) with the initial condition z(0) = p.
For any t ∈ R by we define a map ϕ(t, ·) : Rn → Rn by ϕ(t, ·)(x) = ϕ(t, x). We
ignore here the question whether ϕ(t, x) is defined for every (t, x), but this can
be achieved by modification of f outside a large ball.

Definition 19 Let z0 ∈ Rn. We say that z0 is a hyperbolic fixed point for
equation (201) iff f(z0) = 0 and Reλ 6= 0 for all λ ∈ Sp(df(z0)), where Df(z0)
is the derivative of f at z0 and Reλ is the real part of λ.

Let Z ⊂ Rn, z0 ∈ Z. We define

W s
Z(z0, ϕ) = {z | ∀t≥0ϕ(t, z) ∈ Z, lim

t→∞
ϕ(t, z) = z0} (202)

Wu
Z (z0, ϕ) = {z | ∀t≤0ϕ(t, z) ∈ Z, lim

t→−∞
ϕ(t, z) = z0} (203)

W s(z0, ϕ) = {z | lim
t→∞

ϕ(t, z) = z0} (204)

Wu(z0, ϕ) = {z | lim
t→−∞

ϕ(t, x) = z0} (205)

Inv+(Z, ϕ) = {z | ∀t≥0ϕ(t, z) ∈ Z} (206)
Inv−(Z, ϕ) = {z | ∀t≤0ϕ(t, z) ∈ Z} (207)
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Sometimes, when ϕ is known from the context it will be dropped and we will
write W s

Z(z0), Inv±(Z) etc.
The goal of this section is to prove the following theorem.

Theorem 26 Assume that z0 = (x0, y0) is an hyperbolic fixed point for (201).
Let Z ⊂ Rn be an open set, such that z0 ∈ Z.
Then there exists an h-set N with cones, such that z0 ∈ N , N ⊂ Z,

Wu
N (z0) is a horizontal disk in N satisfying the cone condition and W s

N (z0) is
a vertical disk in N satisfying the cone condition.

Moreover, Wu
N (z0) can be represented as a graph of a Lipschitz function

over the unstable space for the linearization of f at z0 and tangent to it at z0.
Analogous statement is also valid for W s

N (z0).

Proof: Consider a flow obtained from (201) by linearization

x′ = df(z0)(x− z0). (208)

Let ϕL denotes the flow induced by (208) and let u and s be the dimension
of the unstable and stable manifolds for (208) at z0. It well known that there
exists a coordinate system and the scalar product (·, ·) such that following holds

df(z0) =
[

A 0
0 U

]
(209)

where A ∈ Ru×u, U ∈ Rs×s, such that A + AT is positive definite and U + UT

is negative definite. In this coordinate system Wu(z0, ϕL) = {z0} + Ru × {0}s

and W s(z0, ϕL) = {z0}+{0}u×Rs. We will use these coordinates in our proof.
Let us fix α, β ∈ R+. Let us define a quadratic form Q((x, y)) = αx2 − βy2,

where x ∈ Ru and y ∈ Rs.
For any λ ∈ [0, 1] let ϕλ be the flow induced by

z′ = fλ(z) := (1− λ)f(z) + λ(df(z0)(z − z0)) (210)

For any r > 0 we define N(r) by

N(r) = {z0}+ Bu(0, r)×Bs(0, r). (211)

To proceed further we need the following Lemma, which will be proved after
we complete the current proof.

Lemma 27 There exists r0 > 0, such that for λ ∈ [0, 1] and for any 0 < r ≤ r0

the following conditions are satisfied.

d

dt
Q(ϕλ(t, z1)− ϕλ(t, z2))|t=0 > 0, for all z1, z2 ∈ N(r), z1 6= z2 (212)

d(πx(ϕλ(t, z))− x0)2

dt
(z) > 0, z ∈ N(r) and ‖πx(z − z0)‖ ≥ r

2 (213)

d(πy(ϕλ(t, z))− y0)2

dt
(z) < 0, z ∈ N(r) and ‖πy(z − z0)‖ ≥ r

2 (214)
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Continuation of the proof of Theorem 26. Let us fix r = r0/2, where r0 is as in
Lemma 27. We define the h-set N with cones as follows: we set |N | = N(r),
cN (z) = 1

r (z − z0), u(N) = u, s(N) = s and QN (z′) = Q(c−1
N (z′)) for z′ ∈ Nc.

Observe that from Lemma 27 it follows immediately, that in the sense of the
Conley index theory [S] the pair (N,N−) is an isolating block.

From Lemma 27 if follows that for h > 0 small enough the following condi-
tions are satisfied for every λ ∈ [0, 1]

if z ∈ N , then ϕλ([−h, h], z) ∈ N(r0) (215)
if z ∈ N−, then ϕλ((0, h], z) /∈ N , (216)

if z ∈ N+, then ϕλ([−h, 0), z) /∈ N , (217)
if z, ϕλ(h, z) ∈ N , then ϕλ([0, h], z) ∈ N (218)

if z, ϕλ(−h, z) ∈ N , then ϕλ([−h, 0], z) ∈ N . (219)

From Lemma 27 and condition (215) it follows that

Q(ϕ(h, z1)− ϕ(h, z2)) > Q(z1 − z2), for z1, z2 ∈ N, z1 6= z2 (220)

We will prove that

N
ϕ(h,·)
=⇒ N. (221)

For the proof of (221) we need a suitable homotopy. First consider H(λ, h) =
ϕλ(h, ·). Obviously, H0 = ϕ(h, ·) and H1 = ϕL(h, ·).

From Lemma 27 if follows that

πx(H([0, 1], N−)) ⊂ Ru \Bu(x0, r), (222)
πy(H([0, 1], N)) ⊂ Bs(y0, r). (223)

Observe that the above conditions imply that

H([0, 1], N−) ∩N = ∅, (224)
H([0, 1], N) ∩N+ = ∅. (225)

We have H1(x, y) = (exp(Ah)(x− x0), exp(Uh)(y − y0)) + z0. Let us define
the homotopy G : [0, 1]× Ru × Rs → Ru × Rs by

G(λ, x, y) = (exp(Ah)(x− x0), (1− λ) exp(Uh)(y − y0)) + z0. (226)

Let F be the homotopy obtained by concatenation of H and G, this means that

F (λ, z) =

{
H(2λ, z) for 0 ≤ λ ≤ 1/2,

G(2(λ− 1/2), z) otherwise.
(227)

It is easy to see the homotopy Fc(λ, z) = cN (F (λ, c−1
N (z))) for z ∈ Nc satisfies

all conditions for the covering relation N
ϕ(h,·),w
=⇒ N , where w = ±1 (this follows

from the linearity of F1.)
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Now we apply Theorems 12 and 10 to (N, Q) and ϕ(h, ·) to infer that
Wu

N (z0, ϕ(h, ·)) and W s
N (z0, ϕ(h, ·)) are horizontal and vertical disks, respec-

tively.
To finish the proof we need to show that

Wu
N (z0, ϕ(h, ·)) = Wu

N (z0, ϕ) (228)
W s

N (z0, ϕ(h, ·)) = W s
N (z0, ϕ) (229)

Let us prove (228), the proof of (229) is analogous.
Observe first, that the inclusion Wu

N (z0, ϕ(h, ·)) ⊃ Wu
N (z0, ϕ) is obvious.

For the opposite direction let us take z ∈ Wu
N (z0, ϕ(h, ·)), then from condition

(219) it follows that ϕ((−∞, 0], z) ⊂ N . From Lemma 27 if follows that V (z) =
Q(z − z0) is decreasing (in strong sense) as long as the orbit stays in N . Hence
limt→−∞ ϕ(t, z) = z0.

The tangency of the stable (unstable) manifolds of ϕ and ϕL at z0 is obtained
as in the map case - see the conclusion of the proof of Theorem 14 for more
details.

Proof of Lemma 27
Let us fix λ ∈ [0, 1]. For zi ∈ Rn and t ∈ R let zi(t) = ϕλ(t, zi).
Let Q be a symmetric matrix corresponding the quadratic form Q. Then

d

dt
Q(z1(t)− z2(t))|t=0 =

(fλ(z1)− fλ(z2))T Q(z1 − z2) + (z1 − z2)T Q(fλ(z1)− fλ(z2)) =
(z1 − z2)T CT Q(z1 − z2) + (z1 − z2)T QC(z1 − z2) =

(z1 − z2)T (CT Q + QC)(z1 − z2),

where

C = C(λ, z1, z2) =
∫ 1

0

dfλ(z1 + t(z2 − z1))dt =

(1− λ)
∫ 1

0

df(z1 + t(z2 − z1))dt + λdf(z0).

Observe that for z1, z2 → z0 the matrix C(λ, z1, z2) converges to df(z0) uni-
formly with respect to λ ∈ [0, 1], hence it is enough to show that the symmetric
matrix df(z0)T Q + Qdf(z0) is positive definite.

We have

df(z0)T Q + Qdf(x0) =
[

AT 0
0 UT

] [
α 0
0 −β

]
+

[
α 0
0 −β

] [
A 0
0 U

]
=

[
α(A + AT ) 0

0 −β(U + UT )

]

Since matrices α(A + AT ) and −β(U + UT ) are positive definite, then the same
is true about df(z0)T Q + Qdf(x0).
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Consider condition (213). Let z = (x, y). We have for t = 0

d(πx(ϕλ(t, z))− x0)2

dt
= 2(x− x0)T πxfλ(z) =

2(x− x0)T C11(x− x0) + 2(x− x0)T C12(y − y0),

where

C11 = C11(λ, z, z0) =
∫ 1

0

∂πxfλ

∂x
(z0 + t(z − z0))dt =

∂πxf

∂x
(z0) + O(‖z − z0‖) = A + O(‖z − z0‖),

C12 = C12(λ, z, z0) =
∫ 1

0

∂πxfλ

∂y
(z0 + t(z − z0))dt =

∂πxf

∂y
(z0) + O(‖z − z0‖) = O(‖z − z0‖).

Now let z = (x, y) ∈ N(r) and ‖x− x0‖ ≥ r
2 . We have for t = 0

d(πx(ϕλ(t, z))− x0)2

dt
=

(x− x0)T (A + AT )(x− x0) + 2(x− x0)T O(r)(x− x0) +
2(x− x0)T O(r)(y − y0) ≥ a(r/2)2 −O(r)r2 = (a/4−O(r))r2,

where a > 0 is such that xT (A + AT )x ≥ ax2. Hence (213) holds provided r0 is
small enough.

The justification of (214) is analogous.

11 The relation with the standard notion of hy-
perbolicity, the linear map case

The goal of this section is to compare the cone conditions used in this paper
with the notion of hyperbolicity for linear maps.

Definition 20 Let A : Rn → Rn be a linear map. We say that A is hyperbolic
iff Sp(A) ∩ S1 = ∅.

11.1 Some examples

Let A : Rn → Rn be a linear map and Q : Rn → R be a quadratic form.
We define the quadratic form V by

V (x) = Q(Ax)−Q(x). (230)
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Observe that the positive definiteness of V does not imply that A is an
isomorphism (see Example 1). It is also possible to have a degenerate Q and
still obtain nondegenerate V (see Example 2). However Theorem 28 shows that
the positive definiteness of V implies that Q is nondegenerate.

Example 1 Let n = 2 and

A =
[

2 0
0 0

]
, Q =

[
1 0
0 −1

]
. (231)

Then

V =
[

3 0
0 1

]
(232)

is positive definitive. Observe that A is not an isomorphism.

Example 2 Let n = 2 and

A =
[

0 0
1 0

]
, Q =

[
0 0
0 1

]
. (233)

Then

V =
[

1 0
0 −1

]
(234)

is non-degenerate, but both A and Q are singular.

11.2 Hyperbolicity

For a linear map A : Rn → Rn by W s(A), Wu(A), W c(A) we denote respectively
the stable, unstable and central subspace for A. We have Rn = W s(A) ⊕
Wu(A)⊕W c(A).

Definition 21 For a quadratic form Q : Cn → R we define two cones

C+(Q) = {x ∈ Cn, Q(x) > 0}
C−(Q) = {x ∈ Cn, Q(x) < 0}.

Definition 22 A pair of numbers (p, q) ∈ N2 is called a signature of a quadratic
form Q : Rn × Rn → R iff there exists a basis {ei} such that

Q =
p∑

i=1

(e∗i )
2 −

q∑

i=1

(e∗p+i)
2, (235)

where {e∗i } is a dual basis to {ei}.

Theorem 28 Assume that A : Rn → Rn is linear map and Q : Rn → R is a
quadratic form of signature (n+, n−).
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Assume, that the quadratic form V given

V (x) = Q(Ax)−Q(x) (236)

is positive definite.
Then Q is nondegenerate, A is hyperbolic and the following conditions are

satisfied

n+ = dim Wu(A), n− = dim W s(A) (237)
Wu(A) ⊂ C+(Q), W s(A) ⊂ C−(Q) (238)

Proof:
It is well know that with Q we can in a unique way associate a bilinear form

B : Rn × Rn → R such that

Q(u) = B(u, u). (239)

Consider now the complexification of Rn, Q, B and A. When complexifying B
we choose the following convention

B(αu, βv) = αβB(u, v), α, β ∈ C, u, v ∈ Cn (240)

We have
Q(λu) = |λ|2Q(u), λ ∈ C, u ∈ Cn. (241)

It is easy to see that the quadratic form V given by (236) satisfies

V (x) > 0, ∀x ∈ Cn \ {0} (242)

Let (λ, v) ∈ C× Cn be an eigenpair for A, i.e. Av = λv and v 6= 0.
We will show that

|λ| 6= 1 (243)
if |λ| > 1, then v ∈ C+(Q) (244)
if |λ| < 1, then v ∈ C−(Q). (245)

We have

0 < Q(Av)−Q(v) = (|λ|2 − 1)Q(v).

Therefore conditions (243–245) are satisfied.
Observe that we have just proved that A is hyperbolic.
Let us set

u = dim(Wu(A)), s = dim(W s(A)).

Let v1, . . . , vu, w1, . . . , ws be a Jordan basis for A, such that the vectors v1, . . . , vu

span Wu(A) and w1, . . . , ws span W s(A). Moreover, we have

Avj = λjvj +
∑

i<j

aijvi, j = 1, . . . , u (246)

Awj = γjwj +
∑

i<j

bijwi, j = 1, . . . , s (247)
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where |λj | > 1 and |γl| < 1 and aij , bij are some complex numbers. Observe
that A is upper triangular on Wu(A) and W s(A) in this basis.

We will prove inductively that there exists a basis in {ṽi}i=1,...,dim(W u(A))

in Wu(A) and {w̃i}i=1,...,dim(W s(A)) in W s(A), such that

B(ṽi, ṽj) = 0, i 6= j, i, j = 1, . . . , u (248)
Q(ṽi) = B(ṽi, ṽi) > 0, i = 1, . . . , u (249)

B(w̃i, w̃j) = 0, i 6= j, i, j = 1, . . . , s (250)
Q(w̃i) = B(w̃i, w̃i) < 0, i = 1, . . . , s. (251)

To achieve this goal we apply the Gram-Schmidt orthogonalization based on the
symmetric form B separately to the sets {vi}i=1,...,u and {wi}i=1,...,s. Observe
that, if successful, this procedure will result in a basis in which A preserves its
upper-triangular form both in Wu(A) and W s(A). The necessary condition for
applicability of this procedure is that after i-th step we have

Q(ṽi) 6= 0, Q(w̃i) 6= 0. (252)

Observe that due to (244–245) condition (252) holds for i = 1.
We will first provide the proof for the existence of {ṽi}’s. Assume that we

had already constructed ṽ1, . . . , ṽi, such that Q(ṽk) > 0 for k = 1, . . . , i.
From Gram-Schmidt procedure we obtain ṽi+1. Since for any i λi 6= 0,

therefore it is easy to see that there exists zi+1 = ṽi+1 +
∑

k≤i αkṽk such that
Azi+1 = λi+1ṽi+1.

We have

0 < Q(A(zi+1))−Q(zi+1) = |λi+1|2Q(ṽi+1)−Q(ṽi+1)−
∑

k≤i

|αk|2Q(ṽk). (253)

Since by induction assumption Q(ṽk) > 0 for k = 1, . . . , i therefore we obtain

(|λi+1|2 − 1)Q(ṽi+1) > 0, (254)

which implies that Q(ṽi+1) > 0, because |λi+1| > 1.
To handle w̃i’s we need to alter a bit the above proof. Namely, for the

induction step assume that we had already constructed w̃1, . . . , w̃i, such that
Q(w̃k) < 0 for k = 1, . . . , i.

From Gram-Schmidt procedure we obtain w̃i+1. We have

A(w̃i+1) = γi+1w̃i+1 +
∑

k≤i

αkw̃k (255)

Hence we obtain

0 < Q(A(w̃i+1))−Q(w̃i+1) = |γi+1|2Q(w̃i+1) +
∑

k≤i

|αk|2Q(w̃k)−Q(w̃i+1).

Since by induction assumption Q(w̃k) < 0 for k = 1, . . . , i therefore we obtain

(|γi+1|2 − 1)Q(w̃i+1) > 0,
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which implies that Q(w̃i+1) < 0, because |γi+1| < 1.
Now we have to come back from complexification to Rn. Observe that

the above construction it flows that the bilinear form B is positive definite
in restriction to Wu(A), is negative definite on W s(A). Therefore in suitable
bases in Wu(A) and W s(A) has the following form

Q(x, y) =
u∑

i=1

x2
i −

s∑

j=1

y2
j +

i=u,j=s∑

i=1,j=1

2aijxiyj (256)

where xi’s and yj ’s are coordinates on Wu(A) and on W s(A), respectively.
It is easy to see that Q can in a suitable basis by written as

Q(x, y) =
u∑

i=1

x2
i −

s∑

j=1

y2
j . (257)

To see this consider the standard procedure bringing a quadratic form into the
canonical one given by (257). The first step consist in the following transforma-
tion

x2
1 +

s∑

j=1

2a1jx1yj −
s∑

j=1

y2
j =


x1 +

s∑

j=1

a1jyj




2

−
s∑

j=1

(1 + a2
1j)y

2
j (258)

We introduce new coordinates x̃1 = x1 +
∑s

j=1 a1jyj , x̃i = xi for i = 2, . . . , u

and ỹj =
√

1 + a2
1jyj for j = 1, 2, . . . , s. Now our quadratic form Q has the

following expression

Q(x̃, ỹ) =
u∑

i=1

x̃2
i −

s∑

j=1

ỹ2
j +

i=u,j=s∑

i=2,j=1

2ãij x̃iỹj . (259)

Observe that after this step we still have −1 as coefficient of terms y2
i and terms

x1yj disappeared. Therefore we can remove terms x2yj in next step and so on,
until we obtain (257) in a suitable basis.

This shows that the signature of Q is (u, s) and therefore Q is nondegenerate.

Observe that, since the set of positive definite matrices in an open subset
of the set symmetric matrix, then if V given by (236) is positive definite, then
there exist 0 < l < 1 < k, such that

V (x) = Q(Ax)−mQ(x) (260)

is positive definite for m ∈ (l, k). The next theorem relates the interval (l, k)
and the spectrum of A.
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Theorem 29 The same assumptions as in Thm. 28. Let 0 < l < 1 < k, be
such that for any m ∈ (l, k), the quadratic form

Vm(x) = Q(Ax)−mQ(x) (261)

is positive definite.
Then Sp(A) ∩ (

√
l,
√

k) = ∅.
Proof: We complexify Rn, Q and A as in the proof of Thm. 28.

Let (λ, v) be an eigenpair for A.
Let us fix m ∈ (l, k). From our assumption it follows that

|λ|2Q(v) = Q(λv) = Q(Av) > mQ(v). (262)

Hence
|λ|2 6= m. (263)
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