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Abstract. We apply the method of self-consistent bounds to prove the exis-

tence of multiple steady state bifurcations for Kuramoto-Sivashinski PDE on
the line with odd and periodic boundary conditions.

1. Introduction. The aim of this paper is to present all necessary tools, which with
computer assistance allow to produce a rigorous steady-state bifurcation diagram
for dissipative PDEs. For the purpose of this introduction by a dissipative PDE we
mean an infinite-dimensional system, which is well approximated by its Galerkin
projections.

Our approach is based on the concept of the self-consistent a priori bounds de-
veloped in [23, 24, 26], which when applied to steady states can be thought as an
improvement of the Cesari method [3] (see [23] for more details). Informally speak-
ing, the self-consistent a priori bounds are used to control rigorously the difference
between a PDE and its Galerkin projections, then we apply finite dimensional tools,
mainly the local degree and the implicit function theorem to infer information about
the steady states and their bifurcations. In an application of the proposed method
to a concrete dissipative PDE one needs to check many inequalities (up to several
hundred for the Kuramoto-Sivashinsky equation in one spatial dimension). This
task, while practically impossible for a human, can be rigorously accomplished by
a computer program using the interval arithmetic [18, 19].

In this paper we apply our method to Kuramoto-Sivashinsky equation (we will
use a shortcut the KS equation in sequel), which was introduced in [16, 21] in the
context of wave propagation. The KS equation is given by

ut = −νuxxxx − uxx + (u2)x (t, x) ∈ [0,∞)× R, ν > 0. (1)

We assume odd and periodic boundary conditions

u(t, x) = u(t, x+ 2π), u(t, x) = −u(t,−x). (2)
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The KS-equation is well studied in literature [5, 6, 9, 10, 11, 12, 13, 14, 15, 22]. It
serves as one of the model PDE examples for which it was shown rigorously that
the dynamics is finite dimensional [9, 13], but there are virtually no rigorous results
about the details of the dynamics away from the origin. On the other side a lot
is known from the numerical point of view (see [15, 12, 5] and the literature cited
there).

As a test for our method we would like to prove that the non-rigorous steady-
state bifurcation diagram presented in [12, Fig 1a] and [15, Fig. 3.2, 3.4, 3.5] is
correct. In this paper we did not get this far. Our main results about the steady
state bifurcations for the KS equation can be formulated as follows (see [15, 12, 22]
(also Section 6.1) for the explanation of the names of steady-states branches )

Theorem 1.1. There are pitchfork symmetry breaking bifurcations for problem (1–
2) for the following values of ν
• ν ∈ 0.247833+2·10−6·(−1, 1), both unimodal branches collide with the negative

bimodal branch.
• ν ∈ 0.177336 + 2 · 10−7 · (−1, 1), a creation of the bi-tri branch off the positive

bimodal branch.
• for ν ∈ 0.075627151 + 5 · 10−9 · (−1, 1), a creation of the giant branch off the

negative bimodal branch.
For the following values of ν there are the bifurcations consisting of intersections

of two branches of steady states
• ν ∈ 0.11039383+5·10−8·(−1, 1) an intersection of the trimodal branch with the

bi-tri branch. This happens for both positive and negative trimodal branches.
• ν ∈ 0.078570271 + 5 · 10−9 · (−1, 1) an intersection of the trimodal branch

with the tri-quadratic branch near R3t3. This happens for both positive and
negative trimodal branches.

Summing up, we were able to establish the existence and determine the (un)sta-
bility of most main steady state bifurcations involving the zero solution branch and
the unimodal, bimodal and trimodal branches.

The paper is organized in two main parts: an abstract part, where we state
and prove abstract theorems and a detailed part, where we provide all necessary
formulas, which allow (with computer assistance) to verify the assumptions of the
abstract theorems for the KS equation with odd and periodic boundary conditions.

To construct a rigorous steady-state bifurcation diagram for a dissipative PDE
one needs to solve the following problems

1.: How to establish the local uniqueness for regular steady states ?
2.: How to obtain the regularity and compute the derivatives of steady states

with respect to the parameters?
3.: How to handle the bifurcation point in an infinite dimensional situation,

when the bifurcation point is not given explicitly and the spectral data are
hard to obtain?

It is apparent that problem 1 is much easier than the other ones. In Section 3
we present the method which allow us to establish the local uniqueness for regular
steady states. It works for all the fixed points for the KS equation, whose existence
was established in [23]. The main result in this section is Theorem 3.7. In Section 4
we discuss the criteria to establish the stability (asymptotic) and the instability of
the fixed point. The main result is Theorem 4.2. Again we were able to rigorously
establish the stability/unstability of all fixed points for the KS-equation from [23].
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The problem 2 is harder than 1, but its solution is required also in the solution
of 3. In Section 5 it is proven that, whenever we can prove for the KS-equation the
existence and the uniqueness for a parameter range using the self-consistent a priori
bounds, then the dependence on the parameters is C∞. Sections 5 and 10 contain,
respectively, the description of an effective algorithm and all necessary formulas for
the KS-equation, which allow us to compute rigorously the derivatives of the steady
states with respect to the parameters and the derivatives of the functions appearing
in the Liapunov-Schmidt method (see [4]), which will be essential in the solution of
problem 3.

To solve problem 3 we use an approach, which is a combination of the methods
presented in [4] and the self-consistent a priori bounds. Section 6 contains the ab-
stract theorems and Section 11 the computational details related to the proof of the
existence of the symmetry breaking pitchfork bifurcation off the bimodal branches
(most of primary bifurcations are of this type for the KS equation) and intersec-
tions of two steady state branches (see Theorem 1.1). Companion file bifdata.txt
[29] contains the relevant numerical data from the proof of the stability/unstability
of two exemplary fixed points and the bifurcations listed in Theorem 1.1.

Sections from 7 to 11 contain the formulas necessary for the application of the
theory developed in Sections 3, 4, 5 and 6 to the KS equations. Our intention is
to give enough details so that the formulas given here together with the ones in
[23, 26] can serve as a documentation of our program.

From the inspection of the bifurcation diagrams in [15, 12] it is quite clear that
tools given in this paper should be sufficient for providing a rigorous steady states
bifurcation diagram over reasonable range of ν, because apparently all steady state
bifurcations appear to be either folds (on regular branches) or the symmetry break-
ing bifurcations discussed and the intersections discussed in this paper in this paper.
Hence linking our method with a continuation approach should be enough for the
task. This is the approach taken by Maier-Pappe and coauthors in [17], where using
the method of self-consistent a priori bounds the authors were able to continue the
branches of steady states for the Cahn-Hillard equation on the square (they did not
treat bifurcations).

The first draft version of this paper was prepared in 2003 and later in 2005 Arioli
and Koch in [1] using different tools were able to produce the full steady state bi-
furcation diagram for the KS-equation with odd and periodic boundary conditions.
Arioli and Koch method differs considerably from ours, they use the ’integral formu-
lation’ of the stationary KS-equation and relay heavily on the abstract PDE theory.
In contrast our approach is rather ODE-type as we prove everything relying mainly
on the isolation concept originating in the Conley index theory (see references in
[23]).

Obviously, while giving some insight, the steady state-bifurcation diagram is only
the first step towards a detailed understanding the dynamics of the given dissipative
PDE. Next step would be the inclusion of periodic orbits and one is faced with the
following problems

H Creation of periodic orbit from fixed point. How to rigorously show the exis-
tence of the Hopf bifurcation?

E How to prove the existence of an isolated periodic orbit?
B Bifurcations of periodic orbits.

We believe that the treatment of the Hopf bifurcation is possible within the pre-
sented framework i.e. the self-consistent a priori bounds should allow to use the
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classical bifurcation theory approach, as is done in the present paper for the pitch-
fork bifurcation.

The problem of proving the existence of an isolated periodic orbit for the KS
equations was investigated in [27, 28], where the existence of multiple periodic or-
bits for the the KS equation for ν ∈ [0.029, 0.127] was proved with the computer
assistance. In these works using an algorithm, based on the self-consistent a priori
bounds, we rigorously integrated a dissipative PDE to obtain topological informa-
tion about a suitable Poincaré map.

The problem of the bifurcation of periodic orbits, we mean here the rigorous
proofs, is hard even for ODEs, as it requires Cr information for r = 2, 3 about
Poincaré maps. To the best of our knowledge no such algorithm for dissipative
PDEs exists in literature.

1.1. The Kuramoto-Sivashinsky equation in the Fourier domain. Through-
out this paper we look at a dissipative PDE as an infinite ladder of ordinary dif-
ferential equations. To be more specific the KS-equation with odd and periodic
boundary conditions can be reduced (see [23]) to the following infinite system
of ordinary differential equations for the coefficients of the Fourier expansion of
u(t, x) =

∑∞
k=1−2ak(t) sin(kx)

ȧk = k2(1− νk2)ak − k
k−1∑
n=1

anak−n + 2k
∞∑
n=1

anan+k k = 1, 2, 3, . . . . (3)

More abstractly we will write the KS-equation as

ȧ = F (u), (4)

where F = (F1, F2, . . . ).

2. The method of the self-consistent a priori bounds. Consider a Hilbert
space H. {ei} an orthogonal basis. Xk = span(e1, . . . , ek).

For x ∈ H, by xi we will denote the i-th coordinate and for any function F :
dom (F )→ H we define Fi(x) the same way.

For any n by Pn denote the projection onto the subspace spanned by Xn =
{e1, e2, . . . , en} and by Yn = (I − Pn)H we will denote the orthogonal complement
of Xn in H.

Assume that F : D(F )→ H, D(F ) ⊂ H. We investigate the equation

F (x) = 0. (5)

Definition 2.1. Let m,M ∈ N with m ≤ M . A compact set W ⊂ Xm and a
sequence of pairs {x±k ∈ R | x−k < x+

k } form the self-consistent a priori bounds for
equation (5)

C1: For k > M , x−k < 0 < x+
k

C2: Let x̂k := max |x±k |, then
∑
k x̂

2
k <∞.

C3: The function x 7→ F (x) is continuous on

W ⊕Π∞k=m+1[x−k , x
+
k ] ⊂ H.

Moreover, if we define fk = maxx∈W⊕Π∞k=m+1[x−k ,x
+
k ] |Fk(x)|, then

∑
k f

2
k <∞.

C4: For every u, d ∈W ⊕Π∞k=m+1[x−k , x
+
k ], such that for some k > m

uk = x+
k and dk = x−k (6)
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we have
Fk(u) · Fk(d) < 0. (7)

Definition 2.2. Let m,M ∈ N with m ≤M . A pair of compact sets N ⊂W ⊂ Xm

and a sequence of pairs {x±k ∈ R | x−k < x+
k } form the topologically self-consistent a

priori bounds for equation (5) if W and {x±k } are the self-consistent a priori bounds
for equation (5) and the following condition holds

C5: For all x ∈ ∂N and for all u ∈ Π∞k=m+1[x−k , x
+
k ]

PmF (x+ u) 6= 0

Let y =
∑M
i=m+1

x−i +x+
i

2 · ei. We define a modified projection operator P ∗k for
k ≥ m by

P ∗k (x) = Pk(x) + (I − Pk)y. (8)
Observe that for k > M we have P ∗k = Pk. The main reason to introduce the
projection P ∗k is to have the following property

P ∗k (W ⊕Π∞i=m+1[x−i , x
+
i ]) ⊂W ⊕Π∞i=m+1[x−i , x

+
i ]. (9)

Theorem 2.3. Assume that N ⊂W and {x±k } are the topologically self-consistent
a priori bounds for equation (5). Assume that

deg(Pm ◦ F ◦ P ∗m : Xm → Xm, intN, 0) 6= 0. (10)

Then there exists x ∈ N ⊕Π∞i=m+1[x−i , x
+
i ] such that F (x) = 0.

Proof. For k ≥M consider a k-th Galerkin projection of F given by

x ∈ Xk 7→ PkF (x). (11)

Consider a set
Nk = N ⊕Πk

i=m+1[x−i , x
+
i ]. (12)

Obviously Nk ⊂W ⊕Π∞i=m+1[x−k , x
+
k ], hence by C3 it follows that Nk ⊂ dom (F )

and PkF is continuous on Nk.
For i > m we define αi ∈ {−1, 1} as follows. Let x ∈ W ⊕ Π∞i=m+1[x−k , x

+
k ] be

any point such that xk = x+
k

αi = 1, if Fi(x) > 0,
αi = −1, otherwise.

It is easy to see from C4 that this definition does not depend on the choice of x.
We will compute the degree deg(PkF, intNk, 0) using a homotopy linking PkF

with the map G defined as follows

PmG(x) = Pm(F (P ∗m(x))),
Gi(x) = gi(xi)ei, for i > m

where gi : [x−k , x
+
k ]→ R is given by

gi(z) = αi

(
z −

x+
k + x−k

2

)
.

The homotopy H is given by the following conditions

PmH(t, x) = PmF ((1− t)x+ tP ∗m(x))
Hi(t, x) = (1− t)Fi(x) + tgi(xi), for i = m+ 1, . . . , k.
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Let us observe that H(0, x) = PkF (x) and H(1, x) = G(x). It remains to show that
deg(H(t, ·), intNk, 0) is defined and does not depend on t.

For this it is enough to show that

H(t, x) 6= 0, for x ∈ ∂Nk and t ∈ [0, 1]. (13)

Observe that if x ∈ ∂Nk, then one of the following conditions is satisfied

Pmx ∈ ∂N, (14)
xi = x±i , for some i = m+ 1, . . . , k. (15)

Assume (14) holds. Since Pm((1− t)x+ tP ∗m(x)) = Pm(x) ∈ ∂N the condition C5
implies PmH(t, x) 6= 0, hence PkH(t, x) 6= 0.

Now assume (15). Without any loss of generality we can assume that xi = x+
i

and αi = 1. The proof for the other cases is analogous. This means that Fi(x) > 0
and gi(xi) > 0. Hence Hi(t, x) > 0 and PkF (x) 6= 0.

From multiplicative property of the local degree and our assumption about the
degree of PmF it follows that

deg(G, intNk, 0) = deg(PmFP ∗m, intN, 0) ·Πk
i=m+1 deg(gi, (x−i , x

+
i ), 0) =

deg(PmFP ∗m, intN, 0) ·Πk
i=m+1αi 6= 0.

This means that there exists a point xk ∈ intNk, such that PkF (xk) = 0.
Passing to the limit as in the proof of Theorem 2.16 in [23] we obtain x∗ such that
F (x∗) = 0.

3. The issue of local uniqueness. Assume H is a real Hilbert space, F : H ⊃
dom (F ) → H and V = W ⊕ Π∞k=m+1[a−k , a

+
k ] form the self-consistent a-priori

bounds, and we assume that W is convex. (In fact we need only the conditions
C1,C2,C3).

We need two additional conditions about the derivatives of F

F1: for every i and j ∂Fi
∂xj

: V → R is continuous

F2: Let dij = maxx∈V
∣∣∣∂Fi∂xj

(x)
∣∣∣. Then for every i and every x, y ∈ V the series

∞∑
j=1

dij sup
x,y∈V

|xj − yj |

converges.

Lemma 3.1. For every i = 1, 2, . . . and x, y ∈ V we have

Fi(x)− Fi(y) =
∞∑
j=1

cij(xj − yj), (16)

where cij ∈
[
∂Fi
∂xj

(V )
]
I
, which is defined by[
∂Fi
∂xj

(V )
]
I

= {y ∈ R | ∃x ∈ V y =
∂Fi
∂xj

(x)}.

Moreover, if x→ y then cij → ∂Fi
∂xj

(y).
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Proof. Let us fix an i and for any n we consider the map Fi : Xn → R. We have
for any x, y ∈ Xn

Fi(x)− Fi(y) =
n∑
j=1

(∫ 1

0

∂Fi
∂xj

(y + t(x− y))dt
)
· (xj − yj) (17)

Let us take any x, y ∈ V , then from (17) it follows immediately that

Fi(Pnx)− Fi(Pny) =
n∑
j=1

(∫ 1

0

∂Fi
∂xj

(Pny + t(Pnx− Pny))dt
)
· (xj − yj) (18)

We want now to pass to the limit n→∞ in the above equation. From C3 it follows
that Fi(Pnx)→ Fi(x) and Fi(Pny)→ Fi(y). We will show that

lim
n→∞

n∑
j=1

(∫ 1

0

∂Fi
∂xj

(Pny + t(Pnx− Pny))dt
)
· (xj − yj) = (19)

∞∑
j=1

(∫ 1

0

∂Fi
∂xj

(y + t(x− y))dt
)
· (xj − yj)

Let us fix any ε > 0. Observe that from F2 it follows immediately that there
exists n0 such that for n ≥ n0 we have∣∣∣∣∣∣

∞∑
j=n0+1

(∫ 1

0

∂Fi
∂xj

(y + t(x− y))dt
)
· (xj − yj)

∣∣∣∣∣∣ < ε

∣∣∣∣∣∣
n∑

j=n0+1

(∫ 1

0

∂Fi
∂xj

(Pny + t(Pnx− Pny))dt
)
· (xj − yj)

∣∣∣∣∣∣ < ε.

Hence for n ≥ n0 we obtain∣∣∣∣∣∣
n∑
j=1

(∫ 1

0

∂Fi
∂xj

(Pny + t(Pnx− Pny))dt
)
· (xj − yj)−

∞∑
j=1

(∫ 1

0

∂Fi
∂xj

(y + t(x− y))dt
)
· (xj − yj)

∣∣∣∣∣∣ ≤ 2ε+

∣∣∣∣∣∣
n0∑
j=1

(∫ 1

0

∂Fi
∂xj

(Pn(y + t(x− y)))dt−
∫ 1

0

∂Fi
∂xj

(y + t(x− y))dt
)
· (xj − yj)

∣∣∣∣∣∣
To finish the proof of (19) observe that from F1 and the compactness of V it follows
that for each j the functions [0, 1] 3 t 7→ ∂Fi

∂xj
(Pn(y + t(x− y))) converge uniformly

on [0, 1] to the function [0, 1] 3 t 7→ ∂Fi
∂xj

(y + t(x− y)).
Hence we obtain

Fi(x)− Fi(y) =
∞∑
j=1

(∫ 1

0

∂Fi
∂xj

(y + t(x− y))dt
)
· (xj − yj). (20)

To finish the proof observe that
∫ 1

0
∂Fi
∂xj

(y + t(x− y))dt ∈
[
∂Fi
∂xj

(V )
]
I
.
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Lemma 3.2. Assume that for every i

min
x∈V

∣∣∣∣∂Fi∂xi
(x)
∣∣∣∣ >∑

j 6=i

max
x∈V

∣∣∣∣∂Fi∂xj
(x)
∣∣∣∣ , (21)

then F is an injection on V . Hence V contains at most one zero of F .

Proof. Let i0 be such that for all i

|xi0 − yi0 | ≥ |xi − yi|. (22)

From Lemma 3.1 it follows that

|Fi0(x)− Fi0(y)| ≥ |ci0i0 ||xi0 − yi0 | −
∑
j 6=i0

|ci0j ||xj − yj | ≥

≥ |xi0 − yi0 |

|ci0i0 | −∑
j 6=i0

|ci0j |

 ≥
≥ |xi0 − yi0 |

min
x∈V

∣∣∣∣∂Fi∂xi
(x)
∣∣∣∣−∑

j 6=i

max
x∈V

∣∣∣∣∂Fi∂xj
(x)
∣∣∣∣
 > 0,

hence Fi0(x) 6= Fi0(y).

3.1. Block decomposition. For Lemma 3.2 to apply, the matrix ∂F
∂x has to be

dominated by the diagonal terms. This can be achieved by an approximate diag-
onalization in case of real eigenvalues, but to handle complex eigenvalues we need
a slight generalization of Lemma 3.2. To this end following [26] we introduce the
notion of the block decomposition of H.

Definition 3.3. A decomposition of H, into a sum of subspaces is called a block
decomposition of H if the following conditions are satisfied

1.: H =
⊕

iHi,
2.: for every i hi = dim Hi ≤ hmax <∞,
3.: for every i Hi = 〈ei1 , ei2 , . . . , eihi 〉,
4.: If dimH =∞, then there exists k such that for i > k hi = 1.

For the block decomposition of H we adopt the following notation, which makes
a distinction between the blocks and one dimensional subspaces spanned by 〈ei〉.
For the blocks we use H(i) = 〈ei1 , . . . eik〉, where (i) = (i1, . . . ik). The symbol Hi

will always mean the subspace generated by ei. For one-dimensional block (i) we
adopt the following convention, the only element of (i) will be denoted by the same
letter i.

For a given block decomposition of H and a block (i), we set

dim (i) = dim H(i).

For any x ∈ H by x(i) we will denote the projection of x onto H(i). For any l and
(i) = (i1, . . . , ik) we will say that (i) ≤ l if is ≤ l for all s = 1, . . . , k and we say
that (i) > l if is > l for all s = 1, . . . , k.

On each component H(i) we will use the norm induced from H. By P(i) we
will denote an orthogonal projection onto H(i). By Lin(H(i), H(j)) we denote the
set of all linear maps from H(i) to H(j) equipped with the operator norm |A| =
max|v|=1,v∈H(i)

|Av|.
Assume that we have a block decomposition of H and conditions F1, F2 are

satisfied. Then it is easy to see that the following two conditions are satisfied



STEADY STATE BIFURCATIONS FOR THE KURAMOTO-SIVASHINSKY EQUATION 9

F1’: for every (i) and (j) the map
∂F(i)

∂x(j)
: V → Lin(H(i), H(j)) ≈ Rdim (i)×dim (j)

is continuous,
F2’: Let n(i)(j) = maxx∈V

∣∣∣∂F(i)

∂x(j)
(x)
∣∣∣. Then for every (i) and every x, y ∈ V the

series ∑
(j)

n(i)(j) sup
x,y∈V

|x(j) − y(j)|

converge.

Definition 3.4. Assume that A(x) ∈ Rn×m is a matrix depending on x. We define
[A(V )] ⊂ Rn×m by

C ∈ [A(V )] iff Cij ∈ [ inf
x∈V

Aij(x), sup
x∈V

Aij(x)]. (23)

Definition 3.5. For any linear map A ∈ Lin(Rn,Rm) we define

inf(A) = min
|v|=1,v∈Rn

|Av|. (24)

For a matrix valued function A(x) we set

inf(A(V )) = inf
C∈[A(V )]

inf(C). (25)

We have the following easy

Lemma 3.6. Let A ∈ Lin(Rn,Rn) be an isomorphism. Then |A−1| = 1
inf A .

The following theorem is a direct generalization of Lemma 3.2 and the proof is
essentially the same.

Theorem 3.7. Assume that we have a block decomposition of H. Assume F1’ and
F2’ are satisfied and for every (i)

inf
(
∂F(i)

∂x(i)
(V )
)
>

∑
(j)6=(i)

max
x∈V

∣∣∣∣∂F(i)

∂x(j)
(x)
∣∣∣∣ , (26)

then F is an injection on V . Hence V contains at most one zero of F .

4. The issues of stability and instability.

4.1. A criterion for nonlinear instability.

Definition 4.1. For any square matrix A by S(A) we denote a symmetric part of
A, S(A) = (A+At)/2.

For any square symmetric matrix A we define

µinf (A) = min
|v|=1

(Av|v),

µsup(A) = max
|v|=1

(Av|v).

For a matrix valued function A(x) we set

µinf (A(Z)) = inf
C∈[A(Z)]

µinf (C),

µsup(A(Z)) = sup
C∈[A(Z)]

µsup(C).
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Remark 1. It is easy to see that µsup(A) coincides with the logarithmic norm µ(A)
based on Euclidean norm, which was used in [26].

Theorem 4.2. Let V = W ⊕ Π[a−k , a
+
k ] be the self-consistent a priori bounds and

N ⊂ V be an isolating block for a fixed point p. We assume that the logarithmic
norms for Galerkin projections are all uniformly bounded on V - hence we have the
existence and the uniqueness of classical solutions in V (see [24, 26]).

Assume that we have a block decomposition and let the block (i0) consists of all
exit directions. Assume that F1 and F2 are satisfied.

Let

d(i0) = µinf

(
S

(
∂F(i0)

∂x(i0)
(Z)
))
−

∑
(i) 6=(i0)

∣∣∣∣∂F(i0)

∂x(i)
(Z)
∣∣∣∣

a(i0)(i) =

µinf

(
S

(
∂F(i0)

∂x(i0)
(Z)
))
−

∑
(i)6=(i0)

∣∣∣∣∂F(i0)

∂x(i)
(Z)
∣∣∣∣

−µsup
(
S

(
∂F(i)

∂x(i)
(Z)
))
−
∑

(i)6=(j)

∣∣∣∣∂F(i)

∂x(j)
(Z)
∣∣∣∣
 ,

If

d(i0) > 0
a(i0)(i) > 0, ∀(i) 6= (i0)

then p is unstable, i.e. there exists ε > 0 such that for any δ > 0 there exist xδ,
such that |xδ − p| < δ, and tδ > 0 such that |ϕ(tδ, xδ)− p| > ε.

Proof. Assume that p = 0. Consider Z = {x ∈ N ⊕Π[a−k , a
+
k ] | |xi| ≤ |xi0 |, ∀(i)}.

From Lemma 3.1 if follows that for x ∈ Z and any block (j) the following
condition is satisfied

F(j)(x) = F(j)(x)− F(j)(p) ∈
∑
(i)

[
∂F(j)

∂x(i)
(Z)
]
· x(i). (27)

Assume that we have an orbit x(t) ∈ Z for t ∈ [0, t1], where t1 is a supremum of
times with this property (we allow for t1 =∞), then for t ∈ [0, t1] we have

1
2
d|x(i0)|2

dt
= x(i0) ·

dx(i0)

dt
∈[∂F(i0)

∂x(i0)
(Z)
]
x(i0) +

∑
(i)6=(i0)

[
∂F(i0)

∂x(i)
(Z)
]
x(i)

x(i0) ≥

µinf

(
S

(
∂F(i0)

∂x(i0)
(Z)
))
· |xi0 |2 −

∑
(i)6=(i0)

∣∣∣∣∂F(i0)

∂x(i)

∣∣∣∣ |x(i)||x(i0)| ≥

|x(i0)|2
µinf (S (∂F(i0)

∂x(i0)
(Z)
))
−

∑
(i)6=(i0)

∣∣∣∣∂F(i0)

∂x(i)

∣∣∣∣

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For any (i) we have

1
2
d|x(i)|2

dt
= x(i) ·

dx(i)

dt
∈[∂F(i)

∂x(i)
(Z)
]
x(i) +

∑
(i)6=(j)

[
∂F(i)

∂x(j)
(Z)
]
x(j)

x(i) ≤

|x(i0)|2
µsup(S (∂F(i)

∂x(i)
(Z)
))

+
∑

(i) 6=(j)

∣∣∣∣∂F(i)

∂x(j)

∣∣∣∣


From the above inequalities it follows that for any (i) 6= (i0)

1
2

(
d|x(i0)|2

dt
−
d|x(i)|2

dt

)
≥

|x(i0)|2
µinf (S (∂F(i0)

∂x(i0)
(Z)
))
−

∑
(i)6=(i0)

∣∣∣∣∂F(i0)

∂x(i)

∣∣∣∣+
−µsup

(
S

(
∂F(i)

∂x(i)
(Z)
))
−
∑

(i)6=(j)

∣∣∣∣∂F(i)

∂x(j)

∣∣∣∣
 .

Hence for t ∈ [0, t1] and all (i) 6= (i0) holds

1
2
d|x(i0)|2

dt
≥ d(i0)|x(i0)|2, (28)

1
2

(
d|x(i0)|2

dt
−
d|x(i)|2

dt

)
≥ a(i0)(i)|x(i0)|2. (29)

From(29) it follows that the function |x(i0)(t)|2−|x(i)(t)|2 is increasing for t ∈ [0, t1],
hence x(t) ∈ Z for t ∈ [0, t1].

Assume that x(0) ∈ Z and xi0(0) 6= 0. From (28) it follows that t1 < ∞. Let
ε = dist(p,N−). Observe that ε > 0, because the number of exit directions is finite.
To finish the proof observe that x(t1) ∈ N−.

Let us comment why the assumptions of Theorem 4.2 can be quite easily satisfied.
The condition d(i0) > 0 holds due to the following factors

• µinf

(
S
(
∂F(i0)

∂x(i0)
(Z)
))

> 0, we choose the block (i0) to represent the unstable
direction

•
∑

(i)6=(i0),(i)≤m

∣∣∣∂F(i0)

∂x(i)
(Z)
∣∣∣ is small due to the diagonalization used to produce

new coordinates,
•
∑

(i)6=(i0),(i)>m

∣∣∣∂F(i0)

∂x(i)
(Z)
∣∣∣ is small, because the modes with high-wave number

have a relatively
weak influence on the mode with low frequency number (this requires m to
be large enough).

To discuss the condition a(i0)(i) > 0 observe first that

a(i0)(i) = d(i0) − µsup
(
S

(
∂F(i)

∂x(i)
(Z)
))
−
∑

(i)6=(j)

∣∣∣∣∂F(i)

∂x(j)
(Z)
∣∣∣∣ . (30)
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In the above formula first term d(i0) is already positive. Observe that for the KS-
equation
−µsup

(
S
(
∂F(i)

∂x(i)
(Z)
))

is positive and goes to ∞ as (i) → ∞. It turns out that
for the KS-equation the last term tends to −∞ at a slower rate than the second
one. Hence there are good chances to verify this condition (see Section 8 for more
details).

4.2. A criterion for the nonlinear stability. Basically this is contained in The-
orem 3.7 in [26]. It is shown there that it is enough to check that, if there exists
l ∈ R, such that for all blocks (i) (see also Remark 1)

µsup

(
∂F(i)

∂x(i)
(V )
)

+
∑

(k), (k)6=(i)

∣∣∣∣ ∂F(i)

∂x(k)
(V )
∣∣∣∣ ≤ l < 0,

then the steady state in N ⊕Π[a−k , a
+
k ] is stable (and attracting).

5. The continuity of solutions of implicit equations through the self-
consistent bounds. Our goal in this section is to establish the regularity proper-
ties of the solution of the equation

F (ν, x) = 0. (31)

as a function of ν in the context of the self-consistent a priori bounds and to provide
the mathematical basis for the rigorous numerical procedure for the computation
of the derivatives of x(ν), which is required in the bifurcation analysis.

Let us assume additionally (just for simplicity, because this is not essential for
the method) that for k = 1, 2, . . .

∂2Fk
∂ν2

= 0,

d3Fk = 0.

By taking the derivatives of (31) with respect to ν we obtain

∂Fk
∂ν

+
∑
i

∂Fk
∂xi

x′i = 0 (32)

2
∑
i

∂2Fk
∂ν∂xi

x′i +
∑
i,j

∂2Fk
∂xi∂xj

x′ix
′
j +

∑
i

∂Fk
∂xi

x
(2)
i = 0 (33)

3
∑
i

∂2Fk
∂ν∂xi

x
(2)
i + 3

∑
i,j

∂2Fk
∂xi∂xj

x
(2)
i x′j +

∑
i

∂Fk
∂xi

x
(3)
i = 0 (34)

5.1. The existence and uniqueness issue. In the computation of the derivatives
of the steady states with respect to parameters one has to solve the following linear
equation (compare (32)-(34))

z + (D +N) · x = 0, (35)

where z, x ∈ Rd and D,N ∈ Rd×d, D + N = ∂F
∂x at a fixed point for the KS-

equation (or its Galerkin projection), D is a diagonal matrix and D dominates N
in a suitable sense. The dimension d can be infinite. We assume that we have a
block decomposition of H.
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We introduce the block-infinity norm given by

|x|b,∞ = sup
(i)

|x(i)|. (36)

Let Hb,∞ be a completion of H in the above norm.

Theorem 5.1. Let d ∈ N+ ∪ {∞}. Consider equation

z + (D +N) · x = 0, (37)

where z, x ∈ Hb,∞ and D,N ∈ Rd×d (we do not assume that D,N define maps on
Hb,∞, they are just collections of coefficients indexed by N2

+).
Assume that there exists α < 1 such that

D(i)(j) = 0, if (i) 6= (j) (38)

α inf D(i)(i) >
∑
(j)

|N(i)(j)|, for all (i), (39)

inf D(i)(i) > λ > 0, for all (i). (40)

Then equation (37) has a unique solution, x? ∈ Hb,∞ and

|x?|b,∞ ≤
|D−1z|b,∞

1− α
(41)

Proof. Observe that from (39) it follows immediately that D(i)(i) is an isomorphism
(see Def.3.5). From Lemma 3.6 it follows that

|D−1
(i)(i)| =

1
inf D(i)(i)

. (42)

Consider the following map

P (x) = −D−1z −D−1Nx. (43)

We will prove that P : Hb,∞ → Hb,∞ is a contraction with the contraction coefficient
α.

First of all observe that dom (P ) = Hb,∞. Namely we have

|D−1z|b,∞ = sup
(i)

|D−1
(i)(i)z(i)| ≤ sup

(i)

1
λ
|z(i)| =

1
λ
|z|b,∞. (44)

It remains to show that also D−1Nx ∈ Hb,∞ and the linear map D−1N is a con-
traction

|D−1Nx|b,∞ = sup
(i)

∣∣∣∣∣∣D−1
(i)(i)

∑
(j)

(
N(i)(j) · x(j)

)∣∣∣∣∣∣ ≤
sup
(i)

|D−1
(i)(i)| ·

∑
(j)

|N(i)(j)|

 · |x|b,∞ =

sup
(i)

1
inf D(i)(i)

·

∑
(j)

|N(i)(j)|

 · |x|b,∞ ≤ α|x|b,∞.
From the Banach contraction principle it follows that the map P has a unique fixed
point, x∗. This point is a unique solution to (37) and it is equal to a limit of the
sequence Pn(x) for any x ∈ Hb,∞.
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To finish the proof observe the ball B = B(0, |D
−1z|b,∞
1−α ) is mapped by P into

itself. Namely, for any x ∈ B we have

|P (x)|b,∞ ≤ |D−1Nx|b,∞ + |D−1z|b,∞ ≤ α
|D−1z|b,∞

1− α
+ |D−1z|b,∞ =

|D−1z|b,∞
1− α

.

5.2. Self-consistent bounds for the derivatives. We want to solve equation
(35) in H (we have the existence and the uniqueness in the larger space Hb,∞)
over a range of ν, so that a solution for ν belongs to the set L, which forms the
self-consistent a priori bounds for (35). We show now that such a solution exists
under some mild assumptions, which are easily satisfied for the KS equations.

Let [Z] ⊂ H, [D], [N ] be a sets of linear mappings defined densely on H with
values in H. We assume that Xk ⊂ dom (D) and Xk ⊂ dom (N) for any k and
D ∈ [D] and N ∈ [N ].

For fixed z ∈ [Z], D ∈ [D] and N ∈ [N ] we set F (x) = z + (D +N)x.
We assume for any z ∈ [Z], D ∈ [D] and N ∈ [N ] that the assumptions of

Theorem 5.1 are satisfied and additionally the following inequalities hold

γ ≤ s, γ ≤ t, s, t > 5, (45)

|zi|
inf D(i)(i)

≤ C̃

it
, (46)

inf D(i)(i) > βi4, i > m (47)

|D(i)(i)| < Bi4, (48)

|Nij | ≤
iG

|i− j|s
, i 6= j (49)

Nii = 0 (50)

All these assumptions are satisfied for the KS equations as it will be shown later.
Under the above assumptions we are going to construct the set L

WL = Π(i)≤mB(i)(0, r(i))

L = WL ⊕Π∞i=m+1[x−i , x
+
i ] (51)

which will form for M = m the topologically self-consistent a priori bounds con-
taining the solution of (35) for all z ∈ [Z], D ∈ [D] and N ∈ [N ].

We construct L using an algorithm for producing the self-consistent a priori
bounds we used for the proof of the existence of fixed points for the KS equations
in [23, 26]. As a result of this algorithm we obtain a sequence L0 ⊃ L1 ⊃ L2 ⊃ . . . ,
such that each set Li is of the form given by (51) and for i ≥ i0 Li forms the
topologically self-consistent a priori bounds containing the solution of (35) for all
z ∈ [Z], D ∈ [D] and N ∈ [N ].

We will use an additional index in the parameters defining Li, i.e. Li will be
defined according to (51) by setting the values for x±i,k. We will not change the set
WL.
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Algorithm:
Initialization: We define L0 as follows. Let us fix ε > 0. We set

R =
(1 + ε)
1− α

sup
z∈[Z],D∈[D]

sup
k

|zk|
inf D(k)(k)

(52)

r(i) = R, for (i) ≤ m (53)

x±0,i = R, for i > m (54)

One step: Assume that Li is defined. We define Li+1 as follows: for k > m let bk
be given by

bk = (1 + ε) sup
x∈Li,N∈[N ],D∈[D]

|(Nx)k|
inf Dkk

+ (1 + ε) sup
z∈[Z],D∈[D]

|zk|
inf Dkk

. (55)

We define x±i+1,k as follows

x±i+1,k = ±bk, if bk < x+
i,k,

x±i+1,k = x±i,k, otherwise.

We set
Li+1 = WL ⊕Π∞k=m+1[x−i+1,k, x

+
i+1,k]. (56)

Lemma 5.2. For all z ∈ [Z], D ∈ [D] and N ∈ [N ] the set L0 satisfies C4, C5
for all k > m, namely Pk ◦ F (x) 6= 0 for x ∈ Xk ∩ L0

and
deg(Pm ◦ F : Xm → Xm, intWL, 0) 6= 0. (57)

Proof. Let us fix any z ∈ [Z] D ∈ [D], N ∈ [N ]. We show first that for any block
(i) and x ∈ L0 if |x(i)| = R, then∣∣D(i)(i)x(i)

∣∣ > |(Nx)(i)|+ |z(i)|. (58)

Indeed ∣∣D(i)(i)x(i)

∣∣ ≥ inf D(i)(i)R,

|(Nx)(i)| ≤

∑
(j)

∣∣N(i)(j)

∣∣R < α inf D(i)(i)R,

|zi| < R(1− α) inf D(i)(i).

Hence ∣∣D(i)(i)x(i)

∣∣− |(Nx)(i)| − |z(i)| > 0. (59)

Since for i > m dim(i) = 1, hence Dii ∈ R \ {0}. If Dii > 0, then Fi(x) > 0 if
xi = R and Fi(x) < 0 if xi = −R. If Dii < 0, then Fi(x) < 0 if xi = R and
Fi(x) > 0 if xi = −R. This proves condition C4. Observe that (59) implies that
C5 is satisfied.

It remains to prove (57). Observe that from (58) it follows that for any λ ∈ [0, 1]
and x ∈ L0, such that |x(i) = R∣∣D(i)(i)x(i)

∣∣ > |(λNx)(i)|+ |λz(i)|. (60)

Let us define a homotopy H : [0, 1]×Xm → Xm

H(λ, x) = Hλ(x) = λz + (D + λN)x. (61)
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From (60) it follows that

Pm ◦Hλ(x) 6= 0, x ∈ ∂WL. (62)

From the continuation property of the degree it follows that

deg(Pm ◦ F, intWL, 0) = deg(Pm ◦H1, intWL, 0) = deg(Pm ◦H0, intWL, 0). (63)

To finish the proof observe Pm ◦ H0 is an linear isomorphism. Hence deg(Pm ◦
H0, intWL, 0) = ±1.

The following Lemma follows directly from the rule of construction of Li+1 start-
ing from Li.

Lemma 5.3. For all z ∈ [Z], D ∈ [D], N ∈ [N ] and any i ≥ 1 i = 1, 2, . . . the set
Li satisfies C4, C5 for all k > m, namely Pk ◦ F (x) 6= 0 for x ∈ Xk ∩ Li
and

deg(Pm ◦ F : Xm → Xm, intWL, 0) 6= 0. (64)

In view of the above lemma it is clear that to show that the algorithm produces
the topologically self-consistent a priori bounds for (35) it is enough to show that
for i large enough conditions C2 and C3 are satisfied.

As the first step in this direction we have the following

Lemma 5.4. There exists a constant E1, such that for all k holds

|x±1,k| ≤
E1

k3
. (65)

Proof. We have for k > m

|(Nx)k| ≤

∑
j 6=k

|Nkj |

R ≤ kR
∑
j 6=k

G

|k − j|s
< kRGS(s),

where S(s) =
∑
j∈Z\{0}

1
|j|s . Hence

bk ≤ (1 + ε)

(
kRGS(s)
βk4

+
C̃

it

)
≤ E1

k3
. (66)

In the sequel we will use several times the following

Lemma 5.5. Assume s > 1, γ > 1. There exists a constant S(s, γ) such that for
all k ∈ N+ holds ∑

j∈N+,j 6=k

1
|k − j|sjγ

≤ CQ(s, γ)
|k|min(s,γ)

.

Lemma 5.6. There exist i and a constant Ei, such that

|x±i,k| ≤
Ei

kmin(s,t)
. (67)

Proof. By induction. As an induction assumption we assume that for i ≥ 1 holds
(i = 1 is treated in Lemma 5.4)

|xi,k| ≤
Ei
kγi

, γi ≥ 3, γ ≤ s. (68)
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Using Lemma 5.5 we obtain

1
|Dkk|

∑
j

|Nkjxj |+
|zk|
|Dkk|

≤ kGEi
βk4

∑
j

1
|k − j|s|j|γi

+
C̃

kt
≤

GEiCQ(s, γi)
kγi+3

+
C̃

|k|t
,

Since for a suitable constant Ei+1 we have

bk ≤
GEiCQ(s, γi)

kγi+3
+
C̃

kt
≤ Ei+1

kmin(γi+3,t)
. (69)

Hence we had proven that if γi ≤ s, then γi+1 = min(γi + 3, t).

Lemma 5.7. If |x±i,k| ≤
Ei
kγi and γi > 5, then conditions C2 and C3 are satisfied

on Li for F (x) = z + (D +N)x.

Proof. Condition C2 is manifestly satisfied. For condition C3 it is enough to prove
the convergence statement for fk.

We have

fk ≤ |Dkkxk|+
∑
j

|Nkjxj |+ |zk| ≤

EiBk
4

kγi
+GEik

∑
j

1
|k − j|s|j|γi

+
B

β

C

kt
.

Using Lemma 5.5 we obtain

fk ≤
C1

kγi−3
+

C2

kmin(s,γi)−1
+
C3
kt (70)

for some constants C1, C2, C3. Now if γi − 3 > 1/2, s− 1 > 1/2 and t > 1/2, then∑
k f

2
k <∞.

The following theorem summarizes the above developments

Theorem 5.8. There exists L of the form given by (51), which for all z ∈ [Z],
D ∈ [D] and N ∈ [N ] forms the topologically self-consistent a priori bounds for
(35). Moreover, the solution (35) belongs to L.

5.3. Regularity of solutions of implicit equations. In this section we state
and prove theorems about the regularity of solutions of the equation

F (ν, x) = 0 (71)

and (what will be important near the bifurcation points)

Fi(ν, x1, x) = 0, i ≥ 2. (72)

We want to find x(ν) for (71) and x(ν, x1) for (72).
In both cases we assume that the domain of interest is a compact and convex

set, Λ, Λ ⊂ R for (71) and Λ ⊂ R2 for (72). We assume in both cases that we
have constructed V = W ⊕ Πk>m[x−k , x

+
k ] the topologically self-consistent a priori

bounds, where we were able to verify the uniqueness. Hence we have a function
x(ν) (x(ν, x1)) for ν ∈ Λ ((ν, x1) ∈ Λ).

Through this section we assume:
• bounds on V : |xi| ≤ C

is , for x ∈ V
• we have a block decomposition
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• F1 and F2 for F and all its partial derivatives are satisfied on Λ× V
• we define the set of matrices [D], [N ]

[D](i)(i) =
[
∂F(i)

∂x(i)
(Λ, V )

]
I

[D](i)(j)] = 0, (i) 6= (j)

[N ](i)(j) =
[
∂F(i)

∂x(j)
(Λ, V )

]
I

, (i) 6= (j)

[N ](i)(i) = {0}

• Theorem 5.1 type assumptions:
there exists α < 1 such that

α inf
D∈[D]

inf D(i)(i) >
∑
(j)

sup
N∈[N ]

|N(i)(j)|, for all (i), (73)

inf
D∈[D]

inf D(i)(i) > λ > 0, for all (i). (74)

• Section 5.2 type assumptions

γ ≤ s, γ ≤ t, s, t > 5, (75)
inf

D∈[D]
inf D(i)(i) > βi4, i > m (76)

sup
D∈[D]

|D(i)(i)| < Bi4, (77)

sup
N∈[N ]

|Nij | ≤
iG

|i− j|s
, i 6= j (78)

• ∣∣∣∣∂Fi∂ν
(Λ, V )

∣∣∣∣ ≤ Θi4 sup
x∈V
|xi| (79)∣∣∣∣ ∂Fi

∂ν∂xj
(Λ, V )

∣∣∣∣ = δi,ji
4, for i > i0 (80)

∑
j

∣∣∣ ∂Fi
∂ν∂xj

(Λ, V )
∣∣∣

js
< ∞, for all i (81)

Theorem 5.9. Under the above assumptions the function x(ν) (x(ν, x1)) is C1 on
Λ and there exists a constant C1 such that |x′i| ≤ C1

is (
∣∣∂xi
∂ν

∣∣ ≤ C1
is ,

∣∣∣ ∂xi∂x1

∣∣∣ ≤ C1
is ).

Moreover, for equation (71) for any ν1, ν2 ∈ Λ and any i∣∣∣∣xi(ν1)− xi(ν2)
ν1 − ν2

∣∣∣∣ ≤ C1

is
.

In the case of equation (72) for (ν1, y), (ν2, y) ∈ Λ and (ν, y1), (ν, y2) ∈ Λ and for
any i the following holds∣∣∣∣xi(ν1, y)− xi(ν2, y)

ν1 − ν2

∣∣∣∣ ≤ C1

is
,∣∣∣∣xi(ν, y1)− xi(ν, y2)

y1 − y2

∣∣∣∣ ≤ C1

is
.
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Proof. We provide the proof essentially for the derivative with respect to ν, only.
The proof for (72) is the same hence will be omitted; only the place where there is
some difference in estimates will be discussed.

Let us fix ν ∈ Λ and let h 6= 0 be such that ν + h ∈ Λ, then from Lemma 3.1 we
obtain for all i

0 = Fi(ν + h, x(ν + h))− Fi(ν, x(ν)) = ciνh+
∑
j

cij(xj(ν + h)− xj(ν)),

where

ciν ∈
[
∂Fi
∂ν

(Λ, V )
]
I

, ciν →
∂Fi
∂ν

(ν, x(ν)) for h→ 0

cij ∈
[
∂Fi
∂xj

(Λ, V )
]
I

= [D]ij + [N ]ij , cij →
∂Fi
∂xj

(ν, x(ν)) for h→ 0.

Hence the difference ratio r(h) = x(ν+h)−x(ν)
h satisfies the following system of

equations
c(i)ν +

∑
(j),(j) 6=(i)

c(i)(j)rj(h) + c(i)(i)r(i)(h) = 0 (82)

The above equation was considered in Section 5.2. To apply Theorem 5.8 to obtain
bounds for r(h) we need to provide bounds for ciν for i large enough.

Since ciν ∈
[
∂Fi
∂ν (Λ, V )

]
I
, then from (79) we have

|ciν | ≤ Θi4|xi|, x ∈ V. (83)

Since |xi| ≤ C
is on V , then we obtain

|ciν |
inf Dii

≤ i4ΘC
isβi4

=
CΘ/β
is

. (84)

Hence (46) is satisfied with t = s and C̃ = CΘ/β.
When considering (72) and the partial derivative with respect of x1, instead of

ciν we will have the term ci1 ∈
[
∂Fi
∂xj

(Λ, V )
]
I

= [N ]i1.

From (78) it follows that for some G̃

|ci1| ≤
G̃

is−1
, (85)

hence
|ci1|

inf Dii
≤ G̃

is−1βi4
=
G̃/β

is+3
. (86)

Hence (46) is satisfied with t = s+ 3 and C̃ = G̃/β.
From Theorem 5.8 we obtain a topologically self-consistent a priori bounds, L

(independent of h), r(h) ∈ L and |ri(h)| ≤ C1
is .

We will prove now that r(h)→ r∗, where r∗ is a solution of the following equation

∂F

∂ν
(ν, x(ν)) +

∂F

∂x
(ν, x(ν)) · r = 0. (87)

First of all, this is an equation studied in the previous section, L are also the
topologically self-consistent a priori bounds for it and r∗ ∈ L.

The set L is compact, it is enough to prove that for any sequence hn → 0 for
n→∞, such that ratios r(hn)→ r̃, we have that r̃ satisfies (87).
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To prove this observe that from Lemma 3.1 it follows that ciν → ∂Fi
∂ν (ν, x(ν))

and cij → ∂Fi
∂xj

(ν, x(ν)), hence by passing to the limit we see that indeed r̃ satisfies
(87), hence r̃ = r∗. Uniqueness of solutions of (87) and continuity of coefficients in
this equation with respect to ν, x and r imply continuity of x′(ν).

Proceeding inductively it is now easy to prove the following

Theorem 5.10. Same assumptions as in Theorem 5.9 and additionally d3F = 0.
Then function x(ν) (x(ν, x1)) is C∞ on Λ and for any l ≥ 1 there exists a constant
C1 such that |x(l)

i | ≤
Cl
is (

∣∣∂xi
∂ν

∣∣ ≤ Cl
is ,
∣∣∣ ∂xi∂x1

∣∣∣ ≤ Cl
is ).

Moreover, for equation (71) for any ν1, ν2 ∈ Λ and any i∣∣∣∣∣x(l−1)
i (ν1)− x(l−1)

i (ν2)
ν1 − ν2

∣∣∣∣∣ ≤ Cl
is
.

In the case of equation (72) for any (ν1, y), (ν2, y) ∈ Λ and (ν, y1), (ν, y2) ∈ Λ, any
operator, D(l−1), of the partial derivatives of order l − 1 and any i the following
inequalities are satisfied∣∣∣∣D(l−1)xi(ν1, y)−D(l−1)xi(ν2, y)

ν1 − ν2

∣∣∣∣ ≤ Cl
is
,∣∣∣∣D(l−1)xi(ν, y1)−D(l−1)xi(ν, y2)

y1 − y2

∣∣∣∣ ≤ Cl
is
.

Proof. The proof is by induction.
We will illustrate the induction step for l = 2 for equation (72) for the computa-

tion of ∂x
∂ν∂x1

. This example contains all essential ingredients for the whole proof,
(due to the fact that d3F = 0).

Let us fix (ν, y) ∈ Λ and let h 6= 0 be such that (ν, y + h) ∈ Λ.
For any i we have

0 =
∂Fi
∂ν

(ν, y + h, x(ν, y + h)) +∑
j

∂Fi
∂xj

(ν, y + h, x(ν, y + h)) · ∂xj
∂ν

(ν, y + h)−

∂Fi
∂ν

(ν, y, x(ν, y))−
∑
j

∂Fi
∂xj

(ν, y, x(ν, y)) · ∂xj
∂ν

(ν, y) =(
∂Fi
∂ν

(ν, y + h, x(ν, y + h))− ∂Fi
∂ν

(ν, y, x(ν, y))
)

+∑
j

∂Fi
∂xj

(ν, y + h, x(ν, y + h))
∂xj
∂ν

(ν, y + h)−

∑
j

∂Fi
∂xj

(ν, y, x(ν, y))
∂xj
∂ν

(ν, y)

 .
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We transform each term in parentheses separately. For the first term we have
∂Fi
∂ν

(ν, y + h, x(ν, y + h))− ∂Fi
∂ν

(ν, y, x(ν, y)) =(
∂Fi
∂ν

(ν, y + h, x(ν, y + h))− ∂Fi
∂ν

(ν, y + h, x(ν, y))
)

+(
∂Fi
∂ν

(ν, y + h, x(ν, y))− ∂Fi
∂ν

(ν, y, x(ν, y)
)

=∑
j

ciνj · (xj(ν, y + h)− xj(ν, y)) + ciν1 · h

where ciνj → ∂Fi
∂ν∂xj

(ν, y, x(ν, y)) and ciν1 → ∂Fi
∂ν∂x1

(ν, y, x(ν, y)) for h→ 0.
For the second term we obtain∑

j

∂Fi
∂xj

(ν, y + h, x(ν, y + h))
∂xj
∂ν

(ν, y + h)−

∑
j

∂Fi
∂xj

(ν, y, x(ν, y))
∂xj
∂ν

(ν, y) =

∑
j

(
∂Fi
∂xj

(ν, y + h, x(ν, y + h))− ∂Fi
∂xj

(ν, y, x(ν, y + h))
)
∂xj
∂ν

(ν, y + h) +

∑
j

(
∂Fi
∂xj

(ν, y, x(ν, y + h))− ∂Fi
∂xj

(ν, y, x(ν, y))
)
∂xj
∂ν

(ν, y + h) +

∑
i

∂Fi
∂xj

(ν, y, x(ν, y))
(
∂xj
∂ν

(ν, y + h)− ∂xj
∂ν

(ν, y)
)

=

h
∑
j

cij1
∂xj
∂ν

(ν, y + h) +
∑
jk

cijk
∂xj
∂ν

(ν, y + h)(xk(ν, y + h)− xk(ν, y)) +

∑
i

∂Fi
∂xj

(ν, y, x(ν, y))
(
∂xj
∂ν

(ν, y + h)− ∂xj
∂ν

(ν, y)
)

where cij1 → ∂2Fi
∂xj∂x1

(ν, y, x(ν, y)) and cijk → ∂2Fi
∂xj∂xk

(ν, y, x(ν, y)) for h→ 0.
Hence after multiplication by 1/h we obtain the following equation∑

j

ciνj ·
xj(ν, y + h)− xj(ν, y)

h
+ ciν1 +

∑
j

cij1
∂xj
∂ν

(ν, y + h) +

∑
jk

cijk
∂xj
∂ν

(ν, y + h)
xk(ν, y + h)− xk(ν, y)

h
+

∑
i

∂Fi
∂xj

(ν, y, x(ν, y))
∂xj
∂ν (ν, y + h)− ∂xj

∂ν (ν, y)
h

= 0

Hence similarly as in the proof of Theorem 5.9 we see that

ri(h) =
∂xj
∂ν (ν,y+h)−

∂xj
∂ν (ν,y)

h satisfies an equation of the form

zi +
∑
i

∂Fi
∂xj

(ν, y, x(ν, y))rj(h) = 0. (88)

Hence to conclude the proof it is enough to show that zi satisfies (46) with t ≥ s.
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We will do it term by term. For i large enough we have

1
inf Dii

∣∣∣∣∣∣
∑
j

ciνj ·
xj(ν, y + h)− xj(ν, y)

h

∣∣∣∣∣∣ ≤
C1

βi4

∑
j

|ciνj |
js

=
C1

βi4
· i

4

is
=
C1

βis

1
inf Dii

|ciν1| = 0,

1
inf Dii

∣∣∣∣∣∣
∑
j

cij1
∂xj
∂ν

(ν, y + h)

∣∣∣∣∣∣ ≤ βCC1

i4

(
2i

(i− 1)s
+

2i
(i+ 1))s

)
≤ C

is+3
,

1
inf Dii

∣∣∣∣∣∣
∑
jk

cijk
∂xj
∂ν

(ν, y + h)
xk(ν, y + h)− xk(ν, y)

h

∣∣∣∣∣∣ ≤
β

i4

∑
jk

|cijk|
C2

1

jsks
=
βC2

12i
i4

i−1∑
j=1

1
js(i− j)s

+ 2
∞∑
j=1

1
js(i+ j)s

 ≤ C1

is+3

6. Bifurcations.

6.1. Symmetries and invariant subspaces of the KS-equation. We have the
following easy

Lemma 6.1. If u(t, x) is a solution of the KS equations (we ignore the boundary
conditions) for some ν, then ũ(t, x) = ku(k2t, kx) is the solution of the KS equations
for ν̃ = ν

k2 .

From the above lemma it follows that for odd and periodic boundary conditions
in terms Fourier coefficients we obtain the following fact: if ak(t) is a solution of
(3) for some ν then for any k ∈ N we obtain a solution of (3) for ν̃ = ν

k given by

ãnk(t) = kan(k2t), (89)
ãl(t) = 0, if l /∈ kN .

Observe that the shift by π

ũ(t, x) = u(t, x+ π)

maps solutions of (1–2) into solutions of the same problem. In terms Fourier coef-
ficients this symmetry, denoted by R, is given by

a2k → a2k

a2k+1 → −a2k+1.

Here are a few simple consequences of the above symmetries
• if (a1, a2, a3, . . . ) is a fixed point, then (−a1, a2,−a3, . . . ) is a fixed point, too.

Moreover the stability of both these points is the same.
• Fixed points p = (a1, a2, a3, . . . ), such a1 6= 0 always appear in pairs (p,Rp).

They are called unimodal. If a1 > 0 the it is called a positive unimodal point,
otherwise it is called negative unimodal. The same terminology applies to the
branches of the unimodal fixed points.
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• even-modal points: Let k = 2n. A symmetric pair of unimodal fixed points

(a1, a2, a3, . . . ), (−a1, a2,−a3, . . . ),

gives rise to two k-modal fixed points (see (89)), different by the sign of ak and
accordingly called positive and negative, just as in the case of the unimodal
fixed points. Both these points are fixed points of symmetry R, hence their
stability may differ.

• odd-modal points Let k > 1 be odd. A symmetric pair of unimodal fixed
points

(a1, a2, a3, . . . ), (−a1, a2,−a3, . . . ),
gives rise to two k-modal fixed points These points are mapped one onto
another under the symmetry R, hence their stability is the same.

Observe that for each k ∈ N+ the space of k-modal functions given by the
condition as = 0 if s /∈ kN+ is invariant.

6.2. Bifurcations in the KS equation. Most of the steady state bifurcations in
the KS-equations are the bifurcations off the invariant subspace, the k-modal sub-
space (see [15]). Some of them are intersections of two regular branches (for example
an intersection of the trimodal branch with the bi-tri branch for ν ≈ 0.11039383),
but most of them are the symmetry breaking pitchfork bifurcations. Namely, we
have a branch of the steady states laying in a lower dimensional subspace, which
bifurcates into three steady states, one being the continuation of the branch in the
lower dimensional subspace and two new ones related to one another by the sym-
metry R. This is the case for the bifurcation which happens when two unimodal
solutions collide with the negative bimodal branch for ν ≈ 0.247833. The negative
bimodal branch belongs to the fixed point set for R and the unimodal solutions are
mapped one into another by R.

In an attempt to establish rigorously the existence of the pitchfork bifurcation
we use the approach presented in [4]. This means that we perform the Liapunov-
Schmidt reduction and then the bifurcation problem is reduced to solving G(ν, x) =
0, where G : R2 → R is a smooth function.

To be more specific: let A ∈ Rm×m be a nonsingular matrix commuting with R
defining new coordinate system, such that in the new coordinates the first direction
is close to the apparent ’bifurcation direction’ and is spanned by odd modes only.
To perform the Liapunov-Schmidt reduction we solve the equation

F̃i(ν, x1, x2, . . . ) = 0, i ≥ 2 (90)

as a function y(ν, x1) = (x2, x3, . . . )(ν, x1) = 0 for (ν, x) ∈ Λ × X1. y and its
derivatives are computed rigorously using the self-consistent a priori bounds method
outlined in Section 5. We define the bifurcation function, G, by
G(ν, x) = F̃1(ν, x, y(ν, x1)). Hence to solve equation F̃ (ν, x1, . . . ) = 0 in the set
Λ×X1 × V (V are the self-consistent a priori bounds obtained in the construction
of y(ν, x1) ) it is enough to solve the equation

G(ν, x) = 0. (91)

6.3. The saddle-node and pitchfork bifurcation. Our goal is to establish an
implicit function type theorem for a problem (91) with the explicit bounds for the
domain of the existence of the solution. We begin first with a theorem describing the
saddle-node bifurcation, which will be later applied in the analysis of the pitchfork
bifurcation.
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Theorem 6.2. Let Z = [ν1, ν2]×[−x1, x1]. Assume that g : Z → R is a C2-function
and g(ν,−x) = g(ν, x).

Assume that

∂2g

∂x2
(Z) > 0, (92)

∂g

∂ν
(Z) < 0, (93)

g(ν1, 0) > 0, (94)
g(ν2, x1) > 0, (95)
g(ν2, 0) < 0. (96)

Then there exist 0 < x0 ≤ x1 and a function ν : [−x0, x0] → [ν1, ν2] of class C2,
such that all solutions of the equation g(ν, x) = 0 in Z belong to the graph of the
function ν(x). Moreover, the following is true

ν(x) = ν(−x), x ∈ [−x0, x0]
ν′(x) > 0, x > 0
ν(x0) = ν2.

The very easy proof is left to the reader.
The model for Theorem 6.2 is given by the map g1(ν, x) = x2 − ν in the neigh-

borhood of point (0, 0). By changing signs of ν and g we obtain the model maps
g2(ν, x) = ν + x2, g3(ν, x) = ν − x2 and g4(ν, x) = −ν − x2 for which we can state
analogous theorems.

Now we turn to an application of the above theorem to the pitchfork bifurcation.
Let G : R2 → R be C3 function such that G(ν, x) = −G(ν,−x). Consider the

problem
G(ν, x) = 0. (97)

Since G(ν, 0) = 0, it is natural to define a function

g(ν, x) =
G(ν, x)
x

(98)

and then solve g(ν, x) = 0 using Theorem 6.2. To do this we need a representation
for g other than formula (98), because we cannot handle the singularity in the
denominator in computer computations.

We have the following

Lemma 6.3.

g(ν, x) =
∫ 1

0

∂G

∂x
(ν, sx)ds (99)

Proof.

G(ν, x) = G(ν, x)−G(ν, 0) =
∫ 1

0

d

ds
G(ν, sx)ds =

∫ 1

0

∂G

∂x
(ν, sx)ds · x

Now we can formulate a theorem about solutions of (97), which will be used in
our bifurcation computations
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Theorem 6.4. Let Z = [ν1, ν2] × [−x1, x1]. Assume that G : Z → R is a C3-
function and G(ν,−x) = −G(ν, x).

Assume that
∂3G

∂x3
(Z) > 0, (100)

∂2G

∂ν∂x
(Z) < 0, (101)

∂G

∂x
(ν1, 0) > 0, (102)

G(ν2, x1) > 0, (103)
∂G

∂x
(ν2, 0) < 0. (104)

Then there exist 0 < x0 ≤ x1 and a function ν : [−x0, x0] → [ν1, ν2] of class C2,
such the set of all solutions of the equation G(ν, x) = 0 in Z is the union of the
graph of the function ν(x) and the line x = 0. Moreover, the following is true

ν(x) = ν(−x), x ∈ [−x0, x0]
ν′(x) > 0, x > 0
ν(x0) = ν2.

Proof. We introduce a function g as in Lemma 6.3 and then we rewrite the assump-
tions of Theorem 6.2 in terms of G. For example to establish (92) and (93) we
observe that

∂2g

∂x2
=
∫ 1

0

s2 ∂
3G

∂x3
(ν, sx)ds

∂g

∂ν
=
∫ 1

0

∂2G

∂x∂ν
(ν, sx)ds.

The assumptions of Theorem 6.4 are well suited for the functions, which behave
like G(ν, x) = ax(x2 − bν), where a, b are positive numbers. To handle the case of
other sign combinations we proceed as follows.

Let ε1 = ±1, εν = ±1. Let Z = [ν1, ν2]× [−x1, x1] and G : Z → R. We set

Z̃ =

{
Z for εν = 1,
[−ν2,−ν1]× [−x1, x1] for εν = −1.

(105)

We define a function, G̃

G̃ : Z̃ → R, G̃(ν, x) = ε1G(ενν, x). (106)

We will describe now how to define ε1 and εν , so that the function G̃ satisfies the
assumptions of Theorem 6.4.

Lemma 6.5. Assume that 0 /∈ ∂3G
∂x3 (Z) and 0 /∈ ∂2G

∂ν∂x (Z).
Let ε1 and ε2 be defined as follows

• if ∂3G
∂x3 (Z) > 0, then ε1 = +1

• if ∂3G
∂x3 (Z) < 0, then ε1 = −1

• if ε1 ∂2G
∂ν∂x (Z) < 0, then εν = +1

• if ε1 ∂2G
∂ν∂x (Z) > 0, then εν = −1.
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If εν = +1, then assume that the following conditions are satisfied

ε1
∂G

∂x
(ν1, 0) > 0,

ε1G(ν2, x1) > 0,

ε1
∂G

∂x
(ν2, 0) < 0.

If εν = −1, then assume that the following conditions are satisfied

ε1
∂G

∂x
(ν2, 0) > 0,

ε1G(ν1, x1) > 0,

ε1
∂G

∂x
(ν1, 0) < 0.

Then there exist 0 < x0 ≤ x1 and a function ν : [−x0, x0] → [ν1, ν2] of class C2,
such the set of all solutions of the equation G(ν, x) = 0 in Z is a union of the graph
of the function ν(x) and the line x = 0. Moreover, the following is true

ν(x) = ν(−x), x ∈ [−x0, x0]
ενν
′(x) > 0, x > 0

ν(x0) = ν2, if εν = +1
ν(x0) = ν1, if εν = −1

Proof. For the proof observe that the function G̃ satisfies the assumptions of The-
orem 6.4.

6.4. Intersection of regular branches. In this section we state the bifurcation
theorem, which handles the case of the intersection of two regular branches, one
of which is contained in a lower dimensional invariant subspace (for example an
intersection of the trimodal branch with the bi-tri branch for ν ≈ 0.11039383).

Just as in case of the pitchfork bifurcation we analyze the equation G(ν, x) = 0,
where G(ν, 0) = 0 (which corresponds to a solution branch contained in the lower
dimensional subspace).

We introduce the function g by (98) and we compute it using Lemma 6.3. The
task is now reduced to checking if the solution curve for g(ν, 0) = 0 intersects the
line x = 0 at a nonzero angle and does not make any fold.

Theorem 6.6. Let Z = [ν1, ν2] × [−x1, x1]. Assume that G : Z → R is a C3-
function and G(ν, 0) = 0.

Assume that the following conditions are satisfied

0 /∈ ∂G2

∂x∂ν
(Z) (107)

0 /∈ ∂2G

∂x2
(Z), (108)

∂G

∂x
(ν1, 0) · ∂G

∂x
(ν2, 0) < 0 (109)

Then the solution of equation G(ν, x) = 0 is a sum of line x = 0 and a curve
(ν(x), x) for x ∈ [a, b], a < 0 < b. Moreover ν′(x) 6= 0 for x ∈ [a, b].

Proof. Let g(ν, x) = G(ν,x)
x . For the proof it is enough to show that the solution of

equation g(ν, x) = 0 can be parameterized by x, as a curve (ν(x), x) and ν′(x) 6= 0.
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Since by Lemma 6.3

∂g

∂ν
(ν, x) =

∫ 1

0

∂2G

∂x∂ν
(ν, sx)ds, (110)

hence from (107) it follows that

∂g

∂ν
(ν, x) 6= 0, for (ν, x) ∈ Z. (111)

Since Z is connected we see that ∂g
∂ν (ν, x) has constant sign on Z, hence for each

x ∈ [−x1, x1] the equation g(ν, x) = 0 has at most one solution.
Since by Lemma 6.3

g(ν, 0) =
∂G

∂x
(ν, x), (112)

hence it follows from (109) that there exists ν0 ∈ (ν1, ν2) such that g(ν0, 0) =
0. From the implicit function theorem follows the existence of the function ν(x)
satisfying the assertion of the theorem. It remains to show that ν′(x) 6= 0.

We have ν′(x) = − ∂g
∂x/

∂g
∂ν . From Lemma 6.3 we easily obtain

∂g

∂x
=
∫ 1

0

s
∂2G

∂2x
(ν, sx)ds. (113)

From the above equation and (108) we obtain that ν′(x) 6= 0 for x ∈ (a, b).

7. Details for the KS equation - the local uniqueness issue. The goal of this
section is to derive the formulas necessary to verify the assumptions of Theorem 3.7
for the KS equation.

We can write the KS-equation (see Section 1.1) in the Fourier domain as follows

ȧk = Fk(a) = λkak +Nk(a) (114)
λk = k2(1− νk2) (115)

Nk(a) = −k
k−1∑
n=1

anak−n + 2k
∞∑
n=1

anan+k. (116)

The formal first derivatives of F are given by

∂Ni
∂aj

= 2iai+j , for i = j (117)

∂Ni
∂aj

= −2iai−j + 2iai+j , for j < i (118)

∂Ni
∂aj

= 2iaj−i + 2iai+j , for j > i (119)

∂Fi
∂aj

= i2(1− νi2)δij + 2i
∑
k≥1

(−δk,i−j + δk,i+j + δk,j−i)ak, (120)

∂Fi
∂ν

= −i4ai. (121)
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For the second derivatives we have the following formulas

∂2Fi
∂2ν

= 0, (122)

∂2Fi
∂xk∂ν

= −i4δi,k, (123)

∂2Fi
∂aj∂ak

=
∂2Ni
∂aj∂ak

= 2i(−δk,i−j + δk,i+j + δk,j−i). (124)

All higher order derivatives vanish.
We start with the verification of F1 and F2.

Theorem 7.1. Let V be the self-consistent a priori bounds for the KS-equation,
such that |xk| ≤ C

ks for s > 5.
Then conditions F1 and F2 are satisfied on V .

Proof. Condition F1 is manifestly satisfied.
From the formulas for ∂Fi

∂xj
given above and the assumed polynomial decay rate

of xi on V we have

dij ≤ 2iC
(

1
(j − i)s

+
1

(j + i)s

)
, for j > i (125)

Hence to prove F2 it is enough to show that the series
∑∞
j=i+1 dij

C
js converges

for s ≥ 4. Observe that

dij
C

js
= 2iC2

(
1

(j − i)sjs
+

1
(j + i)sjs

)
∼ 2iC2 2

j2s
. (126)

Hence the series in F2 converges for s > 1
2 .

The following lemma does not require any proof.

Lemma 7.2. Let A : H → H be a linear coordinate change of the form

A : Xm ⊕ Ym → Xm ⊕ Ym
A(x⊕ y) = Ax⊕ y.

Let F̃ = A ◦ F ◦A−1 (F̃ is F expressed in new coordinates).
∂F̃i
∂xj

=
∑m
k,l=1Aik

∂Fk
∂xl

A−1
lj for i ≤ m and j ≤ m

∂F̃i
∂xj

=
∑
k≤mAik

∂Fk
∂xj

for i ≤ m and j > m

∂F̃i
∂xj

=
∑
l≤m

∂Fi
∂xl

A−1
lj for i > m and j ≤ m

∂F̃i
∂xj

= ∂Fi
∂xj

for i > m and j > m

∂F̃k
∂ν =

∑m
i=1Aki

∂Fi
∂ν , if k ≤ m

∂F̃k
∂ν = ∂Fk

∂ν , if k > m.

Consider now the KS equation. We assume that V is the self-consistent a priori
bounds for a fixed point. Let the numbers m < M be as in conditions C1,C2,C3.
We assume that a±k = ± C

ks for k > M (as in [23]).
Let A ∈ Rm×m be a coordinate change around an approximate fixed point in

Xm for m-dimensional Galerkin projection of (114). This matrix induces a coordi-
nate change in H. It is optimal to choose A so that the m-dimensional Galerkin
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projection of F is very close to the diagonal matrix (or to the block diagonal one
when the complex eigenvalues are present).

We will use the new coordinates in H. We also change the norm so that the new
coordinates are orthogonal. We define the splitting of PmH into blocks which are
either 2-dimensional (the case of the complex eigenvalue) or one-dimensional (the
real eigenvalue). For the instability consideration we may glue several ’unstable
blocks’ into one - see Section 8. For the KS equation there was no need to con-
sider more complicated situations such as the nontrivial Jordan cells. For (i) > m
all blocks are 1-dimensional (these coordinates are not affected by our coordinate
change).

We would like to derive the formula for

∆(i) := inf

(
∂F̃(i)

∂x(i)
(V )

)
−
∑

(j)6=(i)

max
x∈V

∣∣∣∣∣∂F̃(i)

∂x(j)
(x)

∣∣∣∣∣
We introduce S(l) and SND((i)) by

S(l) =
∑
k≥l

max
a∈V
|ak|, (127)

SND((i)) =
∑

(j)6=(i)

max
x∈V

∣∣∣∣∣∂F̃(i)

∂x(j)
(x)

∣∣∣∣∣ . (128)

Since many times in the estimates we need to estimate
∑∞
k=l

1
ks we elevate one

such estimate to the lemma status.

Lemma 7.3.
∞∑
k=l

1
ks

<

∫ ∞
l−1

dx

xs
=

1
(s− 1)(l − 1)s−1

(129)

We will estimate S(l) from the above using the following

Lemma 7.4. Assume that |ak(V )| ≤ C
ks for k > M , s > 1, then

S(l) <
M∑
k=l

|ak(V )|+ C

(s− 1)Ms−1
, for l ≤M

S(l) <
C

(s− 1)(l − 1)s−1
, for l > M.

Proof. It follows immediately from Lemma 7.3.

We set

S(l) =
M∑
k=l

|ak(V )|+ C

(s− 1)Ms−1
, for l ≤M (130)

S(l) =
C

(s− 1)(l − 1)s−1
, for l > M. (131)

Lemma 7.5. Let Q ∈ Lin(Rn1 ,Rn2), then

|Q| ≤
n1∑
i=1

√√√√ n2∑
k=1

Q2
ik
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Lemma 7.6. If (i) = (i1, i2, . . . , ir), (i) ≤ m . Then

SND((i)) ≤ SND((i)) :=
∑

j≤M,j /∈(i)

√√√√√∑
il∈(i)

(
∂F̃il
∂xj

)2

+
∑
il∈(i)

∑
k≤m

2|Ail,k|k
(
S(M + 1− k) + S(M + 1 + k)

)
Proof. From Lemma 7.5 it follows that we can ignore the structure for all blocks
different from (i) and use the following estimate∣∣∣∣∣∂F̃(i)

∂x(j)
(x)

∣∣∣∣∣ ≤ ∑
js∈(j)

√√√√√∑
il∈(i)

(
∂F̃il
∂xjs

(x)

)2

. (132)

Therefore we have

∑
(j)6=(i)

∣∣∣∣∣∂F̃(i)

∂x(j)
(x)

∣∣∣∣∣ ≤ ∑
j /∈(i)

√√√√√∑
il∈(i)

(
∂F̃il
∂xj

)2

. (133)

To finish the proof it is enough to show that

∑
j>M

√√√√√∑
il∈(i)

(
∂F̃il
∂xj

)2

≤
∑
il∈(i)

∑
k≤m

2|Ail,k|k(S(M + 1− k) + S(M + 1 + k)).

We have

∑
j>M

√√√√√∑
il∈(i)

(
∂F̃il
∂xj

)2

≤
∑
il∈(i)

∑
j>M

∣∣∣∣∣∂F̃il∂xj

∣∣∣∣∣ (134)

We have for il ∈ (i) (observe that il ≤ m)

∑
j>M

∣∣∣∣∣∂F̃il∂xj

∣∣∣∣∣ ≤ ∑
j>M

∑
k≤m

|Ail,k|
∣∣∣∣∂Fk∂xj

∣∣∣∣ =

∑
k≤m

|Ail,k|
∑
j>M

∣∣∣∣∂Fk∂xj

∣∣∣∣ ≤ ∑
k≤m

2k|Ail,k|
∑
j>M

(|aj−k|+ |aj+k|) ≤∑
k≤m

2k|Ail,k| (S(M + 1− k) + S(M + 1 + k)) .

This finishes the proof.

7.1. Formulas for 1-dimensional blocks. Observe that if dim(i) = 1, then
∂F̃(i)

∂x(i)
∈ R, hence

inf

(
∂F̃(i)

∂x(i)

)
=

∣∣∣∣∣∂F̃(i)

∂x(i)

∣∣∣∣∣ (135)

From the above observation and Lemma 7.6 we obtain the following
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Lemma 7.7. Assume (i) ≤ m and dim (i) = 1.

∆i ≥ ∆i := inf
x∈V

∣∣∣∣∣∂F̃i∂xi
(x)

∣∣∣∣∣− SND(i),

where SND(i) is defined in Lemma 7.6.

Observe that from our assumptions about the decomposition of H it follows that
all blocks (i) such that (i) > m are one-dimensional.

Lemma 7.8. For m < (i) ≤M we have

SND(i) ≤ SND(i) :=
∑
j≤M

max
x∈V

∣∣∣∣∣∂Ñi∂xj
(x)

∣∣∣∣∣
+2i

(
S(M + 1− i) + S(i+M + 1)

)
∆i ≥ ∆i := |i2(1− νi2)| − SND(i)

Proof. Just as in the proof of Lemma 7.6 we can ignore the block structure here. It
is easy to see that

min
x∈V

∣∣∣∣∣∂F̃i∂xi
(x)

∣∣∣∣∣−∑
j 6=i

max
x∈V

∣∣∣∣∣∂F̃i∂xj
(x)

∣∣∣∣∣ ≥ |i2(1− νi2)| −
∞∑
j=1

max
x∈V

∣∣∣∣∣∂Ñi∂xj
(x)

∣∣∣∣∣ (136)

Therefore to finish the proof it is enough to show that

∞∑
j=M+1

max
x∈V

∣∣∣∣∣∂Ñi∂xj
(x)

∣∣∣∣∣ < 2i(S(M + 1− i) + S(i+M + 1)) (137)

We proceed as follows

∞∑
j=M+1

max
x∈V

∣∣∣∣∣∂Ñi∂xj
(x)

∣∣∣∣∣ =
∞∑

j=M+1

max
x∈V

∣∣∣∣∂Ni∂xj
(x)
∣∣∣∣ ≤

∞∑
j=M+1

2i(|aj−i(V )|+ |ai+j(V )|) ≤ 2i(S(M + 1− i) + S(M + 1 + i)

Lemma 7.9. For (i) > m we have

SND(i) ≤ SND(i) := 2im
(
S(i−m) + S(i+ 1)

)
max

k,l=1,...,m
|A−1
kl |

+2i
(
S(i+m+ 1) + 2S(1)

)
∆i ≥ ∆i := |i2(1− νi2)| − SND(i)

Proof. Just as in the proof of Lemma 7.6 we can ignore the block structure here. It
is easy to see that

min
x∈V

∣∣∣∣∣∂F̃i∂xi
(x)

∣∣∣∣∣−∑
j 6=i

max
x∈V

∣∣∣∣∣∂F̃i∂xj
(x)

∣∣∣∣∣ ≥ |i2(1− νi2)| −
∞∑
j=1

max
x∈V

∣∣∣∣∣∂Ñi∂xj
(x)

∣∣∣∣∣ (138)
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Therefore to finish the proof it is enough to show that
m∑
j=1

max
x∈V

∣∣∣∣∣∂Ñi∂xj
(x)

∣∣∣∣∣ ≤ 2im(S(i−m) + S(i+ 1)) max
k,l=1,...,m

|A−1
kl |, (139)

∞∑
j=m+1

max
x∈V

∣∣∣∣∣∂Ñi∂xj
(x)

∣∣∣∣∣ ≤ 2i(S(i+m+ 1) + 2S(1)). (140)

To prove (139) observe that
m∑
j=1

max
x∈V

∣∣∣∣∣∂Ñi∂xj
(x)

∣∣∣∣∣ =
m∑
j=1

max
x∈V

∣∣∣∣∣
m∑
l=1

∂Ni
∂xl

(x)A−1
lj

∣∣∣∣∣ ≤
m∑
j=1

m∑
l=1

2i(|ai−l(V )|+ |ai+l(V )|)|A−1
lj | ≤

2i
m∑
j=1

(S(i−m) + S(i+ 1)) max
k,l=1,...,m

|A−1
kl | =

2im(S(i−m) + S(i+ 1)) max
k,l=1,...,m

|A−1
kl |.

To prove (140) we proceed as follows
∞∑

j=m+1

max
x∈V

∣∣∣∣∣∂Ñi∂xj
(x)

∣∣∣∣∣ =
∞∑

j=m+1

max
x∈V

∣∣∣∣∂Ni∂xj
(x)
∣∣∣∣ ≤∑

m<j<i

(2i(|ai−j(V )|+ |ai+j(V )|))

+2i|a2i(V )|+
∑
j>i

2i(|aj−i(V )|+ |ai+j(V )|) ≤

2i

∑
j>m

|ai+j(V )|+
∑

m<j<i

|ai−j(V )|+
∑
j>i

|aj−i(V )|

 <

2i (S(i+m+ 1) + 2S(1))

The following lemma shows that how to handle the case of large i.

Lemma 7.10. If for some n > m, ∆n > 0 and 1− νn2 < 0, then

∆i > ∆j > 0 for i > j, j ≥ n (141)

Proof. From Lemma 7.9 it follows that

∆i = i
(
(νi3 − i)− 2m(S(i−m) + S(i+ 1))a− 2(S(i+m+ 1) + 2S(1))

)
where a = maxk,l=1,...,m |A−1

kl |.
Hence

∆i = i
(
(νi3 − i)− f(i)

)
, (142)

where f(i) is a positive decreasing function of i. It is easy to see that the function
i 7→ (νi3 − i) is increasing and positive for i ≥ n.



STEADY STATE BIFURCATIONS FOR THE KURAMOTO-SIVASHINSKY EQUATION 33

In the computation of the derivatives of the steady states with respect to the
parameters (see Theorem 5.1) we will be interested in the ratio

r((i)) =
SND((i))

inf ∂F̃(i)

∂x(i)

. (143)

We have the following

Lemma 7.11. For i > m the function r(i) is decreasing.

Proof. From Lemma 7.9 it follows that for

f(i) = 2m(S(i−m) + S(i+ 1))a+ 2(S(i+m+ 1) + 2S(1)
SND(i) = if(i)

where a = maxk,l=1,...,m |A−1
kl | and f is a decreasing function of i.

Since r(t) = f(i)

i3(ν− 1
i2

)
, the assertion follows immediately.

7.2. Complex block. We need to introduce a new notation. Let Q be a 2 × 2-
matrix. We define the a new matrix K(Q)

K(Q) =
[

(Q11 +Q22)/2, (Q12 −Q21)/2
(Q21 −Q12)/2, (Q11 +Q22)/2

]
(144)

Observe that K(Q) has the following form

K(Q) =
[

α, β
−β, α

]
. (145)

Obviously K(K(Q)) = K(Q), the eigenvalues of K(Q) are λ1,2 = α± iβ and

|K(Q)| = inf(K(Q))) =
√
α2 + β2. (146)

The difference Q−K(Q), where Q is 2-dimensional block obtained from lineariza-
tion, measures how good this linearization really is. In our applications to fixed
points for the KS equations it is usually very small, which is achieved by taking a
small set V and m large enough. To measure this difference we will use the function
δ(Q) given by

δ(Q) = max
i,j=1,2

|K(Q)ij −Qij | (147)

Lemma 7.12. Let Q ∈ Rn×n and |Qij | ≤ ε, then |Q| ≤ nε.

Proof. Let x = (x1, . . . , xn), |x| = 1. We have

|Qx|2 = (Q11x1 + · · ·+Q1nxn)2 + (Q21x1 + · · ·+Q2nxn)2 + · · · ≤
nε2(|x1|+ · · ·+ |xn|)2 ≤ n2ε2|x|2.

Lemma 7.13. Let Q ∈ R2×2, then

inf(Q) ≥ inf(K(Q))− 2δ(Q)

Proof. Since

inf(Q) = inf(K(Q) + (Q−K(Q))) ≥ inf(K(Q))− |Q−K(Q)|, (148)

then the assertion follows from Lemma 7.12.
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Lemma 7.14. If (i) = (i1, i2), (i) ≤ m . Then

∆(i) ≥ ∆(i) := inf K

[
∂F̃(i)

∂x(i)
(V )

]
− 2 max

x∈V
δ

(
∂F̃(i)

∂x(i)
(x)

)
− SND((i))

Proof. From Lemma 7.13 it follows immediately that

inf

(
∂F̃(i)

∂x(i)
(V )

)
≥ inf

(
K

(
∂F̃(i)

∂x(i)
(V )

))
− 2 max

x∈V
δ

(
∂F̃(i)

∂x(i)
(x)

)
. (149)

8. Details for the KS-equation - the instability. In this section we provide
the formulas for the verification of the assumptions of Theorem 4.2.

We assume that we have the coordinates introduced in Section 7 and the same
block decomposition. For the purpose of the proof of Theorem 4.2 we modify slightly
this block decomposition as follows,

• let (i1), . . . , (is) be all the blocks such that all diagonal elements of ∂F̃(i)

∂x(i)
are

positive. Observe there are only finitely many such blocks (at most m).
• we create a new block (i0) = (i1) ∪ · · · ∪ (is). This means that in the block

decomposition of H we have H(i0) = H(i1) ⊕ · · · ⊕H(is).
Observe that the sum of non-diagonal elements appearing in Theorem 4.2 was al-
ready computed in Section 7, but the block decomposition is slightly different now.
It reduces to the fact that there on H(i0) the sum-norm was used and now we have
to use the Euclidean norm.

The next lemma addresses the computation of µinf and µsup

Lemma 8.1. Let A = S
([

∂F̃(i)

∂x(i)
)(V )

])
. Then

µsup(A) = max
j=1,...,dim(i)

maxAjj +
∑
k 6=j

max |Ajk|,

µinf (A) = min
j=1,...,dim(i)

minAjj −
∑
k 6=j

max |Ajk|

Proof. We provide the proof for µsup only. The other case is analogous.
First observe that for any symmetric matrix M

µsup(M) = largest eigenvalue of M. (150)

Hence
µsup(A) = largest eigenvalue of M , M ∈ A, M -symmetric. (151)

The assertion now follows from the Gershgorin Theorem (see [20, Property 5.2]).

The formulas for the computation of
∑

(i)6=(j)

∣∣∣∂F(j)

∂x(i)
(Z)
∣∣∣ are given in Lemmas 7.7,

7.8, 7.9 and 7.6. Hence it remains to discuss how to verify in the finite computation
that a(i0)(i) > 0 holds for all (i).

It turns out that the same analysis as in Lemma 7.10 gives rise to the following

Lemma 8.2. If for some n > m, a(n)(i0) > 0 and 1− νn2 < 0, then

a(i)(i0) > a(j)(i0) > 0 for i > j, j ≥ n. (152)
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The file bifdata.txt [29] contains data from the proof of the uniqueness, the in-
stability (plus the regularity computation) for the positive bimodal fixed point for
ν = 0.127 + 10−5 · [−1, 1]. For this steady state the unstable direction is two dimen-
sional and corresponds to a pair of complex eigenvalues.

9. Algebra of polynomial bounds. In the computation various derivatives of
the implicit function defined as the z-terms in equation (35) we have the following
expressions or the sums thereof (and due to the fact, that F is a second degree
polynomial we have only the terms of this type)∑

j

∂F̃i
∂xj

yj ,
∑
j

∂2F̃i
∂ν∂xj

yj ,
∑
j

∂2F̃i
∂x1∂xj

yj ,
∑
jk

∂2F̃i
∂xj∂xk

yjwk, (153)

where |yi| and |wi| satisfy some decay condition (define the self-consistent a priori
bounds) and F̃ and its derivatives are also evaluated on the self-consistent a priori
bounds. It turns out that the computation of these terms might be realized by an
algebra, which we are going to develop in this section.

Throughout this section we fix a positive integer M .

Definition 9.1. A compact set Y ⊂ H is called the polynomial bounds, if there
exist E > 0 and β ≥ 0, such that for all y ∈ Y holds

|yi| ≤
E

iβ
, for i > M .

We will often use the triple (Y,E, β) to denote the polynomial bounds.

We introduce some arithmetic operations on bounds.

Definition 9.2. Assume that (X,E, β) and (Y,G, γ) are polynomial bounds. We
define
• Z = X + Y by Zi = Xi + Yi for i ≤ M and |zi| ≤ Cz

it for i > M , where
t = min(β, γ) and CZ = E

(M+1)β−t
+ G

(M+1)γ−t

• for c ∈ R we define Z = cY by Zi = cYi.
• Z = (i)Y by Zi = iYi for i ∈ N.

With the above definitions we can define the product of A · (Y,E, β), where
A ∈ Rm×m, m ≤M . It also makes sense to apply projections Pn and Qn = I −Pn,
where n ≤M , to the polynomial bounds.

It turns out that using the following functions we can compute all terms in (153)

QFi(y, w) =
i−1∑
k=1

ykwi−k, QIi(y, w) =
∞∑
k=1

ykwk+i.

The goal of the next few lemmas is to define the operations QF and QI on the
polynomial bounds.

9.1. Some estimates.

Lemma 9.3. ∑
j>M+k

1
(j − k)sjγ

<
M−(s−1/2)

√
2s− 1

· (M + k)−(γ−1/2)

√
2γ − 1

,

∑
j>M

1
(j + k)sjγ

<
(M + k)−(s−1/2)

√
2s− 1

M−(γ−1/2))

√
2γ − 1
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Proof. ∑
j>M+k

1
(j − k)sjγ

<

∫ ∞
M+k

dx

(x− k)sxγ
≤

√∫ ∞
M+k

dx

(x− k)2s
·

√∫ ∞
M+k

dx

x2γ
=
M−(s−1/2)

√
2s− 1

· (M + k)−(γ−1/2)

√
2γ − 1

.

Similarly ∑
j>M

1
(j + k)sjγ

≤
∫ ∞
M

dx

(x+ k)sjγ
≤

(∫ ∞
M

dx

(x+ k)2s

)1/2

·
(∫ ∞

M

dx

x2γ

)1/2

=
(M + k)−(s−1/2)

√
2s− 1

M−(γ−1/2))

√
2γ − 1

Lemma 9.4. Assume s ≥ γ and i > 2M + 1. Then

i−M−1∑
k=M+1

1
(i− k)γks

<
(i− 2M − 1)2γ

iγMs

Proof. Observe that

i−M−1∑
k=M+1

1
(i− k)γks

< (i− 2M − 1) max
k=M+1,...,i−M−1

1
(i− k)γks

.

Hence it is enough to estimate from below
min {(i− k)γks | k = M + 1, . . . , i−M − 1}. Since the function x 7→ (i − x)γxs

on the interval [0, i] increases from 0 at x = 0 to some maximum value and then
decreases to 0 at x = i, hence the minimum we look for is achieved for k = M + 1
or k = i−M − 1.

For k = M + 1 we have

(i− (M + 1))γ(M + 1)s = iγ
(

1− M + 1
i

)γ
(M + 1)s >

iγ
(

1− M + 1
2M + 2

)γ
Ms = iγ

(
1
2

)γ
Ms.

For k = i−M − 1 we obtain

(i− (i−M − 1))γ(i−M − 1)s >
(M + 1)γ(i−M − 1)γ(i−M − 1)s−γ >

iγ
(

1− M + 1
i

)γ
MγMs−γ ≥ iγ

(
1− M + 1

2M + 2

)γ
Ms = iγ

(
1
2

)γ
Ms.

Hence

min {(i− k)γks | k = M + 1, . . . , i−M} > iγ2−γMs. (154)
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9.2. Operation QF . First observe that the computation of QFi for i ≤ 2M is
finite and can be done directly using interval arithmetic.

Lemma 9.5. Let (Y,E, β) and (W,G, γ) be polynomial bounds. If y ∈ Y and
w ∈W , then for i > M

|QFi(y, w)| ≤ CQF (Y,W )
it−1

, (155)

where t = min(β, γ) and CQF (Y,W ) = max(C1, C2) where

C1 = sup{it−1|QFi(y, w)| | i = M + 1, . . . , 2M, y ∈ Y, w ∈W}

C2 =
G

(2M + 1)γ−t+1

M∑
k=1

supy∈Y |yk|(
1− k

2M+1

)γ +

E

(2M + 1)β−t+1

M∑
j=1

supw∈W |wj |(
1− j

2M+1

)β +
EG2t

Mmax(β,γ)

Proof. For the proof it is enough to estimate QFi for i > 2M .
We have

|QFi(y, w)| ≤
M∑
k=1

|yk|
G

(i− k)γ
+

i−1∑
k=i−M

E

kβ
|wi−k|+

i−M−1∑
k=M+1

EG

kβ(i− k)γ
.

For each term we have following estimates

M∑
k=1

|yk|
G

(i− k)γ
=
G

iγ

M∑
k=1

|yk|(
1− k

i

)γ ≤ G

iγ

M∑
k=1

|yk|(
1− k

2M+1

)γ .
Analogously for the second term (exchange y ↔ w and j = i− k)

i−1∑
k=i−M

E

kβ
|wi−k| ≤

E

iβ

M∑
j=1

|wj |(
1− j

2M+1

)β .
For the third term from Lemma 9.4 we obtain

i−M−1∑
k=M+1

EG

kβ(i− k)γ
<

iEG2t

itMmax(β,γ)
.

Hence we have shown that for i > 2M

|QFi(y, w)| ≤ i−(t−1)

 G

(2M + 1)γ−t+1

M∑
k=1

|yk|(
1− k

2M+1

)γ +

E

(2M + 1)β−t+1

M∑
j=1

|wj |(
1− j

2M+1

)β +
EG2t

Mmax(β,γ)

 .
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9.3. Operation QI.

Lemma 9.6. Let (Y,E, β) and (W,G, γ) be polynomial bounds. If y ∈ Y and
w ∈W , then for i ≤ 2M

QIi(y, w) ∈
M∑
k=1

ykwi+k + [−1, 1]ri,

where

ri =
GE

(M + i)γ−1/2Mβ−1/2
√

(2β − 1)(2γ − 1)

Proof. Use Lemma 9.3 to estimate
∑∞
k=M+1

1
kβ(i+k)γ

.

Lemma 9.7. Let (Y,E, β) and (W,G, γ) be polynomial bounds. If y ∈ Y and
w ∈W , then for i > M

|QIi(y, w)| ≤ CQI(Y,W )
iγ−1

,

where CQI = max(C1, C2)

C1 = sup{iγ−1|QIi(y, w)| | i = M + 1, . . . , 2M, y ∈ Y, w ∈W}

C2 =
G

2M + 1

M∑
k=1

sup
y∈Y
|yk|+

GE

(3M + 1)1/2Mβ−1/2
√

(2β − 1)(2γ − 1)

Proof. For the proof it is enough to compute QIi(y, w) for i > 2M .
We have

|QIi(y, w)| ≤
M∑
k=1

|yk|
G

(i+ k)γ
+
∑
k>M

EG

kβ(i+ k)γ
.

For the first term we have the following estimate

M∑
k=1

|yk|
G

(i+ k)γ
=
G

iγ

M∑
k=1

|yk|(
1 + k

i

)γ < G

iγ

M∑
k=1

|yk|. (156)

For the second term using Lemma 9.3 we obtain∑
k>M

EG

kβ(i+ k)γ
<

GE

(M + i)γ−1/2Mβ−1/2
√

(2β − 1)(2γ − 1)
≤

1
iγ−1

GE

(3M + 1)1/2Mβ−1/2
√

(2β − 1)(2γ − 1)
. (157)

By combining the above equations together we obtain for i > 2M

|QIi(y, w)| ≤ 1
iγ−1

(
G

2M + 1

M∑
k=1

|yk|+

GE

(3M + 1)1/2Mβ−1/2
√

(2β − 1)(2γ − 1)

)
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9.4. Various sums. Let A be a coordinate change as in Lemma 7.2. We define
functions F̃ and Ñ by

F̃ = A ◦ F ◦A−1, Ñ = A ◦N ◦A−1.

The following lemma does not require any proof.

Lemma 9.8. Same assumptions as in Lemma 7.2.

∂2F̃i
∂ν∂xj

=
∑

k≤m,s≤m

Aik
∂2Fk
∂ν∂xs

A−1
sj , i ≤ m, j ≤ m

∂2F̃i
∂ν∂xj

=
∑
k≤m

Aik
∂2Fk
∂ν∂xj

, i ≤ m, j > m

∂2F̃i
∂ν∂xj

=
∑
s≤m

∂2Fi
∂ν∂xs

A−1
sj , i > m, j ≤ m

∂2F̃i
∂ν∂xj

=
∂2Fi
∂ν∂xj

, i > m, j > m

∂2F̃i
∂xj∂xk

=
∑

s≤m,r≤m,l≤m

Ais
∂2Fs
∂xr∂xl

A−1
rk A

−1
lj , i ≤ m, j ≤ m, k ≤ m

∂2F̃i
∂xj∂xk

=
∑

s≤m,r≤m

Ais
∂2Fs
∂xr∂xj

A−1
rk , i ≤ m, j > m, k ≤ m,

∂2F̃i
∂xj∂xk

=
∑
s≤m

Ais
∂2Fs
∂xk∂xj

, i ≤ m, j > m, k > m,

∂2F̃i
∂xj∂xk

=
∑

r≤m,l≤m

∂2Fi
∂xr∂xl

A−1
rk A

−1
lj , i > m, j ≤ m, k ≤ m

∂2F̃i
∂xj∂xk

=
∑
r≤m

∂2Fi
∂xr∂xj

A−1
rk , i > m, j > m, k ≤ m

∂2F̃i
∂xj∂xk

=
∂2Fi
∂xj∂xk

, i > m, j > m, k > m

Let Y and W be polynomial bounds. We now turn to the computation of∑
kj

∂2F̃i
∂xj∂xk

yjwk, where y ∈ Y and w ∈ W . We would like to stress here that
∂2F̃i
∂xj∂xk

are constants, hence there is no need to specify their arguments. Observe
that

∑
kj

∂2F̃i
∂xj∂xk

yjwk =
∑
s≤m

Ais

∑
kj

∂2Fs
∂xj∂xk

yjwk

 , for i ≤ m

∑
kj

∂2F̃i
∂xj∂xk

yjwk =
∑
kj

∂2Fi
∂xj∂xk

yjwk, for i > m,

where yi =
∑m
j=1A

−1
ij yj for i ≤ m and yi = yi otherwise. w is defined analogously.
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Hence it is enough to derive the formulas for
∑
kj

∂2Fi
∂xj∂xk

yjwk. We have

∑
j,k

∂2Fi
∂xj∂xk

yjwk = −2i
i−1∑
j=1

yjwi−j + 2i
∞∑
j=1

yjwj+i + 2i
∞∑
k=1

yk+iwk =

−2iQFi(y, w) + 2iQIi(y, w) + 2iQIi(w, y).

Hence ∑
kj

∂2F̃i
∂xj∂xk

yjwk ∈
(
A ·
(
−2(i)QF (A−1Y,A−1W )+ (158)

2(i)QI(A−1Y,A−1W ) + 2(i)QI(A−1W,A−1Y )
))
i

Now we derive a formula for
∑∞
j=1

∂Ñi
∂xj

(ν, y)wj .
We have

∞∑
j=1

∂Ñi
∂xj

(ν, y)wj =
m∑
k=1

Aik

 ∞∑
j=1

∂Nk
∂xj

(ν, y)wj

 , for i ≤ m

∞∑
j=1

∂Ñi
∂xj

(ν, y)wj =
∞∑
j=1

∂Ni
∂xj

(ν, y)wj , otherwise.

Hence it is enough to have an expression for
∑∞
i=1

∂Nk
∂xi

wi.
Using the formulas for the derivatives for the vector field of the KS equation we

obtain
∞∑
j=1

∂Ni
∂xj

(ν, y)wj = −2i
i−1∑
j=1

yjwi−j + 2i
∞∑
j=1

yjwi+j + 2i
∞∑
j=1

yi+jwj =

−2iQFi(y, w) + 2iQIi(y, w) + 2iQIi(w, y).

Summarizing we have shown that
∞∑
j=1

∂Ñi
∂xj

(ν, y)wj ∈
[
A ·
(
−2(i)QF (Y,W )+ (159)

2(i)QI(Y,W ) + 2(i)QI(W,Y )
)]
i
.

From the above formula it follows immediately that
∞∑
j=1

∂F̃i
∂xj

(ν, y)wj ∈
[
A ·
(
(i2(1− νi2))W − 2(i)QF (Y,W )+ (160)

2(i)QI(Y,W ) + 2(i)QI(W,Y )
)]
i
.

10. Details for the KS-equation - the regularity issue. We assume that we
have a coordinate change A as Lemma 7.2 and, as in Section 7, we assume that we
have a block decomposition of H and V representing the topologically self-consistent
bounds for

F (ν, x) = 0 (161)
for ν ∈ Λ = [ν0 − δ, ν0 + δ]. We assume that we have the uniqueness property of
solutions (161) for ν ∈ Λ. This defines the function x(ν). In Section 5 it was shown
that x(ν) is C∞.

As in the proof of the uniqueness in Section 7 we will perform all computations
for the function F̃ = A ◦ F ◦A−1. Similarly we define Ñ as A ◦N ◦A−1.
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We have to solve

z +
∂F̃

∂x
· y = 0, (162)

where z is obtained from the implicit differentiation of F (ν, x) = 0 and depends
upon the particular partial derivative we are willing to compute.

The standing assumptions is this section are
• V = N⊕ΠM

k=m+1[a−k , a
+
k ]⊕Πk>M

[−C
ks ,

C
ks

]
are the topologically self-consistent

a priori bounds for (161) for ν ∈ Λ
• Y = Π(i)≤mB(i)(a(i), R(i))⊕ΠM

k=m+1[y−k , y
+
k ]⊕Πk>M

[−E
kγ ,

E
kγ

]
is a candidate

for the self-consistent bounds a priori for equation (162). We assume only
that γ is large enough, so that conditions C1,C2,C3 are satisfied.

Hence (V,C, s) and (Y,E, γ) are polynomial bounds.

10.1. Estimates for the linear part in the equation for the derivatives of
an implicitly defined function. We split the linear term in equation (162) into
D +N as follows

z(i) +
∂F̃(i)

∂x(i)
· y(i) +

∑
(j),(j)6=(i)

∂F̃(i)

∂x(j)
· y(j) = 0, for (i) ≤ m, (163)

z(i) + i2(1− νi2) · yi +
∑
j

∂Ñi
∂xj
· yj = 0, for i > m.

In what follows we will provide the estimates for the infinite sums appearing in
the above equation, which can be directly inserted in the computer program.

Basically we have two ranges of coordinates i ≤ M and i > M . For i ≤ M we
try to obtain quite tight bounds, as those are coordinates that matter, hence they
will be computed for each i separately. Hence in the sum∑

(j),(j)6=(i)

∂F̃(i)

∂x(j)
· y(j) =

∑
(j)≤M,(j)6=(i)

∂F̃(i)

∂x(j)
· y(j) +

∑
(j)>M

∂Ñ(i)

∂x(j)
· y(j), (164)

the finite part will be computed by direct interval evaluation for each (i) and we
need to derive the formula for infinite sum (see Lemma 10.1).

For i > M we need a uniform expression valid for all i > M in the form G
iγ−2 .

We obtain it from formula (159).
The following Lemma gives an expression for infinite sum part of non-diagonal

term in (163) for low wave numbers

Lemma 10.1. Assume i ≤M . Then for any x ∈ V and y ∈ Y∑
j>M

∂Ñi
∂xj

(x) · yj ⊂ [A · (−2(i)QF (V, (I − PM )Y )+

2(i)QI(V, (I − PM )Y ) + 2(i)QI((I − PM )Y, V ))]i
Proof. Use formula (159), observe that A−1(I − PM )V = (I − PM )V .

In the next lemma we provide a formula for 2-dimensional block.

Lemma 10.2. Let (i) = (i1, i2) ≤ m. Let for k = 1, 2

tk =

∣∣∣∣∣∣
M∑

j=1,j /∈(i1,i2)

∂F̃ik
∂xj

yj

∣∣∣∣∣∣+ rik ,
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where ri have been defined in Lemma 10.1.
Then ∣∣∣∣∣∣

∑
(j),(j) 6=(i)

∂F̃(i)

∂x(j)
y(j)

∣∣∣∣∣∣ ≤
√
t21 + t22.

10.2. Estimates for the constant terms in the equation for the derivatives
of the implicit function. In the computation of various derivatives of the implicit
function defined as z in equation (35) we have the following expressions or the sums
thereof (and due to the fact, that F is a second degree polynomial we have only the
terms of this type)

∂F̃i
∂ν

(ν, x),
∂F̃i
∂x1

(ν, x),
∑
j

∂2F̃i
∂ν∂xj

(ν, x)yj ,

∑
j

∂2F̃i
∂x1∂xj

(ν, x)yj ,
∑
jk

∂2F̃i
∂xj∂xk

(ν, x)yjwk, (165)

for y ∈ Y , w ∈W and x ∈ V , where Y,W, V are polynomial bounds.
From Lemma 7.2 we have

Lemma 10.3. For any ν ∈ Λ and x ∈ V holds

∂F̃k
∂ν

(ν, x) ∈ −
(
A · (i4)V

)
k

Lemma 10.4. Let (Y,E = 0, γ = 0) be such that Y1 = {1} and Yi = {0} for i > 1.
Then for any ν ∈ Λ and x ∈ V holds

∂F̃i
∂x1

(ν, x) ∈

[ ∞∑
k=1

∂F̃i
∂xk

(Λ, V )Y

]
i

.

The expression on the right hand side is given by formula (160).

From Lemma 9.8 and formulas for ∂2Fi
∂ν∂xj

we obtain

Lemma 10.5. For any y ∈ Y holds∑
j

∂2F̃i
∂ν∂xj

yj ∈
[
−A ·

(
(i4)(A−1Y )

)]
i

Lemma 10.6. Let (W,G = 0, γ = 0) be such that W1 = {1} and Wi = {0} for
i > 1. Then for any ν ∈ Λ, x ∈ V y ∈ Y holds

∑
j

∂F̃i
∂x1∂xj

(ν, x)yj ∈

A ·
∑

k,j

∂F̃i
∂xk∂xj

yjwk


i

,

and the sum on the right hand side is given by formula (158).

10.3. Isolation and refinement of bounds for far tail. Condition C4 - the
isolation condition for k > M is established by the following procedure.
Input data:
• H, k, such that |zk| ≤ H

kt for k > M

• G, w, such that (Ny)k < G
kw for k > M
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• E, γ, such that |yk| ≤ E
kγ for k > M

Condition C4 is satisfied if for all k > M , z and y satisfying the above conditions
we have

k4(ν − 1
k2

)|y±k | ≥ |(Ny)k + zk|. (166)

The above inequality is implied by the following(
ν − 1

k2

)
E

kγ−4
≥ G

kw
+
H

kt
, for all k > M, (167)

which is equivalent to(
ν − 1

k2

)
E ≥ Gkγ−4−w +Hkγ−4−t, for k > M . (168)

Hence C4 holds if the following conditions are satisfied

γ − 4− w ≤ 0 (169)
γ − 4− t ≤ 0 (170)(

ν − 1
(M + 1)2

)
E ≥ G(M + 1)γ−4−w +H(M + 1)γ−4−t. (171)

Now assume that conditions (169-171) are satisfied, then we can define new
updated bounds |ỹk| ≤ Ẽ/kγ̃ by

γ̃ = min(w + 4, t+ 4) (172)

Ẽ =
1

ν − 1
(M+1)2

(
G

(M + 1)w+4−γ̃ +
H

(M + 1)t+4−γ̃

)
(173)

10.4. Initialization. Consider equation (163). We want to generate an initial
guess for the self-consistent a priori bounds. We have the following input values
• Λ, V , m, M - self consistent a priori bounds for F (Λ, x) = 0
• a set Z, such that for z ∈ Z we have z(i) for (i) ≤M , |zi| ≤ H

it for i > M

• interval matrices [D], [N ] ⊂ RM×M , such that[
∂F̃(i)

∂x(i)
(Λ, V )

]
I

⊂ [D](i)(i), for (i) ≤M

[D](i)(j) = 0, if (i) 6= (j)[
∂F̃(i)

∂x(j)
(Λ, V )

]
I

⊂ [N ](i)(j), for (i), (j) ≤M

[N ](i)(i) = 0, if (i) ≤ N

We solve the Galerkin projection on XM of (163) using for example the iterative
scheme from the proof of Theorem 5.1.

Y 0 = PM (z), Y n+1 = −[D]−1Z − [D]−1[N ]Y n. (174)

Since we already checked the uniqueness of solution F (ν, x) = 0, hence the assump-
tions of Theorem 5.1 are satisfied, hence the scheme (174) converges quickly to a
fixed point (which in our context is a product of M intervals). We stop the iteration
when

ρH(Y n+1
i , Y ni )

max(|x|, x ∈ Y ni ∪ Y
n+1
i )

< 0.01, for i = 1, . . . ,M, (175)
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where by ρH(X,Y ) we denote the Hausdorff distance between the sets X and Y .
Let Ỹ = ΠM

i=1 (yci + [−δi, δi]) be obtained from the above iterative scheme. We
define a candidate (an initial guess) for the self-consistent a priori bounds for (163)
as follows.

For 1 ≤ i ≤ j ≤M we set

δji = max
(
|yk|, y ∈ Ỹ , i ≤ k ≤ j

)
,

Finally the candidate bounds are given by

yi ∈ yci + 0.25 · δm1 · [−1, 1], 1 ≤ i ≤ m
yi ∈ yci + 0.25 · δMm+1 · [−1, 1], m < i ≤M

|yi| ≤
E

i4
, E =

2H
(M + 1)t−4

, i > M.

Let us comment about the bounds for yi for i > M . They are chosen so that we
have max |zM+1| = max |yM+1| and the decay rate for |yi| is E

i4 .
This procedure worked in most cases - i.e. it produced a candidate, which lead

later to the self-consistent a priori bounds. It failed only if z ≈ 0 (this happens
when considering the zero solution) and the coefficient E is very small. In this case
when we did not get an isolation starting from the above guess, we produce a new
guess by setting E = 0.01 and then it always worked.

Observe that the proof of Theorem 5.1 gives a guaranteed good candidate for the
self-consistent a priori bounds, but it turns out that the refinement, as described in
Section 10.3, of the bounds obtained in this way requires much larger M .

11. Details of bifurcation computations. In order to check the assumptions of
Theorem 6.4 or Theorem 6.6 we set G(ν, x1) = F̃1(ν, y(ν, x1)), where y1 = x1 and
yi(ν, x1) for i > 1 is a solution of system F̃i(ν, x1, y) = 0 for i > 1.

We have to compute the following partial derivatives of G for Theorem 6.4

∂G

∂x1
,

∂2G

∂x1∂ν
,

∂3G

∂x3
1

.

For Theorem 6.6 we need
∂G

∂x1
,

∂2G

∂x1∂ν
,

∂2G

∂x2
1

.

They are given by the following formulas

∂G

∂x1
=

∞∑
i=1

∂F̃1

∂xi

∂yi
∂x1

∂2G

∂x2
1

=
∞∑

i,j=1

∂2F̃1

∂xi∂xj

∂yi
∂x1

∂yj
∂x1

+
∞∑
i=1

∂F̃1

∂xi

∂2yi
∂x2

1

∂3G

∂x3
1

= 3
∞∑

i,j=1

∂2F̃1

∂xi∂xj

∂2yi
∂x2

1

∂yj
∂x1

+
∞∑
i=1

∂F̃1

∂xi

∂3yi
∂x3

1

∂2G

∂x1∂ν
=

∞∑
i=1

∂2F̃1

∂xi∂ν

∂yi
∂x1

+
∞∑

i,j=1

∂2F̃1

∂xi∂xj

∂yi
∂x1

∂yj
∂ν

+
∞∑
i=1

∂F̃1

∂xi

∂2yi
∂x1∂ν

All these formulas can be computed using the algebra for polynomial bounds de-
scribed in Section 9 and then extracting first coordinate.
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11.1. Short description of the procedure for the proof of the existence of
bifurcations. Observe first that both bifurcations theorems ( 6.4 and 6.6) contain
two types of assumptions:

global: a construction of the self-consistent bounds for (90) over Z = [ν1, ν2]×
[−a, a], on which can evaluate ∂3G

∂x3
1

(Z) and ∂2G
∂ν∂x1

(Z) in case of Theorem 6.4,

or ∂2G
∂ν∂x1

(Z) and ∂2G
∂x2

1
(Z) in case of Theorem 6.6. These partial derivatives of

G should not contain zero and this can be achieved by taking the set Z small
enough.

Observe that if at this stage we are not able to construct Z on which the
global conditions are satisfied, then the proof is inconclusive. We can neither
claim or exclude the existence of bifurcation. We can only hope that taking
larger m,M and smaller (in diameter) Z will improve the situation.

local: Once we have the set Z over which the global conditions are satisfied we
verify the remaining (local) conditions. Observe that each of them involves
either some derivatives of G or the value of G at some point (ν0, x0). The
isolation algorithm presented in [23] applied to (90) and the algorithms for
the computation of the partial derivatives y(ν, x) described in the previous
section allow to compute the desired values with an arbitrary accuracy (close
to the round-off error) by taking M large enough. Hence we can check whether
the local conditions are satisfied or violated (in this case we can rule out the
existence of any bifurcation in Z). Hence this part of the proof is conclusive.

The computer procedure performing the proof of the existence of bifurcation
works as follows
Input parameters:

• m - the dimension of Galerkin projection, M = max(2m, 10)
• (ν0, x0) ∈ R×Rm an approximate bifurcation point form-dimensional Galerkin

projection of (3), x0 is k-modal (it is desirable to take m as a multiple of k)
• (ν1, ν2), such that ν0 ∈ (ν1, ν2). This is our parameter range in the bifurcation

theorems

The procedure:

diagonalization: We define the coordinate change A as follows: we approxi-
mately diagonalize, dPmF (ν0, x0), the m-dimensional Galerkin projection of
(3) for ν = ν0 at x = x0. We choose an eigenvalue, λ0 , which is the closest
to zero (there should be such, otherwise there is no bifurcation nearby). The
eigenvector corresponding to λ0 we choose as our ’bifurcation direction’ and
it will represent the 1-st coordinate in the new coordinate frame.

We have also to make sure, that the subspace of k-modal functions is con-
tained in the hyperplane x̃1 = 0. In case of the bimodal branch (k = 2) the
coordinate change must commute with the symmetry R, from this we obtain
the odd-symmetry property of bifurcation function G.

Observe that is easy to satisfy these properties during the diagonalization
process, as the subspace of k-modal functions is invariant also for dPmF (ν0, x0)
if x0 is k-modal itself.

global conditions: Let X1 = 10−2. We set Z = [ν1, ν2] × [−X1, X1] and we
try to verify the global bifurcation conditions on Z. If they are not satisfied,
then we set X1 = X1/5 and try again, till X1 < 10−5, when we decide that
we fail.
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If we fail then we increase M (hoping for an improvement in the diameters
of the relevant partial derivatives of G on Z) and try again.

We do this until we succeed (and we jump to verify the local conditions),
or there is no improvement in values of the relevant partial derivatives G on Z
(we use some ad-hoc stabilization criterion - for example: the diameter should
shrink by a factor at least 0.9 ).

If we fail then we exit. We can only hope that either the increase of m and
the shrinking of the diameter of [ν1, ν2] will improve things.

local conditions: We evaluate all local conditions (see the discussion at the be-
ginning of this subsection). Consider for example the computation ∂G

∂x (ν1, 0).
We keep refining bounds by y(ν, x) by increasing M till ∂G

∂x (ν1, 0) does not
contain 0 or its value stabilize.

The k-modal fixed points were produced from the unimodal fixed point branch
using the rescaling described in Lemma 6.1. The solutions on the unimodal branch
are all attracting, hence can be easily found either by following the trajectory or
by using the Newton method starting at an approximate fixed point for the 2-
dimensional Galerkin projection. We picked up the bifurcation values from [12, 15],
where the bifurcation parameter was α = 4/ν. It turns out that these values were
too crude for our purpose and we refined them by an ad-hoc trial and error approach
(this was not automated), until we can finally verify the global bifurcation condition.

The file bifdata.txt [29] contains the most relevant numerical data from the proofs
of the bifurcations listed in Theorem 1.1.

The program was written in C++ ( gnu compiler was used). We used CAPD
package[2] to handle the interval arithmetic and graphics. All computations were
performed on Windows 98, Pentium III, 450 MHZ computer. We tested the program
also under l inux.
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