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Some computer assisted proofs in dynamics

Langford, 1982
proof of Feigenbaum universality conjectures

Eckmann, Koch, Wittwer, 1984
universality for area-preserving maps

Grebogi, Hammel, Yorke, 1987
rigorous numerical shadowing of trajectories

Neumaier, Rage, Schlier, 1994
chaos in the molecular Thiele-Wilson model

Mischaikow and Mrozek, 1995

chaos in Lorenz equations

Mischaikow and Mrozek, 1995

chaos in Lorenz equations

Zgliczynski, 1997

chaos in the Hénon map and in the Réssler system

Palmer, Coomes, Kocak, Stoffer, Kirchgraber, 1996-2003
chaos via shadowing for Henon map, PCR3BP

W. Tucker, 2001
geometric model for Lorenz attractor



PROBLEM TO SOLVE:
prove that a system has solutions satisfying certain properties
periodic solutions
connecting orbits
two-point boundary value problem
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Computer-assisted proofs - methodologies

APPROACH 1: transform the problem to
F(u)=0

and solve it by (interval) Newton-like scheme

Pros:
@ powerful in low-dimensional discrete dynamical systems
@ sometimes the only (known to me) approach that works

(parametrization method for invariant tori)

@ high accuracy



Computer-assisted proofs - methodologies

APPROACH 1: transform the problem to
F(u)=0

and solve it by (interval) Newton-like scheme

Pros:

@ powerful in low-dimensional discrete dynamical systems
@ sometimes the only (known to me) approach that works

(parametrization method for invariant tori)

@ high accuracy

Difficulties:
@ often problem dependent
(especially in continuous-time systems)
@ infinite dimension: the unknown u is often a function
(even if the phase-space of the system is low-dimensional)
@ rather difficult to handle global dynamics



Computer-assisted proofs - methodologies

APPROACH 2: use isolation — analyse the vector field

Pros:
@ no need to integrate ODE or PDE
@ works directly in the phase space

@ focuses on bounded solutions
(may work even if most of the trajectories escape to infinity)



Computer-assisted proofs - methodologies

APPROACH 2: use isolation — analyse the vector field

Pros:
@ no need to integrate ODE or PDE
@ works directly in the phase space
@ focuses on bounded solutions

(may work even if most of the trajectories escape to infinity)

Difficulties:
@ constructing isolating blocks (segments) may be difficult
(possible memory and CPU issues, parallelization possible)

@ requires hyperbolic-like dynamics
(rather no chance to handle elliptic solutions without extra tools)

@ low accuracy - up to the isolating set



Computer-assisted proofs - methodologies

APPROACH 3: discretize

Continuous _ _ o Discrete
dynamical time discretization dynamical
system system

>

[PDE,ODE]Solver

phase-space
dicretization

Y

“Good” abstract
theorem
(finite set of
inequalities)




Computer-assisted proofs - methodologies

APPROACH 3: discretize

Pros:
@ rather general (problem independent)
@ low-dimensional (works in the phase space of the system)
@ ready to handle global dynamics
@ well suited for smooth methods
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APPROACH 3: discretize

Pros:
@ rather general (problem independent)
@ low-dimensional (works in the phase space of the system)
@ ready to handle global dynamics
@ well suited for smooth methods

Difficulties:

@ integration of ODEs and PDEs is not easy
(usually CPU issues)

o stiffness: does not work if most of solutions escape to
infinity in short time

@ solutions of the system may not exist (PDEs) even if the
solutions we are interested in do exist

@ unable to handle some types of dynamical objects

(like invariant tori)
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@ ODE solvers (short overview of selected methods)
@ Algorithm for computation of Poincaré maps
© CAPD library: ODE solvers and Poincaré maps
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Outline of Part I:

@ ODE solvers (short overview of selected methods)
@ Algorithm for computation of Poincaré maps

© CAPD library: ODE solvers and Poincaré maps
© Case study: “easy” computer-assisted proofs of
e apparently attracting periodic orbit
e symmetric non-attracting periodic orbit
e existence of an attractor in the Rossler system
© Some “good” abstract theorems and their applications:
chaos in the Rossler system (case study)
>4 chaos in the Michelson system
Shilnikov homoclinic orbits
Bykov heteroclinic cycles
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ODE Solvers



ODE Solvers

exact trajectory
approximate trajectory

set of initial conditions

exact image of the blue set af-
ter some time T

enclosure of the image re-
turned by a rigorous ODE
solver




ODE Solvers

Notation:
x' = f(x) vector field
(£, x) — p(t, x) local flow
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@ [X] — set of initial conditions
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@ h> 0 - atime step we want to make

(from prediction)



ODE Solvers

Notation:
x' = f(x) vector field
(£, x) — p(t, x) local flow

INPUT:
@ [X] — set of initial conditions
(interval vector, zonotope, Taylor model)

@ h> 0 - atime step we want to make

(from prediction)

OUTPUT:
@0<h<h- accepted time step
@ [Y]—aset
@ [Xi] —a set such that
o([0, AL, [X]) < [Y],
p(h [X]) < [Xi]
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[X] — set of initial conditions
[X1] — bound for ¢(h, [X])

Y] = bound for ¢([0, A], [X])
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ODE Solvers - First Order Enclosure (FOE)

Theorem
x" = f(x) - ODE, f : R" — R" — smooth

[X], [Y] - convex, compact sets
h>0




ODE Solvers - First Order Enclosure (FOE)

Theorem

x" = f(x) - ODE, f : R" — R" — smooth
[X], [Y] - convex, compact sets

h>0

If
[2] := [X]+ [0, Af([Y]) C int([Y])
then
@ ¢(t, x) is well defined for (t, x) € [0, h] x [X]
e fort € [0, h], x € [X] there holds ¢(t, x) € [Z]




ODE Solvers - First Order Enclosure (FOE)

Theorem

x" = f(x) - ODE, f : R" — R" — smooth
[X], [Y] - convex, compact sets

h>0

If
[2] := [X]+ [0, Af([Y]) C int([Y])
then
@ ¢(t, x) is well defined for (t, x) € [0, h] x [X]
e fort € [0, h], x € [X] there holds ¢(t, x) € [Z]

Important prediction of hand [Y] J
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x”:_sin(x)+01x h=0.25
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[1,2] x [0.4,0.5]
IX] + h[—.2,1.5]  f([X]) C [0.9749,2.1875] x [0.04, 0.548]



x' _—sin(x)+01x h=10.25 I
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{Y} = [X]+ h[—.2,1.5] = f([X]) C [0.9749,2.1875] x [0.04, 0.548]
Zl = [X]+[0,h] = f([Y])



X" = —sin(x) + 0.1x', h—0.25 I
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[Y] = [X]+ h[-.2,1.5]f([X]) C [0.9749,2.1875] x [0.04,0.548]
Z] =

IX] + [0, h] * £([Y]) C [1.0,2.137] x [0.1502,0.5] C int([Y])



ODE Solvers - High Order Enclosure (HOE)

Notation:
x!K](ty) — vector of k™ Taylor coefficients of t — x(t) at t = t

[X]K] — bound for x!X1(0) for x € [X].
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[X], [R] - convex, compact sets
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Notation:
x!K](ty) — vector of k™ Taylor coefficients of t — x(t) at t = t

[X]K] — bound for x!X1(0) for x € [X].
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ODE Solvers - High Order Enclosure (HOE)

Notation:
x!K](ty) — vector of k™ Taylor coefficients of t — x(t) at t = t

[X]K] — bound for x!X1(0) for x € [X].
Theorem (Nedialkov, Jackson, Pryce)

[X], [R] - convex, compact sets
h>0

Pl = [X]+[0,AX]M + - + [0, A" [X]]
[Y] = [PI+[A]

[2] := [0, AT Y]+ C [R]
then
@ ¢(t, x) is well defined for (t, x) € [0, h] x [X]
e fort € [0,h], x € [X] there holds ¢(t, x) € S"F_o /[ X]1 + [Z]
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Example (Oscillator)
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ODE Solvers - wrapping effect

General idea
Propagate “good” coordinate system along with the set

@ Affine representation
[X] = X0 + Alro]
@ Doubleton representation
[X] = Xo + C[ro] + Blr]
@ Tripleton representation
[X] = xo + Clro] + Q[q] N B[r]
@ Taylor Model representation (P- double coefficient sparse

polynomial)
[X] = P(Br) + [A]



ODE Solvers - wrapping effect

® - numerical method

w(h,x) € ®(h, x) + [R]



ODE Solvers - wrapping effect

® - numerical method

w(h,x) € ®(h, x) + [R]

Reduce wrapping effect

Use mean value form: xp € [X]

[X](h) € ®(h, xo) + Dx®(h, [X])([X] — x0) + [A]




ODE Solvers - wrapping effect
Example (Doubleton representation [X] = xo + C[ry] + B[r])




ODE Solvers - wrapping effect
Example (Doubleton representation [X] = xo + C[ry] + B[r])

go(h, [X]) c x4+ G4 [fo] + B; [I‘1]
where

xy = mid(®(h, x0) + [R])

C1 = mid(Dx®(h,[X]) - C)

B; = some invertible point matrix

no= (B'De(h[X])-B) 1] + By (o(h,x0) + [A] - x1)
+ By (Dx®(h,[X])- C—Cy)[r]




ODE Solvers - wrapping effect

Example (Doubleton representation [X] = xo + C[ry] + B[r])

e(h,[X]) < x1+ Cilro] + Bi[r]

xy = mid(®(h, x0) + [R])

C1 = mid(Dx®(h,[X]) - C)

B; = some invertible point matrix

no= (B'De(h[X])-B) 1] + By (o(h,x0) + [A] - x1)
+ By (Dx®(h,[X])- C—Cy)[r]

Choice of B;
There are various strategies for choosing B;




ODE Solvers - numerical method

What about ¢ in
¢(h, [X]) c &(h,[X]) + [A]



ODE Solvers - numerical method

What about ¢ in
o(h,[X]) C ®(h,[X]) + [A]
Taylor method

(arbitrary order, easy computation of [R])

;
o(h,x) = Z hf xIKl
k=0



ODE Solvers - numerical method

What about ¢ in
o(h,[X]) C ®(h,[X]) + [A]
Taylor method

(arbitrary order, easy computation of [R])

;
o(h,x) = Z Kk x[K]
k=0

Hermite-Obreshkov method (Nedialkov, Jackson)

(implicit, arbitrary order, easy computation of [R] - smaller than in Taylor method)



ODE Solvers - numerical method

What about ¢ in
o(h,[X]) C ®(h,[X]) + [A]
Taylor method

(arbitrary order, easy computation of [R])

;
o(h,x) = Z Kk x[K]
k=0

Hermite-Obreshkov method (Nedialkov, Jackson)

(implicit, arbitrary order, easy computation of [R] - smaller than in Taylor method)

Put

q
p+q—k\, (P+q
Vaslhx) = Y )1(P 7 ) et
k=0 p



ODE Solvers - numerical method

What about ¢ in
o(h,[X]) C ®(h,[X]) + [A]
Taylor method

(arbitrary order, easy computation of [R])

;
o(h,x) = Z Kk x[K]
k=0

Hermite-Obreshkov method (Nedialkov, Jackson)

(implicit, arbitrary order, easy computation of [R] - smaller than in Taylor method)

Put
L (pHa—k\,(P+q\ x. K
Vop(hx) == ) / b h*x
k=0 p

Then
Vg.p(—h, x(h)) — Vpq(h, x) € [Ruo]



Poincaré maps



M c R"is é-section for (t, x) — ¢(t, x)

0
(_57 5) x> (t7 X) - Sp(tv X)
is diffeomorphism onto image




M c R"is é-section for (t, x) — ¢(t, x)

0
(_57 5) x> (t7 X) - Sp(tv X)
is diffeomorphism onto image
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Poincaré sections
Definition

M is Poincaré section for (t, x) — ¢(t, X)

0

Iis locally s-section for some 6 > 0




Poincaré sections
Definition

M is Poincaré section for (t, x) — ¢(t, X)

0
Iis locally s-section for some 6 > 0 |

For 1 smooth and x’ = f(x) it is enough to have

(f(x); ns(x)) # O

\




Poincaré maps

M4, N> - Poincaré sections for ¢
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M4, N> - Poincaré sections for ¢

Definition

P: Ny — M - Poincaré map
o x € dom(P) iff p(t, x) € Ny for some t >0
o P(x) - first cut of ©(t, x) with My for t > 0




Poincaré maps

M4, N> - Poincaré sections for ¢

Definition

P: My — Iy - Poincaré map
o x € dom(P) iff p(t, x) € Ny for some t >0
o P(x) - first cut of ©(t, x) with My for t > 0
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Practical description of Poincaré sections

M=Tac={x:a(x)=0A(Va(x); f(x)) #0AC(X)}

where
e a: R" = R - smooth

e zero is a regular value of «

e C is a predicate (additional constrains on
the section)

e crossing direction
@ restriction on the domain
o etc.



Settings
e 14,5 - sections given by «; : R” — R
e P: Iy — Iy - Poincaré map
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e P: Iy — Iy - Poincaré map

Question: is P continuous? smooth?



Settings
e 14,5 - sections given by «; : R” — R
e P: Iy — Iy - Poincaré map

Question: is P continuous? smooth?
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Theorem
Assume

o [l; = cl(intl'l,-)
o eitherNy CcMoorMiNMy =10

Then P: Ty — My is smooth at every point
X € domP Nintll4

such that

P(X) € intllo.




Goals

@ Give an algorithm for enclosing P(X), X C I,

@ Discuss how results depend on the choice of
Poincaré sections and coordinate systems



Enclosing Poincaré maps

Constrains:
@ avoid subdivisions when crossing section

@ reduce wrapping effect that may occur when change
representation of a set to coordinates on section
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Enclosing Poincaré maps

Constrains:
@ avoid subdivisions when crossing section

@ reduce wrapping effect that may occur when change
representation of a set to coordinates on section

/




Enclosing Poincaré maps

Very important:

take into account internal representation of
solutions in ODE solver
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take into account internal representation of
solutions in ODE solver
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Abstract data structure: RepresentableSet
Example:

[X] = x + C[rn] + BJr]

Abstract algorithm:

Algorithm: AFFINETRANSFORM

Input: [X] C R” - RepresentablesSet
Input: Q: R” — R™ - linear map
Input: xo € R” - vector

Output: Bound for Q(X — xo)




Abstract data structure: RepresentableSet
Example:

[X] = x + C[rn] + BJr]

Abstract algorithm:

Algorithm: AFFINETRANSFORM

Input: [X] C R” - RepresentablesSet
Input: Q: R” — R™ - linear map
Input: xo € R” - vector

Output: Bound for Q(X — xo)

Example:

Q(x = X0+ Clro] + B[r]) N (Q(x — xo) + (QC)[ro] + (QB)][r])



Abstract algorithm:

Algorithm: EVAL

Input: [X] C R” - RepresentablesSet
Input: g : R” — R™ - smooth
Output: Bound for g(X)




Abstract algorithm:

Algorithm: EVAL

Input: [X] C R” - RepresentablesSet
Input: g : R” — R™ - smooth
Output: Bound for g(X)

Example:

Algorithm: EVAL

Input: x + C[r] + B[r] C R" - doubleton
Input: g : R” — R™ - smooth function
Output: Bound for g(x + C[r] + B[r])

// enclose set as interval vector

[X] < [x + Clro] + BI[r]]

/I enclose derivative as interval matrix

[M] < [Dg([X])]

return [g([X])] N [g(x) + (IM]C)[r] + ((M]B)[r]]




Algorithm: COMPUTEPOINCAREMAP

Input: [t, &] - bound for return time

Input: [Xi] - RepresentableSet that encloses (i, [X])
Input: « - function that defines the section I,

Input: f - vector field that defines an ODE

Input: xp - a vector

Input: Q - a linear map

Output: Bound for Q(P([X]) — Xo)

Iy — (h+bh)/2

[At] — [t1 ) tg] — M

[Xo] <+ RepresentablesSet thatencloses p(ty — t1,[Xi])
[Yo] <« affineTransform([Xp], Q,Xo)

[Y] — eval([Xo], Qof)-[Af]

[E] A eval([X1]790([07 b — t1]7))

[AY] « 3Q-Df([E])- H(E]) - [Af?]

(21« (Yol +[Y]+[AY]) N QE] - x0)

return [Z]




Enclosing Poincaré maps - geometry of the algorithm

X1



Enclosing Poincaré maps - geometry of the algorithm
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Enclosing Poincaré maps - geometry of the algorithm




Minimize crossing time:

Y =eval(Xo,Qof) At
AY = %Q- Df(E)- f(E) - A




Minimize crossing time:

Y :=eval(Xo, Qo f)- At
AY = %Q- Df(E)- f(E) - A

tn : My — R - return time
Observation: If
In ~ constant for x € U C I

then the crossing time and esti-
mations on P should be tighter.

-2+




Minimize crossing time:

Case of fixed point: assume P(x) = x
a(x) = 0 - defines section
A= Zo(t = tn(x), x)
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Case of fixed point: assume P(x) = x
a(x) = 0 - defines section
A= Zo(t = tn(x), x)

Il
o

a(p(tn(x), X))
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a(x) = 0 - defines section
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Minimize crossing time:

Case of fixed point: assume P(x) = x
a(x) = 0 - defines section
A= Zo(t = tn(x), x)

a(e(tn(x),x)) =0
(Va(x); ) Vin(x)T + Va(x)TA=0

If Va(x) is left eigenvector for A for A = 1 then

(Va(x): F(x)) Vin(x)T + Va(x)T(;iXA _

(Va(x); F(X))Vin(x) + Va(x) = 0



Minimize crossing time:

Case of fixed point: assume P(x) = x
a(x) = 0 - defines section
A= Zo(t = tn(x), x)

a(e(tn(x),x)) =0
(Va(x); ) Vin(x)T + Va(x)TA=0

If Va(x) is left eigenvector for A for A = 1 then

(Va(x): F(x)) Vin(x)T + Va(x)T(;iXA _

(Va(x); F(X))Vin(x) + Va(x) = 0

4

Va(x) and tn(x) are collinear



Minimize crossing time:

Case of fixed point: assume P(x) = x
a(x) = 0 - defines section
A= %cp(t = In(x), x)

a(e(tn(x),x)) =0
(Va(x); ) Vin(x)T + Va(x)TA=0

If Va(x) is left eigenvector for A for A = 1 then

(Va(x): F(x)) Vin(x)T + Va(x)T(;iXA _

(Va(x); F(X))Vin(x) + Va(x) = 0

4

Va(x) and tn(x) are collinear

I

9 (x) = 0for v e TN



Example: van der Pol equation

Equation:
x" =02x(1 - x%) — x »

The section: M = {y =0}
(orthogonal)




Example: van der Pol equation

Equation:

x" =02x(1 - x%) — x »

The section: 1 = {y = 0}

(orthogonal)

init diam | crossing time Xo X
1e-10 3.61e-11 | [-3.61e-11, 3.61e-11] | [-2.83e-11, 2.83e-11]
1e-09 3.6e-10 [-3.6e-10, 3.6e-10] [-2.83e-10, 2.83e-10]
1e-08 3.6e-09 [-3.6e-09, 3.6e-09] [-2.83e-09, 2.83e-09]
1e-07 3.6e-08 [-3.6e-08, 3.6e-08] [-2.83e-08, 2.83e-08]
1e-06 3.6e-07 [-3.6e-07, 3.6e-07] [-2.83e-07, 2.83e-07]
1e-05 3.6e-06 [-3.6e-06, 3.6e-06] [-2.83e-06, 2.83e-06]
0.0001 3.61e-05 | [-3.61e-05, 3.61e-05] | [-2.83e-05, 2.83e-05]
0.001 0.000364 | [-0.000364, 0.000364] | [-0.000284, 0.000284]
0.01 0.00397 | [-0.00398, 0.00397] [-0.00293, 0.00293]




Example: van der Pol equation

Equation:
x"=0.2x(1-x%) - x L

The section: minimizes crossing time ..




Example: van der Pol equation

Equation:

x"=0.2x(1-x%) - x

The section: minimizes crossing time ..

init diam | crossing time Xo X
1e-10 3.46e-14 | [-2.91e-14,2.93e-14] | [-2.83e-11, 2.83e-11]
1e-09 3.46e-14 | [-2.91e-14,2.93e-14] | [-2.83e-10, 2.83e-10]
1e-08 3.55e-14 | [-2.94e-14,2.95e-14] | [-2.83e-09, 2.83e-09]
1e-07 6.48e-14 | [-5.56e-14,5.58e-14] | [-2.83e-08, 2.83e-08]
1e-06 2.99e-12 | [-2.67e-12,2.67e-12] | [-2.83e-07, 2.83e-07]
1e-05 2.96e-10 | [-2.64e-10, 2.64e-10] | [-2.83e-06, 2.83e-06]
0.0001 2.96e-08 | [-2.64e-08, 2.64e-08] | [-2.83e-05, 2.83e-05]
0.001 2.97e-06 | [-2.65e-06, 2.65e-06] | [-0.000284, 0.000284]
0.01 0.000311 | [-0.000278, 0.000278] [-0.003, 0.003]




CAPD library



Computer Assisted Proofs in Dynamics group

Research interests

an

RedHom subproject
Related links

Contact:

Institute of Computer Science
Jagiellonian University
Lojasiewicza 6

30-248 Krakow, Poland

What is the CAPD library?

The CAPD library is a collection of flexible C++ modules which are mainly designed to computation of homology of
sets and maps and nonrigorous and validated numerics for dynamical systems.

The list of modules is pretty long, but the most important are:
Basic modules:

= krak - a portable graphics kernel for very primitive drawing in the graphical window. Very easy to start with.

« interval - template written interval arithmetic, supports double, long double and multiprecision. It can be
extended to any arithmetic type for which we can implement arithmetic operations and rounding.

+ vectalg and matrixAlgorithms - a flexible template implementation of basic operations and algorithms for
dense vectors and matrices (with integer, floating points and various interval coefficients).
Modules for dynamical systems:

+ map - computation of values and derivatives of maps. It is also the core for the solvers in dynsys module.

# dynsys - various nonrigorous and rigorous solvers to ODEs, for computations of the solutions and partial
derivatives wrt initial conditions up to arbitrary order.

+ geomset, dynset - various representations of sets and Lohner-type algorithms.
= poincare - computation of Poincare maps and their derivatives; both rigorous and nonrigorous.
+ diffincl - rigorous computations of the solutions to differential inclusions.

Modules for computation of homology:

+ Currently developed and recommended homological software is based on various reduction algorithms. The
RedHom homology project is the official subproject of the CAPD library.

http://capd.ii.uj.edu.pl

Computer Assisted Proofs in Dynamics
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The CAPD 4.0 in 2016:

@ core CAPD: (Multiprecision) IA, linear algebra (dense)

@ capdRedHom: (co)-homology software
BT

Pawet Pilarczyk Pawet Diotko Mateusz Juda

@ capdDynSys: validated numerics for dynamics

Piotr Zgliczynski Tomasz Kapela Daniel Wilczak
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The capdDynSys 4.0 in 2016:
@ C%— ' —C" ODE solvers
@ Poincaré maps and their r—th order derivatives
@ Differential inclusions
@ supports: double, long double, multiprecision, interval,
mpfr-intervals
Some applications:
@ C%-computations;
chaotic dynamics for many textbook systems, bifurcations for reversible systems
e C'-computations;
periodic orbits (in quite high dimensions, like 300 for the N-body problem),
hyperbolicity, homoclinic and heteroclinic solutions for ODEs both to equilibria
and periodic solutions
@ C2-computations;
cocoon bifurcations, homoclinic tangencies
@ C3 — C® computations;
bifurcations of periodic orbits for ODEs, KAM stability of periodic solutions,
invariant tori around periodic orbits
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Compilation of the library:
@ ./configure [options]

@ make —j
(takes some time, more than 120 000 lines of code)

Basic options:
Q@ ——with-mpfr
@ ——with-wx-config (internal graphics kernel)

Building own programs:

g++ main.cpp -0 main ‘capd-config --cflags —--libs‘

Optional scripts:

‘capd-gui-config --cflags —--libs"
‘mpcapd-config —--cflags —--1libs®
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Main header files

#include "capd/capdlib.h"
#include "capd/mpcapdlib.h" // for multiprecision
#include "capd/krak/krak.h" // for graphics kernel

Defined types:

@ interval, MpFloat, Mpinterval
@ Algebra:
e DVector, LDVector, IVector, MpVector, MplVector
o [Prefix]Matrix
o [Prefix]Hessian
o [Prefix]Jet
@ Automatic differentiation:
o [Prefix]Map
@ ODE solvers:
o [Prefix]OdeSolver, [Prefix]CnOdeSolver
o [Prefix]TimeMap, [Prefix]CnTimeMap
o [Prefix]PoincareMap, [Prefix]CnPoincareMap



// Note: all examples in this tutorial require C++11 support
#include <iostream>
#include "capd/capdlib.h"
using namespace capd;
using namespace std;
int main () {
IMap f("par:a;var:x,y;fun:sin(x*cos(y)), y*cos(axy)-x"2;",3);
f.setParameter ("a",interval(1l.,1.01));
IVector u({1,3});

cout << "f(u)=" << f(u) << endl;

cout << "Df (u)=" << f.derivative (u) << endl;

IJet jet(2,3); // third order Taylor coefficients, two variables
£ (u, jet); // compute full Taylor expansion

cout << jet.toString() << endl;

IOdeSolver solver(f,20); // ODE integrator

ITimeMap tm(solver); // class for long time integration
COHOTripletonSet set(u); // representation of initial condition
// integrate until T=2 and print result

cout << "phi(2,(1,3)) = " << tm(2.,set) << endl;

ITimeMap: :SolutionCurve solution(0.);

set = COHOTripletonSet (IVector({1,1}));

// integrate until T=2 and save entire trajectory

tm (2., set,solution);

cout << "solution(2)=" << solution(2) << endl;

cout << "solution(0.9,1.1)=" << solution(interval(.9,1.1)) << endl;



// Note: all examples in this tutorial require C++11 support
#include <iostream>
#include "capd/capdlib.h"
#include "capd/mpcapdlib.h"
using namespace capd;
using namespace std;
int main() {
cout .precision(60);
MpFloat: :setDefaultPrecision (200);
MpIMap lorenz ("var:x,y,z;fun:10* (y—-x),6 x* (28-2z) -y, x*y—-8%z/3;");

MpIOdeSolver solver (lorenz,40); // ODE integrator

MpITimeMap tm(solver); // class for long time integration

// initial condition

MpIVector u({MpInterval(l.),MpInterval(3.),MpInterval(10.)});
// tripleton representation of initial condition
MpCOTripletonSet set (u);

// integrate until T=2 and print result

cout << "phi(2,(1,3,10)) = " << tm(MpInterval(2.),set) << endl;

}

/* Output (reformatted to fit presentation window)
phi(2,(1,3,10)) = {
[-2.17336885511749012718999487044194479578491574751054376072653

-2.17336885511749012718999487044194479578491574751054376063012

’

1,

[-1.81501617053155848857546674273414777562443933856462285960357 ,

-1.81501617053155848857546674273414777562443933856462285946092
[2.04129457433159136349537343394345779855485364177570327972290e1l
2.04129457433159136349537343394345779855485364177570327973768el

’

’

1}/



Case study

o (Symmetric) periodic orbits
e existence of an attractor



Example (Toy example: van der Pol oscillator)

X" =p(1 = x%)«x' —x

Goal: van der Pol oscillator has a periodic solution for ;. = 1.

Ve

Picture taken from Wikipedia



Van der Pol oscillator

Settings:

MN={(x,0): xe R} — Poincaré section
P:M—n — Poincaré map
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cpp/VanDerPolAttractingPeriodicOrbit.cpp

Van der Pol oscillator

Settings:
N={(x,0): xe R} — Poincaré section
P:M—n — Poincaré map
Methodology:

@ Xxp € N —an approximate periodic point for P
(skip coordinate x’ = 0)

@ r —an interval centred at zero

@ Check that
Pxo+r)Cxo+r

Result: Success with r=interval (-1,1) xle-5.

Hyperlink: complete C++-11 source code


cpp/VanDerPolAttractingPeriodicOrbit.cpp

#include <iostream>
#include "capd/capdlib.h"
using namespace capd;
using namespace std;
int main() {
// Instance of the vector field, ODE solver,
// Poincare section (y=0 is index=1 of 2 variables)
// and the crossing direction (y changes sign from Plus to Minus)
IMap vf("var:x,y; fun:y, (1-x"2) xy-x;");
IOdeSolver solver(vf, 20);
ICoordinateSection section(2, 1);
IPoincareMap pm(solver, section, poincare::PlusMinus);

// Take a ball centred at approximate periodic point
IVector x({2.0086198608748433 + interval(-1,1)*1le-5,0.});
COHOTripletonSet s (x);
// Call routine that computes rigorously Poincare map
IVector y = pm(s);
// check inclusion and print output
cout.precision(17);
cout << "y=" << y[0] << "\nx=" << x[0] << endl;
cout << boolalpha << "inclusion? = " << subset(y[0],x[0]);
return 0;
}
/* Output:
y=[2.0086198481018909, 2.0086198740315355]
x=[2.0086098608748433, 2.0086298608748434]
inclusion? = true */



Example (Toy example: Michelson system)

X =y, y =2z, Z=1—-y—x?/2

Goal:
the system has at least two symmetric periodic solutions.

y




Michelson system

Settings:
Mn={(x,y,0): x,y € R} — Poincaré section
P:M—n — Poincaré map

R(x,y) = (—x,y) — reversing symmetry for P
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Michelson system

Settings:
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P:M—n — Poincaré map
R(x,y) =(—x,y) — reversing symmetry for P
Methodology:

@ RoP"0Ro P" =1d (provided left side is defined)
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Michelson system

Settings:
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@ RoP"0Ro P" =1d (provided left side is defined)
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Michelson system

Settings:
Mn={(x,y,0): x,y € R} — Poincaré section
P:M—n — Poincaré map
R(x,y) =(—x,y) — reversing symmetry for P
Methodology:

@ RoP"0Ro P" =1d (provided left side is defined)

o If mxP"(0, o) = 0 then yy is a symmetric periodic point
@ (0,y) € N —an approximate periodic point for P"

@ r > 0 —constant

@ Check that P" is defined on (0,[y — r,y + r]) and

P",y —r)-P"(0,y +r)<0


cpp/MichelsonSystemSymmetricPeriodicOrbit.cpp

Michelson system

Settings:
Mn={(x,y,0): x,y € R} — Poincaré section
P:M—n — Poincaré map
R(x,y) =(—x,y) — reversing symmetry for P
Methodology:

@ RoP"0Ro P" =1d (provided left side is defined)

o If mxP"(0, o) = 0 then yy is a symmetric periodic point

@ (0,y) € N —an approximate periodic point for P"

@ r > 0 —constant

@ Check that P" is defined on (0,[y — r,y + r]) and
P",y —r)-P"(0,y +r)<0

Result: Success with r=interval (-1,1) xle-13.

Hyperlink: complete C++-11 source code


cpp/MichelsonSystemSymmetricPeriodicOrbit.cpp

#include <iostream>
#include "capd/capdlib.h"
using namespace capd;

void validateSymPO (interval y, int iteration){
IMap vf('"var:x,y,z;fun:y,z,1-y-0.5%x"2;"); // vector field
IO0deSolver solver (vf, 20); // 20th order solver
ICoordinateSection section (3, 2); // section z=0
IPoincareMap pm(solver, section);

// Check that the Poincare map is defined on (0,y)
COHOTripletonSet s (IVector({0.,y,0.}));
std::cout << "P(0,y)=" << pm(s,iteration) << std::endl;

// Compute P (0,left(y)) and P (0, right (y))
COHOTripletonSet sl (IVector({0.,y.left(),0.}));
COHOTripletonSet s2(IVector ({0.,y.right(),0.}));
IVector rl = pm(sl,iteration);
IVector r2 = pm(s2,iteration);
// Check that x-coordinate changes the sign
std::cout << "check inclusion? " << ( rl[0]*r2[0]<0 ) << std::endl;
}
int main() {
// Call the algorithm with two approximate periodic points
validateSymPO(1.5259617305036892 + interval(-1,1)x*le-15, 1);
validateSymPO (0.50002564853520548 + interval(-1,1)xle-13, 2);
return O;



Example: attractor in the Rdssler system

Example (Rossler system)
X'=—(y+2), y =x+02y, Z=02+2z(x-57)




Example: attractor in the Rdssler system

Example (Rossler system)
X'=—(y+2), y =x+02y, Z=02+2z(x-57)

Goal:
there is a compact, connected invariant set which has at least
one periodic solution.




Example: attractor in the Rdssler system

Settings:

N={0,y,z):y,ze R,x’ >0} — Poincaré section
P:M—n — Poincaré map




Example: attractor in the Rdssler system

Settings:
N={0,y,z):y,ze R,x’ >0} — Poincaré section
P:M—n — Poincaré map

Y 5

Methodology: Show that there is a rectangle

W = [y1,y2] x [21, Z2]

such that
P(W)c W.

Then A := .o P"(W) is a compact, connected invariant set.



Example: attractor in the Rdssler system

Data (from simulation):

W = [-10.7, —2.3] x [0.028,0.034]

Computations:

o subdivide W = 2% w,

@ check that P(W;) c Wfori=1,..., 200

0.034

0.033 H

0.032 H

z 0.031H

0.030 H




#include <iostream>
#include "capd/capdlib.h"
using namespace capd;

int main() {
IMap vf("var:x,y,z; fun:—(y+z),x+0.2xy,0.2+z% (x-5.7);");
IOdeSolver solver(vf, 20);
ICoordinateSection section(3, 0); // section x=0, x’'>0
IPoincareMap pm(solver, section, poincare::MinusPlus);

// Coordinates of the trapping region
const double B = 0.028, T = 0.034, L = -10.7, R = -2.3;

// Subdivide uniformly onto 200 rectangles
const int N = 160;
bool result = true;
interval p = (interval(R) - interval(L)) / N;
for (int 1 = 0; i < N and result; ++i) {
IVector x ({0., L + interval(i,i+l)*p, interval(B, T)});
COHOTripletonSet s (x);
IVector u = pm(s);
result = result and u[2]>B and u[2]<T and u[l]>L and u[l]<R;
if (!'result)
std::cout << "Inclusion not satisfied:\n" << u << std::endl;
}
std::cout << "Existence of attractor: " << result << std::endl;
return 0;



Case study

existence of chaos



Theorem (Zgliczynski, Nonlinearity 1997)
The Rdéssler system

X=—(y+2z), y=x+02y, Z=02+2z(x—-57)

is chaotic.




Theorem (Zgliczynski, Nonlinearity 1997)
The Rdéssler system

X=—(y+2z), y=x+02y, Z=02+2z(x—-57)

is chaotic.

Here we need “good theorem” of the form:
finite number of inequalities

4

chaos

P. Zgliczynski, Computer assisted proof of chaos in the Hénon map and in the Rdssler
equations, Nonlinearity, 1997, Vol. 10, No. 1, 243-252
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Definition
Let
N = [In, rn] < [bn, tn], M = [y, ra] < [bum, tu]

and let f : N — R? be continuous. We say that N f-covers M,
denoted by

N=—= M,

if
(*] P(N) C R x (bM, tM) and
o either f(Iy x [bn, IN]) < Iy and f(ry X [bn, IN]) > Ty
@ or f(Iy x [bn, tn]) > ry and f(ry x [bn, tn]) < Iy
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Here is a simplified version of theorem by Zgliczynski.

Theorem (Zgliczynski, Nonlinearity 1997)
Assume that N and M are disjoint and

N=LsN=L mL LN

Then for every biinfinite sequence {S;}icz, € {N, M}” there is a
sequence {x;}icz, C R? such that for i € 7 there holds

X € S, f(xi) = Xit1.

Periodic {S;} can be realized by periodic { x;} with the same
principal period.

wE | e



Data (from simulation):

w
M
N

[lw, rw] x Z = [-10.7, —2.3] x [0.028, 0.034]
[, rv] x Z = [~8.4,—7.6] x [0.028,0.034]
[In,rn] X Z = [5.7,—4.6] x [0.028,0.034].



Data (from simulation):
W = [lw,rw] x Z=[-10.7,-2.3] x [0.028,0.034|
M = [ly,ry] x Z=[-8.4,-7.6] x [0.028,0.034]
N = [Iy,ry] x Z =[-5.7,—4.6] x [0.028,0.034].

Note: in the last example we checked P(W) C intW.
Therefore

P2(W) c intW C R x (0.028,0.034)



Data (from simulation):
W = [lw,rw] x Z=[-10.7,—-2.3] x [0.028,0.034]
M = [ly,ry] x Z=[-8.4,-7.6] x [0.028,0.034]
N = [Iy,ry] x Z =[-5.7,—4.6] x [0.028,0.034].

Note: in the last example we checked P(W) C intW.
Therefore

P2(W) C intW C R x (0.028,0.034)

Lemma (computer-assisted)
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Data (from simulation):
W = [lw,rw] x Z=[-10.7,-2.3] x [0.028,0.034|
M = [ly,ry] x Z=[-8.4,-7.6] x [0.028,0.034]
N = [Iy,ry] x Z =[-5.7,—4.6] x [0.028,0.034].

Note: in the last example we checked P(W) C intW.
Therefore

P2(W) C intW C R x (0.028,0.034)

Lemma (computer-assisted)

NENEvEnEN

Inequalities to check:

Ty P?(Iy x [0.028,0.034]) < Iy
Ty P?(ry x [0.028,0.034]) > ry
myP?(Iy x [0.028,0.034]) > ry
myP?(ry x [0.028,0.034]) < Iy
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Rigorous enclosures returned by the routine




#include <iostream>
#include "capd/capdlib.h"
using namespace capd;
using namespace std;

int main () {
IMap vf("var:x,y,z; fun:—(y+z),x+0.2xy,0.2+zx (x-5.7);");
IOdeSolver solver(vf, 20);
ICoordinateSection section(3, 0); // section x=0, x’'>0
IPoincareMap pm(solver, section, poincare::MinusPlus);

// z-coordinate of the trapping region

interval z(0.028,0.034);

// Coordinates of M and N

const double 1M=-8.4, rM=-7.6, 1N=-5.7, rN=-4.6;

COHOTripletonSet LM( IVector({0.,1M,z}) )
COHOTripletonSet RM( IVector({0.,rM,z}) );
COHOTripletonSet LN( IVector({0.,1N,z}) )
COHOTripletonSet RN( IVector({0.,rN,z}) )

// Inequalities for the covering relations N=>N, N=>M, M=>M, M=>N.
cout << "P"2(LM) < 1M: " << ( pm(LM,2)[1] 1M ) << endl;

cout << "P"2(RM) > rN: " << ( pm(RM,2)[1] rN ) << endl;

cout << "P"2(LN) > rN: " << ( pm(LN,2)[1] rN ) << endl;

cout << "P"2(RN) < 1IM: " << ( pm(RN,2)[1] 1M ) << endl;

return O;
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Applications

Homoclinic and heteroclinic bifurcations:
e Shilnikov homoclinic orbits
e Bykov heteroclinic cycles



Shilnikov homoclinic orbits
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Geometry:

@ hyperbolic saddle with 1D unstable(stable) manifold and
2D stable(unstable) manifold with complex eigenvalues
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Shilnikov homoclinic orbits

Geometry:
@ hyperbolic saddle with 1D unstable(stable) manifold and
2D stable(unstable) manifold with complex eigenvalues

@ one branch of 1D unstable manifold ¢ 2D stable manifold

@ exists for an isolated parameter value (codim 1 bifurcation)
(destroyed generically by arbitrary small perturbation)



Shilnikov homoclinic orbits

0 0

Theorem (L. Shilnikov, 1965)

X — saddle equilibrium
A= —p=+iw, p> 0 and~ — eigenvalues of linearization of the
vector field at x




Shilnikov homoclinic orbits

0 0

Theorem (L. Shilnikov, 1965)

X — saddle equilibrium
A= —p=+iw, p> 0 and~ — eigenvalues of linearization of the
vector field at x

If p/~ < 1 then near a homoclinic orbit there are countable
many saddle periodic orbits near homoclinic orbit.
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Transversal heteroclinic orbits
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@ x_ — 1D unstable, 2D stable
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Geometry:
@ x_ — 1D unstable, 2D stable
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@ transversal intersection of two 2D manifolds (robust)



Transversal heteroclinic orbits

Geometry:
@ x_ — 1D unstable, 2D stable
@ x; — 1D stable, 2D unstable
@ transversal intersection of two 2D manifolds (robust)
@ possible infinity) of such connections for a single parameter
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1D-1D heteroclinic orbit

Geometry:
coincidence of branches of two 1D manifolds:

@ x_ — 1D unstable
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Geometry:
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1D-1D heteroclinic orbit

Geometry:
coincidence of branches of two 1D manifolds:

@ x_ — 1D unstable
@ x; — 1D stable
@ codimension 2 bifurcation; in reversible systems codim 1



Example (Michelson system)

X=y,  y=z Z=c-y—x?2




Example (Michelson system)

/

X=y,  y=z Z=c-y—x?2

Theorem (Kuramoto and Tsuzuki, Prog. Theor. Phys.)
There is an explicit 1D-1D connection

x(t) = a(—9tanh(5t) + 11 tanh3(5t)),
where o = 15\/11/193, 3 = 1,/11/19, ¢ = av/2 ~ 0.84952.

4
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Bykov cycle
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Geometry:

pair of heteroclinic orbits
@ x_ — x4 — 1D-1D connection



Bykov cycle
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Geometry:

pair of heteroclinic orbits
@ x_ — x4 — 1D-1D connection
@ x; — x_ —transversal 2D-2D connection



Some computer-assisted results for

Example (Michelson system)




Some computer-assisted results for

Example (Michelson system)

Parameter range:
[Cinins Cmax] = [0.8285,0.861]

D. Wilczak, The Existence of Shilnikov Homoclinic Orbits in the Michelson System:
A Computer Assisted Proof, Found. Comp. Math., Vol.6, No.4, 495-535 (2006).



For all parameter values ¢ € [Cnin, Cmnax| the
Michelson system is ¥4 chaotic.




There exists a countable set of parameter
values Cp, C [Cmin, Cmax), for which the Michelson
system possesses 1D-1D heteroclinic solution.
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Theorem

For all parameter values ¢ € [Cmin, Cmax| there exist countable
infinity of symmetric 2D-2D heteroclinic solutions.

[

y y
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N\ N X ﬂi S 2 h\ 0 X
0 N\ 1/ X
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¢=0.8495172423931 ¢=0.8495172423931 x ¢=0.8495172423931
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For all parameter values ¢ € [Cmin, Cmax| there exist countable
infinity of symmetric 2D-2D heteroclinic solutions.

In consequence, for countable parameter values Cy, there is
countable infinity of geometrically different Bykov cycles.

y y
1 ? ? 1
'
0 X 4? ;: :2 K“ 0 X
N ~ 0 & O X
i IKJ i}
-2 2 -2
-2 -1 0 1 2 2 -2 -1 0 1 2

X c=0.8495172423931 c=0.8495172423931 X c=0.8495172423931
2 2 2
4./\/\ —'"’\/\ 1
t - t
-20 -10 10 20 30 -30 -2Qf 10 0 30 40
-1 -1 -1
-2 -2 -2

Three Bykov cycles for Kuramoto-Tsuzuki parameter ¢ = 15,/22/193

[
-




There exists a countable set of parameter
values Cs C [Cuin, Cmax], for which the Michelson
system possesses a pair of Shilnikov homoclinic
solutions.

e ana P ——N

X c=0.847689291 ¢=0.853999558 X c=0.853993943

g W}Uﬁvﬁk |

q



Source of infinity of Shilnikov and Bykov solutions

1D manifold
e leaves equilibrium
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for a finite (but arbitrarily large) time
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o follows four periodic orbits in arbitrary order
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e Shilnikov: converges back to equilibrium



Source of infinity of Shilnikov and Bykov solutions

1D manifold
e leaves equilibrium
o follows four periodic orbits in arbitrary order
for a finite (but arbitrarily large) time

NS

-2

e Shilnikov: converges back to equilibrium
e Bykov: intersects the symmetry line y =0



Computer-assisted proof of >4 chaos

Methodology:
covering relations by Zgliczynski

(the same we used in the Rdssler system)



Computer-assisted proof of >4 chaos

Methodology:
covering relations by Zgliczynski

(the same we used in the Rdssler system)

Data:
Choose 11 parallelograms on © = {(x,y,z) € R®: z = 0}.
y

N1
N1 Ng
Ns N3
Ne N2 No
N7 N1o

N4




Lemma (computer-assisted)

Put C := [Cuin, Cmax|-
The Poincaré map P : C x © — © is well defined and

continuous on C x U}y N;.




Lemma (computer-assisted)

Put C := [Cuin, Cmax|-
The Poincaré map P C x © — © is well defined and
continuous on C x |J;_4 N;. Moreover, for allc € C
N, 2% N, ) N,
N, P Ng P N, Py, P
N, 225 Ng 220 N, 28 Ng 229 N,
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New theory

Computer-assisted proofs for
e Shilnikov homoclinic orbits
e heteroclinic Bykov cycles
require new “good” abstract theorems.
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Description of the method

h-set N is an object consisting of
@ |N| - compact subset of R” (called support)

@ u(N),s(N) € {0,1,2,...},
such that u(N) + s(N) = n

@ a homeomorphism cy : R” — R” = RU(N) x RS(N) sych that

cn(INJ) = Byny(0,1) x Bgn(0, 1).
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Description of the method

u(N)=1and s(N) =2

Notation:
Ne = Byny(0,1) x Bsn(0,1),

N; = Bu(N)(Oa 1) x BS(N)(O, 1)

N& = Byn(0,1) x 0Bs(n(0, 1)



Description of the method

u(N)=1and s(N) =2

Notation:
Ne = Byny(0,1) x Bsn(0,1),

Ng = 0By(ny(0,1) x Bsny(0,1)
Ng— = U(N)(O, 1) X aBS(N)(O, 1)

N~ =cy'(Ng), N*=cy'(N)
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Settings:

N, M h-sets with u(N) = u(M) = u
f:|N] — R" — continuous,
fC:CMofva - N; — RY x RS(M),

Definition (Gidea, Zgliczynski 2003, DW 2006)

N f-covers M (N == M) iff
1. There exists h: [0, 1] x Ny — RY x RSM) such that

h(O, ) = fc,




Settings:

N, M h-sets with u(N) = u(M) = u
f:|N] — R" — continuous,
fC:CMofva - N; — RY x RS(M),

Definition (Gidea, Zgliczynski 2003, DW 2006)

N f-covers M (N == M) iff
1. There exists h: [0, 1] x Ny — RY x RSM) such that

h(0, -) fe,
h([oa1]7NC_)mMC = (2)7
(0, 1], Ne) N M} = 0.




Settings:

N, M h-sets with u(N) = u(M) =u
f:|N] — R" — continuous,
fC:CMofoCN1 - N; — RY x RS(M),

Definition (Gidea, Zgliczynski 2003, DW 2006)

N f-covers M (N == M) iff
1. There exists h: [0, 1] x Ny — RY x RSM) such that

h(o, ) = fc’

h([0,1],N; )N M, =
h([0,1], No)n M =

)

=S =

2. There exists a linear map A : RY — RY such that

hi(p,q) = (A(p),0)




Settings:

N, M h-sets with u(N) = u(M) =u
f:|N] — R" — continuous,
fC:CMofoCN1 - N; — RY x RS(M),

Definition (Gidea, Zgliczynski 2003, DW 2006)

N f-covers M (N == M) iff
1. There exists h: [0, 1] x Ny — RY x RSM) such that

h(O, ) = fc’

h([0,1],N; )N M, =
h([0,1], No)n M =

)

=S =

2. There exists a linear map A : RY — RY such that

h1(paq) = (A(p)70)7
A(0By(0,1)) < RY\By(0,1)







b : Byny — |N| — continuous.

=cyob.

Put b




b : Byny — |N| — continuous.

Put b = cy o b.

Definition

b — a horizontal disc in N if there exists a homotopy
h: [O, 1] X Bu(N) — N such that




b : Byny — |N| — continuous.

Put b = cy o b.

Definition

b — a horizontal disc in N if there exists a homotopy
h: [O, 1] X Bu(N) — N such that

ho = bc
h1(X) = (X,O), fOfXEBu(N)




b : Byny — |N| — continuous.

Put b = cy o b.

Definition

b — a horizontal disc in N if there exists a homotopy
h: [O, 1] X Bu(N) — N such that

ho = bC
hy (X) = (X, 0), for x € Bu(N)
h(t,x) € Ng, fortel0,1]and x € 9B,y

horizontal and vertical discs in an h-set withu =2, s = 1



Important in reversible systems:
S — symmetry

b[- 1,1] O Fix(S)

b is both horizontal and vertical disc in N



Theorem (Main topological result)

C, Ng, Ny, ..., Nk, k > 0 h-sets, such that
dim(C) = u(C) = u(Np) = - - - = u(Ng).
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Theorem (Main topological result)

C, No, Ny, ..., Ny, k > 0 h-sets, such that

dim(C) = u(C) = u(No) = - - - = u(Ni).

W : C — RIMNo) _ continuous

fi: Cx N; — RIMNiw1) j—=0,... k—1 continuous,
v : Bsn,) — N vertical disc in N.




Theorem (Main topological result)

C, No, Ny, ..., Ny, k > 0 h-sets, such that

dim(C) = u(C) = u(No) = - - - = u(Ni).

W : C — RIMNo) _ continuous

fi: Cx N; — RIMNiw1) j—=0,... k—1 continuous,
v : Bsn,) — N vertical disc in N.

IfC . Ny and forallc € C

No 257y 1) bl

then there exists ¢y € C such that

W(co) € No,
(fi(co, ) o -+~ ofo(Co,-))(W(co)) € Nip1, =0,
(fe—1(Co, ") 0 -+~ o fo(Co,*))(W(co)) € V(Bsny)-




Interpretation:

C — parameters of the system
W(c) — property of the system

(as a point in the phase space)

For some parameter cy:
trajectory of W(cy) intersects

Ny, N, ... N

In the last set:
trajectory of W(cy) hits vertical disc.



1D-1D heteroclinic connections

@ W(c)—second cut of the manifold with section
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1D-1D heteroclinic connections

-18

-19

-20

-21

-22

@ W(c)—second cut of the manifold with section

@ propagate it along four periodic orbits
@ slice of symmetry line y = 0 is vertical disc in Ny, No, Ny!

Ng

N
N1 Ng
N5 N3
Ng N> Ng
N7 N1o

Ny

-01

- 0.05

0.05
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1D-1D heteroclinic connections

@ W(c)—second cut of the manifold with section
@ propagate it along four periodic orbits
@ slice of symmetry line y = 0 is vertical disc in Ny, No, Ny!

1
N
0 X N1y Ng
1
1 Ns N3
Neg N2 Ng
-2
0 X
1 0 1 2 &
-18 N7 N1o
-19 N, W(IC]) -1
20
Ny
-2,
! -2
-22
-01  -005 0 005 01 2 1 0 1 2
Idea:

manifold 2% N, =2 - . - follow 4PO - - - =2 {Ny. No. Na3{y = 0}
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Some heteroclinic connections
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Computational aspects:

e estimate invariant manifold near equilibrium
(there is an explicit Lyapunov function in the half-plane)
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Some heteroclinic connections
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Computational aspects:
e estimate invariant manifold near equilibrium
(there is an explicit Lyapunov function in the half-plane)
@ integrate manifold until Poincaré section and compute
intersection



Some heteroclinic connections

(). ). ()

o

o

-

\/ N/ KL/

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
X c=0.8541622271350 X c=0.8539964511129 X c=0.8476890791596

L§>
—
<&:
ST
W
ﬂ
—
<_
——
«‘
T
*
8
L
R
8l —
|

Computational aspects:

e estimate invariant manifold near equilibrium
(there is an explicit Lyapunov function in the half-plane)

@ integrate manifold until Poincaré section and compute
intersection

e validate covering relations between sets N;, ..., Ny
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2D-2D transversal connections

Idea:

{y = 0}N{N;, No, Ny} == - -follow 4PO - - =25 Ny 25 H L H

@ slice of y = 0 is horizontal disc in Ny, No, Ny
@ transport it following four periodic orbit for some finite time
and stop in Ny
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@ construct H — 3D set centered at equilibrium and spanned
on eigenvectors
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2D-2D transversal connections

Idea:

{y = 0}N{N;, No, Ny} == - -follow 4PO - - =25 Ny 25 H L H

@ slice of y = 0 is horizontal disc in Ny, No, Ny

@ transport it following four periodic orbit for some finite time
and stop in Ny

@ construct H — 3D set centered at equilibrium and spanned
on eigenvectors

@ check H p(_—TS') H, where ¢ flow for some T

@ check covering Ny (p(—_Tﬁ) H forsome T



Transversal heteroclinic connections

0

2
-2

Computational aspects:

o estimate stable manifold near equilibrium
(there is an explicit Lyapunov function in the half-plane)

@ check covering between sets of different dimension
Ny—H=—7H



Shilnikov homoclinic orbits

Idea:

manifold =% N, — - .-follow 4PO ... == N, = H 2 H

This time the C++ program is to long to show it:)



