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ODE (non-autonomous):

x ′(t) = f (t , x(t))

f : R×H → H – vector field

Differential inclusion:

x ′(t) ∈ f (t , x(t),u(t))

f : R×H× U → P(H) – multivalued



Problems that lead to differential inclusions

Piecewise-smooth systems

ẋ(t) = f (t , x(t))

[X ] – the set we
want to propagate

Space-dependent
inclusion



Problems that lead to differential inclusions

Control systems

ẋ(t) = f (x(t),u(t))

f : Rn × U −→ Rn is a C1 in x
U ⊂ Rm is a set of admissible control values
u(t) ∈ U for all t

Time-dependent inclusion



Problems that lead to differential inclusions

Definition (Reachable Set)
Point y is reachable from point x in time T if there exists
control u such that ϕ(T , x ,u) = y .

Reachable set from point x is the set of all point
reachable from x in some time T .

Goal:
Provide algorithm which computes rigorous approximation
for reachable set. Upper and inner aproximation needed.
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Problems that lead to differential inclusions

Stiff ODEs:
Example

x ′ = f (x , y), y ′ = −Ly + g(x , y)

where g ≈ 0 and L� 1.

Solve instead

x ′(t) = f (x(t), y(t)), y(t) ∈ [Y ]

and control [Y ] by analytic estimates



Problems that lead to differential inclusions

Dissipative PDE  Infinite dimensional ODE

Represent a solution as a Fourier series

u(t , x) =
∞∑

k∈−∞
ak (t)eikx

Substituting u(t , x) to PDE we get a system of ODE’s

ȧk (t) = F (a0,a1,a−1,a2,a−2, . . . ), k ∈ Z

Decompose variables as

x(t) = (a0(t),a1(t),a−1(t), . . . ,aN(t),a−N(t))

y(t) = (aN+1(t), ...)

If there are apriori bounds on y(t) then we end up with a
differential inclusion.



Warning:
Perturbation may be time dependent!
Cannot use an ODE solver with interval parameter.

Differential inclusion: Perturbed oscillator
x ′ ∈ y + [−ε, ε], y ′ ∈ −x + [−ε, ε]

Fixed parameter

For fixed δ ∈ [−ε, ε]2

x ′ = y + δ1

y ′ = −x + δ2

All solutions remain BOUNDED!

This is a Hamiltonian system

H(x , y) =
1
2

(
(x − δ2)2 + (y + δ1)2

)
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Differential inclusion: Perturbed oscillator
x ′ ∈ y + [−ε, ε], y ′ ∈ −x + [−ε, ε]

Resonant forcing

x ′′ = −x + ε sin t
All solutions are UNBOUNDED!

x(t) =

(
x(0)− εt

2

)
cos(t) +

1
2

(2x ′(0) + ε) sin(t)

Solution for
x(0) = x ′(0) = 0
ε = 1
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Algorithm



Standing assumptions:

x ′(t) = f (x(t), y(t))

∈ f (x(t), [Wy ])

where
f : Rn × Rm → Rn is a C1 function
y : R→ Rm is measurable and bounded on any
compact interval
we can compute y([t0, t0 + h]) ∈ [Wy ]

Time dependence:
The method works for non-autonomous vector fields.



Notation:
[y0] - set of unknown functions R→ Rm

ϕ(t , x0, y0(t)) - a solution to

x ′ ∈ f (x , [y0(t)]), x(0) = x0

ϕ(t , x0, yc) - a solution to

x ′ = f (x , yc), x(0) = x0, yc = const

One step of the algorithm
INPUT:

tk , hk - current time and a time step
[xk ] ⊂ Rn such that ϕ(tk , [x0], [y0(tk )]) ⊂ [xk ].

OUTPUT:
tk+1 = tk + hk – new time
[xk+1] ⊂ Rn1 such that ϕ(tk+1, [x0], [y0(tk+1)]) ⊂ [xk+1].



One step of the algorithm – main parts

1 Generation of a priori bounds for ϕ
Find a convex and compact set [W2] ⊂ Rn, such that

ϕ([0,hk ], [xk ], [y0([tk , tk + h])]) ⊂ [W2].

2 Computation of ϕ
Fix yc ∈ y0([tk , tk + h])] and use any ODE solver to
compute

ϕ([0,hk ], [xk ], yc) ⊂ [W1] − convex, compact
ϕ(hk , [xk ], yc) ⊂ [xk+1]

3 Add influence of perturbation
Compute [∆] ⊂ Rn, such that

ϕ(tk+1, [x0], [y0(tk+1)]) ⊂ ϕ(hk , [xk ], yc) + [∆]

⊂ [xk+1] + [∆]

=: [xk+1]



Generation of a priori bounds

A priori bound [Wy ] for unknown function:

[y0([tk , tk + h])] ⊂ [Wy ]

Comment:
This is problem dependent.

in piecewise-smooth systems this is known explicitly
in the context of dissipative PDEs the whole story is more
complicated, because [Wy ] is x-dependent – details later

In what follows we assume [Wy ] is computed.



Generation of a priori bounds

A priori bound [W2] for differential inclusion:

ϕ([0,hk ], [xk ], [Wy ]) ⊂ [W2].

Warning:

Perturbation y(t) may not be continuous!
Cannot differentiate and use High Order Enclosure

First Order Enclosure:

[xk ] + [0,hk ] ∗ [f ([W2], [Wy ])]I ⊂ int [W2]

⇓

ϕ([0,hk ], [xk ], [Wy ]) ⊂ [W2]
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Strategy for computing influence of inclusion:

x ′1(t) = f (x1, yc)

x ′2(t) = f (x2, y(t))

∈ f (x2, [Wy ])

where
yc ∈ [Y ] – constant, usually centre of [Wy ]

y(t) ∈ [Wy ] – unknown function

Measure the difference |x1(t)− x2(t)| ⊂ [∆]

Two methods for computing [∆]:
logarithmic norms
component-wise estimates



Propagation of errors in ODEs:

x ′ = f (x)

L - Lipschitz constant

|f (x)− f (y)| ≤ L|x − y |

Then

|x(t)− y(t)| ≤ eLt |x − y |, t ≥ 0

This is very bad estimate
Example

x ′ = −10x
Predicted growth e10t !



Logarithmic norms

Definition
Logarithmic norm of a square matrix A:

µ(A) = lim sup
h→0+

‖Id + Ah‖ − 1
h

,

where ‖ · ‖ is a given matrix norm.

Fact
Logarithmic norm is not a norm.
It can be negative!



Logarithmic norms

Easy to compute:
1 for max norm ‖x‖1

µ(A) = max
j

(ajj +
∑
i 6=j

|aij|)

2 for Euclidean norm ‖x‖2

µ(A) = largest eigenvalue of (A + AT)/2

3 for sum norm ‖x‖∞

µ(A) = max
i

(aii +
∑
j 6=i

|aij|)



Theorem (Hairer, Nørsett, Wanner (1987), Thm. I.10.6)

x(t) – solution to

x ′(t) = f (t , x(t)), x ∈ Rn.

ν(t) : R→ Rn – piecewise smooth.

If

µ

(
∂f
∂x

(t , η)

)
≤ κ(t) for η ∈ [x(t), ν(t)]

|ν ′(t)− f (t , ν(t))| ≤ δ(t).

Then for t ≥ t0 we have

|x(t)− ν(t)| ≤ eL(t)
(
|x(t0)− ν(t0)|+

∫ t

t0
e−L(s)δ(s)ds

)
,

with L(t) =
∫ t

t0
κ(τ)dτ .



Corollary (fundamental estimate):
Z – convex set
x2([0,T ]) ⊂ Z – a smooth function
x1([0,T ]) ⊂ Z – a solution to x ′(t) = f (t , x(t))

µ (Df (Z )) ≤ κ

‖x ′2(t)− f (t , x1(t))‖ ≤ δ

If κ 6= 0 then

|x2(t)− x1(t)| ≤ eκt |x2(0)− x1(0)|+ δ
eκt − 1
κ

If κ = 0 then

|x2(t)− x1(t)| ≤ |x2(0)− x1(0)|+ δt

Example
x ′ = −10x

Predicted growth e−10t



Lemma (Component-wise estimate)
Assume that

f : Rn × Rm → Rn is C1

y : [t0, t0 + h]→ Rm – bounded and measurable
y([t0, t0 + h]) ⊂ [Wy ] – convex, compact
y0 ∈ [Wy ]

x1, x2 : [t0, t0 + h]→ Rn are weak solutions to

x ′1 = f (x1, y0), x1(t0) = x0,

x ′2 = f (x2, y(t)), x2(t0) = x0.

[W1] ⊂ [W2] ⊂ Rn are convex and compact
x1(t) ∈ [W1], x2(t) ∈ [W2] for t ∈ [t0, t0 + h].



Lemma (continuation)
Then for t ∈ [t0, t0 + h] and i = 1, . . . ,n there holds

|x1,i(t)− x2,i(t)| ≤
(∫ t

t0
eJ(t−s)C ds

)
i

,

where

[δ] = {f (x , yc)− f (x , y) | x ∈ [W1], y ∈ [Wy ]},
Ci ≥ sup |[δi ]| , i = 1, . . . ,n

Jij ≥

sup ∂fi
∂xj

([W2], [Wy ]) if i = j ,

sup
∣∣∣ ∂fi
∂xj

([W2], [Wy ])
∣∣∣ if i 6= j .



Influence of inclusion – logarithmic norms

INPUT:
[Wy ] ⊃ [y0(tk , tk + h]) – enclosure for uknown function
[W1] – enclosure for unperturbed system

ϕ([0,h], [xk ], yc) ⊂ [W1]

[W2] ⊃ [W1] enclosure for differential inclusion

ϕ([0,h], [xk ], [Wy ]) ⊂ [W2]

Computation of [∆]:
Fix any norm ‖ · ‖, preferably ‖x‖∞ = maxi |xi |

1. [δ] = [{f (x , yc)− f (x , y) | x ∈ [W1], y ∈ [Wy ]}]I .
2. C = ‖[δ]‖
3. l = right

(
µ( ∂f

∂x ([W2], yc))
)

4. If l 6= 0, then D = C(elh−1)
l .

If l = 0, then D = Ch
5. [∆] = [−D,D]n



Influence of inclusion – component-wise estimates

INPUT:
[Wy ] ⊃ [y0(tk , tk + h]) – enclosure for uknown function
[W1] – enclosure for unperturbed system

ϕ([0,h], [xk ], yc) ⊂ [W1]

[W2] ⊃ [W1] enclosure for differential inclusion

ϕ([0,h], [xk ], [Wy ]) ⊂ [W2]

Computation of [∆]:
1. We set

[δ] = [{f (x , yc)− f (x , y) | x ∈ [W1], y ∈ [Wy ]}]I
Ci = right(|[δi ]|), i = 1, . . . ,n

Jij =

right
(
∂fi
∂xi

([W2], [Wy ])
)

if i = j ,

right
(∣∣∣ ∂fi

∂xj
([W2], [Wy ])

∣∣∣) . if i 6= j .

2. D =
∫ h

0 eJ(h−s)C ds
3. [∆i ] = [−Di ,Di ], for i = 1, . . . ,n



Exponent of a matrix – independent story

Approach 1 (better): solve linear differential equation

Approach 2 (faster): sum Taylor series

Fact: ∫ t

0
eA(t−s)C ds = t

( ∞∑
n=0

(At)n

(n + 1)!

)
· C

Am :=
(At)m

(m + 1)!
.

For the remainder term we will use the following estimate

‖AN+k‖ ≤ ‖AN‖ ·
∥∥∥∥ At

N + 2

∥∥∥∥k



Hence if
∥∥∥ At

N+2

∥∥∥ < 1, then∥∥∥∥∥∑
m>N

Am

∥∥∥∥∥ ≤ ‖AN‖ ·
∥∥∥∥ At

N + 2

∥∥∥∥ · (1−
∥∥∥∥ At

N + 2

∥∥∥∥)−1

= ‖AN‖ ·
‖At‖

N + 2− ‖At‖
=: r

And finally,
∞∑

m=0

Am =
N∑

m=0

Am + [−r , r ]n (1)



Wrapping effect

Representation of a set, for example

[X ] = x0 + C[r0] + B[r ]

Unperturbed systems solved by:

X (h) ⊂ Φ(x0) + (DΦ([X ])C)[r0] + (DΦ([X ])C)[r ] + [R]

Differential inclusion solved by:

X (h) ⊂ Φ(x0) + (DΦ([X ])C)[r0] + (DΦ([X ])C)[r ] + [R] + [∆]

Use the same strategies as for ODEs to propagate
products (provided [∆] is relatively small)



Differential inclusions in CAPD

IMultiMap - class that represents vector field
written in the form f (x) + [y ]

InclRect2Set - representation of a set in the
form of doubleton
CWDiffInclSolver - solver for differential
inclusions that uses component-wise
estimates to compute [∆]

LNDiffInclSolver - solver for differential
inclusions that uses logarithmic norm to
compute [∆]



#include <iostream>
#include "capd/capdlib.h"
using namespace capd;
int main(){

// f is an unperturbed vector field
IMap f("var:x,y;fun:y,(1-xˆ2)*y-x;");
// we define a perturbation e(t) \in [-eps,eps]
IMap perturb("par:e;var:x,y;fun:e,e;");
perturb.setParameter("e", interval(-1e-4, 1e-4));
// We set right hand side of differential inclusion to f + perturb
IMultiMap rhs(f, perturb);
// We set up two differential inclusions (order 20)
// (they differ in the way they handle perturbations)
CWDiffInclSolver cwSolver(rhs, 20, IMaxNorm());
LNDiffInclSolver lnSolver(rhs, 20, IEuclLNorm());
// constant time step, just for this example (not recommended)
cwSolver.setStep(1./128); lnSolver.setStep(1./128);
// Representation of initial condition for diff. incl.
InclRect2Set lnSet({2.,0.}), cwSet({2.0, 0.0});
// We perform some numnber of steps with constant time step
for(int i = 0; i < 128; ++i) {
lnSet.move(lnSolver);
cwSet.move(cwSolver);

}
std::cout.precision(10);
std::cout << "LN method:\n" << IVector(lnSet) << std::endl;
std::cout << "CW method:\n" << IVector(cwSet) << std::endl;

}



/* Output:
LN method:
{[1.507948164, 1.50834031],[-0.7803484048, -0.7800877445]}
CW method:
{[1.508005535, 1.508282938],[-0.7803100148, -0.7801261345]}
*/



#include <iostream>
#include "capd/capdlib.h"
#include "capd/poincare/TimeMap.hpp"
using namespace capd;
using namespace std;
typedef poincare::TimeMap<CWDiffInclSolver> CWTimeMap;
int main(){

// f is an unperturbed vector field
IMap f("var:x,y;fun:y,(1-xˆ2)*y-x;");
// we define a perturbation e(t) \in [-eps,eps]
IMap perturb("par:e;var:x,y;fun:e,e;");
perturb.setParameter("e", interval(-1e-4, 1e-4));
// We set right hand side of differential inclusion to f + perturb
IMultiMap rhs(f, perturb);
// component-wise based solver
CWDiffInclSolver cwSolver(rhs, 20, IMaxNorm());
// class for long-time integration with this solver
CWTimeMap tm(cwSolver);
// Representation of initial condition for diff. incl.
InclRect2Set set({2.,3.});
cout.precision(13);
cout << "phi(1,(2,3))=\n" << tm(1.,set);

}
/* Output:
phi(1,(2,3))=
{[2.300371385204, 2.300624075276],[-0.4798629375598, -0.4797786804589]}
*/



Integration of dissipative PDEs



A Model Problem

Kuramoto-Sivashinsky PDE:

ut = −νuxxxx − uxx + 2uux , ν > 0

where (t , x) ∈ [0,∞)× R

Odd and periodic boundary conditions:

u(t ,0) = u(t ,2π)

u(t ,−x) = −u(t , x)



Fourier expansion

Expand solutions as Fourier series:

u(t , x) =
∞∑

k=−∞

bk(t)eikx

Using PDE and boundary conditions:

ȧk = k2(1−νk2)ak−k
k−1∑
n=1

anak−n +2k
∞∑

n=1

anan+k

where bk = iak and k = 1,2,3, . . ..

Infinite dimensional system of ODEs.



Linearization:

ODE:

ȧk = k2(1−νk2)ak−k
k−1∑
n=1

anak−n +2k
∞∑

n=1

anan+k

Linear part (from Laplacian):

ȧk = k2(1− νk2)ak

k th mode is unstable for k < 1√
ν

k th mode is stable for k > 1√
ν

the modes with k >> 1√
ν

should be irrelevant
for the dynamics



KS PDE – some known analytical results

Foias, Temam:
the existence of global attractor, the functions from
attractor are analytic
(Fourier series converge at geometric rate)

Foias, Nicolaenko, Sell, Temam, Rossa, Jolly:
the existence of finite dimensional inertial manifold
(not of much use in rigorous numerics)

No analytical results dynamics more complicated
than fixed points bifurcating from zero solution



Some computer-assisted proofs for KS PDE

There are several computer-assisted proofs concerning
dynamics of the KS PDE.

branches of steady states
attracting periodic orbits
hyperbolic periodic orbits
connecting orbits between steady states
chaos

Goal:
give some details of computer-assisted proof of

Theorem (Zgliczyński)
There are periodic solutions (both stable and unstable) for
various parameter values ν ≈ 0.1215, 0.1212, 0.125,
0.032, 0.02991



Methodology:
Poincaré map for finite dimensional projection:

Πm := {(a1, . . . ,am) : a1 = a3}, Pm : Πm → Πm

periodic points for finite dimensional projection:
show that there is M > 0 such that for all m > M there is a
fixed point xm for Pm

convergence:
using some compactness argument show that xm has a
convergent subsequence to a fixed point for full infinite
dimensional Poincaré map.



General idea of integration of dissipative PDEs

Impose the following structure of PDE:

ut = Lu + N(u,Du, . . . ,Dr u),

where
u ∈ R, x ∈ T = R/2π
L – linear operator
N – polynomial
Dsu denotes s-th order derivative of u
L is diagonal in the Fourier basis {eikx}k∈Z

Leikx = λkeikx

and the eigenvalues λk satisfy

λk = −v(|k |)|k |p

0 < v0 ≤ v(|k |) ≤ v1, for |k | > K−
p > r

The last assumption is crucial:
for large k linear part dominates nonlinear near ak = 0.



Corresponding ODE in the Fourier basis:

u(t , x) =
∑

k

uk(t)eikx

duk

dt
= λkuk + Nk(u), for all k ∈ Z

Split u = (p,q):
p ∈ X - finite dimensional part which contain
observed relevant dynamics
q ∈ T ⊂ X⊥ - infinite dimensional compact
tail on which the dynamics is strongly
contracting



Evolution of p and q

Dynamics in X– differential inclusion:
dp
dt
∈ P(Lp + N(p + T )), p ∈ X

where P is a projection onto X .

Dynamics in T– infinite set of inequalities:

λkuk + N−k <
duk

dt
< λkuk + N+

k

where N±k are computable constants.

Consistency:
T is varying in time. We need some consistency
conditions in order to integrate differential
inclusion.



Notation: H – Hilbert space,
e1,e2, . . . – an orthogonal basis in H
Xm - subspace spanned by e1, . . . ,em
Pm,Qm – projections onto Xm and X⊥m

pm = Pma := (a1,a2, . . . ,am)

qm = Qma := (am+1,am+2, . . .)

Vector field:

ȧ = F (a) = L(a) + N(a)

Problem:
F is not continuous, with dense domain in H.

Standing (admissibility) assumption:
Fk ◦ Pn is a C1-function for n, k ∈ N



The method of self-consistent bounds (special case)

Fix 0 < m ≤ M (integers)

Definition
(W ,T ,m,M) is a self-consistent a-priori bounds for F if:

W ⊂ Xm is a compact set and
T =

∏
k>m Tk , where Tk = [a−k ,a

+
k ] (T=tail)

Moreover, the following three conditions are satisfied.
[C1] For k > M there holds 0 ∈ Tk .
[C2] Let âk := max |a±k | for k > m. Then∑

k>m â2
k <∞. In particular

W ⊕ T ⊂ H

[C3] The function u → F (u) is continuous on
W ⊕ T ⊂ H. Moreover,

∑
k∈I>m

f̂ 2
k <∞, where

f̂k = max {|Fk (u)| : u ∈W ⊕ T} .



The method of self-consistent bounds (special case)

Definition
(W ,T ,m,M) is topologically self-consistend
bound for F if additionally

[C4]

ak = a+
k ⇒ ȧk < 0

ak = a−k ⇒ ȧk > 0

C1, C2, C3 – convergence
C4 – isolation and a priori bounds



Finite representation of W ⊕ T

W – finite dimensional object.
(doubleton, tripleton, etc.)

Polynomial decay of tail:

|a±k | = C/ks

C ≥ 0 and s ≥ 2

Geometric decay of tail:

|a±k | = Cqk

C ≥ 0 and 0 < q < 1



Why is it possible to obtain rough enclosure?

Recall the form

ut = Lu + N(u,Du, . . . ,Dr u)

Lemma (bound for nonlinear part)

If |ak | ≤ C/ks, |a0| ≤ C and s > r then there exists D = D(C, s)

|Nk | ≤
D

ks−r , |N0| ≤ D

Lemma (Isolation)

Assume L(a)k = −kpak , p > r . If |ak | ≤ C
ks , |ak0 | = C

ks
0
, then

d |ak0 |
dt

≤ −|k0|p|ak0 |+ |Nk0(a)| ≤

−C|k0|p−s + D|k0|r−s



Rough enclosure - data

INPUT:
a = (ak)k>0 = ([X ],C, s), i.e. |ak | ≤ C/ks

h > 0 – time step

OUTPUT:
W = (Wk)k>0 = ([Y ],D, s0) such that

a([0,h]) ⊂W



Rough enclosure - algorithm

Set W := a

repeat (possible infinite loop):
1 enlarge slightly the constant C in W

(there are some heuristics)
2 compute bound for nonlinear part [N−k ,N

+
k ] := Nk (W )

(finite dimensional part + analytic estimates)
3 set finite part [Y ] = enclosure for differential inclusion

(finite dimensional Galerkin projection + the above estimate on nonlinear part)

until d |ak |
dt (W ) < 0 for all k > m

Result:
If the above stops, then we obtain

tail T which is forward invariant over the time step
[Y ] – enclosure for differential inclusion

Apparent problem:
Decay power s0 in obtained enclosure is smaller than s in the
initial condition.



Tail evolution

For k > m we have

λkak + N−k <
dak

dt
< λkak + N+

k ,

Set

b±k =
N±k
−λk

Decay of tail coefficients:

T (h)±k =
(
T (0)±k − b±k

)
eλk h + b±k

Note that
|b±k | ≤ D/ks−r+p

where
p – decay of eigenvalues λk
r – order of derivative in nonlinear term

Smoothing effect:
If p > r then we can even improve decay power.



Periodic orbits in the KS-equation

Important property of the algorithm:
PDE integrator computes simultaneously solutions to all
n-dimensional Galerkin projections with n > m.

Attracting periodic orbit:
P – Poincaré map
B = W ⊕ T – set on section
If P(B) ⊂ B then

for all n > m finite dimensional flow induced by Galerkin
projection has a periodic orbit xn (Brouwer theorem)
B – is a compact set in infinite dimensional space
x – condensation point of xn



Periodic point for KS-equation ν = 0.127

Theorem (Zgliczyński, Symmetric attracting orbit)

Let u0(x) =
∑10

k=1−2ak sin(kx), where ak are given in table
below. There exists a function u∗(t , x) , the classical solution of
KS for ν = 0.127, such that

‖u0 − u∗(0, ·)‖L2 < 8.1 · 10−4,

‖u0 − u∗(0, ·)‖C0 < 6.5 · 10−4

such that u∗ is periodic with respect to t.

Coordinates of u0:
a1 = 2.012088e − 01 a2 = 1.289978
a3 = 2.012152e − 01 a4 = −3.778654e − 01

a5 = −4.231056e − 02 a6 = 4.316137e − 02
a7 = 6.940373e − 03 a8 = −4.156441e − 03

a9 = −7.945097e − 04 a10 = 3.315994e − 04

Proof uses Brouwer Thm. and rigorous integration of KS-PDE



Periodic point for KS-equation ν = 0.1215

Theorem (Zgliczyński, symmetric unstable orbit)

Let u0(x) =
∑11

k=1−2ak sin(kx), where ak are given in table
below. There exists a function u∗(t , x) , the classical solution of
KS for ν = 0.1215, such that

‖u0 − u∗(0, ·)‖L2 < 1.27 · 10−3,

‖u0 − u∗(0, ·)‖C0 < 8.26 · 10−4

such that u∗ is periodic with respect to t.

Coordinates of u0:
a1 = 2.450027e − 01 a2 = 1.041500e + 00
a3 = 2.449985e − 01 a4 = −2.760754e − 01

a5 = −4.371320e − 02 a6 = 2.531380e − 02
a7 = 6.345919e − 03 a8 = −1.996779e − 03

a9 = −6.177148e − 04 a10 = 1.184863e − 04
a11 = 5.269771e − 05

Proof uses Miranda Thm. and rigorous integration of KS-PDE,
the orbit is apparently unstable



Viscous Burgers equation case study

Example (Burgers equation)

ut (t , x) + u(t , x) · ux (t , x)− νuxx (t , x) = F(t,x)

where t ∈ [t0,∞), x ∈ R and

u(t , x) = u(t , x + 2π), t ∈ [t0,∞), x ∈ R
F (t , x) = F (t , x + 2π), t ∈ R, x ∈ R
u(t0, x) = u0(x), t0 ∈ R, x ∈ R

where ν > 0.

Goal:
show that for a non-trivial forcing F there is globally attracting
fixed point in some class of initial conditions.



Some properties of the equation

Equation in Fourier basis

dak

dt
= −i

k
2

∑
k1∈Z

ak1 · ak−k1+λkak +fk (t), t ∈ [t0,∞), k ∈ Z,

Global existence and uniqueness for real solutions.

ak = a−k , fk (t) = fk (t) for t ∈ R.

Energy absorbing l2 ball

d E({ak})
d t

< 0, as long as E({ak}) >
supt∈R E({fk (t)})

ν2



Theorem (Cyranka)

For ν = 2 and f ∈ S2, where

S2 = {x 7→ p(x) + q(x) + r(x)}

p(x) = −0.6 sin(x) + 0.7 cos(2x) + 0.7 sin(2x)− 0.8 cos(3x)− 0.8 sin(3x)

q(x) = sin(t) [−0.6 cos(x) + 0.7 cos(2x) + 0.7 sin(2x)− 0.8 cos(3x)− 0.8 sin(3x)]

r(x) =
3∑

k=1

βk (t) sin(kx) + γk (t) cos(kx), βk (t), γk (t) ∈
[
−5 · 10−5, 5 · 10−5

]
∀ t ,

there exists a classical solution defined on R which attracts exponentially any initial
data u0 satisfying u0 ∈ C4 and

∫ 2π
0 u0(x) dx = π.



Three steps of the proof

Methodology

tp - period of dominant part of nonautonomous part of forcing.



Calculate the Lipschitz constant of Φtp on W0 using the interval
enclosure

[W ] :=
n⋃

i=0

[ti , ti+1]× [ϕ (ti , [0, ti+1 − ti ], [xi ])] .

Lipschitz constant of Φtp is bounded by

L = Cel , l =
n∑

i=0

li · (ti+1 − ti)Pi 7→i+1,

where li are Logarithmic norms calculated locally on each part
of [W ].

If l < 0 then the existence of a locally attracting orbit within W is
claimed.


