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8 Case study:

bifurcations of Halo orbits in the CR3BP
stability of elliptic solutions: invariant tori



C1 Solvers



Variational equation

Problem to solve:

x ′(t) = f (x(t)) − main ODE
V ′(t) = Df (x(t)) · V (t) − variational equation

or:

V (t) = Dxϕ(t , x)

Initial conditions:

x(0) ∈ [X ]

V (0) ∈ [V ] often [V ] = {Id}
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Example (van der Pol oscillator)

x ′ = y , y ′ = (1− x2)y − x

Full C1 system

x ′ = y
y ′ = (1− x2)y − x
V ′11 = V21

V ′12 = V22

V ′21 = V21(1− x2)− V11(1 + 2xy)

V ′22 = V22(1− x2)− V12(1 + 2xy)

One can apply any C0 solver to the above system but ...

Complexity problem

Solvers (at least VNODE, CAPD) are O
(

dimension3
)

.
(to reduce wrapping effect)
For variational equations this gives O((dimension2)3).



Example (van der Pol oscillator)

x ′ = y , y ′ = (1− x2)y − x

Full C1 system

x ′ = y
y ′ = (1− x2)y − x
V ′11 = V21

V ′12 = V22

V ′21 = V21(1− x2)− V11(1 + 2xy)

V ′22 = V22(1− x2)− V12(1 + 2xy)

One can apply any C0 solver to the above system but ...

Complexity problem

Solvers (at least VNODE, CAPD) are O
(

dimension3
)

.
(to reduce wrapping effect)
For variational equations this gives O((dimension2)3).



Example (van der Pol oscillator)

x ′ = y , y ′ = (1− x2)y − x

Full C1 system

x ′ = y
y ′ = (1− x2)y − x
V ′11 = V21

V ′12 = V22

V ′21 = V21(1− x2)− V11(1 + 2xy)

V ′22 = V22(1− x2)− V12(1 + 2xy)

One can apply any C0 solver to the above system but ...

Complexity problem

Solvers (at least VNODE, CAPD) are O
(

dimension3
)

.
(to reduce wrapping effect)
For variational equations this gives O((dimension2)3).



Example (van der Pol oscillator)

x ′ = y , y ′ = (1− x2)y − x

Full C1 system

x ′ = y
y ′ = (1− x2)y − x
V ′11 = V21

V ′12 = V22

V ′21 = V21(1− x2)− V11(1 + 2xy)

V ′22 = V22(1− x2)− V12(1 + 2xy)

One can apply any C0 solver to the above system but ...

Complexity problem

Solvers (at least VNODE, CAPD) are O
(

dimension3
)

.
(to reduce wrapping effect)
For variational equations this gives O((dimension2)3).



Structure of variational equation

Fact:

V ′(t) = Df (x(t)) · V (t)

is nonautonomous linear in V . Thus

Dxϕ(t + h, x) = Dxϕ(h, ϕ(t , x))Dxϕ(t , x)

It is enough to compute

Dxϕ(h, [X ])

where h is the time step.

P. Zgliczyński, C1-Lohner algorithm, Found. Comp. Math, (2002), 2:429-465
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Structure of variational equation

Φ – numerical method for ODE

ϕ(h, x) ∈ Φ(h, x) + [R]

Wrapping effect reduced by

ϕ(h, [X ]) ⊂ Φ(h, x0) + Dx Φ(h, [X ])([X ]− x0) + [R]

Key observation:

Dxϕ(h, [X ]) ⊂ Dx Φ(h, [X ]) + [RV ]

Dx Φ(h, [X ]) – is already computed in C0 step.

Additional cost:
rough enclosure for variational part
remainder RV for variational part
propagation of V (t) (wrapping effect reduction for V )
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Rough enclosure for variational equation

Fact:
If ϕ(h, [X ]) exists then Dxϕ(h, [X ]) does, too.

Strategy:
[Y ] – enclosure for C0 part

FOE: find [W ] such that

Id + [0,h]Df ([Y ]) · [W ] ⊂ [W ]

HOE: define

[W ] =
r∑

i=0

[V ][r ][0,h]r + [RV ]

and check
[W ][r+1][0,h]r+1 ⊂ [RV ]
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Propagation of matrices

Input:

Dxϕ(h, ϕ(t , x)) ∈ [A]

Dxϕ(t , x) ∈ X0 + C[R0] + B[R]

Then

Dxϕ(t + h, x) ∈ [A]X0 + ([A]C)[R0] + ([A]B)[R]

and use QR-like strategies to propagate products.

Facts
worse control of the wrapping effect
(dependency of V wrt to V is not used)

much faster than direct application of a C0 algorithm
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Numerical methods:

We have to enclose

Dxϕ(h, ϕ(t , x)) ∈ [A]

Taylor method
P. Zgliczyński, C1-Lohner algorithm, Found. Comp. Math, (2002), 2:429-465

[A] =
r∑

i=0

[V ][r ]hr + [RV ]

Hermite-Obreshkov method
I. Walawska, DW, An implicit algorithm for validated enclosures of the solutions to

variational equations for ODEs, Applied Mathematics and Computation, to appear 2016

Ψq,p(h,V ) :=

q∑
k=0

(
p + q − k

p

)
/

(
p + q

p

)
hkV [k ]

Solve for V (h) ∈ [A] using interval Krawczyk method
(The same matrices as for C0 part – no extra cost!)

Ψq,p(−h,V (h))−Ψp,q(h,V (0)) ∈ [RVHO]
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P. Zgliczyński, C1-Lohner algorithm, Found. Comp. Math, (2002), 2:429-465

[A] =
r∑

i=0

[V ][r ]hr + [RV ]

Hermite-Obreshkov method
I. Walawska, DW, An implicit algorithm for validated enclosures of the solutions to

variational equations for ODEs, Applied Mathematics and Computation, to appear 2016

Ψq,p(h,V ) :=

q∑
k=0

(
p + q − k

p

)
/

(
p + q

p

)
hkV [k ]

Solve for V (h) ∈ [A] using interval Krawczyk method
(The same matrices as for C0 part – no extra cost!)

Ψq,p(−h,V (h))−Ψp,q(h,V (0)) ∈ [RVHO]



Numerical methods:

We have to enclose

Dxϕ(h, ϕ(t , x)) ∈ [A]

Taylor method
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Derivatives of Poincaré maps:

Section:

Π = Πα,C = {x : α(x) = 0 ∧ 〈∇α(x); f (x)〉 6= 0 ∧ C(x)}

Return time:
T : Rn → R

Then

α(ϕ(T (x), x)) ≡ 0
⇓

n∑
i=1

∂α

∂xi
(P(x))

(
fi(P(x))

∂T
∂xj

(x) +
∂ϕi

∂xj
(T (x), x)

)
= 0

⇓
∂T (x)

∂xj
= −

〈
∇α(P(x)) ; Dxjϕ(T (x), x)

〉
〈∇α(P(x)) ; f (ϕ(T (x), x))〉
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Derivatives of Poincaré maps:

Given bounds for:
T ([X ]) – from C0 part
P([X ]) – from C0 part
Dxϕ(T ([X ]), [X ])

Compute:
derivatives for return time

∂T
∂xj

(x) = −
〈
∇α(P(x)) ; Dxjϕ(T (x), x)

〉
〈∇α(P(x)) ; f (ϕ(T (x), x))〉

derivatives of Poincaré map

∂Pi

∂xj
(x) =

∂ϕi

∂xj
(T (x), x) +

n∑
k=1

fi(P(x))
∂T
∂xj

(x)
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/** Example of integration of variational equations **/
#include <iostream>
#include "capd/capdlib.h"
using namespace capd;
using namespace std;
int main(){

IMap lorenz("var:x,y,z;fun:10*(y-x),x*(28-z)-y,x*y-8*z/3;");
IOdeSolver solver(lorenz,20); // ODE integrator
ITimeMap tm(solver); // class for long time integration

IVector u({1,5,23});
// representation of initial condition,
// initial condition for variational equations is Id by default
C1HORect2Set set(u);
// integrate until T=2 and print result
cout << "phi(2,u)=" << tm(2.,set) << endl;
// print monodromy matrix
cout << "D_x phi(t,u) = " << (IMatrix)set << endl;

ITimeMap::SolutionCurve solution(0.);
C1HORect2Set s(u);
// integrate and record trajectory
tm(2.,s,solution);
cout << "solution(1) = " << solution(1) << endl;
cout << "D_x solution(1.5) = " << solution.derivative(1.5) << endl;
return 0;

}



/* Output of the program:
phi(2,u)={[3.57516, 3.57516],[-0.797643, -0.797643],[27.9102, 27.9102]}
D_x phi(t,u) = {
{[-1.95841, -1.95841],[-3.28406, -3.28406],[-0.614346, -0.614346]},
{[1.17314, 1.17314],[1.71972, 1.71972],[0.813136, 0.813136]},
{[-4.75217, -4.75217],[-7.68436, -7.68436],[-2.00251, -2.00251]}
}
solution(1) = {[11.8084, 11.8084],[16.4144, 16.4144],[25.3, 25.3]}
D_x solution(1.5) = {
{[0.974059, 0.974059],[1.87338, 1.87338],[-0.125996, -0.125996]},
{[-0.276187, -0.276187],[-0.249576, -0.249576],[-0.470697, -0.470697]},
{[3.59364, 3.59364],[6.48145, 6.48145],[0.30862, 0.30862]}
}*/



/** Example of computation of derivative of Poincare map **/
#include <iostream>
#include "capd/capdlib.h"
using namespace capd;
using namespace std;
int main(){

cout.precision(5);
IMap lorenz("var:x,y,z;fun:10*(y-x),x*(28-z)-y,x*y-8*z/3;");
IOdeSolver solver(lorenz,20); // ODE integrator
ICoordinateSection section(3,2,27.); // section is z=27
IPoincareMap pm(solver,section);

C1HORect2Set set(IVector({1,5,27}));
IMatrix Dphi(3,3);
IVector P = pm(set,Dphi);
// recompute derivative of flow to derivative of Poincare map
IMatrix DP = pm.computeDP(P,Dphi);
cout << "P(1,5,27)=" << P << endl;
cout << "DP(1,5,27)=" << DP << endl;

}
/* Output:
P(1,5,27)={[11.361, 11.361],[14.338, 14.338],[27, 27]}
DP(1,5,27)={
{[-0.19415, -0.19415],[-0.46759, -0.46759],[-0.087997, -0.087997]},
{[-0.4121, -0.4121],[-0.96593, -0.96593],[-0.18836, -0.18836]},
{[-1.37e-13, 1.3706e-13],[-5.2713e-13, 5.2758e-13],[-2.5335e-13, 2.5335e-13]}
}
*/



Case study

hyperbolic periodic orbits
branches of periodic orbits



Example (Toy example: Lorenz system)

x ′ = 10(y − x), y ′ = x(28− z)− y , z ′ = xy − 8z/3

Goal: prove that there is a hyperbolic periodic orbit
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Methodology:
Poincaré map

Π = {(x , y ,27) : x , y ∈ R}, P : Π→ Π

Prove (interval Newton operator) that the function

f (u) := P4(u)− u

has zero
Data:

u0 = (−2.14737,2.07805)

[r ] = ([−10−5,10−5], [−10−5,10−5])

Check

[N] := −
(

P4(u0 + [r ])− Id
)−1
·
(

P4(u0)− u0

)
⊂ [r ]

Compute eigenvalues of DP4(u0 + [r ])
(Could be improved to P4(u0 + [N]))
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int main(){
IMap lorenz("var:x,y,z;fun:10*(y-x),x*(28-z)-y,x*y-8*z/3;");
IOdeSolver solver(lorenz,20); // ODE integrator
ICoordinateSection section(3,2,27.); // section is z=27
IPoincareMap pm(solver,section);
// very rough approximation of a periodic point
IVector u0({-2.14737, 2.07805, 27});
IVector r = IVector({1.,1.,0.})*interval(-1e-5,1e-5);
C0HOTripletonSet s0(u0);
// compute fu0:=Pˆ4(u0)-u0 and project it onto (x,y)
IVector fu0( 2, (pm(s0,4) - u0).begin() );
// compute derivative
C1HORect2Set s1(u0+r);
IMatrix Dphi(3,3);
IVector Pu = pm(s1,Dphi,4);
IMatrix DP = pm.computeDP(Pu,Dphi);
// projection of DPˆ4(u0+r)-Id onto 2D subspace
IMatrix M({{DP(1,1)-1,DP(1,2)},{DP(2,1),DP(2,2)-1}});
// enclose -(DPˆ4(u0+r)-Id)ˆ{-1}*(Pˆ4(u0)-u0)
IVector N = - matrixAlgorithms::gauss(M,fu0);
cout << "validated? " << subset(N,IVector(2,r.begin())) << endl;
cout << "DP=" << IMatrix({{DP(1,1),DP(1,2)},{DP(2,1),DP(2,2)}});
// explicit formula for eigenvalues of a 2x2 matrix
interval t = sqrt(4*DP(2,1)*DP(1,2) + sqr(DP(1,1)-DP(2,2)));
cout << "\nlambda1=" << 0.5*(DP(1,1)+DP(2,2)-t);
cout << "\nlambda2=" << 0.5*(DP(1,1)+DP(2,2)+t);

}



/* Output of the program:
validated? 1
DP={
{[1.01919, 1.0261],[2.72595, 2.74535]},
{[1.37796, 1.38107],[3.68603, 3.69458]}
}
lambda1=[-0.00979719, 0.00979936]
lambda2=[4.70315, 4.72275]

*/



Example (Rössler system)

x ′ = −(y + z), y ′ = x + 0.2y , z ′ = 0.2 + z(x − 5.7)

Goal: localize with high accuracy three periodic orbits
Methodology:

Poincaré map

Π = {(0, y , z) : x , y ∈ R}, P : Π→ Π

Prove (interval Newton operator) that the function

f (u) := Pn(u)− u

has zero

/* Output of the program:
(validated?, accuracy) = true, 7.87471e-41
(validated?, accuracy) = true, 3.35732e-41
(validated?, accuracy) = true, 3.36216e-41 */

Remark 1: one can check that these orbits are of period 1, 2, 3.
Remark 2: accuracy – diameter of returned enclosure
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Example (Rössler system)

x ′ = −(y + z), y ′ = x + 0.2y , z ′ = 0.2 + z(x − 5.7)

Goal: localize with high accuracy three periodic orbits
Methodology:

Poincaré map
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void check(MpFloat y, MpFloat z, int n, double e=1e-22){
MpIMap rossler("var:x,y,z;fun:-(y+z),x+0.2*y,0.2+z*(x-5.7);");
MpIOdeSolver solver(rossler,50); // ODE integrator
MpICoordinateSection section(3,0.); // section is x=0
MpIPoincareMap pm(solver,section, poincare::MinusPlus);
// approximate periodic point and a ball
MpIVector u0({MpInterval(0.),y,z});
MpIVector r({MpInterval(0.),MpInterval(-e,e),MpInterval(-e,e)});
MpC0TripletonSet s0(u0);
// compute Pˆn(u0)-u0 and project it onto (y,z)
MpIVector fu0( 2, (pm(s0,n) - u0).begin() + 1 );
MpC1Rect2Set s1(u0+r); // compute derivative on u0+r
MpIMatrix Dphi(3,3);
MpIVector u = pm(s1,Dphi,n);
MpIMatrix DP = pm.computeDP(u,Dphi);
// projection of DPˆn(u0+r)-Id onto 2D subspace
MpIMatrix M({{DP(2,2)-1.,DP(2,3)},{DP(3,2),DP(3,3)-1.}});
// enclose -(DPˆn(u0+r)-Id)ˆ{-1}*(Pˆn(u0)-u0)
MpIVector N = - matrixAlgorithms::gauss(M,fu0);
cout << boolalpha << "\n(validated?, accuracy) = "

<< subset(N,MpIVector(2,r.begin()+1)) << ", " << maxWidth(N);
}
int main(){
MpFloat::setDefaultPrecision(200);
check("-8.38094174282987645183593","0.02959006063066710383300745",1);
check("-5.42407382266520422640036","0.03108121080787644620332608",2);
check("-6.23315862853797465596029","0.03064011165816057058379228",3);

}



Branches of Halo orbits

in
Circular Restricted Three Body Problem

I. Walawska, DW, Bifurcations and continuation of Halo orbits, in preparation.



Circular Restricted Three Body Problem


ẍ − 2ẏ = ∂Ω(x ,y ,z)

∂x

ÿ + 2ẋ = ∂Ω(x ,y ,z)
∂y

z̈ = ∂Ω(x ,y ,z)
∂z

where

Ω(x , y , z) =
1
2

(x2 + y2) +
1− µ

r1
+
µ

r2

and

r1 =
√

(x + µ)2 + y2 + z2,

r2 =
√

(x − 1 + µ)2 + y2 + z2.
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ẍ − 2ẏ = ∂Ω(x ,y ,z)

∂x
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Properties of the CR3BP

Jacobi integral

C(x , y , z, ẋ , ẏ , ż) = 2Ω(x , y , z)−(ẋ2+ẏ2+ż2).

reversing symmetry

R : (x(t), y(t), z(t)) −→ (x(−t),−y(−t), z(−t))

symmetry S – reflection with respect to z = 0
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Five libration points (all in z = 0 plane)

L1,2 are of saddle × centre × centre type



Planar and vertical Lyapunov orbits near L1



Halo orbits
out of z-plane R-symmetric periodic orbits
which bifurcate from planar Lyapunov family
used in space missions

Goal:
prove that there is a
branch of Halo orbits
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Methodology:
Π = {(x , y = 0, z, ẋ , ẏ , ż) ∈ R6} – Poincaré section
P : Π→ Π – Poincaré map
Halo orbits can be parameterized by z-amplitude

They are R-symmetric, thus exactly twice intersect

Fix(R) = {(x ,0, z,0, ẏ ,0) ∈ Π}

Find zeros of the function f : R3 → R2

f (z, x , ẏ) := π(ẋ ,ż)P(x ,0, z,0, ẏ ,0)
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Methodology:
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Interval Newton Method for parametrized functions

Lemma
Z – interval

W := Z×X×Ẏ := Z×([x0 −∆x , x0 + ∆x ]× [ẏ0 −∆ẏ , ẏ0 + ∆ẏ ])

If

N =

[
x0
ẏ0

]
−
[
D(x ,ẏ)f (W )

]−1
I · f (Z , x0, ẏ0)T ⊂ int(X × Ẏ )

then the solution set to

f (z, x , ẏ) = 0

restricted to W is a graph of a smooth function

Z 3 z → (x(z), ẏ(z)) ∈ X × Ẏ .

Proof: implicit function theorem + interval Newton method



Interval Newton Method for parametrized functions

Lemma
Z – interval
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If

N =

[
x0
ẏ0
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restricted to W is a graph of a smooth function

Z 3 z → (x(z), ẏ(z)) ∈ X × Ẏ .
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Playing with coordinate systems – flatten the curve

Consider the problem f (z,u) = 0 and fix z0 ∈ Z .
New coordinates (z,w)

A := −Duf (z0,u0)−1Dz f (z0,u0)

(z,u) = u(z,w) := (z,w + A(z − z0))

f = 0 ↔ g := f ◦ u = 0

We want to compute

N = w0 − [Dwg(Z ,W )]−1
I g(Z ,w0).

Compute:

Dwg(Z ,W ) ⊂ Duf (Z ,U)

g(Z ,w0) ⊂ g(z0,w0) + Dzg(Z ,w0) · (Z − z0)

where

Dzg(Z ,w0) ⊂ Dz f (Z ,u0) + Duf (Z ,u0)A

Dzg(Z ,w0) ⊂ Dz f (Z ,u0)−
(

Duf (Z ,u0)Duf (z0,u0)−1
)

Dz f (z0,u0).

which is expected to be very close to zero!
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Theorem (Partial result about Halo orbits)
Fix µ = 0.0009537 – corresponding to Sun-Jupiter system.
There is a smooth branch of Halo orbits

Z 3 z → (x(z),0, z,0, ẏ(z),0) ∈ Π

Z := [−0.083664781253492707,0.083664781253492707]

Remark: there is a bifurcation for z = 0 . Higher order
derivatives are used to get the result for z ≈ 0 – details later.
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Boundary value problems for ODEs of any type

Second order equation:

x ′′ = f (x , x ′)

BVPs can be transformed to F (u) = 0

Dirichlet BVP:

x(0) = A, x(T ) = B  F (x ′) = πx
(
ϕ(T , (A, x ′))

)
− B

Neumann BVP:

x ′(0) = A, x ′(T ) = B  F (x) = πx ′ (ϕ(T , (x ,A)))− B

Solve by interval Newton (Krawczyk) method
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Example (Taken from Nakao, J. Math. Anal. App. 1992)

x ′′ = −0.1x − 0.1x3 − 0.4464 cos t

Find solution to x ′(0) = x ′(2π) = 0.

π
2

π
3π
2 2π

t

-0.4

-0.2

0.2

0.4

x(t)

Method: solve using interval Newton method

F (r1) = ϕẋ (2π, (−0.5072 + r1,0)) = 0



/** Example of solving BVP: x’(0)=x’(2pi)=0 **/
#include <iostream>
#include "capd/capdlib.h"
using namespace capd;
using namespace std;
int main(){

IMap f("par:a;time:t;var:x,dx;fun:dx,-x*(1+xˆ2)/10 + a*cos(t);");
f.setParameter("a",interval(4464)/interval(10000));
IOdeSolver solver(f,20); // ODE integrator
ITimeMap tm(solver); // class for long time integration

IVector u0({-0.5072,0.});
IVector r({interval(-1e-5,1e-5),0.});
C0HOTripletonSet s0(u0);
C1HORect2Set s(u0+r);
// integrate until T=2*pi
IVector y = tm(2.*interval::pi(),s0);
tm(2.*interval::pi(),s);
// solve equation F(r1) := proj_{x’}(phi(2pi,u0+(r1,0))) = 0
interval N = - y[1]/((IMatrix)s)(2,1);
cout << "(N,r1)=(" << N << "," << r[0] << ")"<< endl;
cout << "subset(N,r)? = " << boolalpha << subset(N,r[0]) << endl;
return 0;

}
/* Output:
(N,r1)=([-3.84493e-05, -2.09823e-05],[-0.1, 0.1])
subset(N,r)? = true
*/



Hyperbolic dynamics

hyperbolic horseshoe in the Rössler system
hyperbolic chaotic attractor in the Kuznetsov
system



Hyperbolic systems

Definition
f is uniformly hyperbolic on M iff

TM = Eu ⊕ Es and Eu,Es are Tf -invariant subbundles

Df (x)(Eu
x ) = Eu

f (x), Df (x)(Es
x ) = Es

f (x), for x ∈ M

There are constants c > 0 and 0 < λ < 1 such that

‖Df n(x)v‖ < cλn‖v‖, for v ∈ Es
x , x ∈ M

‖Df−n(x)v‖ < cλn‖v‖, for v ∈ Eu
x , x ∈ M
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Invariant subbundles



Examples of hyperbolic invariant sets

hyperbolic fixed point or periodic orbit.
Finite union of periodic points.

Arnold’s cat map - diffeomorpshism of the
torus S1 × S1

(x , y)→ (2x + y , x + y)
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Examples of hyperbolic attractors

Smale map - defined on a
solid torus T = D2 × S1

s

x
y
α

 =

0.1x + 0.5 cosα
0.1y + 0.5 sinα

2α



Plykin attractor originally
defined on the sphere S2.



Some properties of locally maximal hyperbolic sets

Definition
Λ is locally maximal hyperbolic set for f iff Λ is hyperbolic and
there is an open ngbh U of Λ such that Λ =

⋂
n∈Z f n(U).

structural stability: persist under any C1 perturbation of f ;
no bifurcation occur when the map is C1 perturbed

entropy and number of periodic points persist under
perturbation

periodic points are dense in the set of non-wandering
points (Anosov Closing Lemma)
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Some theoretical tools for proving hyperbolicity
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Theorem

Let Q = DiagonalMatrix{λ, µ} with µ < 0 < λ

N,M disjoint rectangles aligned to the axes

f : N ∪M → R2 is smooth

N f
=⇒ N f

=⇒ M f
=⇒ M f

=⇒ N.

Df (x)T QDf (x)−Q is positive definite for x ∈ N ∪M

Then

H = Inv(f ,N ∪M) is uniformly hyperbolic and the dynamics of f
on H is conjugated to the full shift on two symbols

every binifinite sequence of symbols of the form

(. . . ,A,A, {N,M}k ,B,B, . . .), A,B ∈ {N,M}

is realized by a heteroclinic (or homoclinic) orbit connecting
unique fixed point pA ∈ A and pB ∈ B
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Example (Hyperbolic chaos in the Rössler system)

x ′ = −(y + z), y ′ = x + 0.2y , z ′ = 0.2 + z(x − 5.7)

We already proved:
there is a connected and compact attractor A
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there is an invariant subset
H ⊂ A on which the system
is chaotic
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Goal 1:
Dynamics on H is uniformly hyperbolic with one positive
and one negative Lyapunov exponents. In particular all
periodic orbits in H are hyperbolic

Goal 2:
There are two hyperbolic periodic orbits pN ,pM ∈ H with
low periods

Goal 3:
There is countable infinity of heteroclinic connection
between these orbits in both directions

Goal 4:
There is countable infinity of homoclinic orbits to both
periodic orbits pN and pM .
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Methodology: check the cone conditions

DP2(x)T ·Q · DP2(x)−Q > 0

for x ∈ N ∪M.

Abstract theorem guarantees
every biinfinite sequence of symbols

{N,M}Z

is realized by a unique orbit. In particular there is an
unique fixed point for P2 in N and an unique fixed
point for P2 in M
every “heteroclinic” chain of symbols is realized by a
heteroclinic orbit
dynamics is uniformly hyperbolic
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Data:

M = [lM , rM ]× Z = [−8.4,−7.6]× [0.028,0.034]

N = [lN , rN ]× Z = [−5.7,−4.6]× [0.028,0.034]

Q = DiagonalMatrix{1,−100}
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#include <iostream>
#include "capd/capdlib.h"
using namespace capd;
using namespace std;
bool checkCC(IPoincareMap& pm, double y1, double y2, int N) {

bool res = true;
interval p = (interval(y2) - interval(y1)) / N;
IMatrix Dphi(3,3);
IMatrix Q({{0.,0.,0.},{0.,1,0.},{0.,0.,-100}});
interval returnTime;
for (int i = 0; i < N and res; ++i) {
C1Rect2Set s({0.,y1+interval(i,i+1)*p,interval(0.028,0.034)});
IVector y = pm(s, Dphi, returnTime, 2);
IMatrix DP = pm.computeDP(y,Dphi);
DP = Transpose(DP)*Q*DP - Q;
res = res and DP(2,2)>0 and (DP(2,2)*DP(3,3)-sqr(DP(2,3)))>0;

}
return res;

}
int main(){

IMap vf("var:x,y,z;fun:-(y+z),x+0.2*y,0.2+z*(x-5.7);");
IOdeSolver solver(vf, 20);
ICoordinateSection section(3, 0); // section x=0, x’>0
IPoincareMap pm(solver, section, poincare::MinusPlus);
const double lM=-8.4, rM=-7.6, lN=-5.7, rN=-4.6;
cout << "Cone condition on M: " << checkCC(pm,lM,rM,80) << endl;
cout << "Cone condition on N: " << checkCC(pm,lN,rN,20) << endl;

}



Example (Kuznetsov system)


ẋ = ω0u,
u̇ = −ω0x +

(
A cos(2πt/T )− x2)u + (ε/ω0)y cos(ω0t),

ẏ = 2ω0v ,
v̇ = −2ω0y +

(
−A cos(2πt/T )− y2) v + (ε/2ω0)x2.

ω0 = 2π, A = 5, T = 6, ε = 0.5

Click here to start animation

S.P. Kuznetsov, Example of a Physical System with a Hyperbolic Attractor of the
Smale-Williams Type, Phys. Rev. Lett., 95, 2005, 144101.

pic/solenoid.gif


Conjecture: the system has hyperbolic attractor for

ω0 = 2π, A = 5, T = 6, ε = 0.5

S.P. Kuznetsov and I.R. Sataev, Hyperbolic attractor in a system of coupled
non-autonomous van der Pol oscillators: Numerical test for expanding and contracting
cones, Phys. Lett. A 365, 97–104, (2007).



Theorem
Poincaré map: P(x) = ϕ(T , x), T = 6 (period of vector field).
There is a compact, connected and explicitly given set B such
that

1 P(B) ⊂ B,
2 P is uniformly hyperbolic on A =

⋂
i>0 P i(B)with one

positive and three negative Lyapunov exponents.
3 A is nontrivial continuum.

DW, Uniformly hyperbolic attractor of the Smale-Williams type for a Poincaré map in the
Kuznetsov system, SIAM J. App. Dyn. Sys. 2010, Vol. 9, 1263–1283.
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Cone criterion for hyperbolicity.

the cones are invariant under Df and Df−1, respectively
uniform expansion and contraction in cones

Df

Df-1

x fHxL

Problem:
Computing inverse map for strongly dissipative systems is at
least difficult, perhaps impossible.
We need a theoretical tool for proving hyperbolicity
which does not use inverse map.
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Theoretical background

General settings
M =

⋃N
i=1 Mi , where Mi are compact sets in Rn.

u, s - nonnegative, such that n = u + s
Ci - a linear coordinate system assigned to the set Mi
quadratic form on Rn

Q(x , y) = ‖x‖2 − ‖y‖2, x ∈ Ru, y ∈ Rs.

M =
(
Q, {(Mi ,Ci)}Ni=1

)
is called cubical set with cones.
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Definition

f is strongly hyperbolic onM =
(
Q, {(Mi ,Ci)}Ni=1

)
if for

z ∈ Mi and j = 1, . . . ,N such that f (Mi) ∩Mj 6= ∅ the matrix

[CjDf (z)C−1
i ]T Q[CjDf (z)C−1

i ]−Q

is positive definite.

fcHQN
+Hx2LL

fcHx2L

QM
+H fcHx2LL
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Main tool for hyperbolicity

Theorem
Let

H := Inv(f ,M) =
{

x ∈ M : f i(x) ∈ M, for i ∈ Z
}
.

Then

f is strongly hyperbolic onM =
(
Q, {(Mi ,Ci)}N

i=1

)
⇓

f is uniformly hyperbolic on H
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Verification of strong hyperbolicity

Strategy
1 Step 1. Enclose an invariant set.
2 Step 2. Detect (nonrigorously) periodic

points in the invariant set up to some period.
3 Step 3. Set coordinate system at boxes that

contain a k -periodic point x as a normalized
Jordan basis of Df k(x).

4 Step 4. Propagate coordinate systems from
periodic points to other boxes be means of
the action of derivative of f .

5 Step 5. Verify strong hyperbolicity.
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Graph representation of maps.

f : D ⊂ N → N - a map
Ni - (usually) boxes that cover N

Directed graph G = (V, E) is a graph representation of f iff

f (Ni ∩ D) ∩ Nj 6= ∅ =⇒ (i , j) ∈ E

Clearly we can use interval arithmetic to compute graph
representations of maps.
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Enclosing attractors

“Inner” enclosure - good for attractors.
take a box, say U, from the observed attracting domain
compute Sk = U ∪ f (U) ∪ . . . ∪ f k (U) until Sk+1 = Sk
refine the graph, so that it does not contain vertexes
without incoming edges
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-0.4

-0.2
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0.2

0.4

Enclosure of an invariant set
for the Hénon map

H(x , y) = (1 + y − ax2,bx)

for the classical parameter
values a = 1.4 and b = 0.3.

(Show the program)
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Coordinate systems at periodic points.

Detect cycles in graph: all k -periodic points must
belong to k -cycles.

Using nonrigorous Newton method refine the cycles
to periodic points.

Compute coordinate systems at periodic points.
take x – k-periodic point
take Mi such that x ∈ Mi and the coordinates Ci are not
computed, yet
set Ci as the matrix of normalized eigenvectors of Df k (x).
Columns of Ci are sorted by decreasing absolute value of
the corresponding eigenvalue.
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Spreading of the coordinates over the attractor

N > 1 - parameter

1 Mi - a set with computed Ci
2 x := centre(Mi)
3 xk := f k (x), Ak := Df (xk ), k = 0,1, . . . ,N

4 A := AN · · ·A0 · Ci
5 A := orthonormalize(A)
6 backward propagation: C := (AN · · ·A1)−1 · A

7 normalize columns of C and set C as a coordinate system
in each Mj such that (i , j) ∈ E and Cj is not computed

repeat (1-7) until Ci is computed for all Mi . It can be proved this
procedure always stops if the graph has one strongly
connected component
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Test case: Smale map

s(x , y , t) = (0.1x + 0.5 cos(2πt),0.1y + 0.5 sin(2πt),2t mod 1).
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Found 1 candidate for fixed point, a period 2 orbit and two
period 3 orbits.
Spreading of coordinate systems with N = 2.
Verification of the strong hyperbolicity with

Q =

1 0 0
0 −1 0
0 0 −1


All the computations took less than 1 second.
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Verification of hyperbolicity in the Kuznetsov system

algorithm wall time (h:mm) comments
enclosure of attractor 2:16 on 224 CPUs 7 970 392 boxes

cycles in graph,
max period 6 0:58 on 32 CPUs 2190 cycles found

periodic points,
max period 6 0:06 on 32 CPUs 105 points found

coordinate systems 6:59 on 32 CPUs parameter N = 2
strong hyperbolicity 4:24 on 224 CPUs integration of

C1 computations

Quadratic form:

Q =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1





Periodic orbits in the attractor

Why the attractor is nontrivial?
B - set of boxes that cover the attractor and P(B) ⊂ B.
B is compact connected - we computed homology groups
of the set
therefore A =

⋃
n>0 Pn(B) is compact and connected

It is enough to show that it contains two different points.

Main tool: the Interval Newton operator (integration of
variational equations).
Fixed point – solve

P(x)− x = 0.

Period two point – solve

(P(x)− y ,P(y)− x) = (0,0), x 6= y .

Good approximations for periodic points already computed from
the previous steps. The above solved with the accuracy 10−12.
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Period two point – solve

(P(x)− y ,P(y)− x) = (0,0), x 6= y .

Good approximations for periodic points already computed from
the previous steps. The above solved with the accuracy 10−12.
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Open problem

Plykin type attractor - (Kuznetsov 2009).

ẋ = −2εy2Ω1(x , y , t)
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2 t
)
− x sin

(
π
4 cos π

2 t
))

+
KyΩ2(x , y , t)

(
cos

(
π
4 sin π

2 t
)
− x sin

(
π
4 sin π

2 t
))

sin π
2 t ,
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S.P. Kuznetsov, A non-autonomous flow system with Plykin type attractor,
Communications in Nonlinear Science and Numerical Simulation, 14, 2009, 3487–3491



Partial result

Theorem
For K = 1.9, ε = 0.72 there is a compact, connected set B such
that the Poincaré map defined as a shift along the trajectories
over the period of the vector field is positive invariant on B.



Open problem

Nonrigorous simulation strongly suggests the
attractor is hyperbolic.
We were not able to verify hyperbolicity due to
memory limitations.

Click here to start animation
taken from

http://www.sgtnd.narod.ru/science/hyper/eng/index.htm

pic/see.gif


Cr Solvers



Higher order variational equation

Problem to solve:

x ′(t) = f (x(t)) − main ODE

Compute:

x(t) = ϕ(t , x)

V (t) = Dxϕ(t , x)

H(t) = Dx ,xϕ(t , x)

. . .

Initial conditions:

x(0) ∈ [X ]

V (0) ∈ [V ] often [V ] = {Id}
H(0) ∈ [H] often [H] = 0
· · ·
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Structure of variational equation

Fact: a - multiindex

d
dt

Daϕ(t , x) = Df (x(t)) · Daϕ(t , x) + l .o.t .

is nonautonomous linear.

It is enough to compute

Daϕ(h, [X ])

where h is the time step.
similar strategy for propagation of products as in C1

algorithm.

DW, P. Zgliczyński, Cr -Lohner algorithm, Schedae Informaticae, (2011), 20, 9-46.
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/** Integration of higher order variational equations **/
#include <iostream>
#include "capd/capdlib.h"
using namespace capd;
using namespace std;
int main(){

// last argument specifies maximal derivative
const int degree = 4;
IMap pendulum("time:t;var:x,y;fun:y,-sin(x);",degree);
ICnOdeSolver solver(pendulum,20); // ODE integrator
ICnTimeMap tm(solver); // class for long time integration

IVector u({1,0});
// representation of initial condition,
// initial condition for first order equations is Id by default
// initial condition for higher order equations is zero by default
CnRect2Set s(u,degree);
// integrate until T=2 and print result
cout << "phi(2,u)=" << tm(2.,s) << endl;
// print one particular derivative
cout << "D_{x,x,y}phi_y(t,u)=" << s(1,Multipointer{0,0,1}) << endl;
// print vector of derivatives
cout << "D_{x,x,y}phi(t,u)=" << s(Multipointer{0,0,1}) << endl;
// print all derivatives
cout << s.currentSet().toString();
return 0;

}



/* Output of the program:
phi(2,u)={[-0.184719, -0.184719],[-0.899896, -0.899896]}
D_{x,x,y}phi_y(t,u)=[0.170001, 0.170001]
D_{x,x,y}phi(t,u)={[0.275761, 0.275761],[0.170001, 0.170001]}

value :
{0,0} : {[-0.1847185233641392, -0.1847185233641322],[-0.8998955756501549, -0.8998955756501478]}

Taylor coefficients of order 1 :
{1,0} : {[-0.06176642316703151, -0.06176642316701867],[-0.8893742085818004, -0.8893742085817878]}
{0,1} : {[1.100408851124127, 1.100408851124144],[-0.3452482404138276, -0.3452482404138115]}

Taylor coefficients of order 2 :
{2,0} : {[0.3689193486997759, 0.3689193486997865],[0.04249736468215068, 0.04249736468215968]}
{1,1} : {[0.4033277498641553, 0.4033277498641712],[0.1690697521607405, 0.1690697521607553]}
{0,2} : {[0.1918365535108403, 0.1918365535108501],[0.1289933705787395, 0.1289933705787497]}

Taylor coefficients of order 3 :
{3,0} : {[0.150665473381, 0.150665473381008],[0.05124435888808759, 0.05124435888809471]}
{2,1} : {[0.2757613878113712, 0.2757613878113923],[0.1700006453873801, 0.1700006453874003]}
{1,2} : {[0.2439399987249618, 0.2439399987249848],[0.2193554100897172, 0.2193554100897407]}
{0,3} : {[0.1213946818536904, 0.1213946818537009],[0.2022733384746434, 0.2022733384746553]}

Taylor coefficients of order 4 :
{4,0} : {[0.0250738578068196, 0.02507385780682729],[0.03541789401056386, 0.03541789401057061]}
{3,1} : {[0.09187471323467304, 0.09187471323470189],[0.1229862385399809, 0.1229862385400072]}
{2,2} : {[0.1195564021283123, 0.1195564021283555],[0.2380738082223464, 0.2380738082223872]}
{1,3} : {[0.06018389101213596, 0.06018389101216642],[0.1614399291087914, 0.1614399291088211]}
{0,4} : {[0.01389092366608679, 0.01389092366609591],[0.05235840754075258, 0.05235840754076206]}

}*/



/** Higher order derivatives of Poincare map **/
#include <iostream>
#include "capd/capdlib.h"
using namespace capd;
using namespace std;

int main()
{

// Instance of the vector field, ODE solver, Poincare map
int degree = 4;
IMap vf("var:x,y;fun:y,(1-xˆ2)*y-x;",degree);
ICnOdeSolver solver(vf, 20);
ICoordinateSection section(2, 1);
ICnPoincareMap pm(solver, section, poincare::PlusMinus);

// Take a ball centred at approximate periodic point
IVector u({2.0086198608748433,0.});
CnRect2Set s(u,degree);
// data structure to store Taylor coefficients
IJet jet(2,degree);
// Call routine that computes rigorously Poincare map
IVector y = pm(s,jet);
// recompute Taylor coeffs of flow to Taylor coeffs of P. Map
jet = pm.computeDP(jet);
// print derivatives
cout << jet.toString();
return 0;

}



/*Output:

value :
{0,0} : {[2.008619860874834, 2.008619860874853],[-1.674225432758842e-13, 1.674225432758742e-13]}

Taylor coefficients of order 1 :
{1,0} : {[0.0008596950592716135, 0.000859695067937556],[-1.204325528192385e-11, 1.20436993711337e-11]}
{0,1} : {[-1.593917860307063e-12, 1.594439786883827e-12],[-4.428124533717437e-12, 4.428013511414974e-12]}

Taylor coefficients of order 2 :
{2,0} : {[-0.002296951610312573, -0.00229695134283375],[-4.308036150035832e-10, 4.308036150035832e-10]}
{1,1} : {[-9.810905124258537e-11, 9.81092732871903e-11],[-3.156544470250822e-10, 3.156544470250822e-10]}
{0,2} : {[0.0002140014165422138, 0.0002140014526664741],[-5.804126623765171e-11, 5.804126623765171e-11]}

Taylor coefficients of order 3 :
{3,0} : {[0.002994126624442359, 0.002994132727242985],[-1.11234532695903e-08, 1.11234532695903e-08]}
{2,1} : {[-3.353211717694936e-09, 3.353195286394172e-09],[-1.219278639164045e-08, 1.219278636388488e-08]}
{1,2} : {[-0.001250089892867389, -0.001250087427980784],[-4.471445103071403e-09, 4.471445103071403e-09]}
{0,3} : {[-0.0002155374854198236, -0.0002155371826957891],[-5.482866533475702e-10, 5.482866545040526e-10]}

Taylor coefficients of order 4 :
{4,0} : {[-0.001681475844898417, -0.001681360601371844],[-2.323861542456266e-07, 2.323861542826341e-07]}
{3,1} : {[-8.434543574425733e-08, 8.434541561221314e-08],[-3.390407211645297e-07, 3.390407211645297e-07]}
{2,2} : {[0.002858275980980476, 0.002858368851661084],[-1.861387415591498e-07, 1.861387415591498e-07]}
{1,3} : {[0.001081020162548411, 0.0010810429386651],[-4.554923604960237e-08, 4.554923604960237e-08]}
{0,4} : {[8.862824145262416e-05, 8.863033955809182e-05],[-4.189210744502218e-09, 4.189210746815183e-09]}

*/



Applications
Elliptic orbits and invariant tori



Linear stability in Hamiltonan systems

linear stability of periodic solutions t → u(t)
m

linear stability of fixed point u0 of a Poincaré map P
m

σ(DP(u0)) ⊂ S1

Planar case: eigenvalues of DP(u0) are
either real
or complex conjugated

Enough to check: det(DP(u0)− λId) = 0 has no real solutions.

Fact:
Linear stability does not imply stability
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m

σ(DP(u0)) ⊂ S1

Planar case: eigenvalues of DP(u0) are
either real
or complex conjugated

Enough to check: det(DP(u0)− λId) = 0 has no real solutions.

Fact:
Linear stability does not imply stability



Linear stability in Hamiltonan systems

linear stability of periodic solutions t → u(t)
m

linear stability of fixed point u0 of a Poincaré map P
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Theoretical tool

Theorem (Moser)

Consider an analytic area preserving map f : R2 → R2,
f (r , s) = (r1, s1) where

r1 = r cosα− s sinα + O2l+2,

s1 = r sinα + s cosα + O2l+2,

α =
l∑

k=0

γk

(
r2 + s2

)k

and O2l+2 denotes convergent power series in r , s with terms of
order greater than 2l + 1, only.

If at least one of γ1, . . . , γl is not zero then the origin is a stable
fixed point for f . Moreover, in any neighborhood U containing
zero there exists an invariant curve for f around the origin
contained in U.
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Birkhoff normal form

Algorithm for computing Birkhoff normal form:

Input:
truncated complex polynomial of an area preserving map

f (x , y) = (λx , λy) + (f2,x (x , y), f2,y (x , y)) + h.o.t .

linear part is elliptic, i.e. |λ| = 1
no strong resonances (λi 6= 1 for i = 1,2,3,4)

Output:
explicit and area preserving change of coordinates

(x , y) = (z,w) + (C2,x (z,w),C2,y (z,w)) + h.o.t .

that brings f to its (truncated) normal form

F (z,w) =
(

zei(γ0+γ1zw),we−i(γ0+γ1zw)
)

+ h.o.t .



Birkhoff normal form

Algorithm for computing Birkhoff normal form:

Input:
truncated complex polynomial of an area preserving map

f (x , y) = (λx , λy) + (f2,x (x , y), f2,y (x , y)) + h.o.t .

linear part is elliptic, i.e. |λ| = 1
no strong resonances (λi 6= 1 for i = 1,2,3,4)

Output:
explicit and area preserving change of coordinates

(x , y) = (z,w) + (C2,x (z,w),C2,y (z,w)) + h.o.t .

that brings f to its (truncated) normal form

F (z,w) =
(

zei(γ0+γ1zw),we−i(γ0+γ1zw)
)

+ h.o.t .



Birkhoff normal form

Algorithm for computing Birkhoff normal form:

Input:
truncated complex polynomial of an area preserving map

f (x , y) = (λx , λy) + (f2,x (x , y), f2,y (x , y)) + h.o.t .

linear part is elliptic, i.e. |λ| = 1
no strong resonances (λi 6= 1 for i = 1,2,3,4)

Output:
explicit and area preserving change of coordinates

(x , y) = (z,w) + (C2,x (z,w),C2,y (z,w)) + h.o.t .

that brings f to its (truncated) normal form

F (z,w) =
(

zei(γ0+γ1zw),we−i(γ0+γ1zw)
)

+ h.o.t .



Birkhoff normal form

Algorithm for computing Birkhoff normal form:

Input:
truncated complex polynomial of an area preserving map

f (x , y) = (λx , λy) + (f2,x (x , y), f2,y (x , y)) + h.o.t .

linear part is elliptic, i.e. |λ| = 1
no strong resonances (λi 6= 1 for i = 1,2,3,4)

Output:
explicit and area preserving change of coordinates

(x , y) = (z,w) + (C2,x (z,w),C2,y (z,w)) + h.o.t .

that brings f to its (truncated) normal form

F (z,w) =
(

zei(γ0+γ1zw),we−i(γ0+γ1zw)
)

+ h.o.t .



Birkhoff normal form

Algorithm for computing Birkhoff normal form:

Input:
truncated complex polynomial of an area preserving map

f (x , y) = (λx , λy) + (f2,x (x , y), f2,y (x , y)) + h.o.t .

linear part is elliptic, i.e. |λ| = 1
no strong resonances (λi 6= 1 for i = 1,2,3,4)

Output:
explicit and area preserving change of coordinates

(x , y) = (z,w) + (C2,x (z,w),C2,y (z,w)) + h.o.t .

that brings f to its (truncated) normal form

F (z,w) =
(

zei(γ0+γ1zw),we−i(γ0+γ1zw)
)

+ h.o.t .



Homological equation

Change of variables

(x , y) = C(z,w) := (z,w) + (C2,x (z,w),C2,y (z,w)) + · · ·

Solve functional equation

f (C(z,w)) = C(F (z,w))

Comparing first order derivatives we get

D(f ◦ C)(0,0) = DiagMatrix(λ, λ)

and
D(C ◦ F )(0,0) = DiagMatrix

(
eiγ0 ,e−iγ0

)
Thus

γ0 = Argλ
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Homological equation

Solve for C2 = (C2,x ,C2,y ):
(second degree homogeneous polynomials are identified with symmetric matrices)

D2(fx ◦ C) = f2,x + λC2,x

and

D2(Cx ◦ F ) = F2,x (= 0) +

[
λ2(C2,x )11 (C2,x )12

(C2,x )21 λ
2
C2,x )22

]
This leads to

(λ2 − λ)(C2,x )11 = (f2,x )11

(λ
2 − λ)(C2,x )22 = (f2,x )22

(1− λ)(C2,x )12 = (f2,x )12

Strong resonances

This is why we have to assume λi 6= 1.
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Homological equation

Solve C3 = (C3,x ,C3,y ) comparing third order terms

Here we have an extra variable γ1 which makes the
solution not unique.

Reality condition
γ1 ∈ R makes the solution unique.

Explicit (not very complicated:-) formulae for C3 and γ1
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Example (Forced pendulum)

x ′′(t) = sin(t)− sin(x(t))

Goal: prove that there is an elliptic, stable periodic solution

Facts:
This is is a Hamiltonian system
P(x) := ϕ(2π, x) is area preserving

Methodology:
prove that there is a periodic orbit u0 – Newton method
bring f (u) := P(u0 + u)− u0 to the normal form
check that γ1 6= 0 – twist condition

Moser’s theorem guarantees that u = 0 is surrounded by
f -invariant curves.
In consequence, periodic solution t → u0(t) in the continuous
system is stable and surrounded by 2D invariant tori.
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/** Existence of invariant curves around ellipitic PO **/
#include <iostream>
#include "capd/capdlib.h"
#include "capd/normalForms/planarMaps.hpp"
using namespace capd;
int main(){

IMap pendulum("time:t;var:x,dx;fun:dx,sin(t)-sin(x);",3);
ICnOdeSolver solver(pendulum,20);
ICnTimeMap tm(solver);
// validate existence of a periodic point by Newton method
IVector u0({0,-2.24910979679593});
IVector r = interval(-1e-12,1e-12)*IVector{1,1};
C0TripletonSet s0(u0);
IVector y = tm(2*interval::pi(),s0);
C1Rect2Set s(u0+r);
tm(2*interval::pi(),s);
IMatrix DP = IMatrix(s) - IMatrix::Identity(2);
IVector N = - matrixAlgorithms::gauss(DP,y-u0);
std::cout << "subset(N,r)? = " << subset(N,r)

<< "\nN = " << N << "\nr = " << r << std::endl;
//integrate 3rd order variational equations and compute normal form
CnRect2Set S(u0+N,3);
tm(2*interval::pi(),S);
std::cout << "gamma1 = " <<
normalForms::computePlanarEllipticNormalForm(S.currentSet())[1]
<< "\n(should have non-zero real part)";

return 0;
}



/* Output:
subset(N,r)? = 1
N = {[-4.465e-14, 4.22254e-14],[-1.45119e-14, 1.41125e-14]}
r = {[-1e-12, 1e-12],[-1e-12, 1e-12]}
gamma1 = ([0.937576, 0.937576],[-1.0637e-08, 1.0637e-08])
(should have non-zero real part)
*/

Remark:
The coefficients γi are always real numbers. The
procedure, however, uses complex intervals.



Invariant tori

Example (Michelson system)

x ′ = y , y ′ = z, z ′ = c2 − y − x2/2

Elliptic periodic orbits are observed for c ∈ (0,0.3194)
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Celliptic = (0.001,0.31937494990544240681)

Theorem
1 There exists a continuous branch of symmetric, elliptic

periodic orbits

Celliptic 3 c → (0, y(c),0) ∈ R3

2 For
c ∈ Cstable = Celliptic \ (G1 ∪G2)

where

G1 = 0.22544048933766649978
7596958760593 (1:4 resonance)

G2 = 0.27634347260295466508
298642570043203 (1:3 resonance)

these orbits are stable:
each neighborhood of periodic orbit pc contains a 2D tori
surrounding orbit pc and invariant under the flow.
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Michelson system:

1:3 resonance
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Cstable 3 c → γ1(c) ∈ R



Applications
Bifurcations of Halo orbits



We had theorem about the existence of a branch of Halo orbits

Z 3 z → (x(z),0, z,0, ẏ(z),0) ∈ Π

Z := [−0.083664781253492707,0.083664781253492707]

Proved by validation of zeros of f : R3 → R2 (for z ≥ z0 > 0)

f (z, x , ẏ) := π(ẋ ,ż)P(x ,0, z,0, ẏ ,0)

Bifurcation for z = 0
Solution set is an intersection of two curves.
Interval Newton method must fail at intersection point.



Fact:
fż(z = 0, x , ẏ) ≡ 0

for all (0, x , ẏ) from the domain of fż .

Factorize by z:

fż(z, x , ẏ) =

∫ 1

0

d
dt

fż(tz, x , ẏ)dt = z
∫ 1

0

∂

∂z
fż(tz, x , ẏ)dt

Set

F (z, x , ẏ) =

∫ 1

0

∂

∂z
fż(tz, x , ẏ)dt

Now we have two equations:

Lyapunov orbits : {fẋ = 0 ∧ z = 0} − solved in 4D
Halo orbits : {fẋ = 0 ∧ F = 0} − solved in 6D

Uniqueness
We expect that the solution sets to both equations are regular
curves.



Lemma (Numerical method for bifurcation of Halo orbits)

W = Z × X × Ẏ
:= [−z0, z0]× [x0 −∆x , x0 + ∆x ]× [ẏ0 −∆ẏ , ẏ0 + ∆ẏ ]

N1 =

[
x0
ẏ0

]
−

[
∂fẋ (W )
∂x

∂fẋ (W )
∂ẏ

∂2fż(W)
∂x∂z

∂2fż(W)
∂ẏ∂z

]−1

I

·
[
fẋ (Z , x0, y0)
∂fẋ (Z ,x0,y0)

∂z

]
N2 = x0 − fẋ (0, x0, Ẏ )

[
∂fẋ
∂x (0,X × Ẏ )

]−1

If N1 ⊂ int(X × Ẏ ) and N2 ⊂ intX then the solution set
f (z, x , ẏ) = 0 restricted to W is the union of graphs of two
smooth functions

Z 3 z → (x(z), ẏ(z)) ∈ X × Ẏ
Ẏ 3 ẏ → (0, x(ẏ)) ∈ Z × X .

These curves intersect at exactly one point

(0, x(z = 0), ẏ(z = 0))


