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Abstract

We propose a method for computation of stable and unstable sets
associated to hyperbolic equilibria of nonautonomous ODEs and for com-
putation of specific type of connecting orbits in nonautonomous singular
ODEs. We apply the method to a certain a singular nonautonomous real
Ginzburg-Landau type equation, which that arises from the problem of
formation of spots in the Swift-Hohenberg equation.
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1 Introduction.

The aim of this paper is to present a method for computation of connecting
orbits between hyperbolic equilibria in nonautonomous ODEs. Although the
algorithm we propose is general and may be applied to an ODE in any (finite)
dimension, the main motivation for undertaking this research was the problem
of finding transversal solutions for the following nonautonomous real Ginzburg-
Landau type equation

Arr +
Ar
r
− A

4r2
= A−A3, (1)
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where A : [0,∞)→ R satisfies

A(0) = 0, lim
r→∞

A(r) = 0. (2)

This question comes from McCalla and Sandstede work [MS] on spots in the
Swift-Hohenberg equation. The existence of transversal solutions (1) satisfying
(2) is listed there as an assumption in the construction of localized solutions
called the B spots. The work of Scheel [S] (see also references given there)
indicates that bounded solutions of problem (1,2) might be also interpreted as
rotating wave solutions to reaction diffusion systems in the plane.

Let us list first several known results about (1,2). An infinite number of
solutions with any number of zeros, but without transversality, follows from
results of Ryder [R]. Namely, it was shown in [MS] (in the appendix) that after

substitution A(r) = w(r)√
r

(1) becomes w” = w − w3

r and this equation fits into

the framework in the paper by Ryder (see equation (1.7) in [R]). The methods
in [R] are variational and can be applied to wider class of equations. The work
by by Scheel [S] also contains similar result, but it was pointed out in [MS] that
the proof given there contains a gap. Recently, a computer assisted proof of
the existence of one transversal solution with one local extremum was given in
[BGW].

The following theorem summarizes our main results about the system (1).

Theorem 1 For n = 1, . . . , 6 there exists a solution An : (0,∞) → R to (1,2)
such that:

• limr→∞(An(r), A′n(r)) = (0, 0),

• limr→0+(An(r), A′n(r)r) = (0, 0),

• The function r → An(r) has exactly n local extremes in the domain r ∈
(0,∞).

The solution An is transversal in the following sense. The sets

Wu = {(r0, A0, A
′
0)) ∈ (0,∞)× R× R |

the backward solution of (1) A(r) with initial condition

A(r0) = A0, A′(r0) = A′0 satisfies limr→0(A(r), A′(r)r) = 0}
W s = {(r0, A0, A

′
0)) ∈ (0,∞)× R× R |

the forward solution of (1) A(r) with initial condition

A(r0) = A0, A′(r0) = A′0 satisfies limr→∞(A(r), A′(r)) = 0}

are two dimensional immersed manifolds in the extended phase space (r,A,A′)
and they intersect transversally along the solution curve defined by An(r), i.e.
(r,An(r), A′n(r)).

Plots of the six connecting orbits resulting from Theorem 1 are shown in
Fig. 1. The solutions differ in the number of local extremes or the number of
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sign changes. The orbit for n = 1, with one maximum only, is the one already
proved in [BGW]. We present a proof of the existence of six such orbits, but
without much difficulty it would be possible to validate the existence of several
orbits with more local extremes. The question of the existence of an infinite
number of geometrically different transversal solutions for (1,2) is still open.

Our approach is based on the shooting method (see for example [HM]), which
is a very well known technique in the dynamics of ODEs and boundary value
problems for ODEs.

To realize the shooting method for problem (1,2) we have to deal with the
following issues

1. the singularity for r = 0,

2. the estimation of stable manifold of the point (A,A′) = (0, 0) for non-
autonomous equation (1).

Issue 1 is dealt with via the change of the independent variable ρ = ln r. Then
the equation (1) becomes

w”− w/4 = e2ρ(w − w3). (3)

Now we seek a solution such that limρ→−∞ w(ρ) = 0, so we need estimates for
the unstable set of (w = 0, w′ = 0) for ρ → −∞ for our non-autonomous ODE
(3), which is basically issue 2 above.

Issue 2 in our work is split in two separate problems

• an analytical derivation of bounds for the stable manifold in the neigh-
borhood of the hyperbolic fixed point, which are valid up to some ’macro-
scopic’ distance from it,

• the globalization of the local (un)stable manifolds using the rigorous nu-
merical integrator from CAPD [CAPD].

Obtaining explicit bounds on the local (un)stable manifolds associated to
hyperbolic equilibria in nonautonomous systems is an interesting issue itself
and most likely this is the main mathematical contribution of this paper. For
this end we adopt the method of cone conditions based on quadratic forms from
[ZCC, SZ] to the case of nonautonomous systems. The main novelty of this
paper in this context is Lemma 4 which gives explicit bounds on the derivative
of the parameterization of the stable manifold of a hyperbolic equilibrium with
respect to the time variable. The method is general and may be applied to
any smooth nonautonomous system in arbitrary finite dimension. We believe it
should be an important ingredient when attacking the question of the existence
of infinite number of geometrically different solutions to (1,2) which is the next
logical step for this project.

To demonstrate the effectiveness of our estimates of local (un)stable mani-
folds in Sections 4 and 5 we present easy calculations showing that using our
approach we can estimate invariant manifolds for the system (1) up to the dis-
tance of order 0.1 from the origin. Outside of this region the stable and unstable
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Figure 1: The six transverse connecting orbits resulting from Theorem 1. In
two upper rows in red we have plotted the separatrices (stable and unstable
manifolds of (0, 0)) of system Arr = A−A3, which is the formal limit of (1) for
r →∞.
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manifolds of (1) and (3) are continued to obtain a connecting orbit using a rig-
orous ODE integrator from the CAPD library [CAPD], but for this to succeed
it is essential that our local bounds are valid up to a ’macroscopic’ distance
from the origin, otherwise the execution of the rigorous numerics will take very
long time and the quality of bounds will be poor. Let us emphasize that to glue
unstable and stable manifolds we need to integrate the system and associated
variational equations over a finite time interval, only. Our local estimates on
the invariant manifolds and bounds coming from the rigorous integration were
sharp enough to fulfill the assumptions of the shooting method that guarantees
the existence of six connecting orbits as stated in Theorem 1.

Let us comment about the computer assisted proof from [BGW]. There the
problem is formulated in the functional analytic language. Differential equation
(1) with the help of Green function is replaced by an integral equation on finite
domain and condition (2) is encoded in the choice of the function space. There-
fore obtaining a desired solution of (1,2) is reduced to the fixed point problem
for some nonlinear integral operator in some infinite dimensional function space.
This should be contrasted with our approach, where we work in the phase space
of our ODE.

The content of this paper can be described as follows. In Section 2 we recall
the main geometric tools used in our approach to the (un)stable manifolds. In
Section 3 we present theorems which provide us with bounds on the derivatives of
(un)stable manifolds. In Sections 4 and 5 we give explicit bounds for (un)stable
manifolds and theirs derivatives for (1) and (3). In Section 6 we give a computer
assisted proof of Theorem 1.

2 Geometric tools for invariant manifolds of fixed
points

To make this paper reasonably self-contained in this section we gather all nec-
essary definitions and geometric theorems from [ZGi, WZ, ZCC, WZ1] related
to the rigorous investigation of invariant manifolds of fixed points, with modifi-
cations required for the setting of non-autonomous ODEs.

2.1 Notation

For a matrix A ∈ Rn×k by AT we will denote its transpose. Let Q be a square
matrix. With some abuse of notation we will denote by the same letter a
symmetric matrix Q and associated quadratic form Q(x) = xT · Q · x. To
avoid ambiguity we will always use brackets Q(·) to indicate that Q is treat
as a quadratic form and Qx or Q · (x1 − x2) when we compute matrix-vector
product. For a bilinear map M : V ×W → R we will use the norm ‖W‖ =
max‖v‖≤1,‖w‖≤1 |M(v, w)|.

For u ∈ N, p ∈ Ru and r > 0 by Bu(p, r) we will denote an open ball
of radius r centered at p. We will also often use Bu = Bu(0, 1). For a map
h : [0, 1]×X → X and t ∈ [0, 1] we set ht(x) = h(t, x).
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For a function f(t, x) we set Dtf(t, x) = ∂f
∂t (t, x) and Dx(t, x) = ∂f

∂x (t, x).

2.2 Horizontal and vertical discs

The main tools for proving the existence of local (un)stable manifolds in a given
domain are isolating blocks and the cone conditions. The invariant manifolds
are then constructed as graphs of smooth functions in some isolating blocks, as
horizontal/vertical discs in h-sets. The size of an h-set gives an explicit range
in which we can parameterize the local invariant manifold. The cone conditions
are used to obtain both the existence and the local uniqueness of the invariant
manifold as well as bounds on the derivatives of this parameterization.

Definition 1 [ZCC, Def. 1]
An h-set N is a quadruple (|N |, u(N), s(N), cN ) such that

• |N | is a compact subset of Rn,

• u(N), s(N) ∈ {0, 1, 2, . . .} are such that u(N) + s(N) = n,

• cN : Rn → Rn = Ru(N)×Rs(N) is a homeomorphism such that cN (|N |) =
Bu(N) ×Bs(N).

We set

dim(N) := n,
Nc := Bu(N) ×Bs(N),
N−c := ∂Bu(N) ×Bs(N),
N+
c := Bu(N) × ∂Bs(N),

N− := c−1N (N−c ),
N+ := c−1N (N+

c ).

Hence an h-set N is a product of two closed balls in some coordinate system
cN . We call numbers u(N) and s(N) unstable and stable dimensions, respec-
tively. The subscript c refers to the new coordinates given by cN . The set |N |
is called the support of an h-set. We often drop bars in the symbol |N | and use
N to denote both the h-set and its support.

Occasionally we will say that N = {(x0, y0)}+Bu(0, r1)×Bs(0, r2) ⊂ Ru×Rs
is an h-set. By this we will understand a ’natural’ h-set structure on N given by:

u(N) = u, s(N) = s, cN (x, y) =
(
x−x0

r1
, y−y0r2

)
. In the context of R2 and u = 1,

s = 1 we will sometimes write N = z0 + [−a, a] × [−b, b]. This is compatible
with the above convention as a defines the radius of the ball Bu(0, a) = [−a, a]
and b of Bs(0, b) = [−b, b].

Definition 2 [ZCC, Def. 5]
Let N be an h-set. Let b : Bu(N) → |N | be a continuous mapping and let

bc = cN ◦ b. We say that b is a horizontal disc in N if there exists a homotopy
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N+

N+

Figure 2: An h-set N with u = 2, s = 1 and a horizontal disc in N .

h : [0, 1]×Bu(N) → Nc, such that

h0 = bc,

h1(x) = (x, 0), ∀x ∈ u(N),

h(t, x) ∈ N−c , ∀t ∈ [0, 1] and ∀x ∈ ∂Bu(N).

The geometry of this definition is shown in Fig. 2. During the homotopy
h deforming a horizontal disc to the map h(1, x) = (x, 0) the image of the
boundary h([0, 1]×Bs(N)) must remain in N−c . In a similar way we can define
vertical discs.

Definition 3 [ZCC, Def. 6] Let N be an h-set. Let b : Bs(N) → |N | be a
continuous mapping and let bc = cN ◦ b. We say that b is a vertical disc in N
if there exists a homotopy h : [0, 1]×Bs(N) → Nc, such that

h0 = bc,

h1(x) = (0, x), ∀x ∈ Bs(N),

h(t, x) ∈ N+
c , ∀t ∈ [0, 1] and ∀x ∈ ∂Bs(N).

Definition 4 [ZCC, Def. 7] Let N be an h-set in Rnand b be a horizontal
(vertical) disc in N . We will say that x ∈ Rn belongs to b, when b(z) = x for
some z ∈ dom(b).

By |b| we will denote the image of b. Hence z ∈ |b| iff z belongs to b.

2.3 Cone conditions and the stable manifold theorem

Below we present definitions and theorems that allow us to handle and ver-
ify hyperbolic structures for nonautonomous ODEs using h-sets and quadratic
forms.
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N-N- Q(u-z)>0
z

Figure 3: An h-set N and a horizontal disc in N satisfying the cone condition.

Definition 5 [ZCC, Def. 8] Let N ⊂ Rn be an h-set and Q : Rn → R be a
quadratic form, such that

Q(x, y) = α(x)− β(y), (x, y) ∈ Ru(N) × Rs(N),

where α : Ru(N) → R and β : Rs(N) → R are positive definite quadratic forms.
The pair (N,Q) is called an h-set with cones.

We will often omit Q in the symbol (N,Q) and will say that N is an h-set
with cones.

Definition 6 [ZCC, Def. 9] Let (N,Q) be an h-set with cones and b : Bu →
|N | be a horizontal disc.

We will say that b satisfies the cone condition (with respect to Q) iff for any
x1, x2 ∈ Bu, x1 6= x2 the following inequality holds:

Q(bc(x1)− bc(x2)) > 0.

The geometry of this definition is shown in Fig. 3. The entire graph of
horizontal disc b must lie in the positive cone attached to any point z that
belongs to the horizontal disc b (except point z). It can be shown [ZCC] that
a horizontal disc satisfying the cone condition must be of the form bc(x, y) =
(x, g(x)) where g is a Lipschitz function with an explicit bound on Lipschitz
constant coming from the quadratic form. We will use this property to control
derivative of the parameterization of the local invariant manifold which will
be constructed as a horizontal (vertical) disc in some h-set satisfying the cone
condition.

Definition 7 [ZCC, Def. 10]
Let (N,Q) be an h-set with cones and b : Bs → |N | be a vertical disc.
We will say that b satisfies the cone condition (with respect to Q) iff for any

y1, y2 ∈ Bs, y1 6= y2 the following inequality holds:

Q(bc(y1)− bc(y2)) < 0.
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b

Z

z0

Figure 4: An isolating block Z for some planar ODE. The stable (vertical green
dashed line) and unstable (horizontal red solid line) manifolds for ϕ inside Z are
plotted, arrows indicate the vector field f . Dashed green and solid red border
lines indicate the δ-sections Σ+ and Σ− respectively.

Let us consider an nonautonomous ODE

z′ = f(t, z), (4)

where z ∈ Rn, f ∈ C1(R× Rn,Rn). Let us denote by ϕ(t, t0, p) the solution of
(4) with the initial condition z(t0) = p.

Below we present the definitions of the local stable and unstable set for a
fixed point of an non-autonomous of ODE, which are just an adaptation of the
analogous notions for autonomous ODEs.

Definition 8 Let z0 ∈ Rn be such that f(t, z0) = 0 for t ∈ R. We will call such
z0 a fixed point for (4) (or f).

Let Z ⊂ Rn, z0 ∈ Z be a fixed point for (4) and let t0 ∈ R. We define

W s
t0,Z(z0, ϕ) = W s

t0,Z(z0, f) =
{
z : ∀t≥0ϕ(t+ t0, t0, z) ∈ Z, lim

t→∞
ϕ(t, t0, z) = z0

}
,

Wu
t0,Z(z0, ϕ) = Wu

t0,Z(z0, f) =

{
z : ∀t≤0ϕ(t+ t0, t0, z) ∈ Z, lim

t→−∞
ϕ(t, t0, z) = z0

}
.

When ϕ, f or z0 is known from the context, then we will often drop it and write
Wu,s
t0,Z

(z0) or Wu,s
t0,Z

.

Below we recall the notion of the isolating block from the Conley index
theory with some obvious modification for nonautonomous ODEs.

Definition 9 Let ϕ be an autonomous local flow induced by f : Rn → Rn. For
δ > 0 the set Σ ⊂ Rn is called a δ−section for the flow ϕ iff ϕ ((−δ, δ),Σ) is an
open set and the map σ : Σ× (−δ, δ)→ ϕ((−δ, δ),Σ) defined by σ(x, t) = ϕ(t, x)
is a homeomorphism.
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For a nonautonomous ODE x′ = f(t, x) inducing ϕ we say that Σ as above
is δ-section for ϕ for t ∈ T ⊂ R, iff for each t0 ∈ T the set Σ is a δ section for
the vector field x→ f(t0, x) (i.e. we freeze the time).

Let B ⊂ Rn be a compact set and T ⊂ R. B is called an isolating block
for non-autonomous ODE for t ∈ T iff ∂B = B− ∪B+, where B− and B+ are
closed sets, and there exists δ > 0 and two δ−sections, Σ+ and Σ− such that

B+ ⊂ Σ+, B− ⊂ Σ−,

∀x ∈ B+ ∀t0 ∈ T ∀t ∈ (−δ, 0) ϕ(t+ t0, t0, x) /∈ B,
∀x ∈ B− ∀t0 ∈ T ∀t ∈ (0, δ) ϕ(t, x) /∈ B.

B− and B+ will called an exit set and an entrance set, respectively.

In the present paper we will use h-sets which are isolating blocks for t ≥ t0
(or for t ≤ t0). Simply, it means that N+ and N− are sections of the vector
field.

Definition 10 Let N be an h-set in Rn. We say that N is an isolating block
for nonautonomous ODE (4) for t ≥ t0, iff N− and N+ are δ-sections for f(t, ·)
for t ≥ t0 as in Definition 9.

Therefore, if N , h-set, is an isolating block, then N− and N+ are the exit and
the entrance sets, respectively.

Definition 11 Let N be an h-set, such that cN is a diffeomorphism. For a
vector field f on |N | we define a vector field on Nc by

fc(z) = DcN (c−1N (z))f(c−1N (z)). (5)

Observe that fc is the vector field f expressed in the new variables. If f depends
on time, then fc is time dependent too.

Definition 12 [ZCC, Def. 13]
Let U ⊂ Rn be such that U = U and intU 6= ∅. Let g : U → Rm be a C1

function. We define the interval enclosure of Dg(U) by

[Dg(U)] :=

{
A ∈ Rn×m : ∀i,jAij ∈

[
inf
x∈U

∂gi(x)

∂xj
, sup
x∈U

∂gi(x)

∂xj

]}
.

We say that an interval matrix [A] ⊂ Rn×n (i.e. a set of matrices) is positive
definite if for all symmetric matrices A ∈ [A] A is positive definite.

The lemma below serves to motivate our definition of the cone condition for
ODEs.

Lemma 2 Assume that Q is a quadratic form on Rn.
Consider equation (4). Let I ⊂ R be an interval. Assume that U ⊂ Rn is

convex and the following condition is satisfied for t ∈ I

matrix [Dzf(t, U)]TQ+Q[Dzf(t, U)] is positive definite. (6)

Let z1(t) and z2(t) be two different solutions of (4), such that for t ∈ I zi(t) ∈ U .
Then there exists η > 0 such that
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1.

d

dt
Q(z1(t)− z2(t)) > 0, t ∈ I, (7)

d

dt
Q(z1(t)− z2(t)) > ±ηQ(z1(t)− z2(t)), t ∈ I (8)

2. if t0, t+ t0 ∈ I, t > 0 and Q(z1(t0)− z2(t0)) > 0, then

Q(z1(t0 + t)− z2(t0 + t)) ≥ eηtQ(z1(t0)− z2(t0)), (9)

3. if t0, t+ t0 ∈ I, t < 0 and Q(z1(t0)− z2(t0)) < 0, then

Q(z1(t0 + t)− z2(t0 + t)) ≤ eη|t|Q(z1(t0)− z2(t0)). (10)

Proof: We have

d

dt
Q(z1(t)− z2(t)) = (f(t, z1(t))− f(t, z2(t)))T ·Q · (z1(t)− z2(t))

+ (z1(t)− z2(t))T ·Q · (f(t, z1(t))− f(t, z2(t)))

= (z1(t)− z2(t))T · CT ·Q · (z1(t)− z2(t))

+ (z1(t)− z2(t))T ·Q · C(z1(t)− z2(t))

= (z1(t)− z2(t))T · (CTQ+QC) · (z1(t)− z2(t)),

where

C = C(t, z1, z2) =

∫ 1

0

Dzf(t, z1 + s(z2 − z1))ds.

Observe that C ∈ [Dzf(t, U)]TQ+Q[Dzf(t, U)], so (7,8) follow easily.
From (8) and differential inequalities we obtain

Q(z1(t0 + t)− z2(t0 + t)) ≥ e±ηtQ(z1(t0)− z2(t0)), t > 0, t0, t0 + t ∈ I
Q(z1(t0 + t)− z2(t0 + t)) ≤ e±ηtQ(z1(t0)− z2(t0)), t < 0, t0, t0 + t ∈ I

From the above conditions one can easily infer the remaining assertions.

Let us remark that from the above lemma it follows that cone condition
(6) implies that cones C+(z) = {u | Q(z − u) > 0} are forward invariant for
(4) and there is an exponential expansion in C+(z). Analogously cones C−(z) =
{u | Q(z−u) > 0} are backward invariant and there is an exponential expansion
in C−(z) in backward time.

The following theorem can be easily obtained using the method as in the
proof of Theorem 26 in [ZCC].

Theorem 3 Consider (4).
Assume that z0 ∈ Rn is such that for any t holds f(t, z0) = 0.

11



Assume that (N,Q) is an h-set with cones, such that z0 ∈ intN and which
is an isolating block for (4) for t ≥ t0, cN is a diffeomorphism and that the
following cone condition is satisfied for t ≥ t0:

matrix [Dzfc(t,Nc)]
TQ+Q[Dzfc(t,Nc)] is positive definite. (11)

Then for any t1 ≥ t0 the set W s
t1,N

(z0, f) is a vertical disc in N satisfying

the cone condition. Therefore there exists a function xs : {t ≥ t0} × Bs → Bu,
such that

W s
t1,N (z0, f) = {c−1N (xs(t1, y), y)) | y ∈ Bs}. (12)

Analogous result is valid for the local unstable manifold.
Observe that from the standard results about exponential dichotomies (see

for example [C]) it follows that function xs(t1, y) is smooth with respect to t1
and y if f and our coordinate change cN are smooth.

3 The estimate for the derivative with respect
to time of W u,s

t,N(z0) for non-autonomous ODE

In the sequel we represent points in Rn by z = (x, y) with x ∈ Ru and y ∈ Rs,
n = u+ s.

3.1 The estimate for the time derivative of W u,s
t,N(z0)

The following lemma gives computable bounds on the first derivatives of stable
manifolds of a hyperbolic fixed point for a nonautonomous ODE with respect
to the initial time. The proof is analogous to the proofs of the dependence
on parameters of the stable manifolds of maps from [ZCC, Thm. 21] with
some refined estimates in [WZ1, Th. 4.1] and for parameterized ODEs [SZ,
Th. 5]. The theorem below and its proof is an adaptation of these results for
nonautonomous ODEs.

Lemma 4 The same assumptions as in Theorem 3. N has a natural h-set
structure, N = B̄u(px, rx) × B̄s(py, ry) and that the quadratic form is given by
(in natural coordinates) Q(x, y) = a‖x‖2 − b‖y‖2, where a, b > 0.

From the assumption on the cone condition for Q there exists E > 0 such
that for t ≥ t0 and z ∈ N there holds

vT

((
∂f

∂z
(t, z)

)T
Q+Q

∂f

∂z
(t, z)

)
v ≥ E‖v‖2, v ∈ Rn. (13)

Put

m = sup
t≥t0,z∈N

∥∥∥∥∥
(
∂f

∂t
(t, z)

)T
Q+Q

∂f

∂t
(t, z)

∥∥∥∥∥ (14)
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and

δ =
am2

E2
. (15)

Under above assumptions, if (xi, yi) ∈ W s
ti,N

(z0) and ti ≥ t0 for i = 1, 2,
then

a‖x1 − x2‖2 ≤ δ(t1 − t2)2 + b‖y1 − y2‖2. (16)

In particular, if W s
t,N (z0) = {(xs(t, y), y) | y ∈ Bs(py, ry)}, then for t1, t2 ≥

t0 there holds

‖xs(t1, y)− xs(t2, y)‖ ≤ m

E
|t1 − t2|. (17)

Proof: Consider the quadratic form on the extended phase-space (t, x, y)

Q̃(t, z) = Q(z)− δt2, δ > 0.

The value of δ will be fixed later during the proof (and it will turn out that (15)
is a good guess ).

Observe that, if for i = 1, 2 ti ≥ t0, z̄i ∈ W s
ti,N

(f) and zi(ti + t) for t > 0 is
a solution of (4) such that zi(ti) = z̄i, then

|Q̃((t1 + t, z1(t1 + t))− (t2 + t, z2(t2 + t))| ≤ L, for t ∈ R+. (18)

Indeed, since zi(ti + t) ∈ N for t > 0, so |Q(z1(t1 + t)− z2(t2 + t))| is bounded,
and δ((t1 + t)− (t2 + t))2 = δ(t1 − t2)2 is constant.

We want find a positive δ, such that the positive cone defined in terms of
Q̃ to be forward invariant for t ≥ t0 and we have an exponential growth in this
cone, i.e. there exists c > 0, such that if z̄1, z̄2 ∈ N and t1 ≥ t0, t2 ≥ t0 are such
that Q̃((t1, z̄1)− (t2, z̄2)) > 0 and, z1(t+ t1) and z2(t+ t2) are solutions of (4)
with zi(ti) = z̄i, i = 1, 2 , then for t > 0 holds

Q̃((t1 + t, z1(t1 + t))− (t2 + t, z2(t2 + t))) > ectQ̃((t1, z̄1)− (t2, z̄2)) (19)

if z1(t1 + s), z2(t2 + s) ∈ N for s ∈ [0, t].
This together with (18) implies that if z̄i ∈W s

ti,N
(f) and ti ≥ t0 for i = 1, 2,

then
Q̃((t1, z̄1)− (t2, z̄2)) ≤ 0. (20)

From this condition and the computed expression for δ we will obtain our as-
sertions.

So now we turn to finding δ.
Let z1(t+ t1) and z2(t+ t2) be as in condition (19). We set

L(t) := Q̃((t+ t1, z1(t+ t1))− (t+ t2, z1(t+ t2))) =

Q(z1(t+ t1)− z2(t+ t2))− δ(t1 − t2)2.

13



We have

L′(0) =
d

dt
Q(z1(t+ t1)− z2(t+ t2))t=0 =

(f(t1, z1(t1))− f(t2, z2(t2)))T ·Q · (z1(t1)− z2(t2))+

(z1(t1)− z2(t2))T ·Q · (f(t1, z1(t1))− f(t2, z2(t2))).

Observe that

f(t1, z1(t1))− f(t2, z2(t2)) =∫ 1

0

∂f

∂t
((1− s)(t1, z1(t1)) + s(t2, z2(t2)))ds · (t1 − t2)+∫ 1

0

∂f

∂z
((1− s)(t1, z1(t1)) + s(t2, z2(t2)))ds · (z1(t1)− z2(t2)) =

Ct(t1 − t2) + Cz(z1(t1)− z2(t2)),

where

Ct = Ct(t1, z1, t2, z2) =

∫ 1

0

∂f

∂t
((1− s)(t1, z1) + s(t2, z2))ds,

Cz = Cz(t1, z1, t2, z2) =

∫ 1

0

∂f

∂z
((1− s)(t1, z1) + s(t2, z2))ds.

From (13) we immediately obtain

vT
(
CTz Q+QCz

)
v ≥ E‖v‖2, v ∈ Rn.

From (14) it follows that

m ≥
∥∥CTt Q+QCt

∥∥ .
Continuing the previous derivation we obtain

L′(0) = (z1 − z2)T
(
CTz Q+QCz

)
(z1 − z2)+

(t1 − t2)(CTt Q)(z1 − z2) + (z1 − z2)T (QCt)(t1 − t2).

Therefore we arrived at the following estimate

L′(0) =
d

dt
Q̃((t+ t1, z1(t+ t1))− (t+ t2, z2(t+ t2)))t=0 ≥

E‖z1 − z2‖2 −m|t1 − t2| · ‖z1 − z2‖.

Now we make the use of the assumption Q̃((t1, z1)− (t2, z2)) ≥ 0. We have√
a

δ
‖z1 − z2‖ ≥

√
a

δ
‖x1 − x2‖ ≥ |t1 − t2|.

14



Therefore we obtain

L′(0) ≥ E‖z1 − z2‖2 −m
√
a

δ
‖z1 − z2‖2 =

(
E −m

√
a

δ

)
‖z1 − z2‖2.

Hence the positive cone for Q̃ will be forward invariant provided

E > m

√
a

δ
,

which implies that

δ >
am2

E2
. (21)

Let us fix any δ satisfying (21).

From the above reasoning we know that the positive cone for Q̃ will be
forward invariant and if Q̃((t1, z1) − (t2, z2)) ≥ 0, then for any t, such that
zi(ti + t) ∈ N holds

d

dt
Q̃((t+ t1, z1(t+ t1)) − (t+ t2, z2(t+ t2))) ≥

(
E −m

√
a

δ

)
‖z1 − z2‖2 ≥

cQ̃((t1 + t, z1(t1 + t))− (t2 + t, z2(t2 + t))

for some positive c. Therefore

Q̃((t+ t1, z1(t+ t1))− (t+ t2, z2(t+ t2))) ≥ Q̃((t1, z1)− (t2, z2))ect

for t > 0 such that both z1(s+ t1) and z2(s+ t2) are in N for s ∈ [0, t].
Therefore we have established (20) for any δ satisfying inequality (21), but

passing to δ → am2

E2 we obtain it also for δ = am2

E2 .
If we set z̄i = (xi, yi), then from (20) we have the following inequality

a‖x1 − x2‖2 ≤ δ(t1 − t2)2 + b‖y1 − y2‖2.

This proves (16). Inequality (17) is obtained, when we apply (16) to z̄i =
(ti, xs(ti, y), y).

In the application of Lemma 4 in this paper we will only use estimate (17).
Moreover, since we are using the natural coordinates on N cone condition (11)
becomes

matrix [Dzf(t,N)]TQ+Q[Dzf(t,N)] is positive definite. (22)

This simply means that we do not need to use the coordinate change cN .
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3.2 Estimate for time derivative of W u
t,N(z0)

By reversing the direction of time from Lemma 4 we obtain the following state-
ment about the derivatives of the unstable manifold.

Lemma 5 Assume that f(t, z0) = 0 for all t ∈ R. Let N has a natural h-set
structure, N = B̄u(px, rx) × B̄s(py, ry), z0 ∈ intN and that quadratic form Q
on is given by (in natural coordinates) Q(x, y) = a‖x‖2− b‖y‖2, where a, b > 0.

Assume that for t ≤ t0 the set N is an isolating block for (4) and f satisfies
cone condition (11) on N with respect to quadratic form Q.

From the cone condition for Q there exists E > 0 such that for t ≤ t0 and
z ∈ N

vT

((
∂f

∂z
(t, z)

)T
Q+Q

∂f

∂z
(t, z)

)
v ≥ E‖v‖2, v ∈ Rn.

Put

m = sup
t≤t0,z∈N

∥∥∥∥∥
(
∂f

∂t
(t, z)

)T
Q+Q

∂f

∂t
(t, z)

∥∥∥∥∥ .
Under above assumptions, if Wu

t,N (z0) = {(x, yu(t, x)) | x ∈ Bu(0, 1)}, then
for t1, t2 ≤ t0 holds

‖yu(t1, x)− yu(t2, x)‖ ≤ m

E
|t1 − t2|.

Proof: Transformation t → −t changes Q → −Q and (x, y) → (y, x). The
quantities in Lemma 4 are not affected by this change.

4 Estimates for the stable manifold for r → ∞
for equation (1)

In the limit r →∞ equation (1) becomes

u” = u− u3. (23)

We consider the first order system corresponding to (23).

u′ = v, v′ = u− u3. (24)

It is easy to see that (24) is Hamiltonian with H(v, u) = v2

2 −
u2

2 + u4

4 .
It is clear that (0, 0) is a hyperbolic fixed for (24). Its stable and unstable

manifolds coincide to form an eight-shaped loop (called a separatrix) shown in
two upper row drawings in Fig. 1. Any solution of (1) which converges to 0 for
r →∞ when plotted on (A,A′) plane should approach this separatrix. In Fig. 1
this is shown for six orbits.
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We introduce coordinates, which diagonalize the linear part of (24) by{
xe = u+ v,

ye = u− v.
(25)

The inverse is given by {
u = (xe + ye)/2,

v = (xe − ye)/2.

In new coordinates system (24) becomes{
x′e = xe + g(xe, ye),

y′e = −ye − g(xe, ye)
(26)

where

g(x, y) = −x− y
2r

+
x+ y

8r2
− 1

8
(x+ y)3.

4.1 Isolating block

We look for the isolating block N e = [−de1, de1]× [−de2, de2] for (26).

Lemma 6 Put d = de1 + de2 and assume that

min{de1, de2} > d

(
1

2r
+

1

8r2
+
d2

8

)
. (27)

Then N e is an isolating block for (26).

Proof:
First we verify the exit condition. For |xe| = de1 we have

x′exe = x2e + xeg(xe, ye) =

x2e −
1

2

xe − ye
r

xe +
(xe + ye)xe

8r2
− (xe + ye)

3xe
8

≥

(de1)2 − 1

2

de1d

r
− de1d

8r2
− d3de1

8
=

de1

(
de1 − d

(
1

2r
+

1

8r2
+
d2

8

))
.

Therefore xex
′
e > 0 when (27) is satisfied.

In a similar way we verify the entry condition. For |ye| = de2 we have

− (y′eye) = y2e + yeg(xe, ye) ≥ de2

(
de2 − d

(
1

2r
+

1

8r2
+
d2

8

))
.

Therefore −(yeye)
′ > 0 when (27) is satisfied.
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4.2 Cone condition

Our cones are defined in terms of the quadratic form

Q =

[
a 0
0 −1

]
. (28)

Let
C(N, f) = [Df

T
(N)]Q+Q[Df(N)].

where [Df(N)] is defined as follows: M ∈ [Df(N)] iff there exists a pair of

points z1, z2 ∈ N (can be equal) such that M =
∫ 1

0
Df(z1 + t(z2 − z1))dt.

Lemma 7 Assume that N is a convex and compact set and f : Rn → Rn is C1

smooth. Assume that for every z ∈ N there exists ε(z) ≥ εN > 0, such that for
all v ∈ Rn there holds

vT (DfT (z)Q+QDf(z))v ≥ ε(z)‖v‖2.

Then for every M ∈ C(N, f) and v ∈ Rn there holds

vT (MTQ+QM)v ≥ εN‖v‖2.

Proof: For z1, z2 ∈ N and v ∈ Rn we have

vT
((∫ 1

0

DfT (z1 + t(z2 − z1))tdt

)
Q+Q

(∫ 1

0

Df(z1 + t(z2 − z1))dt

))
v =∫ 1

0

vT (DfT (z1 + t(z2 − z1))Q+QDf(z1 + t(z2 − z1)))vdt ≥ εN‖v‖2.

Lemma 8 Let N e = [−de1, de1] × [−de2, de2] and Q be given by (28) with a = 1.
Assume that for some E > 0 and r∗ > 0 there holds

1 >
1

2r∗
+

3

4
(de1 + de2)2 + E/2.

Then for all v ∈ Rn, M ∈ C(N e, f) and r ≥ r∗

vT (MQ+QM)v ≥ E‖v‖2, (29)

i.e. the cone condition holds on N e for r ≥ r∗.

Proof: According to Lemma 7 it is sufficient to show that the matrixDfT (xe, ye)Q+
QDf(xe, ye)− E · Id is positive definite for each (xe, ye) ∈ N e. Put

M1 =

[
1 0
0 −1

]
, M2 =

[
1 1
−1 −1

]
, M3 =

[
−1 1
1 −1

]
.

18



We have

Df(xe, ye) = M1 +

(
1

8r2
− 3

8
(xe + ye)

2

)
M2 +

1

2r
M3.

Easy calculations give

MT
1 Q =

[
a 0
0 1

]
, MT

2 Q =

[
a 1
a 1

]
, MT

3 Q =

[
−a −1
a 1

]
.

We obtain

DfT (xe, ye)Q+QDf(xe, ye) =[
2a 0
0 2

]
+

(
1

8r2
− 3

8
(xe + ye)

2

)[
2a 1 + a
a+ 1 2

]
+

1

2r

[
−2a a− 1
a− 1 2

]
.

Let us denote

w =
1

8r2
− 3

8
(xe + ye)

2. (30)

Then

DfT (xe, ye)Q+QDf(xe, ye)− E · Id =[
2a
(
1 + w − 1

2r

)
− E w(a+ 1) + (a−1)

2r

w(a+ 1) + (a−1)
2r 2

(
1 + w + 1

2r

)
− E

]
.

It is immediate that for the positive definiteness of this matrix we need

1 + w − 1

2r
− E > 0.

From now on we set a = 1. The Geršgorin Theorem gives us the following
sufficient condition for the positive definiteness of the matrix DfT (xe, ye)Q +
QDf(xe, ye)− E · Id

2

(
1 + w − 1

2r

)
− E > 2|w|,

2

(
1 + w +

1

2r

)
− E > 2|w|.

We end up with the following condition

1 + w − 1

2r
> |w|+ E/2.

Substituting back for w defined by (30) we obtain two inequalities that must be
simultaneously satisfied

1 +
1

8r2
− 3

8
(xe + ye)

2 − 1

2r
>

1

8r2
+

3

8
(xe + ye)

2 + E/2,

1− 1

2r
>

3

4
(xe + ye)

2 + E/2.
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Since for (xe, ye) ∈ N e there holds |xe + ye| ≤ (de1 + de2) we obtain the following
condition

1 >
1

2r
+

3

4
(de1 + de2)2 + E/2

and Lemma 7 implies the assertion (29).

4.3 Estimate on constant m

Lemma 9 Let N e = [−de1, de1] × [−de2, de2] and put d = de1 + de2. Then for
z = (xe, ye) ∈ N e and r ≥ r∗ there holds∥∥∥∥∥

(
∂f

∂r
(r, z)

)T
Q+Q

∂f

∂r
(r, z)

∥∥∥∥∥ ≤ d

2r2∗

(
1 +

3

4r∗

)√
a2 + 1.

Proof: Since we assumed that Q is diagonal it is easy to see that∥∥∥∥∥
(
∂f

∂r
(r, z)

)T
Q+Q

∂f

∂r
(r, z)

∥∥∥∥∥ = 2

∥∥∥∥Q∂f∂r (r, z)

∥∥∥∥ .
We have

∂f

∂r
(r, z) =

(
xe − ye

2r2
− 3

8r3
(xe + ye)

)[
1
−1

]
,

hence

Q
∂f

∂r
(r, z) =

(
xe − ye

2r2
− 3

8r3
(xe + ye)

)[
a
1

]
.

Finally we obtain∥∥∥∥Q∂f∂r (r, z)

∥∥∥∥ ≤ ( d

2r2∗
+

3d

8r3∗

)√
a2 + 1 =

d

2r2∗

(
1 +

3

4r∗

)√
a2 + 1.

4.4 Some numbers

Consider equation (26) and quadratic form (28) with a = 1 (this is the value
used later in the actual proof). Lemma 6 and Lemma 8 guarantee that the
set N e = [−de1, de1] × [−de2, de2] is an isolating block for (26) satisfying the cone
condition for all r ≥ r∗ provided the following inequalities hold true:

min{de1, de2} > d

(
1

2r∗
+

1

8r2∗
+
d2

8

)
,

E

2
+

1

2r∗
+

3

4
d2 < 1,

where d = de1 + de2.
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For example, if r∗ = 2 and de1 = de2 = 1/4 then the first inequality holds
true. From Lemma 9 we get the bound m ≤ 11

128

√
2. Now the constant E should

satisfy E < 2 − 3/2d2 − 1/r∗ = 9/8. Take for instance E = 1. This gives us a

bound for the derivative |x′s(r)| ≤ m
E = 11

√
2

128 ≈ 0.121534.

For r large the second condition gives an upper bound for d < 2
3

√
3.

5 Estimates for the unstable manifold for ρ →
−∞ for equation (1)

Let us rewrite here system (3)

w”− w/4 = e2ρ(w − w3). (31)

We want to study the unstable manifold of (0, 0) for ρ < 0.
Passing formally to the limit ρ→ −∞ in (31) we obtain the following linear

system
w”− w/4 = 0. (32)

Let p = w′ and let us introduce new coordinates xb, ybw = xb + yb,

p =
xb − yb

2
.

(33)

The inverse is given by 
xb =

w + 2p

2
,

yb =
w − 2p

2
.

In the coordinates (xb, yb) (31) becomes
x′b =

1

2
xb + e2ρg(xb, yb),

y′b = −1

2
yb − e2ρg(xb, yb),

(34)

where
g(xb, yb) = (xb + yb)− (xb + yb)3.

5.1 Isolating block

Lemma 10 Let Nb = [−d, d]2. If d < 1/2 then Nb is an isolating block for
(34) for any ρ.

Proof: Observe that if |xb+yb| ≤ 1 then g(xb, yb) has the same sign as xb+yb.
The sign of xb+yb coincides with the sign of the dominant coordinate. Therefore

xbg(xb, yb) > 0 for |xb| = d,

ybg(xb, yb) > 0 for |yb| = d.
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This implies that

x′bxb =
1

2
x2b/2 + e2ρxbg(xb, yb) ≥ 1

2
x2b/2 if |xb| = d,

−y′byb =
1

2
y2b/2 + e2ρybg(xb, yb) ≥ 1

2
y2b/2 if |yb| = d.

5.2 Cone condition

In this section we will derive inequalities that guarantee the cone condition on
an isolating block for (34). Let us denote by f the vector field (34). We have

Df(xb, yb) =

[
1
2 0
0 − 1

2

]
+ e2ρ(1− 3(xb + yb)2)

[
1 1
−1 −1

]
.

Put

Q =

[
a 0
0 −1

]
. (35)

Lemma 11 Assume that the isolating block for (34) has the form Nb = [−db1 , db1 ]×
[−db2 , db2 ]. Put

w = e2ρ(1− 3(xb + yb)2).

If

1 + 2w > E > 0, (36)

a(1 + 2w)2 − E(a+ 1)(1 + 2w) + E2 > w2(a+ 1)2 (37)

for (xb, yb) ∈ Nb and ρ ≤ ρ0 then the cone condition is satisfied on Nb for all
ρ ≤ ρ0 for (34) with the constant E.

Proof: Denote by f the vector field (34). Direct computation gives

DfT (xb, yb)Q+QDf(xb, yb) =[
a 0
0 1

]
+ e2ρ(1− 3(xb + yb)2)

[
2a a+ 1
a+ 1 2

]
=[

a(1 + 2w) w(a+ 1)
w(a+ 1) 1 + 2w

]
.

We will apply the standard criterion for positive definiteness of matrices to the
matrix M = (DfT (xb, yb)Q + QDf(xb, yb) − E · Id). We want M22 > 0 and
detM > 0. The first condition gives (36), the second reads

(a(1 + 2w)− E) (1 + 2w − E)− w2(a+ 1)2 > 0

which is equivalent to (37).
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Using the Geršgorin theorem [G, V] we can derive conditions, which might
more suitable for easy estimates to be done by hand. The positive definiteness
of [

a(1 + 2w) w(a+ 1)
w(a+ 1) 1 + 2w

]
is implied by the following two inequalities

a(1 + 2w)− w(a+ 1) > E, (38)

1 + 2w − w(a+ 1) > E.

This leads to the following lemma.

Lemma 12 Assume that (db1 +db2)2 ≤ 1
3 , 0 < a ≤ 1 and the following condition

is satisfied

a(e2ρ0 + 1)− e2ρ0 > E.

Then the cone condition is satisfied on Nb for (34) for ρ ≤ ρ0 with the constant
E.

Proof: Under the assumption on db1 and db2 we have

w = e2ρ(1− 3(xb + yb)2) ≥ 0.

Since 0 < a ≤ 1, the positive definiteness of Df(xb, yb)TQ + QDf(xb, yb) is
implied by only one condition (38) which reduces to

a(w + 1)− w > E.

Observe that the range of w for (xb, yb) ∈ Nb and ρ ≤ ρ0 is given by 0 < w ≤
e2ρ0 = w0. Since a ≤ 1, the function w 7→ a(1 +w)−w is non-increasing, hence
it is enough to have this inequality for the largest possible value w0 = e2ρ0 .

5.3 Estimation of constant m when ρ→ −∞.

Lemma 13 Denote by f the vector field (34). Assume that the isolating block
for (34) has the form Nb = [−db1 , db1 ]× [−db2 , db2 ] with d := max{db1 , db2} ≤ 1/2.
Assume the quadratic form is diagonal as in (35). Then for z = (xb, yb) ∈ Nb

and ρ ≤ ρ0 there holds∥∥∥∥∥
(
∂f

∂ρ
(ρ, z)

)T
Q+Q

∂f

∂ρ
(ρ, z)

∥∥∥∥∥ ≤ 8de2ρ0
√
a2 + 1.

Proof: For z = (xb, yb) ∈ Nb we have

∂f

∂ρ
(ρ, z) = 2e2ρg(xb, yb)

[
1
−1

]
.
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Since Q is diagonal we get

Q
∂f

∂ρ
(ρ, z) = 2e2ρg(xb, yb)

[
a
1

]
.

Given that

|g(xb, yb)| = |xb + yb|(1− (xb + yb)2) ≤ |xb + yb| ≤ 2d.

for (xb, yb) ∈ Nb we obtain∥∥∥∥Q∂f∂ρ (ρ, z)

∥∥∥∥ ≤ 4de2ρ0
√
a2 + 1.

5.4 Some numbers

We will show now that we can construct a quite large isolating block on which
the cone condition is satisfied and still we can have good estimates on the
derivative on parametrization of unstable set with respect to ρ.

From Lemma 10 the set Nb = [−d, d]2 is an isolating block provided d ≤ 1/2.
Lemma 12 guarantees the cone condition on Nb with constant E for ρ ≤ ρ0

provided the following two inequalities are satisfied

d ≤ 1

2
√

3
,

a(e2ρ0 + 1)− e2ρ0 > E.

In the case a = 1 (this is the value used in our computer assisted proof) the last
inequality reduces to E < 1 and ρ0 can be an arbitrary number. Finally, from
Lemma 13 we obtain an estimate on the constant m = 8de2ρ0

√
2.

Explicit numbers satisfying all required inequalities:

• Put d = 1/4, ρ0 = ln 2, a = 1 and E = 1/2. Then we have m = 8
√

2,
|y′u(ρ)| ≤ m/E = 16

√
2.

• Put d = 1/4, ρ0 = ln 2−4, a = 1 and E = 1/
√

2. Then we have m =√
2/128, |y′u(ρ)| ≤ m/E = 1/64.

6 Proof of Theorem 1

In this section we give a computer assisted proof of the existence of six geomet-
rically different connecting orbits for equation (1), i.e. solutions satisfying (2).
Each orbit makes different number of (half) revolutions around the separatrix of
equation (24) before approaching the equilibrium point (A,A′) = (0, 0). Three
of them converge to (0, 0) from the right side (A > 0) and three of them from
the left side (A < 0) - see Fig. 1 and Fig. 5.

Before we give the proof of Theorem 1 let us make several remarks about its
content.
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Figure 5: The six transverse connecting orbits resulting from Theorem 1. The
trajectories are plotted in two time scales. For r ≥ 1 the points (An(r), A′n(r))
are shown while for r ∈ (0, 1) we plot (An(ρ), A′n(ρ)) with ρ = ln r. This figure
illustrates the convergence of orbits to (0, 0) when ρ → −∞. The figure-eight
curve in the middle is the separatrix for (24).

• Wu can be expressed using other independent variable ρ = ln r and w(ρ) =
A(eρ) (see Section 5) as follows.

Wu = {(ρ0, w0, w
′
0)) ∈ R× R× R |

such that the backward solution of (31) w(ρ) with initial condition

w(ρ0) = w0, w′(ρ0) = w′0 satisfies limρ→−∞(w(ρ), w′(ρ)) = 0}.

In fact in the proof we use the above description of Wu. The expression
for Wu given in the assertion of the theorem is obtained after we return
to the original variables r and function A(r).

• The statement about the number of local extremes means that the trajec-
tory r → (An(r), A′n(r)) intersects transversally the axis A′ = 0 exactly n
times.

In Fig. 5 the six connecting orbits are shown in two time scales: r for r ≥ 1
and ρ = ln r for r ∈ (0, 1). For r = 1 they coincide, i.e.

(A(r = 1), A′(r = 1)) = (A(ρ = 0), A′(ρ = 0))
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therefore they appear as continuous curves. This figure illustrates the conver-
gence of orbits to (0, 0) when ρ→ −∞.

The proof of Theorem 1 is based on the theorems introduced in the previous
sections. Using a non-rigorous simulation (the bisection) we found good initial
conditions for the connecting orbits. Then using validated numerics we verified
the existence of isolating blocks, cone conditions and conditions for the inter-
section of the stable and unstable manifolds. The details will be given in the
next sections.

In Sections 4 and 5 we have found analytically the isolating blocks on which
the cone conditions are satisfied for the begin and end our connection. How-
ever, using validated numerics we can find much tighter bounds for the unsta-
ble/stable manifolds and similarly better bounds for the time-derivative of the
parametrization of unstable/stable sets.

The input arguments to the algorithms that verify the existence of connecting
orbit are the following

• n - number of intersections of the trajectory with the line A′ = 0,

• r̂n - an initial time,

• ∆rn - time range around r̂n.

These parameters are listed in (40) and found in nonrigorous simulation (bisec-
tion).

6.1 Isolating block and cone condition for ρ→ −∞.

By (xb, yb) we denote coordinates that linearize the system at ρ → −∞ as
defined in (33). We define an isolating block

Nb = [−db1 , db1 ]× [−db2 , db2 ] = [−0.125, 0.125]× [−2.8 · 10−8, 2.8 · 10−8]. (39)

Let us define the following constants

n r̂n ∆rn
1 0.003288250 4 · 10−7

2 0.001184020 6 · 10−8

3 0.000650050 3 · 10−8

4 0.000424204 2 · 10−8

5 0.000304427 1 · 10−8

6 0.000232050 8 · 10−9

(40)

Lemma 14 Put ρ∗ = ln (r̂1 + ∆r1), where r̂1 and ∆r1 are defined in (40).

• For ρ ≤ ρ∗ set Nb is an isolating block for the system (34).

• For ρ ≤ ρ∗ the cone condition is satisfied on Nb with quadratic form
Q(xb, yb) = x2b − y2b and thus for all ρ ≤ ρ∗ the set

Wu
ρ,Nb(0, 0) = {(xb, yu(ρ, xb)) |xb ∈ [−db1 , db1 ]}

is a horizontal disc satisfying the cone condition.
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• The following estimate holds:∣∣∣∣∂yu∂ρ (ρ, xb)

∣∣∣∣ ≤ 7.65 · 10−6.

Proof: Let f(ρ, xb, yb) = (f1(ρ, xb, yb), f2(ρ, xb, yb)) be the vector field as
defined in (34) and put fρ = f(ρ, ·, ·). Let db1 , d

b
2 be the sizes of Nb – see (39).

Direct evaluation in interval arithmetics gives the following inequalities

f1((−∞, ρ∗]× {db1} × [−db2 , db2 ]) ≥ 0.0625 > 0,

f1((−∞, ρ∗]× {−db1} × [−db2 , db2 ]) ≤ −0.0625 < 0,

f2((−∞, ρ∗]× [−db1 , db1 ]× {db2}) ≤ −4.8127929800192025 · 10−8 < 0,

f2((−∞, ρ∗]× [−db1 , db1 ]× {−db2}) ≥ 4.8127929800192025 · 10−8 > 0.

This proves that Nb is an isolating block for all ρ ≤ ρ∗.
Let us fix ρ ∈ (−∞, ρ∗] and recall that the quadratic form we are using is

Q(xb, yb) = x2b − y2b. Since db1 + db2 ≤
√
3
3 from Lemma 12 we get that the cone

condition is satisfied with any constant E < 1.
Finally, from Lemma 13 and Lemma 5 and passing to the limit with E → 1−

we get that

∣∣∣∣∂yu∂ρ (ρ, xb)

∣∣∣∣ ≤
∥∥∥∂f∂ρ ((−∞, ρ∗]×Nb)TQ+Q∂f

∂ρ ((−∞, ρ∗]×Nb)
∥∥∥

E

≤ 4
√

2e2ρ∗ |db1 + db2 |
E

E→1−−→ 4
√

2e2ρ∗ |db1 + db2 |

= 540761062255450812 · 10−23
√

2 < 7.65 · 10−6.

6.2 Isolating block and cone condition for r →∞.

Let us consider an isolating block for r →∞. Put

N e = [−de1, de1]× [−de2, de2] = [−0.0015, 0.0015]× [−0.01, 0.01]. (41)

Lemma 15 Let r∗ = 6.

• For r ≥ r∗ the set N e is an isolating block for the system (24).

• For r ≥ r∗ the cone condition is satisfied on N e with quadratic form
Q(xe, ye) = x2e − y2e and thus for all r ≥ r∗ the set

W s
r,Ne(0, 0) = {(xs(r, ye), ye) | ye ∈ [−de2, de2]}

is a vertical disc satisfying the cone condition.
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• The following estimate holds:∣∣∣∣∂xs∂r (ρ, ye)

∣∣∣∣ ≤ 0.000252.

Proof: Let f(r, xe, ye) = (f1(r, xe, ye), f2(r, xe, ye)) be the vector field as
defined in (24) and let de1, d

e
2 be the sizes of N e – see (41). Direct evaluation in

interval arithmetics gives the following inequalities

f1([r∗,∞)× {de1} × [−de2, de2]) ≥ 0.00051215277777777761 > 0,

f1([r∗,∞)× {−de1} × [−de2, de2]) ≤ −0.00051215277777777761 < 0,

f2([r∗,∞)× [−de1, de1]× {de2}) ≤ −0.010737706706597221 < 0,

f2([r∗,∞)× [−de1, de1]× {−de2}) ≥ 0.010737706706597221 > 0.

This proves that N e is an isolating block for all r ≥ r∗.
From the proof of Lemma 8 it follows that the cone condition is satisfied on

the set N e for r ≥ r∗ and with a = 1, E > 0 provided the following inequality
holds true

E < 2− 1

r∗
− 3

2
(de1 + de2)2

Substituting r∗ = 6 and de1, d
e
2 form (41) we get the upper bound

E < E0 =
43995239

24000000
≈ 1.8331349583333332.

Finally, from Lemma 9 and Lemma 5 we get that

∣∣∣∣∂xs∂r (r, ye)

∣∣∣∣ ≤
∥∥∥∂f∂r ([r∗,∞)×N e)TQ+Q∂f

∂r ([r∗,∞)×N e)
∥∥∥

E

≤
√

2(de1 + de2)

r2∗

(
1 +

3

4r2∗

)
/E.

Passing to the limit with E → E−0 we obtain∣∣∣∣∂xs∂r (r, ye)

∣∣∣∣ ≤ √2(de1 + de2)

r2∗

(
1 +

3

4r2∗

)
/E0 =

140875

791914302

√
2 < 0.000252.

6.3 Shooting between manifolds.

Let us define three Poincaré sections. The first section is expressed in coordi-
nates (r, xb, yb) – see (33) – that linearize the system at ρ→ −∞. The section
contains one of the exit edges of the set Nb, namely

Πb =
{

(r, xb, yb) |xb = db1
}
.
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We will use (r, yb) coordinates to describe points on Πb.
The two remaining sections are expressed in coordinates that define the set

N e and each of them contains one of the entrance edges of this set

Πe
± = {(r, xe, ye) | ye = ±de2} .

We will use (r, xe) coordinates to describe points on Πe
± when the sign will be

clear from the context. By P− : Πb → Πe
− and P+ : Πb → Πe

+ we denote two
Poincaré maps. By Pn±(r, yb) we denote the n-th itersection of the trajectory of
(1) starting at (r, db1 , yb) with the section Πe

±. In what follows we will always
use odd number of intersections for the mapping Pn− and even for the mapping
Pn+. Therefore we will skip the subscript ± to simplify the notation and write
just Pn.

Lemma 16 Let r̂n, ∆rn, n = 1, . . . , 6 be as defined in (40) and put

r−n = r̂n −∆rn

r+n = r̂n + ∆rn

Db
2 = [−db2 , db2 ].

Then for n = 1, . . . , 6 the mapping Pn+1 is well defined and smooth on the set

[r−n , r
+
n ]× [−db2 , db2 ].

Moreover

Pn+1({r±n } ×Db
2 ) ⊂ {(r, xe) : |xe| > de1, r ≥ r∗ = 6} ,

πxP
n+1(r−n , yb) · πxPn+1(r+n , yb) < 0 for yb ∈ Db

2

and each trajectory of a point (rb, yb) ∈ [r−n , r
+
n ] × [−db2 , db2 ] intersects the axis

A′ = 0 exactly n times before reaching the section Πe
(−1)n .

Proof: The proof is computer assisted and uses an rigorous ODE solver from
the CAPD library [CAPD]. In (42) we give rigorous bounds for the return time,
i.e. for all (rb, yb) ∈ [r−n , r

+
n ] × [−db2 , db2 ] the image (re, xe) := P (n+1)(rb, yb)

exists and re belongs to the corresponding interval listed in (42). This shows
that such an intersection occurs always for re ≥ r∗ = 6.

n bound for the return time re
1 [6.5694270711914049, 6.8663028711914071]
2 [9.547364685097655, 9.8754898050976578]
3 [12.63188037430908, 12.975630434309084]
4 [15.467339314615232, 15.811089354615238]
5 [18.659449295387446, 19.009330830371958]
6 [21.645791630860828, 21.989541646860836]

(42)

In (43) we list estimates which establish the remaining inequalities. We see that
the x-coordinate of Pn+1({r±n } × Db

2 ) has opposite sign for r−n and r+n and in

29



P+
2(r1

-,D2
b)

P+
2(r1

+,D2
b)

Π+
e

N
e

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
-0.02

-0.01

0.00

0.01

0.02

A

A'

Figure 6: The set N e, Poincaré section Πe
+ and an indication that P 2

+(r−1 , D
b
2 )

and P 2
+(r+1 , D

b
2 ) are mapped to opposite sides of the set N e.

each case its absolute value is bigger than de1 = 0.0015.

n πxP
n+1({r−n } ×Db

2 ) πxP
n+1({r+n } ×Db

2 )
1 −0.0032[19, 26] 0.0032[89, 97]
2 0.00189[2, 8] −0.0018[86, 93]
3 −0.0019[87, 92] 0.0019[37, 43]
4 0.00209[5, 9] −0.00221[0, 5]
5 −0.00155[5, 9] 0.0015[78, 82]
6 0.00173[1, 4] −0.0016[57, 61]

(43)

In Fig. 6 we show the isolating block N e, Poincaré section Πe
+ and by black dots

we marked the image P 2
+({r±1 } ×Db

2 ).

Proof of Theorem 1:
Recall that we used (rb, yb) coordinates on section Πb and (re, xe) coordi-

nates on Πe
+. From Lemmas 14 and 15 we know that

Wu
ρ,Nb(0, 0) = {(xb, yu(ρ, xb)) |xb ∈ [−db1 , db1 ]},
W s
r,Ne(0, 0) = {(xs(r, ye), ye) | ye ∈ [−de2, de2]},

where yu(·, ·), xs(·, ·) are smooth functions. Put

ỹu(rb, xb) := yu(ln rb, xb)

and consider the mapping

Fn(rb) = πxe
Pn+1

(
rb, ỹu(rb, d

b
1)
)
− xs

(
πrP

n+1(rb, ỹu(rb, d
b
1)), de2

)
.

Zeros of this function correspond to connecting orbits we are searching for.
We will show that for n = 1, . . . , 6 this function has a unique zero in [r−n , r

+
n ].
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From Lemma 16 the function Fn is continuous and Fn(r−n )Fn(r+n ) < 0,
because |xs

(
πrP

n+1(rb, ỹu(rb, d
b
1)), de2

)
| ≤ de1. This proves that Fn has zero in

[r−n , r
+
n ]. For uniqueness it is enough to show that F ′n(r) 6= 0 for r ∈ [r−n , r

+
n ].

The proof is computer assisted and we will give details for n = 1, only. For
n = 2, . . . , 6 we will give the necessary estimates. Using the CAPD library
[CAPD] we computed a rigorous bound for the derivative of the return map P 2

+

on the set W = [r−1 , r
+
1 ]× [−db2 , db2 ] and we got

DP 2
+(W ) =

 ∂πrP
2
+

∂rb
(W )

∂πrP
2
+

∂yb
(W )

∂πxeP
2
+

∂rb
(W )

∂πxeP
2
+

∂yb
(W )


⊂

[
[−292366, 565586] [−58.3544, 88.8462]
[1538.59, 16826.7] [−0.253485, 2.36953]

]
.

From Lemma 14 and Lemma 15 we have bounds for the partial derivatives
of the parametrization of invariant sets with respect to time variable, namely∣∣∣∣∂yu∂ρ (ρ, db1)

∣∣∣∣ ≤ 7.65 · 10−6,∣∣∣∣∂xs∂re
(re, d

e
2)

∣∣∣∣ ≤ 0.000252.

Taking into account time rescaling ρ = ln rb we obtain the estimate∣∣∣∣ ∂∂rb ỹu(rb, d
b
1)

∣∣∣∣ =

∣∣∣∣ ∂∂rb yu(ln rb, d
b
1)

∣∣∣∣ ≤ 7.65 · 10−6

r−1
=

51

21919
< 0.00233.

Put [x′s] := 0.000252 · [−1, 1] and [ỹ′u] := 7.65 · 10−6 · [−1, 1].
Gathering this together we obtain a rigorous bound for the derivative

F ′1([r−1 , r
+
1 ]) ⊂ ∂πxeP

2
+

∂rb
(W ) +

∂πxeP
2
+

∂yb
(W )[ỹ′u]

− [x′s]
(
∂πrP

2
+

∂rb
(W ) +

∂πrP
2
+

∂yb
(W )[ỹ′u]

)
⊂ [1538.59, 16826.7] + [−0.253485, 2.36953][ỹ′u]
− [x′s] ([−292366, 565586] + [−58.3544, 88.8462][ỹ′u])
⊂ [1396, 16970],

(44)

which is nonzero (see Remark 17 for short comments about the possibility for
obtaining more precise bounds).

In a similar way we computed this derivative for n = 2, . . . , 6 and we got the
following bounds

F ′2([r−2 , r
+
2 ]) ⊂ [−56203.7,−12850.2],

F ′3([r−3 , r
+
3 ]) ⊂ [16342.1, 137481],

F ′4([r−4 , r
+
4 ]) ⊂ [−183339,−24681.3],

F ′5([r−5 , r
+
5 ]) ⊂ [39626.1, 307922],

F ′6([r−6 , r
+
6 ]) ⊂ [−435119,−1138.93].

(45)

It remains to show the transversality of An.
Observe that till now we established the following facts
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• Let Wu
(ρ≤ρ∗),Nb ⊂ (−∞, ρ∗]×Nb be a set consisting of all points (ρ0, z0),

such that there exists a solution z(ρ) for ρ ≤ ρ0 of equation (31) (in
coordinates in which Nb is defined this is the system (34)), such that
z(ρ0) = z0, z((−∞, ρ0] ⊂ Nb and limρ→−∞ z(ρ) = (0, 0).

We have proved that there exists a smooth function yu(ρ, xb), such that

Wu
(ρ≤ρ∗),Nb = {(ρ, xb, yu(ρ, xb)), | ρ ∈ (−∞, ρ∗], xb ∈ [−db1 , db1 ]}

• Let W s
(r≥r∗),Ne ⊂ [r∗,∞)×N e be a set consisting of all points (r0, z0), such

that there exists a solution z(r) for r ≥ r0 of equation (24) (in coordinates
in which N e is defined this is the system (26)), such that z(r0) = z0,
z[r0,∞) ⊂ Ne and limr→∞ z(r) = (0, 0).

We have proved that there exists a smooth function xs(r, ye), such that

W s
(r≥r∗),Ne = {(r, xs(r, ye), ye), | r ∈ [r∗,∞), ye ∈ [−de2, de2]}.

The sets Wu
(ρ≤ρ∗),Nb and W s

(r≥r∗),Ne are two dimensional surfaces in the ex-

tended phase space R×R2 (or [0,∞)×R2 depending whether we use the vari-
able ρ or r). These surfaces can be ’globalized’ to invariant sets Wu and W s,
by applying to Wu

(ρ≤ρ∗),Nb and W s
(r≥r∗),Ne the flow induced by (1). In this way

we obtain two-dimensional immersed invariant manifolds.
Each of the solutions An whose existence we already established belongs

to Wu ∩ W s. We want to prove that the intersection along such solution is
transversal.

Let γ(r) := (r,An(r), A′n(r)) for some n = 1, . . . , 6 be one of our connecting
orbits. Let pb = (r̄b, d

b
1 , ỹu(r̄b, d

b
1)) and pe = (r̄e, xs(r̄e, d

e
2), de2) be the points on

γ on sections Πb (i.e. xb = db1) and Πe (i.e. ye = de2), respectively. To prove
the transversality it is enough to show that the tangent spaces to Wu and W s

at pe satisfy
TpeW

u + TpeW
s = R3.

Since the point pe is in the isolating block N e in coordinates (xe, ye) we have

TpeW
s = TpeW

s
(r≥r∗),Ne = span

{
γ′(r̄e),

(
1,
∂xs
∂r

(r̄e, d
e
2), 0

)}
and these vectors are linearly independent because the last coordinate of γ′(r̄e)
is nonzero. In the above formula the vector γ′(r̄e) is the direction of the vector
field (and the curve γ). The second vector

g1 =

(
1,
∂xs
∂r

(r̄e, d
e
2), 0

)
spans Tpe

(
W s

(r≥r∗),Ne ∩Πe
)

, which is one dimensional.
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TpeW
u is obtained from TpbW

u
(ρ≤ρ∗),Nb , as follows. TpbW

u
(ρ≤ρ∗),Nb is spanned

by γ′(r̄b) and

g2 =

(
1, 0,

∂ỹu
∂r

(r̄b, d
b
1)

)
,

which spans the one-dimensional space Tpb

(
Wu

(ρ≤ρ∗),Nb ∩Πb
)

.

Put τ = r̄e− r̄b which is the transition time for Pn+1 at pe. The shift along
the trajectory of γ by τ maps γ′(r̄b) to γ′(r̄e). The Poincaré map Pn+1 acts on
g2 to produce a vector g̃2 as follows

πr g̃2 =
∂πrP

n+1

∂r
(r̄b, ỹu(r̄b, d

b
1)) +

∂πrP
n+1

∂yb
(r̄b, ỹu(r̄b, d

b
1))

∂ỹu
∂r

(r̄b, d
b
1),

πxe
g̃2 =

∂πxe
Pn+1

∂r
(r̄b, ỹu(r̄b, d

b
1)) +

∂πxe
Pn+1

∂yb
(r̄b, ỹu(r̄b, d

b
1))

∂ỹu
∂r

(r̄b, d
b
1),

πye g̃2 = 0.

We have

TpeW
u = span {γ′(r̄e), g̃2} .

Therefore we need to show that the vectors γ′(r̄e), g1, g̃2 are linearly indepen-
dent. Observe that πyeγ

′(r̄e) 6= 0, because the section Πe is transversal, and
πyeg1 = πye g̃2 = 0. Therefore, it is enough to check that the projections of
g1, g̃2 on (r, xe) subspace are linearly independent. This means the following
determinant is nonzero (we dropped arguments in the partial derivatives)

D = det

[
1, ∂πrP

n+1

∂r + ∂πrP
n+1

∂y
∂ỹu
∂r

∂xe

∂r ,
∂πxeP

n+1

∂r +
∂πxeP

n+1

∂y
∂ỹu
∂r

]
.

Observe that this leads to the following condition

D =
∂πxe

Pn+1

∂r
+
∂πxe

Pn+1

∂y

∂ỹu
∂r
− ∂xe

∂r

(
∂πrP

n+1

∂r
+
∂πrP

n+1

∂y

∂ỹu
∂r

)
6= 0.

We have

∂πxe
Pn+1

∂r
+
∂πxe

Pn+1

∂y

∂ỹu
∂r

=
d

dr
πxe

Pn+1(r, ỹu(r, db2)),

∂πrP
n+1

∂r
+
∂πrP

n+1

∂y

∂ỹu
∂r

=
d

dr
πrP

n+1(r, ỹu(r, db2)).

therefore
D = F ′n(r̄e) 6= 0

hence the intersection is transversal.
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Remark 17 The estimation of F ′1 given by (44) is very rough, but it is sufficient
for our purposes. It is easy to see that the main reason for such big diameter

of our estimate for F ′1 comes from our bound for
∂πxeP

2

∂rb
. This number can be

non-rigorously estimated by taking finite differences using data from (43) (first
row) and ∆r1 from (40) to obtain

πxe
P 2(r+1 , D

b
2 )− πxe

P 2(x−1 , D
b
2 )

2∆r1
≈ (0.003294 + 0.003223)/(8 · 10−7) = 8146.25.

Subdividing ∆r1 onto 100 pieces we got a rigorous estimate on the derivative

F ′1([r−1 , r
+
1 ]) ⊂ [7902.54, 8399.24].

From the above computations it is clear that the key ingredients in obtaining
nonzero derivative F ′([r−1 , r

+
1 ]) are sharp bounds for [x′e] obtained from the cone

condition and the transversality coming from dynamics, i.e. large in absolute

value coefficient
∂πxeP

2
+

∂rb
(W ).

6.4 Implementation notes.

A short C++11 program that realizes part of a computer assisted proof of
Theorem 1 is available from [W]. All the inequalities, i.e. return times (42),
shooting (43) and estimation on derivatives (45), regarding all six connecting
orbits are checked within 0.7 second on a laptop type computer with Intel Core
i7 2GHz processor. The program has been compiled and tested under Ubuntu
OS with gcc-4.8.1 and gcc-4.9.1, OSX 10 with clang 6.0 and MS Windows 7
with gcc-4.8.1.

This program does not contain nonrigorous routines for finding good candi-
dates for connecting orbits. They have been found by a simple bisection algo-
rithm. The sizes of sets (see (40)) were adjusted by hand so that no subdivisions
are necessary when computing derivatives F ′n.
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