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A Homoclinic Orbit in a Planar Singular ODE—A Computer Assisted Proof*
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Abstract. We consider a family of 2-dimensional ODEs of the form A¢(z)z’ = fe(z) depending on a real
parameter £ which was investigated by Vladimirov [Rep. Math. Phys., 61 (2008), pp. 381-400]. In
this system, there exist stationary points pe which belong to the set of zeros of As. We prove, using
rigorous numerics, the existence of a homoclinic orbit to pe for some parameter value £ = §;,. Due to
the singularity of the system it takes a finite time to travel along this orbit, and this property gives
rise to a compacton-like traveling wave in some hydrodynamic system describing relaxing media.
Our approach could be used to prove similar results in other singular systems as well.
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1. Introduction. We consider a family of ODEs of the following form:

A(z)2r' = z(oxy — Kk + TEYx),

(1) Alz)y = —&(€x(zy — k) + x(y +7)),

where z : R — R, y : R — R are unknown functions, A : R — R is given by A(z) = 7(£2)? — ¥,
and real numbers &, 7, K, X, 7, and 0 = 1+ 7€ € R are some physical parameters. Parameters
T, 0, k, and v come from the original PDE describing some relaxing media (for more details
see [V] and Appendix A). The system (1) is the result of the traveling wave solution ansatz
with velocity £. Vladimirov was particularly interested in the existence of the compacton-like
solution—a traveling wave with compact support. For this he needed a “singular” fixed point
for the system (1) with a homoclinic loop such that it takes finite time to travel this loop—the
meaning of this statement will be explained later.
In his numerical investigations Vladimirov fixed parameters 7, x, x, and ~ as follows:

(2) 7=005 xr=1, x=4, ~v=-1,

and he looked numerically for creation of a homoclinic loop as £ changes.
Let us discuss now some properties of (1). First of all, this ODE does not induce a local

dynamical system. Zeros of A(x), two lines given by x = +, / %2‘, introduce singularities into
our system.
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Figure 1. A numerical approxzimation of the homoclinic loop in the system (1) with parameter values given
by (2).

System (1) has three stationary points (zeros of the right-hand side (rhs) of (1)), from
which only two are interesting from the physical point of view (see [V]). The two interesting
points are (Ry,11;) and (Rg,Ily), where

Rl :_%7 le_’)’a

Ry = 1/%5, I, = 7”_;}%}%2.

Observe that Ry belongs to the zero set of A(x)—in that sense this is a singular fixed point

for (1).
2 2
X+ X +4xR7 there

In [V], it was shown that for values above the critical value &, = — 2R
exists a limit cycle in the system (as a result of the Andronov-Hopf bifurcation). Good
numerical evidence was presented that there exists a value &, > &.. for which a homoclinic
orbit appears (see Figure 1).

Our goal is to prove that there exists a (locally unique) homoclinic orbit to the point
(R2,1Iy) for some &, > .. Since we are dealing here with a singular fixed point, we are going
to use a slightly modified definition of a homoclinic solution. By a homoclinic orbit to (Rg,Il2)
we understand a solution of (1) (z,y) : (a,b) — R? such that a,b € R, =Ry < (t) < Ry for
t € (a,b), and
(3) lim (2(0), () = lim (x(0), y(1)) = (o, Th).

Observe that condition |z((a,b))| < Rs implies that the homoclinic solution does not intersect
the set of singular points of the system (1). Finite values of a and b are possible, because
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(R2,I13) belongs to the set {(z,y) : A(x) = 0}, and this feature is essential for the construction
of the compacton-like solution in [V].

The main result in this paper is the following.

Theorem 1. Let E = [§0, Eup), where &, = —4.049882477, &,, = —4.049880977.

For parameter values as in (2) there exists a unique &, € Z such that a homoclinic loop
in the system (1) exists.

Moreover, travel time along this homoclinic loop is finite.

The proof of the above theorem is a direct consequence of Theorem 10 about the existence
of a homoclinic loop, Theorem 12 about the uniqueness of the loop, and Theorem 2 about the
finite travel time along the homoclinic loop.

Conceptually, our method is standard (see, for example, [GH, sect. 6.1]), and its history
can be traced back to Poincaré. We investigate the distance function between the stable and
unstable manifolds of the hyperbolic fixed point on a suitable section of the vector field under
consideration. The proof requires estimates of the stable and the unstable manifolds, together
with bounds on their derivatives with respect to the parameter. Our approach is based on
topological and geometrical methods developed in [ZCC]. This approach has been used by
the second author and his coworkers in computer assisted proofs in dynamics of maps and
ODEs [KWZ, WZ1]. These methods depend on the existence of the hyperbolic fixed point
in the system under consideration. This is not the case for the point (Rg,Ils) for the system
(1). This obstacle is removed by observing that trajectories of the system (1) coincide with
trajectories of the system obtained from (1) after setting A(z) = 1 as long as singular lines
are not crossed.

The method is not restricted to polynomials, and it is also possible to extend it to higher
dimensions, but the topological part becomes more involved (see, for example, [WZ1], where
the intersection of two 2-dimensional invariant manifolds in four dimensions was established).

Let us mention here that there is a vast literature on numerical techniques for approximat-
ing equilibria, periodic orbits, connecting orbits, and, more generally, invariant manifolds of
maps or ODEs. In particular, there is a strong interest in developing computational (nonrigor-
ous) methods for connecting orbits [B, ChK, DF, FD1, FD2, KW]. A number of authors have
also developed methods that involve a combination of interval arithmetic with analytical and
topological tools and provided proofs of the existence of homoclinic and heteroclinic solutions
of differential equations [AAK, BL, BH, H, O, W, W1, WZ2].

Compared to these works the novelty in our approach consists of two main points. First, it
allows us to prove the existence of homoclinic orbits in singular ODEs, which may arise in many
applications. Second, in terms of obtained results, it allows us to prove the local uniqueness
of the homoclinic loop. In fact, in all previously cited papers (except [AAK, W1]) the homo-
and heteroclinic connections have been transversal, which makes the problem considerably
easier.

Papers [AAK, W1], in terms of the obtained results, are very similar to our work. The
authors established the existence of the traveling wave, which is obtained as the homoclinic
loop to a fixed point in a 3-dimensional system with the parameter being the wave speed.
In [W1], a countable set of such parameters was proven to exist, while the authors of [AAK]
gave very precise estimates for the value of the wave speed—the diameter of the interval
containing the homoclinic parameter is 2742, However, the authors have not tried to prove
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the local uniqueness of the wave speed, but there is no doubt that this can be achieved using
the parameterization method they employed. The tools used in [W1] are topological in nature
and exploited the symmetries of the system.

Some recent papers [AAK, BL, BH] on computer assisted proofs of the existence of the
connecting orbits in flows used the parameterization method developed in [CFL1, CFL2,
CFL3] to estimate rigorously the (un)stable manifolds of fixed points, for both maps and flows.
This approach allows one to validate a high order expansion of the (un)stable manifold of the
fixed point. Especially in the case of flows, this can yield very accurate bounds. However, the
parameterization method will possibly be useless in the context of Poincaré maps for flows,
taking into account the enormous computational cost of obtaining the Taylor coefficients of
such maps. One way to overcome this is to parameterize the whole (un)stable manifold of
the entire orbit. A construction of linear bundles for some 3-dimensional examples has been
accomplished by Castelli and Lessard in [CL].

Another approach to the rigorous estimation of invariant manifolds of fixed points of ODEs
has been developed by Tucker in [T1, T2, JT]. He defined a robust normal form concept, which
was essential in his proof of the existence of the Lorenz attractor.

The content of this paper may be briefly described as follows: in section 2 we give an
outline of the method of proving the existence and local uniqueness of a homoclinic loop in
the singular system (1). In section 3 we prove that it takes finite time to travel along this
homoclinic loop. In section 4 we recall from [ZCC] all necessary definitions and geometric
theorems about invariant manifolds of fixed points. In section 5 we present some numerical
details from our computer assisted proof.

Our program is implemented in C++ and uses the CAPD library for rigorous computa-
tions [CAPD]. The source code of the program may be found on [WWW].

On the standard PC-type machine with a 2.4GHz Intel Pentium 5 processor the time of
computation was approximately 1 minute.

1.1. Notation. By N, Z, Q, and R we denote the sets of natural, integer, rational, and
real numbers. For R™ we denote by ||z|| the norm of z, and if the formula for the norm is not
specified in some context, then any norm can be used.

Let zp € R™; then By, (20,7) = {z € R" : ||z0—z|| < r} and B,, = B,(0,1). For z € R* xR®
we will often write z = (x,y), where z € R* and y € R°. We will use the projection maps
m1(2) = 1 (2) = 2(2) = @ and m(2) = my(2) = y(z) = y.

Let A :R™ — R™ be a linear map. By Sp(A) we denote the spectrum of A. For a matrix
A € R™™ by AT we denote its transpose.

For aset U € R™ we denote by U, int U, and OU the closure, the interior, and the boundary
of U, respectively.

In section 3 we will use some of the notion introduced later in section 4. If the reader is
not familiar with the following terms, we provide here links to appropriate definitions. The
notion of an h-set is given in Definition 1. For a given vector field f, an h-set N, and a
hyperbolic fixed point g € N of f we denote by Wy (xo, f) and Wy (zo, f) the stable and
unstable invariant manifolds of zq inside the set IN. Hyperbolic fixed points and stable and
unstable manifolds are introduced in Definition 8.
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2. Outline of the method. The basic idea of our approach to prove the existence of a
homoclinic loop in (1) which is traveled in a finite time can be described as follows:
1. We desingularize our system by considering the system (1) with A(z) = 1. We obtain
the following system:

() {:17’ = z(oxy — k + &),

y' = —¢(Ex(ry —K) + x(y +7))-

From now on we will denote the rhs of (4) by fe. Often we will drop the subscript £
if it is known from the context.

It is easy to see that any solution of (4) (x,y) : (a,b) — R? such that A(z(t)) #
0 for t € (a,b) gives rise to some solution of (1) and vice versa (after a suitable
reparameterization of time). The direction of time is preserved if A(z(t)) > 0 for
t € (a,b) and reversed in the other case.

2. For (4) we prove that the fixed point (Rg,1I5) is hyperbolic for all £ € [£,, £yp), Where
&0 and &, are some (guessed) lower and upper estimates for &,. Next, we prove that
for unique &, € [&0, &up| left branches of the stable and unstable manifolds of the point
(R2,1I13) coincide, giving rise to the homoclinic loop. Moreover, this loop (without the
fixed point itself) is contained in the vertical strip {(x,y) : |z| < Ra}.

3. Using the fact that the homoclinic loop found in step 2 is contained in the region
where A(z) < 0 we argue that it gives rise to a solution for (1) (z,y) : (a,b) — R?
such that a,b € R, A(z(t)) < 0, and

() lim (z(), y(t)) = lim(x(t), y(t)) = (R, Ia).

t—a t—b

The second step takes most of the remaining part of the paper and combines abstract
mathematical results with rigorous numerics. Its realization requires the following;:

e Rigorous estimates of the local stable and unstable manifolds of the hyperbolic fixed
point, together with their derivatives with respect to the parameter. The relevant
abstract theorems will be given in section 4. Implementation details of the method
are described in Lemmas 7, 8, 9 and their proofs. Lemmas 7 and 8 together with
Theorem 4 give us the existence of branches of stable and unstable manifolds in the
vicinity of the hyperbolic stationary point that do not cross the line of singular points.
Thus we are able to integrate them outside the neighborhood of the stationary point up
to some section L. Investigating the behavior on the section in Theorem 10 allows us
to conclude that a homoclinic orbit exists. Lemma 9 allows us to prove the uniqueness
of the homoclinic solution, and it is used in Lemma 11 and Theorem 12.

e Rigorous numerics to propagate in time the stable and unstable manifolds, together
with computation of Jacobian matrices of relevant Poincaré maps. This is not dis-
cussed in this paper—the interested reader should consult [CAPD, Z]|. The rigorous
integration is used in the proof of Theorem 10.

The third step is realized in section 3 by analytical arguments, and the final check for
nonzero coordinates of the eigenvectors in the system (4) is given in Theorem 15.
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3. Finite time to travel along the homoclinic loop in (1). In this section we show
that the homoclinic loop to a hyperbolic fixed point in (4) gives rise to a solution satisfying
condition (3) for (1); that is, the travel time along the homoclinic orbit is finite.

Let h : (—00,00) — R? be a homoclinic solution to the point (Rg, 1) in (4) for £ = &, and
let L be a Poincaré section for (4) such that h(0) € L. Moreover, assume that 7, (h(t)) < Ro
for all t € R\ {0}. That means h(t) is a homoclinic loop for (1), because the factor A(x)
introduces only a reparameterization of time for A(t) in system (1). In view of this observation
it is enough to show that once h(t) is close to (Rg,Il3) it takes finite time in the system (1)
to reach (R, Ily).

Theorem 2. Let A : R — R be a C'-function such that A(x) = v + O(x?), with v > 0.

Let f:R% — R? be a C'-function.

Consider a singular ODE

(6) A)-# = f(z), =z€R
and its regular modification
(7) 2= f(z), z € R%

Assume that the following conditions are satisfied:
1. z0 = (0,0) is a hyperbolic fixed point of (7).
2. The unstable vector of D f(zg), vy, and the stable vector of D f(zy), vs, have a nonzero
first coordinate.
Then for any € > 0 there exists an h-set N C B(zp,€) such that N is an isolating block
for (7) and the following assertions are valid:
1. If z : [a,b) — R2, where b € RU {oo}, is any solution to (6) such that

(8) z(a) € B(0,¢), A(x(t)) >0 Vte€|a,b), limz(t)= z,

t—b

then there exists to € [a,b) such that
9) 2(t) € Wy (20, f) 0 {(2,9) | A(z) >0} Vit € [to, b).

2. For any p € W3 (20, f) N{(z,y) | A(xz) > 0} there exists b € Ry \ {0} such that the
forward solution of (6), denoted by z(t), with an initial condition z(a) = p is defined
on the segment [a,a + b) and the following conditions hold:

(10) z(t) € Wx(zo, f) N {(z,y) | A(z) > 0}, t € la,a+0),

11 li t) = 2.
- m () =2

3. If z: (a,b] — R?, where a € RU {—o0}, is any solution of (6) such that

(12) z(b) € B(0,¢), A(z(t)) >0 Vte (a,b], limz(t)= z,

t—a

then there exists to € (a,b] such that

(13) 2(t) € Wy (20, /) N {(z,y) [ Alx) >0} Vt € (a,to].
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4. For any p € Wi(z0, f) N {(z,y) | A(x) > 0} there exists b € Ry \ {0} such that the
backward solution of (6), denoted by z(t), with an initial condition z(a) = p is defined
on the segment (a — b, a] and the following conditions hold:

(14) z(t) € Wy (20, f) N {(z,y) | A(z) >0}, te(a—bal,
(15) lim z(t) = 2.
t—a—b
Proof. We prove assertions 1 and 2 only. The proofs of the other two are analogous—one
needs to consider backward orbits.
Without any loss of generality we can assume that v, = (1,a)”. Let A, < 0 be the
corresponding eigenvalue. It follows that if

ai; a1
16 D = 7
(10 o= (G o)
then
(17) a1 + a1 = Ag.

From Theorem 3 it follows that in any neighborhood of zy there exists an h-set N such
that N is an isolating block for (7) and W3 (2o, f) is contained in the cone C' = {2y + t(vs +
[—6,6](0,1)T), t € R}, where t € R and § can be chosen to be arbitrarily small. Let us choose
d > 0 and € > 0 so small that the set defined by

(18) Cy = {2+ t(vs + [6,6](0,1)T) |t > 0}

is contained in B(zp,¢) C {(z,y) | A(x) > 0}. Now, in the domain where A(z) > 0, the
trajectories of (6) and (7) are the same up to reparameterization, and hence assertion 1 is
proved.

To prove assertion 2 let us take a solution z(t) of (6) with z(a) € W5 (20, f)N{(z,y) | A(z) >
0}. Then for ¢ € [a,b) we have

(19) z(t) € Wy (20, f) € C.

Now we will study (6) in C.
In C we have the estimate

(20) x>0, (a—0)z <y < (a+d).
From (6) and (17) we obtain for (z,y) € Cy

(e + O(2?))a’ = anz + aray + O([| (2, y)II*)
€ z(a1n + aara + [—6,0]) + O(xz)
(21) = z(\s + [-0,6]) + O(z?).
We may further decrease € to ensure that for 2 € B(0,¢€) both O(2?) functions in (21)

satisfy the condition

(22) l0@?)]| < Blz|



1548 ROBERT SZCZELINA AND PIOTR ZGLICZYNSKI

for an arbitrarily small 8 to be fixed later.
From (21) and (22) we obtain for z € C'; the inequality

(yz + O(@*)z' < z(As + 6+ B),

and finally we get an upper bound on z’:

x(As + 3+ B) < A +0+6) A +0+p

13+ 0~  z(y—p) =8

Since A\s < 0, v > 0 and all other constants can be made arbitrarily small, we see that we can
find é and € such that

(23) 7 <

(24) ¥ <c<0, z € Cy.

This means that any forward solution on W3, (29, f)N{(x,y) | A(z) > 0} will reach z( in finite
time. |

4. Geometric tools for invariant manifolds of fixed points. To make this paper reason-
ably self-contained in this section we gather all necessary definitions and geometric theorems
from [ZGi, ZCC, WZ1] related to the rigorous investigation of invariant manifolds of fixed
points.

4.1. Horizontal and vertical disks.

Definition 1 (see [ZCC, Def. 1]). An h-set N is a quadruple (|N|,u(N), s(N),cn) such that
e |N| is a compact subset of R",
e u(N),s(N)€{0,1,2,...} are such that w(N) + s(N) = n, and
e ¢y : R = R® = RUW) x R¥WN) s o homeomorphism such that cyx(|N|) = By x

Bov).-
We set
dim(N) = n, B

N_c = Byn) X By,
Nc+ = 0By (n) X Bs(ny,
N = Byny x 0By,
N~ =y (N7,
Nt = (NF).

Hence an h-set IV is a product of two closed balls in some coordinate system cy. We call
numbers «(N) and s(NN) unstable and stable dimensions, respectively. The subscript ¢ refers
to the new coordinates given by cy. The set |N| is called the support of an h-set. We often
drop the bars in the symbol |N| and use N to denote both the h-set and its support.

Occasionally we will say that N = {(x0,%0)} + Bu(0,71) X Bs(0,72) C R* x R® is an h-set.
By this we will understand a “natural” h-set structure on N given by u(N) = u, s(N) = s,
en(zy) = (5572, 42). In the context of R? and u = 1, s = 1 we will sometimes write
N = zy + [—a,a] x [-b,b]. This is compatible with the above convention, as a defines the
radius of the ball B,(0,a) = [—a,a] and b of B,(0,b) = [~b,b].

Definition 2 (see [ZCC, Def. 5]). Let N be an h-set. Let b : B,y — |N| be a continuous
mapping, and let b, = cyob. We say that b is a horizontal disk in N if there exists a homotopy
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h:0,1] x Fu(N) — N, such that

(25) ho = be,
(26) h1($) = (ZE,O) Vo € Fu(N)a
(27) h(t,r) € N, vVt € [0,1] and Vx € 0By (n)-

Definition 3 (see [ZCC, Def. 6]). Let N be an h-set. Let b : Byny — |N| be a continuous
mapping, and let b, = cy ob. We say that b is a vertical disk in N if there exists a homotopy
h:[0,1] x FS(N) — N, such that

(28) ho = be,
(29) hi(x) = (0,2) Vze FS(N),
(30) h(t,x) € NVt e [0,1] and Vo € dByy).

Definition 4 (see [ZCC, Def. 7]). Let N be an h-set in R™, and let b be a horizontal (vertical)
disk in N. We will say that x € R™ belongs to b when b(z) = x for some z € dom(b).
By |b| we will denote the image of b. Hence z € |b| iff z belongs to b.

4.2. Cone conditions and the stable manifold theorem. Below we recall definitions and
theorems that allow us to handle and verify hyperbolic structures of ODEs using h-sets and
quadratic forms.

Definition 5 (see [ZCC, Def. 8]). Let N C R™ be an h-set, and let Q) : R" — R be a
quadratic form such that

(31) Q(x,y) = a(x) - By),  (z,y) € R*M x RN,

where o : R*W) 5 R and B : R*WY) 5 R are positive definite quadratic forms.

The pair (N, Q) is called an h-set with cones.

We will often omit @ in the symbol (N, Q) and will say that N is an h-set with cones.

Definition 6 (see [ZCC, Def. 9]). Let (N, Q) be an h-set with cones and b : B, — |N| be a
horizontal disk.

We will say that b satisfies the cone condition (with respect to Q) iff for any x1, 22 € By,
r1 # xo the following inequality holds:

(32) Qbe(a1) — be(x2)) > 0.

Definition 7 (see [ZCC, Def. 10]). Let (N, Q) be an h-set with cones and b: Bs — |N| be a
vertical disk.

We will say that b satisfies the cone condition (with respect to Q) iff for any y1,v2 € Bs,
Y1 # Y2 the following inequality holds:

(33) Q(bc(yl) - bc(yQ)) <0.

Let us consider an ODE

(34) 2= f(2),
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where z € R", f € CY(R",R").

Let us denote by (¢, p) the solution of (34) with the initial condition z(0) = p.

The following definition is standard.

Definition 8. Let zp € R™. We say that zy is a hyperbolic fized point for (34) iff f(z9) =0
and ReX # 0 for all A € Sp(Df(zy)), where Df(zy) is the derivative of f at z.

Let zy € Z C R™ be a hyperbolic fixed point for (34). We define

(35) Wi(20,0) = Wi(z0, f) = {2 : Vizop(t, 2) € Z,  lim (t,2) = 20},
(36) Wg(zoaw) = quL(Zovf) = {Z : vtSO(p(ta Z) € Z7 t—lgr—noo @(t7z) = ZO}-

Sometimes, when it is known from the context, ¢ will be dropped and we will write
W5 (20), etc. W35 (20, ) is called the stable manifold for ¢ (or for f) in Z, and W} (20, ¢) is
called the unstable manifold for ¢ in Z. Geometric interpretation may be found in Figure 2.

Below we recall the notion of the isolating block from the Conley index theory.

Definition 9. For § > 0 the set ¥ C R™ is called a d-section for the flow ¢ iff ¢ ((—6,0),%)
is an open set and the map o : X X (—=9,8) — ¢((—0,0),%) defined by o(x,t) = ¢(t,z) is a
homeomorphism.

Let B C R™ be a compact set. B is called an isolating block iff 0B = B~ UB™, where B~
and BT are closed sets, and there exist § > 0 and two J-sections, X1 and X~, such that

Bt,cxt, B c¥x,
Vo € BY, Vte (-6,0) o(t,z) ¢ B,
Vx € B~, Vte(0,0) o(t,z) ¢ B.
In the present paper we will use h-sets which are isolating blocks. Simply, it means that
N7T and N~ are sections of the vector field.
Definition 10. Let N be an h-set in R™. We say that N is an isolating block for ODE (34)
iff N~ and N are the §-sections for f as in Definition 9.

Definition 11. Let N be an h-set such that cy is a diffeomorphism. For a vector field f on
|N| we define a vector field on N, by

(37) fe(z) = Den(ey! (2)) f(ey' (2))-
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Observe that f. is in fact the vector field f expressed in the new variables.
Definition 12 (see [ZCC, Def. 13]). Let U C R™ be such that U = U and intU # (). Let
g:U —=R™ be a C' function. We define the interval enclosure of Dg(U) by

. 0gi 9gi

39 Dy(w)) = {a € s [inf 20 sup 20}

We say that [Dg(U)] is positive definite if for all A € [Dg(U)] the matrix A is positive
definite.

The following two theorems about existence and local properties of the (un)stable manifold
of the hyperbolic fixed point follow immediately from the proof of Theorem 26 in [ZCC].

Theorem 3. Let n = u+s, and let f : R™ — R™ be a C'-function with zy a hyperbolic fized
point for f such that

A 0

where A € R¥", U € R*** such that A+ AT is positive definite and U + U” is negative
definite.

Then for any € > 0 and for any quadratic form Q(z,y) = ax® — by?, v € R*, y € R?,
a>0,b>0, there exists an h-set N = zg + B, (0,7) x Bs(0,7) C B(zg,€) such that N is an
isolating block for x' = f(x), W¥ (20, f) is a vertical disk in N satisfying the cone condition,
and W (20, f) is a horizontal disk in N satisfying the cone condition.

Theorem 4. Assume that (N,Q) is an h-set with cones, which is an isolating block for
(34), cn is a diffeomorphism, and the following cone condition is satisfied:

(40) The matriz  [Df.(N)TQ + Q[Df.(N,)] is positive definite.

Then there exists zg € N such that f(z) =0, Wy (20) is a horizontal disk in N satisfying
the cone condition, and W5 (29) is a vertical disk in N satisfying the cone condition.

To explain the meaning of condition (40) let us remark that it implies the following fact:
assume that z; : [0,7] — N for i = 1,2 are two different orbits of our ODE; then

(41) L) —w0) >0, 1e0.T)

For the justification see [ZCC] or the proof of Theorem 5 in the present paper.

4.3. Dependence of the (un)stable manifold on parameters. The following theorem
gives computable bounds on the first derivatives of stable and unstable manifolds of a hyper-
bolic fixed point for an ODE with respect to the parameter. An analogous theorem for maps
was given in [ZCC, Thm. 21] with some refined estimates in [WZ1, Thm. 4.1]. The theorem
below and its proof are an adaptation of these results to the ODE setting.

We will be using the norm for the symmetric bilinear forms (identified in what follows
with the symmetric matrices) which is defined by

[B(u, )| < [|Bl[[ul[[]]-
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For the Euclidean norm we have
| B|| = max{|s| : sis an eigenvalue of B}.

Theorem 5. Let Z C R be a compact interval. Let f : Z x R*T$ — R*+S be a C' function.
For € € 2 we consider a one-parameter family of ODFEs

(42) o' = f(& ) = fe(@).

Assume that Q(z,y) = a(z) — Bly) = Yoty aix? — > 5 biy?, where a; > 0 and b; > 0 for
all i. Let B be a symmetric bilinear form such that B(z,z) = Q(z) for all z € R¥*5,

Assume that (N, Q) is an h-set with cones in R“"S such that cy is a diffeomorphism.

1. Let A > 0 be such that for all £ € Z, for all z € R¥TS the following inequality is true:

(43) 2 ([Dfeo(N)TIQ + QD fe o(N)))z > Al 2%

2. Assume that the h-set N is an isolating block for (42) for all § € Z. Let pe denote the
fized point for fe, which is unique due to 1.

3. Let
(44) D= max a;,
8f§c H
45 L= sup ‘ ~(2)|| -
(45) cezzen || 9 =)
4. Let 6 > 0 be such that
A2

46 < —
(46) 4-||B|*- L2D

Then the set W3R (pe, fe) can be parameterized as a vertical disk in N x = for the quadratic
form Q(z,§) = 6Q(z) — €2. By this we mean that there exists a function x5 : E X Bs(0,1) —
By(0,1) such that ex (Wx (pe, fe)) = {(s(&),y) | y € Bu(0,1)} and for any pair (&, y:) €

X Bs(0,1), i = 1,2, such that (§&1,y1) # (€2,y2) the following inequality is true:

(47) Sa(zs(€1,91) — s(€2,y2)) — 0B (Y1 — y2) — (&1 — &)* < 0.

Proof. We will assume that ¢y = Id. Hence N. = N and f¢ . = fe.
Let us consider an extended system

(48) i = fe(xr), £=0
and the set
S(6) ={((&1,21), (€2,22)) € EX N)* | &1 # &, (&1 — &) < 0Q(z1 — )}

Lemma 6. Let § be as in the assumptions of our theorem. Assume that (§;,z(t)) for
i=1,2,t €[0,T], are solutions of (48) such that z;([0,T]) C N and ((&1,21(0)), (§2,22(0))) €
S(0).
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Then ((&1,21(t)), (§2,22(t))) € S(9) fort € [0,T].

Moreover, we have the following estimate for some ¢ > 0, which does not depend on T':

(49) Q(z1(t) — Q(22(t)) = Q(21(0) — 22(0))e, te0,7].
We will prove this lemma after we complete the current proof of Theorem 5.

Let z; € Wi (pg,, fe;) for i = 1,2. We will argue by contradiction that (& — &)?
0Q(z1 — 22).

Assume the contrary. Let us consider first the case & # &s.
Then ((&1,21), (€2, 22)) € S(6). From Lemma 6 we obtain for € > 0

(50) Q(z1(t) — 22(t)) > Q21 — 22)e, t € [0,00).

Since Q(z1 —z2) > 0, we obtain that Q(z;(t)—22(t)) is unbounded. However, this is impossible,
because z;(t) € N. This proves that if & # &9, then

(51) (& — &) > 8Q(21 — 22).

If & = &, then the above inequality follows from the fact that for any given £ the set
W3R (pe, fe) is a vertical disk in NV satisfying the cone conditions with respect to the quadratic
form @ (see Theorem 4). [ |
Proof of Lemma 6. In the proof we will use @) to denote both the quadratic form and the
symmetric matrix, i.e., Q(z) = 27 Qz. Analogously for symmetric bilinear form B we will use
the symbol B, i.e. B(u w) = u” Bw. Now if Q(2) = B(z, z) for all z, then Q = B as matrices.
We have

LQ1(1) ~ 220

= (fer(21) = fea(22))TQ(21 — 22) + (21 — 22) T Q(fe, (21) — fen(22))
= ((fe(21) = fei (22)) + (fer (22) = feo(22))) Q(21 — 22)
+ (21 — 22)TQ((fe, (21) — fer (22)) + (fe, (22) — fer(22))))
= (21— 2)7CTQ(21 — 22) + (21 — 22)7QC (21 — 22)
+2B(fe,(22) — fey(22), 21 — 22)

> Allz — 2o|* = 2||B|| - sup
(2,6)ENXE

‘ H &1 — & - |21 — 22|
where

1
C = 061 (21, 22) = /0 dffl (21 + t(ZQ — 21))dt
€ [dfe(Z x N)T Q + Q [dfe(E x N)J.

Observe that by the definition of D we have for ((£1, 21(0)), (§2,22(0))) € S(9) the following
inequalities:

(52) (& — &)* <3Q(21 — 22) < 6D(z1 — 29)°.
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Combining the above computations altogether we obtain for ((£1,21(0)), (§2,22(0))) € S(9)
that

d

5@t = 2())j=0 = Allz1 — z|* = 2||B|| - L- VéD(z1 — 2)*

= (A — QHBH -L- véD) (21 — 2’2)2 2 61(21 — 2’2)2 2 EQ(Zl — 22),
where €; > 0 and € > 0 are such that

A=2|B|-L-V6D > ¢ >0,

61(2’1 — 2’2)2 > GQ(Zl — 2’2).
Therefore the set S(9) is forward invariant relative to = x N. We have proved also that

dQ(z1 — 22)

(53) o

> Q21 — 22);

from this (49) follows easily. [ |

5. Details of computer assisted proof of the existence and local uniqueness of the
homoclinic loop in (4). To establish the existence of the homoclinic loop in system (4) we
proceed in a standard way (see [GH, sect. 6.1]). We fix a section of the vector field (4) (we
denote it by L) such that it is parameterized by one coordinate (we denote it by v). Let
ZE = [&o,&up] be as in Theorem 1. We prove that for all £ € Z the unstable and stable
manifolds of the hyperbolic fixed point p¢ intersect L at points v, (§) and v,(§), respectively.
Observe that the functions v, and v, are smooth.

In the case of the homoclinic loop we should have v, (§) = vs(§) for some £. Therefore we
consider a function

(54) T(f) = Us(é‘) - Uu(g)

We show that the signs of T'(§;,) and T'(&,,) are opposite; hence, by the intermediate value
theorem, there exists &, € = such that T'(§,) = 0. This gives us the homoclinic loop for
& = &p,. To prove the uniqueness of this loop we show that 77(£) has a constant sign.

Let us now turn to the computation of v, (&) and ddig. The point v, (§) is defined as the first
intersection of the left branch of W*(pg, f¢) (the branch which enters the half plane < Ry)
with the section L. Since we are in dimension two, the left branch of W"(pg, f¢) is a single
trajectory. To be able to estimate v, (§) and its derivative we use Theorems 4 and 5. Namely,
we construct an h-set with cones (U, Q) satisfying assumptions of these theorems. This gives
us a point 2,(§) € U~ N W (pe, fe) N {(x,y) : |z| < Ra}; moreover, we also have a bound on
d%zu. Now v, (§) can be defined by v, () = PUlfﬁL(g,zu(f)), where PU[—>L is the Poincaré

map from the neighborhood of the section U;”—the left component of U~ (i.e., contained in
{(x,y) | © < Ra}) to the section L.
We have the following formula for v/,:

(55) E) = g P (620 + 5 P (6 2u(€)ALLC)
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Figure 3. A schematic figure presenting the idea of the proof of Theorem 10. The left figure presents stable
and unstable branches for &, and the right one for &up.

The partial derivatives of P, - L with respect to £ and z can be computed with any rigorous

integrator for ODEs; we use the CAPD library for this purpose [CAPD].
Estimates of vs(£) and its derivative are obtained in an analogous way. The schematic
picture of the above idea of the proof is presented in Figure 3.

Warning about the presentation of the numbers in the remainder of this section. All
the computations in our program have been done using interval arithmetics based on the
double precision representation of the real numbers. We believe that the readability of our
description of the computer assisted proof will be enhanced if we also include some numer-
ical data from the proof. Since giving the exact values from the computer program in the
binary representation will make them unreadable, we decided to write instead nonrigorous
representations with 8 significant digits of rigorous numbers (intervals) produced by our pro-
gram. Hence in the strict sense most of the lemmas listed in this section cannot be regarded
as “proven rigorously with computer assistance,” but they “reflect” their true counterparts
proved by our program.

5.1. Local estimates on W* and W#. From now on, in this section, we will assume
that = is defined as in Theorem 1. All steps can be reproduced for other singular systems
as long as the A is a polynomial in one of the coordinates and the rhs of the equation is a
C'! function. In fact our program that conducts the computer assisted proof presented below
may be used to prove analogues of Theorem 1 for other values of parameters 7, k, x, and ~y
(see the documentation of the source code for details on how to do this). We have chosen
to present the steps of our method on a concrete example rather than in form of an abstract
algorithm, as we believe this way is better for the reader to grasp the idea of the method and
to understand difficulties which can arise during computations.

For a given value of { we will slightly abuse the notation and denote by A, the set

(56) A¢ = {(z,y) € R?: A(z) = 0}.

By ¢¢(t, z) we denote the solution of (4) with the initial condition given by z and the parameter
& If € is known from the context, we will omit the subscript &.
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We want to point out that for an h-set (IV, Q) that satisfies the assumptions of Theorem 4
we get information on both W*(p¢) and W*(pg) at the same time. However, this is not optimal
for finding good enclosures for stable and unstable manifolds of p¢. Instead we choose an h-set
U, which is a parallelogram relatively large in the unstable direction and thin in the stable
direction, and thus we obtain a good estimate on W*(p¢). Analogously, we choose an S which
is short in the unstable direction and large in the stable direction to get a better estimate on
W (pe).

The sets S and U should be chosen so that their sides are approximately parallel to the
eigenvectors of Df computed at the stationary point pe. Notice that the stationary point
(R2,1I3) moves as the parameter £ is changing. For this purpose we choose the middle point
of the interval hull of the set of all stationary points for £ € = as a good candidate for the
center of the sets S and U. We will denote this point by Zy. Next, we choose coordinate maps
cs and ¢y in such a way that sets S and U are aligned along the eigenvectors of D f(Zy) with
a slight adjustment to cg in order to have an isolating block reaching further along the stable
manifold.

The eigenvectors and eigenvalues of p¢ can be computed analytically. It turns out that
the eigenvectors almost coincide with the coordinate axes, with OX close to the unstable
direction with eigenvalue A, ~ 0.62 and OY being close to the stable direction with eigenvalue
As ~ —63.6.

Lemma 7. We define two h-sets U and S on the plane R? as follows:

e u(U)=sU)=u(S)=s(5)=1;
o 3y = (2.208526696,0.313849028) € R?;

o« My = [ —0.9951981155  —0.06027571515 }
0.09788110563  0.9981817661 |’
o Mg— [ —0.9981817661  —0.06027571515 }
—0.06027571515  0.9981817661 |’

U| = 20 + My - ([—av, au] x [<by, bu]) with ay = 0.005, by = 0.0001, c;;*(z,y) =
20 + My (avz, buy)T);
S| = 20 + Mg - ([~as,as] x [~bs,bs]) with ag = 0.00005, bs = 0.01, cg'(v,y) =
20 + Ms(asz,bsy)T.
Then, for all £ € =, the h-sets S and U are the isolating blocks for (4). Moreover, the
following are true:
e U™ N Ag = (Z);
e STN Ag = 0.
Proof. For a given h-set N let us denote by n} the outside normal vector at a given point
z € NT, and by n; let us denote the outside normal vector for 2 € N~. It suffices to check for
each € Z that for all z € N the inner product (fe(z),n}) is negative and for each z € N~
(fe(z),nz) is positive.
We checked this condition using the rigorous arithmetics and obtained for all £ € =

(fe(2),nt) € [-0.006897320012, —0.005714477667) <0, z€ U™,

(fe(2),n7) € [0.002076688005,0.00409304022] >0, z€ U™,
(fe(2),n7) € [-0.6351155027, —0.633170357] <0, z€ ST,
(fe(2),n7) € [0.00001121576298, 0.00005048696143] >0, z€ S,
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which prove that S and U are the isolating blocks for (4).
For the second part we obtained that for all £ € =

72(U™) C [2.203544678,2.203556733] U [2.213496659, 2.213508714],
72(ST) C [2.20787403, 2.207973848] U [2.209079544, 2.209179362],
me(Ag) C [2.208526287, 2.208527105] U [—2.208527105, —2.208526287).

It is easy to see that U~ N Ay =0 and ST N A = 0. [ ]

In the following lemma we define @) for U and S. Observe that while the formula for Q
is the same for both U and S, the cones are different, as the formula is given in the internal
coordinates of U and S (defined by ¢y and c¢g in Lemma 7).

Lemma 8. Assume that U and S are as in Lemma 7, and let Q(z,y) = 2% — 2.

Let us consider (4) with parameter values as in (2). Let pe = (Ra,1l).

Then for all & € Z the h-sets with cones (U,Q) and (S,Q) satisfy the assumptions of
Theorem 4 and there exist points zs(&) € STNWE(pe, fe) and z,(§) € UT N W (pe, fe) such
that

(57) 28(5)7211(5) € {(x7y) € RQ : ’1“ < RQ}’
(58) Pe(t, 2s(E) NAg =0,  @e(—t,2u(§)) N A =0, t>0.

Proof. We use rigorous numerics to check that

[Df(U"Q + QD f(U.)]

[1.20236854, 1.267286676] [—6.538562255, 6.532945059]
( [—6.538562255,6.532945059] [126.09537, 127.5777877] )’
[Df(S))"Q + QD fe(Se)]
[1.075080553, 1.39456723] [—2.043226555, 1.940940435]
( [—2.043226555,1.940940435] [126.653084, 127.0184426] )’

which are positive definite.

From Theorem 4 and Lemma 7 we get the existence of z,(§) € U™ N Wj(pe, f¢)) and
zs(§) € ST NW5(pe, fe) such that they satisfy condition (57). It remains to show (58).

For the h-set N and the point p € N, let KJJ\F,7C(p) ={z € N.: Q(z—p) > 0} and
Ky (p) = {2 € Nc: Q(z — p) < 0}. Then we define the positive and negative cones of an
h-set N at the point ¢ € |N| by K3 (q) = ¢y’ (K]j\E, (cn(q))), respectively.

By the definition of () and by Theorem 4 we know that

o Wi(pe) lies inside the negative cone K¢ (pg), and
o W(pe) lies inside the positive cone K (p).
We want to show that for each £ € Z we have the following inclusions that guarantee (58):

(59) Ae NS C K (pe),
(60) AeNU C K7 (pe).
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Figure 4. A schematic figure presenting the idea of the proof of Lemma 8 for the case of h-set U (the
case for S is analogous). The cones in gray present the Lipschitz dependence imposed by choosing a suitable
quadratic form which ensures that W5 and W5 do not cross A¢. In the left figure the point Zo and the set Zo
are shown. In the right one the point pe and the set A¢ are shown.

By Lemma 7 we know that for the set Zo = {(z,y) : @ = %} we have Zy NS C K (%)

and ZoNU C K/ (%). Now (59) and (60) follow easily, as A¢ and p¢ are simply Zo and 2
translated by the vector pe — 2y (see Figure 4). [ |

Lemma 9. Assume that (S,Q), (U,Q), 2z, zs are as in Lemma 8.

Let 25(&) = mpeu(25(€)) and yu(€) = mycs(2u(€)), i-e., 25(€) = 20+ Ms - (x5(€) - asg,bs)T =
cs(@5(6), )T and 2,(§) = 20 + My - (av, yu(§) - bv)" = cu(1,yu(€))"-

Then, the following inequalities hold true:

(61) %’? (5)‘ < eg = 16748.537509,
MY
(62) (©)| < ey = 67667.96072.

E3

Proof. The proof is a consecutive computation of the quantities appearing in the assump-
tions of Theorem 5.

First we focus on the stable case. We checked rigorously that for A = 1.041839776 we
have 27 ([Dfe o(Se)T)Q + Q[D fe (Sc)])z > A - 2% for all z € R? and € € E.

Let

D=1,
o 8f§,c
L= sup (2)|| € [7638.714144, 8724.646326],
E€E,zeU, 85
B = 1.

By (47) we obtain (setting y; = yo = 1) for any &;,&; € =

(63) s(s(&1) — 25(£2))% < (&1 — &)2



HOMOCLINIC ORBIT IN A PLANAR SINGULAR ODE 1559

Therefore for & # & we obtain

z5(§1) — 25(£2) 1
64 <
() &1 —& Vs
and finally after passing to the limit &, — & we obtain
dxs(€) ‘ 1
65 < —.
%) i | =5

By the expression for dg we get that ﬁ < 16748.53759.

To treat the unstable case we will use the fact that the unstable manifold for f becomes
a stable manifold for the vector field given by 2’ = —f(z). Of course we need to use the
quadratic form —(@ in this case. However, the expression for the cone condition does not
change:

L ([=df O))(-Q) + (—Q)[—df (U)]) z = 2" ([df (U)"]Q + Qldf (1)) 2.

Again, we check rigorously that for A = 1.103520275 we have 2T ([dfe o(Ue)T)1Q+Qldf¢ o(Ue)])z >
A 22 for all z € R2.

We take
D=1,
_ 8f§,c
L= sup (2)|| € [26670.51178,29130.44252],
¢ez,zel. || 0§
|B]| = 1.

Again, by (47) we obtain (setting x; = zo = 1)

(66) U (yu(&1) — yu(£2))? < (61— &)*
For & # & we obtain
yu(fl) B yu(§2) 1
(67) & —& = VU
and finally after passing to the limit &, — & we obtain
dyu(§) 1
(%) ‘ i€ ‘ = o

From the expression for dg we obtain that ﬁ < 67667.96072. |
Remark. The estimates in the above lemma may look overgrown, but we need to remember
that they are computed on N in coordinates given by ¢y (N € {S,U}) and will be much

smaller when we return to the original coordinates for sets S and U, since the sizes are of
order 1074,
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We have
(69) 25(€) = 20+ My - (x(€) - as, bs) ",
(70) 2O = Ms - (agan(6), O)T
and
(71) 2u(€) = 20+ My - (av, yu(€) - bv)"
(72) sg2u(©) = M- (o bya%yu@))T ;

thus, using the estimates from Lemma 9, we get

(73) (%zs({) € ([~0.8359043,0.8359043] , [—0.0504766, 0.0504766])”
(74) 0 2u(€) € ([~0.4078735,0.4078735] , [—6.7544925, 6.7544925])7 .

B3
We will use these estimates in the proof of Theorem 12.

5.2. Existence of the homoclinic loop. We define the section L = {(z,y) € R? : y = 3},
and we denote by L~ and L™ the lower and upper half-planes separated by L, i.e., L™ =
{(z,y) : y<3}and LT = {(z,y) : y > 3}.

Using rigorous integration we show that for £ € = there exist

e the forward orbit ¢¢(t,z,(€)), t € [0,¢7], which crosses L at the point [,,(§) passing
from L~ to L™ going forward in time and

e the backward orbit ¢ (—t, 25(§)), t € [0,¢7], which crosses L at the point [4(£) passing
from LT to L™ going backward in time.

We denote v,(§) = 7, (1, (§)) and vg(&) = 7, (15(€)).

Theorem 10. For parameter values as in (2) there exists £, € Z such that a homoclinic
loop in the system (1) exists.

Proof. Let U and S be as in Lemmas 7 and 8.

Let us consider the points z, and z; from Lemma 8 and their orbits outside the neighbor-
hood of (Rg,IIy).

From Lemma 8 we know that

o 2, €U ={2€U™ :|m(2)] < Ra}, and
o 2, €5 ={z€ 5 |m(2)| < Ro}.
For £ € = we define two Poincaré maps:
e P, : 2 x U — L such that P,(¢,-) maps each point z in U;” to P,(§, z)—the first
point where ¢(-, 2) crosses L passing from L~ to LT going forward in time.
o P, :Ex Sl+ — L such that Ps(&,-) maps each point z in Sl+ to Ps (&, z)—the first point
where ¢ (-, z) crosses L passing from Lt to L™ going backward in time.
We see that 15(€) = Ps (§,25(§)) and 1,(§) = Py (&, z4(§)). Using the rigorous computation
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we were able to prove that P; and P, are well defined and we obtain the following estimates:

s(&0) € [0.5173639166, 0.5174029455],
vu(&0) € [0.5175659545, 0.5175676547),
0s(Eup) € [0.5173641133,0.5174031422),
vu(&up) € [0.5166221035,0.5166237906).

As we see, v5(&1,) < vy (&1o) and vy (Eup) > vs(&up). Using continuous dependence on the
parameter £ we conclude that there exists a value &, € Z such that vs(&,) = v, (&) and the
two curves g, (R, z5(&,)) and ¢, (R, 2,(&,)) overlap to create the homoclinic loop. [ |

5.3. Local uniqueness of the homoclinic loop. Let v(), vy (§), Ps, and P, be as in the
proof of Theorem 10. To prove that the homoclinic orbit is locally unique it suffices to show
the following lemma.

Lemma 11. Let T : = — R be a function defined as T'(§) = vs(§) — vy (§).

Assume that %—g has a constant sign in = not equal to 0.

Then, there ezists exactly one parameter value &y, € (€10, Eup) for which the homoclinic orbit
in the system (4) exists.

The proof of Lemma 11 is obvious. More interesting is the fact that we can check the
assumptions of the lemma using rigorous numerics.

The derivative of T' is given by (see (55))
d_T — <3Ps 4 %d'%) _ <£Pu 4 @%) )
d€ 0& 0z d€ o0& 0z d§

Theorem 12. For parameter values as in (2) there exists a unique &, € E such that the
homoclinic loop in the system (1) exists.

Proof. The existence of the homoclinic solution was established in Theorem 10. To obtain
uniqueness we compute rigorous bounds for (75). As we mentioned earlier, the estimates for
partial derivatives of maps Ps; and P, were computed using the CAPD library [CAPD] and
the C'!'-Lohner algorithm [Z] implemented there.

The estimates of DP, and DP, are

(76) DP, € ([-0.48196,0.03188] [—1.37465,1.34734] [0.09123,0.16661] ) ,
(77) DP, € ([-281.879,300.027] [~17.0414,18.1385] [-871.94, —372.028] ),

(75)

where by DP, s we understand the matrix
oP OP OP
DP:(% 2y %)-

Combining the above bounds with the estimates from Lemma 9 we get the estimate

% > 126.7581097 > 0 which guarantees that T is increasing, and thus the homoclinic loop
whose existence we have established earlier is unique due to Lemma 11. |
Remark 13. Observe that in (75), since our bounds for dg"f"" are intervals centered at zero,
the terms which decide about the sign of %—:g are ag’g"s. Therefore we need to have
(78) or, 0P, OF; dzs 0Py dzy
3 o0& 0z d§ 0z d¢ |’
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In our computations we see that the term 853 v dominates the other terms in (75).

Remark 14. The striking feature of the estimates (76) and (77) is the fact that the di-
ameters of the bounds for D P, are much smaller compared to those for DP,. Observe that
from Figures 1 and 3 it is natural to expect that the computation along the stable manifold
should be longer and this should result in worse estimates. The explanation for this is that,
in our program, we ran the computations of P, and P with different integration parameters,
which gave much more tuning on P but at the cost of increased running time. We ran the
integration of the stable manifold branch at a fixed time step equal to 0.0001, while for the
unstable case we used the automatic step detection provided in CAPD which produced time
steps of order ~ 1072. In fact, the computation of P, took most of the time, while obtaining
P, took only a few seconds.

5.4. Finite time to travel along the homoclinic loop.

Theorem 15. For parameter values as in (2) the travel time along the homoclinic solution
of the system (1) is finite.

Proof. Rigorous computation of the bounds of normalized eigenvectors V,, and V; for the
system (4) at the fixed point pe shows that

Vi € ([—0.9951981819, —0.9951980492] , [0.09788043071, 0.09788178055])T,
Vs € (][—0.06045616218, —0.06009472876] ,[0.9981708533,0.9981926786])T.

Now, the finiteness of the time required to travel along W* and W" in N for system (1)
follows from Theorem 2. Indeed, to have the assumptions of this theorem satisfied it is enough
to shift the coordinate origin to (Rz,II2) and to change = to —uz. |

6. Conclusions. In this paper we presented geometric tools to establish the bounds on the
invariant manifolds and their dependence on the parameter. Those estimates are of quality
good enough that the standard method of proving the existence of the homoclinic loop for a
fixed point of an ODE could be applied to a planar singular ODE arising from the traveling
wave solution ansatz in some hydrodynamic system describing relaxing media.

The tools presented here are not restricted to the case of polynomial equations or to
the plane. However, in the nonplanar case, to establish the intersection of the manifolds,
which are no longer 1-dimensional, one needs more refined topological tools. An exemplary
implementation of such tools in a computer assisted proof can be found in [WZ1].

In the context of the system (1) and also its desingularized version (4) it will be interesting
to give a proof of other numerical observations from [V]: the creation of the limit cycle around
another fixed point through Andronov—Hopf bifurcation, its growth, and its disappearance.
This disappearance happens through collision of the limit cycle with the hyperbolic fixed
point, which creates the homoclinic loop studied in the present paper.

Appendix A.

A.1. Derivation of (1). We will briefly recall from [V, sect. 3] the derivation of the
system (1).
Following the papers [DSV, VK] the following system of equations was studied in [V]
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(equation (9) there) to describe the propagation of an intense pulse in relaxing media:

Ut + Pz =7,
(79) Vi —u, =0,
TP+ PrUs = T — P

where u is the mass velocity, V' is the specific volume, p is the pressure, 7 is the acceleration
of the external force, k and y /7 are squares of the equilibrium and “frozen” sound velocities,
respectively, ¢ is time, and x is the mass (Lagrangian) coordinate.
The first two equations are balance equations for mass and momentum. The third equation
is the constitutive relation.
The symmetry analysis in [V] suggests the following ansatz for the traveling wave solution:
R(w)

u=U(w), p=Iw)(xs—2x), V:m, wzft—i-logxo_x.

After the above ansatz the second equation in (79) yields
(80) U = &R + const

and we obtain the system (equation (13) in [V])

(81) {fA(R)R/ = —R(oRIl — k + T¢RY),

SA(R)IT = E(ER(RIL — k) + x(IT+ 7)),

where (-) = %, A(R) =7(ER)? — x, and 0 = 1 4 7€.

Now, after changing the phase variable w — w/, we see that the constant £ on the left-
hand side of (81) can be absorbed into the differential operator. After changing the sign of
both equations and renaming of variables (R,II) — (z,y) we obtain the system (1).

A.2. The compacton. We rewrite here the construction of the compacton solution from
[V, p. 389]. Assume that we have a homoclinic trajectory to a stationary point (Ra,Ils). We
obtain the compacton-like solution by sewing up the traveling wave solution corresponding to
the homoclinic loop with the stationary inhomogeneous solution

(82) u=0, p=Iy(zg—=x), V =Ry/(xo—x),

corresponding to the critical point (Rg,II3). The reader should notice that strictly speak-
ing we do not have a compactly supported solution here, but if we subtract the stationary
inhomogeneous solution given by (82), then we obtain a function with compact support.
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