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Abstract. We present a topological method for the efficient computer assisted verification of the existence of
the homoclinic tangency which unfolds generically in a one-parameter family of planar maps. The
method has been applied to the Hénon map and the forced damped pendulum ODE.
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1. Introduction. The goal of our paper is to describe a method for the verification of the
existence of the quadratic homoclinic tangency which unfolds generically in a one-parameter
family of planar maps. This is an important problem problem in dynamics, because establish-
ing the existence of the generic homoclinic tangency has very deep dynamical consequences;
see, for example, [14, 17, 18, 15] and references therein.

Our paper was inspired by the works of Arai and Mischaikow [1, 2], who combined some
tools from the Conley index theory, the tools of computational homology from the CHOMP
project [4], and the set oriented numerical methods from the GAIO project [5], into a method
for computer assisted proof of the existence of the generic homoclinic tangency. Using it,
they proved in [2] the existence of the generic homoclinic tangency for the dissipative Hénon
map Ha,b(x, y) = (a − x2 + by, x) for parameter values close to a = 1.4, b = 0.3 and a = 1.3,
b = −0.3. Their method contains essentially two separate parts: first, using the Conley
index approach, they prove the existence of the homoclinic tangency for some parameter
value (steps 1 to 5 in the terminology used in [2]), and in the second part (step 6 in [2])
they verify some transversality-type condition, which implies the genericity of the homoclinic
tangency established in the first part. The computation times reported in [2] are around 260
minutes and 100 minutes on a PowerMac G5 (2GHz) for b = 0.3 and b = −0.3, respectively.
In these computations the second part took 61 minutes and 24 minutes, respectively. From
these computation times it is quite clear that there is little hope of successfully applying this
method to ODEs.
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Our method, also topological and geometric in spirit, is based on the observation that the
computations done by Arai and Mischaikow in [2] in the second part of their approach should
be in principle sufficient to obtain the whole result—both the existence of the homoclinic
tangency and its genericity. Obviously, for this end, one should use different tools; ours are
essentially those of differential topology but were developed earlier in the context of topological
dynamics, such as the covering relations combined with the cone conditions; see [12, 22]. As a
test case we give a computer assisted proof of the existence of the generic homoclinic tangency
for the dissipative Hénon map with b = −0.3 and a ≈ 1.3145 in the computation time 0.2 sec
on the Intel Xeon 5160, 3GHz processor. This should be contrasted with the fact that in [2]
this case took around 100 minutes.

An application of our method to an ODE requires an efficient rigorous C2-solver for
ODEs. By this we mean an algorithm for rigorous integration of ODEs together with their
variational equations up to the second order. Such an algorithm has been recently developed
by the authors in [21] and is now a part of the CAPD library [8]. Using this algorithm, we
were able to prove the existence of the generic homoclinic tangency for the 2π-shift along the
trajectory of the periodically forced pendulum equation

(1.1) ẍ+ βẋ+ sin(x) = cos(t)

for β ≈ 0.2471 (see Theorem 7.1 in section 7). The computation time for this proof is 30 sec
on the Intel Xeon 5160, 3GHz processor.

It should be mentioned that similar results for the Hénon map have been obtained by a
complex analytic method of Fornaess and Gavosto [6, 7]. Compared to their method, which
depends on the analyticity of maps, our method and that of Arai and Mischaikow are rather
geometric and topological and are designed so that they can be applied to a wider class of
maps. Essentially, we require a continuous family of C2 diffeomorphisms for which we can
compute the image of the maps using interval arithmetic.

The content of the paper may be briefly described as follows: in sections 2 and 3, fol-
lowing mainly [2], we give basic definitions and restate the problem of the existence of the
quadratic homoclinic tangency unfolding generically as the transversality question for a dy-
namical system induced by the given one on the projective bundle. In section 4 we discuss
how this transversality problem can be solved using the covering relations linked with the cone
conditions. Moreover, we derive computable estimates for the dependence on a parameter of
(un)stable manifolds of the hyperbolic fixed point, which will be used later in the computer
assisted proofs. In section 5 we illustrate our approach on a toy example, with the intention
that the reader may see and appreciate some details of the method, which are later hardly
visible when we report on the computer assisted proof for the Hénon map and for the forced
damped pendulum in sections 6 and 7, respectively.

2. Homoclinic tangency and the projectivization.

2.1. Invariant manifold—basic notation.
Definition 2.1. Consider the map f : X ⊃ dom (f) → X. Let x ∈ X. Any sequence

{xk}k∈I , where I ⊂ Z is a set containing 0 and for any l1 < l2 < l3 in Z if l1, l3 ∈ I, then
l2 ∈ I, such that

x0 = x, f(xi) = xi+1 for i, i+ 1 ∈ I,
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will be called an orbit through x. If I = Z−, then we will say that {xk}k∈I is a full backward
orbit through x.

Definition 2.2. Let X be a topological space and let the map f : X ⊃ dom (f) → X be
continuous.

Let Z ⊂ R
n, x0 ∈ Z, Z ⊂ dom (f). We define

W s
Z(z0, f) = {z | ∀n≥0f

n(z) ∈ Z, lim
n→∞ fn(z) = z0},

W u
Z(z0, f) = {z | ∃ {xn} ⊂ Z a full backward orbit through z, such that

lim
n→−∞xn = z0},

W s(z0, f) = {z | lim
n→∞ fn(z) = z0},

W u(z0, f) = {z | ∃ {xn} a full backward orbit through z, such that

lim
n→−∞xn = z0}.

If f is known from the context, then we will usually drop it and use W s(z0), W
s
Z(z0), etc.,

instead.

2.2. Projectivization of the dynamics. The notation and setting are those used in [2].
Let f : X → X be a diffeomorphism of a manifold X.

Definition 2.3. Let z0 ∈ X. We say that z0 is a hyperbolic fixed point for f iff f(z0) = z0
and Sp(Df(z0)) ∩ S1 = ∅, where Df(z0) is the derivative of f at z0 and Sp(A) denotes the
spectrum of a square matrix A.

We denote the tangent bundle of X by TX and the differential of f by Df . From the
dynamical system f : X → X we can derive a new dynamical system Pf : PX → PX, which
is defined as follows. The space PX is the projective bundle associated to the tangent bundle
of X, that is, the fiber bundle on X whose fiber over x ∈ X is the projective space of TxX.
That is,

PX =
⋃
x∈X

PxX :=
⋃
x∈X

{one-dimensional subspace of TxX}.

For a submanifold S in X by PS we will denote its projectivization, which is given by

PS = {(x, [v]) ∈ PX | x ∈ S, v ∈ TxS \ {0}}.

It is easy to see that P (S) is a manifold and dim(P (S)) = 2dim(S)− 1.

Define Pf to be the map induced fromDf on PX, namely, Pf(x, [v]) := (f(x), [Df(x)·v]),
where 0 �= v ∈ TxX, [v] is the subspace in TxX spanned by v, and Df(x) : TxX → Tf(x)X is
the derivative of f at x. The geometry of projectivization in the case of f : R2 → R

2 is shown
in Figure 1.

Let us identify X with the zero section of TX. We define the map π : TX \X → PX by
π((x, v)) = (x, [v]) for x ∈ X, v ∈ TxX.

Let p ∈ X be a hyperbolic fixed point of f and let TpX = Ẽs
p ⊕ Ẽu

p be the corresponding
splitting of the tangent space into stable and unstable subspaces for Df(p). Define Es

p :=

π(Ẽs
p \ {0}) and Eu

p := π(Ẽu
p \ {0}).
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Figure 1. The geometry of projectivization. The map Pf maps a point x to f(x) and a subspace of TxX
spanned by u into a subspace of Tf(x)X spanned by Df(x) · u.

2.3. Dimension two.
Theorem 2.4. Let f : R2 → R

2 be a diffeomorphism and let p be a hyperbolic fixed point
with one-dimensional stable and unstable manifolds.

Then

1. (p,Eu
p ) is a hyperbolic fixed point for Pf such that
• W u((p,Eu

p ), Pf) = P (W u(p, f)), dimW u((p,Eu
p ), Pf) = 1,

• W s((p,Eu
p ), Pf) = {(z, [v]) ∈ PX | z ∈W s(p, f), (z, [v]) /∈ P (W s(p, f))},

dimW s((p,Eu
p ), Pf) = 2.

2. (p,Es
p) is a hyperbolic fixed point for Pf such that
• W s((p,Es

p), Pf) = P (W s(p, f)), dimW s((p,Es
p), Pf) = 1,

• W u((p,Es
p), Pf) = {(z, [v]) ∈ PX | z ∈W u(p, f), (z, [v]) /∈ P (W u(p, f))},

dimW u((p,Es
p), Pf) = 2.

Proof. It is easy to see that the stable and unstable sets are as stated. There remains for
us to show the hyperbolicity only. Consider first (p,Eu

p ). Let us change the coordinate system
in R

2 such that p = 0 and Df(p) is diagonal,

Df(p) =

(
λ 0
0 μ

)
,

where |λ| > 1 and |μ| < 1. From now on all considerations will be done in this coordinate
frame.

Around (p,Eu(p)) we will use the coordinate system ϕ : R2 × R → P (R2) given by

ϕ(z, v) = (z, [(1, v)]).

It is easy to see that

ϕ−1(z, [(v1, v2)]) = (z, v2/v1).

In these coordinates (p,Eu
p ) is given by (0, 0). Now we compute the linearization of Pf

around (0, 0).

We have

Pf(z, v) = (f(z), [Df(z) · (1, v)T ]) = (Df(0) · z + o(|z|), [Df(z) · (1, v)T ]).
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Observe that

Df(z) · (1, v)T =

(
∂f1
∂x (z)

∂f1
∂y (z)

∂f2
∂x (z)

∂f2
∂y (z)

)
·
(
1
v

)
=

(
λ 0
0 μ

)
·
(
1
v

)

+

(
∂2f1
∂x2 (0)x + ∂2f1

∂x∂y (0)y
∂2f1
∂y∂x(0)x+ ∂2f1

∂y2
(0)y

∂2f2
∂x2 (0)x + ∂2f2

∂x∂y (0)y
∂2f2
∂y∂x(0)x+ ∂2f2

∂y2 (0)y

)
·
(
1
v

)
+ o(z) ·

(
1
v

)

=

(
λ+O(|(z, v)|)

μv + ∂2f2
∂x2 (0)x+ ∂2f2

∂x∂y (0)y + o(|(z, v)|)

)
.

Now we have to divide the second component of the above vector by the first one. Therefore,

v2/v1 =

(
μv +

∂2f2
∂x2

(0)x+
∂2f2
∂x∂y

(0)y + o(|(z, v)|)
)
· λ−1(1 +O(|(z, v)|)

=
μ

λ
v +

1

λ

∂2f2
∂x2

(0)x +
1

λ

∂2f2
∂x∂y

(0)y + o(|(z, v)|).

We have proved that the linearization of Pf at p = (0, 0) has the following form:

DPf(p,Eu
p ) =

⎛⎜⎝ λ 0 0
0 μ 0

1
λ
∂2f2
∂x2 (0)

1
λ

∂2f2
∂x∂y (0)

μ
λ

⎞⎟⎠ .

Hence we see that (p,Eu
p ) is a hyperbolic fixed point for Pf with one-dimensional unstable

and two-dimensional stable manifolds.
Let us consider now (p,Es

p). This time we will use the coordinate system ϕ : R2 × R →
P (R2) given by

ϕ(z, v) = (z, [(v, 1)]).

It is easy to see that
ϕ−1(z, [(v1, v2)]) = (z, v1/v2).

Similar computations lead to the following formula for the linearization of Pf at (p,Es
p):

DPf(p,Es
p) =

⎛⎜⎝ λ 0 0
0 μ 0

1
μ

∂2f1
∂x∂y (0)

1
μ
∂2f1
∂y2 (0)

λ
μ

⎞⎟⎠ .

From Theorem 2.4 we obtain the following remark.
Remark 2.5. If f is as in Theorem 2.4 and W s(p, f) and W u(p, f) have a nonempty inter-

section, then
• if W s(p, f) and W u(p, f) are tangent, then we obtain a heteroclinic connection from

(p,Eu
p ) to (p,Es

p);
• if W s(p, f) and W u(p, f) intersect transversally, then we obtain a homoclinic connec-

tion from (p,Eu
p ) to (p,Eu

p ).
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3. Generic unfolding of quadratic tangency as the transversality question. We as-
sume that we have two curves in R

2 depending on some parameter a and given by u(a, t) =
(f1(a, t), f2(a, t)) and s(a, t) = (g1(a, t), g2(a, t)). We are interested in establishing conditions,
which will imply the existence of the generic unfolding of the quadratic tangency between
them. Our goal is to formulate such conditions as the transversality question. This is Theo-
rem 2.1 from [2], where it was stated without proof.

Definition 3.1 (see [14, section 3.1]). Let I, J, Z ⊂ R be intervals. Let uμ : I → R
2 and

sμ : J → R
2 for μ ∈ Z be two smooth curves depending on μ in the smooth way, such that

uμ0(tu) = sμ0(ts) = q0 and u and s are tangent at q0.
Assume there exist μ-dependent coordinates in a neighborhood of q for μ close to μ0, such

that in these coordinates we can use x1 (the first coordinate) as the parameter of our curves
and the following hold:

sμ(x1) = (x1, 0),

uμ(x1) = (x1, ax
2
1 + b(μ− μ0)),(3.1)

where a �= 0, b �= 0. Then we say that the quadratic tangency of u and s unfolds generically.
Remark 3.2. It is easy to see that in the above definition we can exchange the role of curves

u and s using the coordinate transformation given by φμ(x1, x2) = (x1, x2− ax21− b(μ−μ0)).
Remark 3.3. In the context of Definition 3.1, if uμ(x1) = g(μ, x1), then instead of (3.1) it

is enough to require

g(μ0, 0) = 0,
∂g

∂x1
(μ0, 0) = 0,

∂g

∂μ
(μ0, 0) �= 0,

∂2g

∂x21
(μ0, 0) �= 0.

The proof of Remark 3.3 will be given in Appendix A.
Theorem 3.4. Let Λ ⊂ R be an interval. Let u : Λ× R → R

2 and s : Λ× R → R
2 be two

C2-curves depending on parameter a ∈ Λ. Let a0 ∈ Λ be a parameter at which curves ua and
sa are tangent.

These curves have a quadratic tangency at a0 which unfolds generically iff there exist
tu, ts ∈ R, such that surfaces

E(u), E(s) : Λ×R → R
3 ×RP1

given by

E(u)(a, t) =

(
a, u(a, t),

[
∂u

∂t
(a, t)

])
,

E(s)(a, t) =

(
a, s(a, t),

[
∂s

∂t
(a, t)

])
intersect transversally at the point E(u)(a0, tu) = E(s)(a0, ts).

Before the proof we need one lemma.
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Lemma 3.5. Let s = (s1, s2) : Λ × R → R
2 be a C2-map, such that ∂s1

∂t (a0, t0) �= 0 for
some (a0, t0).

Then there exist a neighborhood Λ′ of a0, an open set V , such that s(a0, t0) ∈ V , and
a-dependent coordinates on V for a ∈ Λ′, i.e., φa : V → R

2 for a ∈ Λ′, such that after a
suitable reparameterization in these new coordinates the mapping s has locally the following
form:

s(a, t) = (t, 0).

Proof. Let us denote by (x, y) coordinates in R
2. By taking a suitable parameterization

and shifting the coordinates’ origin and permuting, if necessary, the coordinates in R
2, we can

assume that t0 = 0, s(a0, 0) = 0, and ∂s1
∂t (a0, 0) > 0. We can locally (in a suitable open set

U) use x as the parameter of a curve s(a, ·) for a ∈ Λ̃ ⊂ Λ. Therefore, we have

s(a, t) = (t, s2(a, t)).

Consider the map ϕ : Λ̃× U → Λ̃× R
2 given by

ϕ(a, x, y) = (a, x, y − s2(a, x)).

We have

Dϕ(a, x, y) =

⎡⎣ 1 0 0
0 1 0

−∂s2
∂a (a, x) −∂s2

∂x (a, x) 1

⎤⎦ .
Therefore, ϕ is a local diffeomorphism. Let open sets Λ′, V be such that ϕ : Λ′×V → Λ′×R

2

is a diffeomorphism on the image and (a0, 0) ∈ Λ′ × V . The a-dependent coordinates on V
are given by φa(x, y) = ϕ(a, x, y).

It is easy to see that in the new coordinates given by φa the curve s has the following
form:

s(a, t) = (t, 0).

Proof of Theorem 3.4. By Lemma 3.5 we can assume that the curve s is given by

s(a, t) = (t, 0).

Observe that the transversality implies that in the neighborhood of the intersection point the
curve u can be represented as

u(a, t) = (t, g2(a, t)),

where g2 satisfies the following conditions:

(3.2) g2(a0, 0) = 0,
∂g2
∂t

(a0, 0) = 0.

Now we will prove that the transversality of E(u) and E(s) is equivalent to

∂g2
∂a

(a0, 0) �= 0,

∂2g2
∂t2

(a0, 0) �= 0.
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Observe that from Remark 3.3 it follows that the above conditions together with (3.2) are
equivalent to the generic unfolding of the quadratic tangency.

Observe that ∂s
∂t (a, t) = (1, 0) and ∂u

∂t (a0, t = 0) = (1, 0); therefore, in the neighborhood of

[∂s∂t (a, t)] we can use the second coordinate as a chart map in RP1.
In these coordinates we have

E(s)(a, t) = (a, t, 0, 0)T ,

E(u)(a, t) =

(
a, t, g2(a, t),

∂g2
∂t

(a, t)

)T

.

We have

TE(s)(a0,t=0) = span

⎛⎜⎜⎝
1 0
0 1
0 0
0 0

⎞⎟⎟⎠
and

TE(u)(a0,t=0) = span

⎛⎜⎜⎜⎝
1 0
0 1

∂g2
∂a (a0, 0)

∂g2
∂t (a0, 0)

∂2g2
∂t∂a(a0, 0)

∂2g2
∂t2

(a0, 0)

⎞⎟⎟⎟⎠ .

From (3.2) it follows that the transversality question is equivalent to the following determinant
being nonzero:

det

⎛⎜⎜⎜⎝
1 0 1 0
0 1 0 1

0 0 ∂g2
∂a (a0, 0) 0

0 0 ∂2g2
∂t∂a(a0, 0)

∂2g2
∂t2

(a0, 0)

⎞⎟⎟⎟⎠ =
∂g2
∂a

(a0, 0) · ∂
2g2
∂t2

(a0, 0).

This finishes the proof.

4. How to prove the homoclinic tangency using the covering relations and the cone
conditions?. We assume that the reader is familiar with the following notions: h-sets, covering
relations, cone conditions, and horizontal and vertical disks as defined in [12, 22].

We consider a planar map fa : R
2 ⊃ dom (f) → R

2 depending on the parameter a,
which has a hyperbolic fixed point pa with one-dimensional unstable and stable manifolds.
Hence according to the setting from section 2 we will work in four-dimensional space, using
coordinates (a, x, y, v), where a is the parameter, (x, y) ∈ R

2, and v represents points in
P (T(x,y)R

2), which we will call the tangential coordinate. We have the map (we abuse the
notation for Pf)

Pf(a, x, y, v) = (a, Pf(x, y, v)).

In our method we need the following ingredients:
• the chain of covering relations

(4.1) N0
Pf
=⇒ N1

Pf
=⇒ · · · Pf

=⇒ Nk,

such that the cone conditions are satisfied,
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• (a,W u((pa, E
u
pa), Pfa)) as the horizontal disk in N0 satisfying the cone conditions,

• (a,W s((pa, E
s
pa), Pfa)) as the vertical disk in Nk satisfying the cone conditions.

If the above conditions are satisfied, then from [22, Theorem 7] it follows that
(a,W u((pa, E

u
pa), Pfa)) contains a horizontal disk satisfying the cone conditions in Nk. Hence

(a,W u((pa, E
u
pa), Pfa)) and (a,W s((pa, E

s
pa), Pfa)) intersect transversally in Nk, which by

Theorem 3.4 implies that sets W u((pa, E
u
pa), Pfa) and W s((pa, E

s
pa), Pfa) have a quadratic

tangency which unfolds generically.
Since the parameter a is not changing under Pf , apparently there is a problem with

the realization of the above scenario, because the covering relations together with the cone
conditions imply the hyperbolicity. The essential point is that this remark is valid for closed
loops of covering relations, but in our setting we just want a chain of covering relations
going from one part of our phase space to another. While constructing such a chain we will
arbitrarily decide whether we treat the parameter as the “unstable” or “stable” direction by
simply adjusting the sizes of the h-sets in a-direction.

To make our scheme working we need the following:

• We need to set the dimensions u, s in our h-sets Ni to be equal to 2, because this is
the dimension of (a,W u((pa, E

u
pa), Pfa)) and (a,W s((pa, E

s
pa), Pfa)).

• (a,W u((pa, E
u
pa), Pfa)) should be a horizontal disk in N0; hence we should treat a as

one of the unstable directions.
• (a,W s((pa, E

s
pa), Pfa)) should be a vertical disk in Nk; hence we should treat a as one

of the stable directions.

4.1. The Lipschitz dependence of stable and unstable manifolds on parameters. We
need to prove that (a,W u((p,Eu

p ), Pfa)) is a horizontal disk in a suitable h-setN0; this requires
at least the Lipschitz dependence on a of the invariant manifold. In [22, sec. 8.2] the Lipschitz
dependence of (un)stable manifolds with respect to parameters with explicit and computable
constants was discussed with an eye toward the computer assisted proofs. Here we will just
recall these results and refine some estimates given there.

We will be using the norms for quadratic forms (identified in what follows with symmetric
matrices) which are defined by

|B(u, v)| ≤ ‖B‖‖u‖‖v‖.

For the Euclidean norm we have

‖B‖ = max{|s| | s in an eigenvalue of B}.

Theorem 4.1. Assume that (N,Q) is an h-set in R
u+s with cones and fλ : R

u+s → R
u+s

with λ ∈ C, where C is a compact interval in the parameter space and Q has the form
Q(x, y) = α(x)− β(y) =

∑u
i=1 aix

2
i −

∑s
i=1 ai+uy

2
i .

1. Assume that for the covering relation N
fλ=⇒ N the cone condition is satisfied for all

λ ∈ C.
2. Let ε > 0 and A > 0 be such that for all λ ∈ C and z1, z2 ∈ N the following holds:

(4.2) Q(fλ(z1)− fλ(z2))− (1 + ε)Q(z1 − z2) ≥ A(z1 − z2)
2.
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3. Let

M = max
λ∈C,z∈N

(∑
i

|ai|
∥∥∥∥∂πzifλ∂z

(z)

∥∥∥∥ ·
∥∥∥∥∂πzifλ∂λ

(z)

∥∥∥∥
)
,(4.3)

L = ‖β‖ · max
λ∈C,z∈N

∥∥∥∥∂πyfλ∂λ
(z)

∥∥∥∥2 .(4.4)

4. Let Γ > 0 be such that

(4.5) A− 2MΓ− LΓ2 > 0.

5. We define

(4.6) δ =
Γ2

‖α‖ .

Then the set W s
N (pλ, fλ) for λ ∈ C can be parameterized as a vertical disk in C × N for

the quadratic form Q̃(λ, z) = δQ(z) − λ2.
Before the proof let us make two observations concerning constants A, ε,Γ.
Remark 4.2. The existence of A and ε in (4.2) is a consequence of the cone condition for

covering relation N
fλ=⇒ N . We would like to have A as big as possible. This forces ε → 0,

but ε is not used in what follows.
Remark 4.3. Since A > 0, therefore Γ in (4.5) always exists, but it is desirable to look for

the largest Γ possible.
Proof of Theorem 4.1. We would like to obtain that for |λ1−λ2| ≤ Γ‖z1−z2‖ the following

holds:
Q(fλ1(z1)− fλ2(z2)) > (1 + ε)Q(z1 − z2).

Let B be a unique symmetric form, such that B(u, u) = Q(u). Observe that

Q(fλ1(z1)− fλ2(z2))− (1 + ε)Q(z1 − z2)

= Q(fλ1(z1)− fλ1(z2))− (1 + ε)Q(z1 − z2)

+ 2B(fλ1(z1)− fλ1(z2), fλ1(z2)− fλ2(z2)) +Q(fλ1(z2)− fλ2(z2)).

The first term in the above expression will be estimated using (4.2).
For the third term we obtain

Q(fλ1(z2)− fλ2(z2)) ≥ −β(πy(fλ1(z2)− fλ2(z2)))

≥ − ‖β‖ ·max
λ∈C

∥∥∥∥∂πyfλ∂λ
(z2)

∥∥∥∥2 · (λ1 − λ2)
2

≥ − ‖β‖ max
λ∈C,z∈N

∥∥∥∥∂πyfλ∂λ
(z)

∥∥∥∥2 · Γ2‖z1 − z2‖2 = −LΓ2‖z1 − z2‖2.

Finally, for the second term we have

|B(fλ1(z1)− fλ1(z2), fλ1(z2)− fλ2(z2))|

≤ max
λ∈C,z∈N

(∑
i

|ai|
∥∥∥∥∂πzifλ∂z

(z)

∥∥∥∥ ·
∥∥∥∥∂πzifλ∂λ

(z)

∥∥∥∥
)

· Γ‖z1 − z2‖2.
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From the above computations and (4.3)–(4.4) we obtain the following:

Q(fλ1(z1)− fλ2(z2))− (1 + ε)Q(z1 − z2) ≥
(
A− 2MΓ− LΓ2

) ‖z1 − z2‖2.

For Γ and δ, as in (4.5) and (4.6), it is proved in [22, Lemma 23] that, for λ1, λ2 ∈ C,
λ1 �= λ2, and zi ∈W s

N (pλi
, fλi

) for i = 1, 2 the following holds:

δQ(z1 − z2)− (λ1 − λ2)
2 < 0.

Hence W s
N (pλ, fλ) for λ ∈ C is vertical disk in C × N for the quadratic form Q̃(λ, z) =

δQ(z)− λ2.

Comments.

• Since Q̃(x, y, λ) = δα(x)− δβ(y)−λ2 , due to the negative sign in front of λ2 it follows
that when trying to represent the stable manifold as the vertical disk in C × N , we
must treat the parameter as a “stable” direction in an h-set.

• For the unstable manifold we have to take the inverse map and we obtain different δ.
Since taking the inverse involves changing the sign of Q, we end up with the following
quadratic form:

Q̃(x, y, λ) = δα(x) + λ2 − δβ(y).

Looking at the sign in front of λ2, we see that λ appears as an “unstable” direction in
C ×N .

5. A toy example. In this section we show how to construct the chain of covering relations
(4.1) discussed in the first part of section 4 for a special model map with a quadratic tangency
which unfolds generically. Our intention is that the reader may see and appreciate some details
of the method, which are later hardly visible when we report on the computer assisted proofs
for the Hénon map and the forced pendulum in sections 6 and 7, respectively.

We define a map f : R2 → R
2 depending on the parameter a as follows:

• (0, 0) is a hyperbolic fixed point, and in a neighborhood of (0, 0) the map fa is linear,

fa(x, y) = (λx, μy),

where |λ| > 1 and |μ| < 1;
• in a neighborhood of the point (1, 0) we have the homoclinic tangency for a = 0. We

assume that fa acts as follows:

fa(1 + x, y) = (x2 + y + a, 1− x).

When compared with the full problem of establishing the existence of generic unfolding of
homoclinic tangency for the Hénon map and the forced damped pendulum, the above model
map avoids the problems related to providing the explicit estimates on the dependence of
W s,u on the parameter, which are given in Theorem 4.1.
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5.1. Chain of covering relations. Let p = (0, 0); then Eu
p = [(1, 0)] and Es

p = [(0, 1)].
Our goal is to construct a chain of covering relations “linking” (p,Eu

p ) with (p,Es
p).

The beginning of the chain. Let us first see how the covering relations look in a neigh-
borhood of (p,Eu

p ). We use the chart (x, y, v, a), where v �→ [(1, v)]. Therefore, the map
F = (Pfa, a) works as follows:

F (x, y, v, a) = (λx, μy, (μ/λ)v, a).

We define an h-set, so that (x, a) are the “unstable” directions, and (y, v) are the “stable”
ones. It is easy to see that there exists a sequence of h-sets Ni = (ci + [−xi, xi])× [−yi, yi]×
[−vi, vi]× [−ai, ai], with c0 = 0, ck = 1 and such that

N0
F

=⇒ N1
F

=⇒ · · · F
=⇒ Nk.

Observe that the necessary conditions are

ci+1 + [−xi+1, xi+1] ⊂ λci + [−|λ|xi, |λ|xi],
|μ|yi < yi+1,

|μ/λ| vi < vi+1,

ai > ai+1.

The end of the chain. In a neighborhood of (p,Es
p) the “unstable” subspace is (x,w),

where w corresponds to the [(w, 1)]. The map F works as follows:

F (x, y, w, a) = (λx, μy, (λ/μ)w, a).

It is easy to see that there exists a sequence of h-sets Mi = (c̄i + [−x̄i, x̄i]) × [−ȳi, ȳi] ×
[−w̄i, w̄i]× [−āi, āi], such that

c̄0 = 0, c̄s = 1, Ms
F

=⇒Ms−1
F

=⇒ · · · F
=⇒M0.

Observe that the necessary conditions are

(c̄i+1 + [−x̄i+1, x̄i+1]) ⊂ μc̄i + [−|μ|x̄i, |μ|x̄i],
ȳi+1 > |μ|ȳi,
w̄i+1 < |λ/μ| w̄i,

āi+1 < āi.

Switching from the unstable to the stable manifold. We want the covering relation Nk
F

=⇒
Ms, where Nk and Ms are as above.

InNk the nominally unstable directions are (x, a), while inMs parameterized by (x, y, w, a),
where w �→ [(w, 1)], the “unstable” direction is (x,w). We have

F (1 + x, y, v, a) = (x2 + y + a, 1 − x,−(2x+ v), a).
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We would like to have the following homotopy for the covering relation:

Gt(1 + x, y, v, a) = (a+ t(x2 + y), 1− tx,−2x− tv, ta).

Therefore, if we want a covering relation Nk
F

=⇒Ms, where Nk = (1, 0, 0, 0) + [−xk, xk]×
[−yk, yk]×[−vk, vk]×[−ak, ak] andMs = (0, 1, 0, 0)+[−x̄s, x̄s]×[−ȳs, ȳs]×[−w̄s, w̄k]×[−āk, āk],
then we need to satisfy the following set of inequalities:

ak − x2k − yk > x̄s,

2xk − vk > w̄s,

ȳs > xk,

ās > ak.

It is easy to see that this set of inequalities has a solution. For example, if ak = Δ < 1, then
we can choose (for some small ε > 0)

xk = Δ/2,

yk = x̄s = Δ/3,

vk = w̄s = (1− ε)Δ/2,

ȳs = (0.5 + ε)Δ,

ās = (1 + ε)Δ.

Observe that the expanding direction x is stretched in the w-direction and the a-direction is
stretched across the x-direction (in the target set).

It is clear that we can easily build the desired chain of covering relation of the form

N0
F

=⇒ N1
F

=⇒ · · · F
=⇒ Nk

F
=⇒Ms

F
=⇒Ms−1

F
=⇒ · · · F

=⇒M0.

5.2. Cone conditions. It turns out that the cone conditions at the beginning and the end
of the chain (4.1) are relatively easy to satisfy in the situation when the dynamics is linear
(there is no parameter dependence) in a neighborhood of the hyperbolic fixed point; otherwise
the issue becomes delicate (see Theorem 4.1 in section 4.1).

As a rule in this subsection the coordinate order for h-sets N,M will be such that the
nominally unstable coordinates are always written first.

At the beginning of the chain. For covering relations Ni
F

=⇒ Ni+1 the expanding directions
are (x, a). Let Ni be an h-set with Qi-cones given by

QNi(x, a, y, v) = αix
2 + βia

2 − γiy
2 − δiv

2.

The map F is linear for Ni
F

=⇒ Ni+1; therefore, it is enough to check whether

QNi+1(F (x, a, y, v)) > QNi(x, a, y, v).
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We have

QNi+1(F (x, a, y, v)) −QNi(x, a, y, v)

= αi+1λ
2x2 + βi+1a

2 − γi+1μ
2y2 − (μ/λ)2δi+1v

2

− (αix
2 + βia

2 − γiy
2 − δiv

2)

= (αi+1λ
2 − αi)x

2 + (βi+1 − βi)a
2 + (γi − μ2γi+1)y

2 + (δi − (μ/λ)2δi+1).

Hence we will have cone conditions satisfied when, for example, αi+1 = αi, γi+1 = γi, δi+1 = δi.
The only strict requirement is

βi+1 > βi.

At the end of the chain. In this case, the verification of the cone condition goes through

easily, as in the previous case. For covering relations Mi
F

=⇒ Mi−1, the unstable directions
are (x,w). We set

QMi(x,w, y, a) = Aix
2 +Biw

2 − Ciy
2 −Dia

2.

As above, it is enough to check whether

QMi−1(F (x,w, y, a)) > QMi(x,w, y, a).

We have

QMi−1(F (x,w, y, a)) −QMi(x,w, y, a)

= (Ai−1λ
2 −Ai)x

2 + (Bi−1(λ/μ)
2 − 1Bi)w

2

+ (Ci−1 −Ciμ
2)y2 + (Di−1 −Di)a

2.

We see that we need to have

Di−1 > Di.

For the remaining coefficients we can set

Ai = Ai−1, Bi−1 = Bi, Ci−1 = Ci.

Switching from the unstable to the stable manifold. Consider the covering relation Nk
F

=⇒
Ms. This time we are in the nonlinear regime. We use on the set Nk the coordinates (x, a, y, v)
and on the set Ms the coordinates (x,w, y, a).

This means that in these coordinates (we remove the shifts of the origin of the coordinate
frame to (1, 0, 0, 0) and (0, 0, 1, 0) for Nk and Ms, respectively)

F (x, a, y, v) = (x2 + y + a,−2x− v,−x, a).

We set

QN (x, a, y, v) = αx2 + βa2 − γy2 − δv2,

QM (x,w, y, a) = Ax2 +Bw2 − Cy2 −Da2.
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We have

DF (x, a, y, v) =

⎡⎢⎢⎣
2x 1 1 0
−2 0 0 −1
−1 0 0 0
0 1 0 0

⎤⎥⎥⎦ .
After some computations we obtain

Q̃ = (DF )TQMDF −QN =

⎡⎢⎢⎣
4Ax2 + (4B − C − α) 2Ax 2Ax 2B

2Ax A−D − β A 0
2Ax A A+ γ 0
2B 0 0 B + δ

⎤⎥⎥⎦ .
We are interested in whether Q̃ is positive definite. Observe that since the positive definiteness
is an open condition, we will show that Q̃ is positive definite for x = 0, and then we will know
that the same holds for |x| small.

After we set x = 0 we obtain

Q̃ =

⎡⎢⎢⎣
4B − C − α 0 0 2B

0 A−D − β A 0
0 A A+ γ 0
2B 0 0 B + δ

⎤⎥⎥⎦ .
It is easy to see that after rearrangement of the coordinates the question is reduced to the
positive definiteness of the following two matrices:

Q̃1 =

[
4B − C − α 2B

2B B + δ

]
, Q̃2 =

[
A−D − β A

A A+ γ

]
.

For example, we can set A = B = C = 1 and D = 1
2 ; then we obtain

Q̃1 =

[
3− α 2
2 1 + δ

]
, Q̃2 =

[
1/2 − β 1

1 1 + γ

]
.

It is now easy to see that we get what we want when we set

α = 1, δ > 1,

β = 1/4, γ > 3.

Summarizing, we obtained

QN (x, a, y, v) = x2 + a2/4− 4y2 − 2v2,

QM (x,w, y, a) = x2 + w2 − y2 − a2/2.
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6. Application to the Hénon map. In this section we will show that the method intro-
duced in the previous sections can be successfully applied to a specific system. Let us consider
the Hénon map [11]

(6.1) Ha,b(x, y) = (a− x2 + by, x).

The following theorems have been proven in [2].
Theorem 6.1 (see [2, Theorem 1.1]). There exists an open neighborhood B of parameter

value b = 0.3 such that for each parameter b ∈ B there exists a parameter value

a ∈ [1.392419807915, 1.392419807931]

such that the Hénon map has a quadratic tangency unfolding generically for the fixed point

xa,b = ya,b = −1

2

(
b−

√
(b− 1)2 + 4a− 1

)
.

Theorem 6.2 (see [2, Theorem 1.2]). There exists an open neighborhood B of parameter
value b = −0.3 such that for each parameter b ∈ B there exists a parameter value

(6.2) a ∈ [1.314527109319, 1.314527109334]

such that the Hénon map has a quadratic tangency unfolding generically for the fixed point

xa,b = ya,b =
1

2

(
b−

√
(b− 1)2 + 4a− 1

)
.

The numerical evidence of the existence of a homoclinic tangency for some parameter
values (a, b) ≈ (1.3145271093265,−0.3) is shown in Figure 2; see also [2, Figure 1.1].

The main motivation for us to study the existence of homoclinic tangencies for the Hénon
map was to verify if our method could work in this relatively easy example.

Denote by
a0 = 1.3145271093265

a center of the interval (6.2). The aim of this section is to prove the following theorem.
Theorem 6.3. There exists an open neighborhood B of the parameter value b = −0.3 such

that for each b ∈ B there is a parameter a ∈ a0+[−10−5, 10−5] such that the Hénon map (6.1)
Ha,b has a quadratic homoclinic tangency unfolding generically for the fixed point

(6.3) xa,b = ya,b =
1

2

(
b−

√
(b− 1)2 + 4a− 1

)
≈ −1.9679632427827796.

The authors in [2] report relatively long computational time (approximately 100 minutes)
for the computer assisted proof of [2, Thm.1.2]. It turns out that using our method the
verification of necessary inequalities in the computer assisted proof of Theorem 6.3 has been
completed in 0.2 second on the Intel Xeon 5160, 3GHz processor. This very good efficiency
allowed us to apply the method to a map coming from an ODE—a suitable Poincaré map in
the forced damped pendulum. The details will be given in the next section.

A computer assisted proof of Theorem 6.3 will be presented in the following subsections
in which we verify the following:
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Figure 2. Parts of the unstable and stable manifolds of the Hénon map at the fixed point for b = −0.3 and
a = a0 = 1.3145271093265.

• the existence of a heteroclinic chain of covering relations for PH,
• the cone conditions along the above-mentioned heteroclinic chain,
• the cone conditions at the beginning and at the end of the chain which allow us to

parameterize the center-unstable and center-stable manifolds as a horizontal or vertical
disc, respectively, in proper h-sets.

6.1. The existence of a heteroclinic chain of covering relations for PH. In Theorem 6.3
we chose the center of the interval (6.2) a0 = 1.3145271093265 as a good candidate for the
homoclinic tangency parameter corresponding to b0 = −0.3.

In order to define the sets which will appear in the heteroclinic chain, we need to set a
local chart for the manifold PR2. It turns out that it is enough for our purpose to use the
parameterization

(6.4) ψ : R2 × (0, π) � (x, y, t) �→ (x, y, [(cos(t), sin(t))]) ∈ PR2.

This parameterization excludes one point on the manifold, but through our computations
this point does not appear either as an argument or as a value of PHa. All the sets will be
expressed using coordinates (x, y, t, a).

Put

(6.5) PH(x, y, t, a) =
(
(ψ−1 ◦ PHa,b0 ◦ ψ)(x, y, t), a

)
.

In what follows by πt we will denote a projection onto the tangent coordinate; i.e., for [u] such
that u2 > 0 we define

πt(x, y, [u]) =
u

‖u‖ .
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With some abuse of notation we will use the same symbols for the projections

πt(x, y, [u], a) =
u

‖u‖ or πt(x, y, t, a) = (cos(t), sin(t)),

but it is clear from the list of arguments which projection has to be used. In each case the
value of πt is a vector.

To simplify the notation we will use z0 = (x0, y0) = (xa0,b0 , ya0,b0) as defined in (6.3).
Since we will always have the fixed value of the parameter b0 = −0.3, we will write Ha instead
of Ha,b0 in what follows. Let u0 and s0 be normalized with respect to the Euclidean norm
eigenvectors of DHa0(z0) given explicitly by

(6.6)

u0 =
(−x0+

√
x2
0+b0,1)

∥
∥
∥(−x0+

√
x2
0+b0,1)

∥
∥
∥

≈ (0.9680131177714217873, 0.250899589123719882),

s0 =
(−x0−

√
x2
0+b0,1)

∥
∥
∥(−x0−

√
x2
0+b0,1)

∥
∥
∥

≈ −(0.07752307795993337433, 0.996990557820693689),

and let M = [uT0 , s
T
0 ] be a matrix of eigenvectors. Put

z1 = z0 + 0.0001993152279412426u0 + 2.50404 · 10−11s0.

The above point has been chosen as a good approximation of the homoclinic tangency point
for Ha0 . Namely, we have

‖H−1
a0 (z1)− z0‖ ≤ 5.2 · 10−5,

‖H14
a0 (z1)− z0‖ ≤ 1.2 · 10−5,

M−1
(
πt
(
PH14

a0 (z1, [u0])
)) ≈ (−4.71 · 10−7, 0.999999847).(6.7)

We see that the unstable direction u0 at z1 is mapped under the 14th iterate of Ha0

very close to the stable direction s0 at the point H14
a0 (z1). Let us underline that to get the

estimation (6.7) we need to compute DH14
a0 with at least long double precision of the floating

point arithmetics.
The points on the trajectory of z1 will be the centers of the sets which appear in the

computer assisted proof. Put

c0 = (ψ−1(z0, u0), a0),

c1 = (ψ−1(z1, u0), a0),

ci+1 = PH i(c1) for i = 1, . . . , 13,

c15 = (ψ−1(z0, s0), a0).

For further use we set also

zi+1 = H i
a0(z1) for 1 = 1, . . . , 13,

z15 = z0.

Some of these points are shown in Figure 2.
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Now, we have to choose approximate stable and unstable directions at ci, i = 0, . . . , 15.
On each set centered at ci, the coordinate system will be given by a matrix

(6.8) Mi =

⎡⎢⎢⎣
(ui)1 (si)1 0 0
(ui)2 (si)2 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ ,
where u0, s0 are given by (6.6) and ui and si are computed as follows.

• Put u15 = u0, s15 = s0, u1 = u0, s1 = s0.
• For i = 2, . . . , 8 we set

ui = πt(ci),(6.9)

si = πt(PH
−1(zi+1, πt(ci+1)

⊥)).(6.10)

From numerical simulations we get that between the points c8 and c9 the role of the
tangent coordinate is changing from contracting to expanding. Therefore, the unstable
direction propagates very well on these sets just by (6.9) for i = 2, . . . , 8. For the
inverse map, the unstable directions ui become repelling. Therefore, the preimage of
an orthogonal direction to ui+1 becomes a good enough approximation for our method
of the stable direction at zi.

• According to a good choice of the homoclinic point (6.7), the tangent coordinate at ci
becomes a good approximation of the stable direction on sets centered at c9, . . . , c14.
Therefore, we can set

si = πt(ci) for i = 9, . . . , 14,

u9 = πt(PHa0(z8, [s8])),

ui+1 = πt(PHa0(zi, [ui])) for i = 9, . . . , 13.

There remains for us to set the sizes of the sets. We define the h-sets by

(6.11) Ni = ci +Mi · (di · [−1, 1]) ,

where the diameters di are listed in Table 1 and are chosen from numerical experiments. On
h-sets N0, . . . , N8 the expanding directions are u and a coordinates, while on N9, . . . , N15 the
expanding directions are u and t coordinates.

Let us comment briefly about the choice of the sizes of the sets presented in Table 1. For
the sets N0, . . . , N8 the tangent coordinate is chosen as a contracting direction. Therefore,
the set in this direction must be large enough (here, 2 · 10−5) to be able to easily verify that
we have contraction on this variable. On the other hand, for the sets N9, . . . , N15 we have a
strong expansion on this coordinate. Therefore, the diameter of these sets on this coordinate
is smaller here because it is easier to verify that the image of some walls of the previous set
in the chain is outside of a small set than inside of it.

Moreover, the tangent coordinate of N9 has to be covered by the unstable coordinate of
N8. This expansion is weak and forces decreasing of the size N9 on the tangent coordinate.
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Table 1
Diameters of the h-sets in the heteroclinic sequence for the Hénon map. The diameters in the table are

scaled by the factor 105. On h-sets N0, . . . , N8 the expanding directions are u and a coordinates, while on
N9, . . . , N15 the expanding directions are u and t coordinates.

i 105 · (di)1 105 · (di)2 105 · (di)3 105 · (di)4
unstable dir. stable dir. tangent dir. parameter

0 7 1 2 (1.01)8

1 1 1 2 (1.01)7

2 1 1 2 (1.01)6

3 1 1 2 (1.01)5

4 1 1 2 (1.01)4

5 1 1 2 (1.01)3

6 1 1 2 (1.01)2

7 1 1 2 1.01

8 1 1 2 1

9 0.5 1.25 0.25 1.01

10 0.75 1.25 0.25 (1.01)2

11 1 1.25 0.25 (1.01)3

12 1 1.25 0.25 (1.01)4

13 1 1.25 0.25 (1.01)5

14 1 1.25 0.25 (1.01)6

15 1 2 0.25 (1.01)7

The unstable and stable directions are comparable for almost all sets in the chain except
N0, N9, and N15. For N0 we have a large size in the unstable direction. This is due to the
fact that N1 is at some distance from z0. The size 7 · 10−5 is necessary to reach the set N1

from N0.
Similar reasoning applies to N15. The stable size must be large enough so that the image

of N14 is captured in this direction.
On the set N9 we have a change of dynamics. The unstable size of N9 is smaller since on

N8 the parameter plays a role of expanding the direction which covers the unstable direction
on N9. Since this expansion is weak, we must decrease the size of N9. On the other hand, the
image of N8 varies with the parameter and is larger in the stable direction of N9. This forces
us to enlarge the set N9 a little bit in the stable direction.

Now we can state the first numerical lemma.
Lemma 6.4. The following covering relations hold true:

N0
PH
=⇒ N1

PH
=⇒ · · · PH

=⇒ N15.

Proof. The assertion of the above lemma has been verified using the interval arithmetics
[13] and the algorithms for verifying the existence of covering relations described in [20]. We
were able to verify the necessary inequalities on each wall of Ni, i = 0, . . . , 15, without any
subdivision of the sets, so the computational time was less than one second.

6.2. The cone conditions along the heteroclinic chain. In this section we will show that
the cone conditions are satisfied for the sequence of covering relations from Lemma 6.4. We
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have two results which give us a numerical method for verifying the cone conditions.
Lemma 6.5 (see [12, Lemma 6]). Let (N,QN ) and (M,QM ) be h-sets with cones in R

n,

and let f : N → R
n be C1 such that N

f
=⇒M . Let [Df(N)]I denote the interval enclosure of

the set of matrices Df(N). If the interval matrix

V = [Df(N)]TI QM [Df(N)]I −QN

is positive definite, then the cone conditions are satisfied for the covering relation N
f

=⇒M .
Let A = Ac + [−1, 1] · A0 be an interval matrix, where Ac, A0 ∈ R

n×n are real and
symmetric. For z ∈ R

n by Δ(z) we will denote a diagonal matrix with zi’s at the diagonal.
Lemma 6.6 (see [16, Theorem 2]). The interval matrix A = Ac + [−1, 1] · A0 is positive

definite iff for each sequence z ∈ {−1, 1}n the matrix

Az = Ac −Δ(z)A0Δ(z)

is positive definite.
In light of the above lemma, to verify that a symmetric interval matrix is positive definite,

it is enough to verify if 2n−1 real matrices Az are positive definite.
In order to verify the cone conditions, we have to define quadratic forms on the sets Ni,

i = 0, . . . , 15. Denote by

(6.12) λ = 3.858169402, μ = 0.07775708341

approximate eigenvalues of DHa0 at z0. Recall that by Δ(p1, . . . , pn) we denote a diagonal
matrix with pi’s at the diagonal. For i = 0, . . . , 15 we define the quadratic form on the h-set
Ni by

Qi = Δ((pi)1, (pi)2, (pi)3, (pi)4) ,

where the coefficients are listed in Table 2. The quadratic forms Qi are defined in the co-
ordinate systems given by matrices Mi (6.8) used to define the h-sets Ni, i = 0, . . . , 15.
These matrices have normalized columns. In these coordinates the sets are given by Ni =
[(di)1, . . . , (di)4] · [−1, 1], i = 0, . . . , 15; see (6.11) and Table 1.

Let us comment briefly on the choice of these coefficients. Assume that we would like to

verify the cone conditions for the covering relation N
f

=⇒M . Assume that f is linear and in
some coordinate systems on N and M it is given by f = Δ(λ1, . . . , λk). In the general case,
we usually have Df(N) close to a diagonal matrix, but the arguments apply. Assume also
that the quadratic forms on both sets N and M are diagonal and given by

QN = Δ(αN
1 , . . . , α

N
k ),

QM = Δ(αM
1 , . . . , α

M
k ).

According to Lemma 6.5, the cone conditions will be satisfied if the interval matrix

V = [Df(N)]TI ·QM · [Df(N)]I −QN = Δ(λ21α
M
1 − αN

1 , . . . , λ
2
kα

M
k − αN

k )

is positive definite. We see that if |αN,M
i | = 1 and some |λi| � 1, then the corresponding

coefficient in the matrix V becomes very large, while for |λj | � 1 the corresponding coefficient
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Table 2
Coefficients of the quadratic forms on the sets N0, . . . , N15, where λ = 3.858169402, μ = 0.07775708341

are approximate eigenvalues of DHa0(z0).

i (pi)1 (pi)2 (pi)3 (pi)4
unstable dir. stable dir. tangent dir. parameter

0 3/λ2 −μ2 −(μ/λ)2 2(1.5)−8

1 1/λ2 −0.1 −0.5 2(1.5)−7

2 1/λ2 −0.1 −1 2(1.5)−6

3 1/λ2 −0.1 −1 2(1.5)−5

4 1/λ2 −0.1 −1 2(1.5)−4

5 1/λ2 −0.1 −1 2(1.5)−3

6 1/λ2 −0.1 −1 2(1.5)−2

7 1/λ2 −0.1 −1 2(1.5)−1

8 0.5/λ2 −1 −1 2

9 100/λ2 −0.1 100(μ/λ)2 −2

10 40/λ2 −0.1 (μ/λ)2 −2(1.5)−1

11 10/λ2 −0.1 (μ/λ)2 −2(1.5)−2

12 1/λ2 −0.1 (μ/λ)2 −2(1.5)−3

13 1/λ2 −0.1 (μ/λ)2 −2(1.5)−4

14 1/λ2 −0.1 (μ/λ)2 −2(1.5)−5

15 0.3/λ2 −0.1 (μ/λ)2 −2(1.5)−6

in V is close to 1. In the general (nonlinear) case we have some nonzero intervals off the
diagonal of V . Therefore, from the computational point of view, it is better to make the
matrix V somehow uniform, i.e., such that the coefficients on the diagonal are of the same
magnitude. This can be achieved by setting coefficients αi ≈ λ−2

i for these i such that |λi| � 1.

This can be seen in the first column of Table 2 and the second part of the third column.

The coefficients for N9 are chosen so as to be able to switch from the unstable to the
stable manifold.

Notice also a different choice of the coefficients for the quadratic form Q0 in N0. The
reason is that we have to prove that the center-unstable manifold at the fixed point c0 is a
horizontal disk in N0 satisfying the cone conditions. Therefore, we need to apply the method
described in Theorem 4.1 to the inverse of PH. In this case, the coefficients in the second
and the third columns correspond to expanding directions with approximate eigenvalues 1/μ
and λ/μ, both greater than 1.

We have the following lemma.

Lemma 6.7. The cone conditions are satisfied for the sequence of covering relations

N0
PH
=⇒ N1

PH
=⇒ · · · PH

=⇒ N15.

Proof. Observe that verification of the cone conditions for these covering relations re-
quires computation of the DPH, which involves the second order derivatives of H. In the
computer assisted proof we computed an enclosure for DPH(Ni), i = 0, 1 . . . , 14, using whole
Ni without subdivision as an initial condition of the routine which computes DPH. Then we
applied Lemma 6.5 and Lemma 6.6 to prove that the cone conditions are satisfied. The C++
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program which verifies the assertion executes within less than one second on a laptop-type
computer.

6.3. Parameterization of center-unstable and center-stable manifolds at c0 and c15,
respectively. In this section we will use the method described in Theorem 4.1 in order to
parameterize the center-unstable and center-stable manifolds as horizontal and vertical discs
satisfying the cone conditions in N0 and N15, respectively. This, together with Lemma 6.4
and Lemma 6.7, will give us a proof of Theorem 6.3.

Put

Ñ0 = (z0, [u0]) + M̃ · ((d0)1, (d0)2, (d0)3) ,
Ñ15 = (z0, [s0]) + M̃ · ((d15)1, (d15)2, (d15)3) ,

where M̃ is a 3× 3 minor of the matrix M15 =M0 (see (6.8)) after removing the last column
and the last row. The coefficients (di)j are listed in Table 1. Geometrically, these sets are just
projections onto (x, y, t) coordinates of N0 and N15, respectively.

The set Ñ15 is a three-dimensional h-set with two expanding directions (corresponding to
eigenvalues λ and λ

μ) and one nominally stable direction (corresponding to the eigenvalue μ),
where λ, μ are eigenvalues of DHa0(z0); see (6.12).

On the set Ñ0 we will compute the inverse map of PHa so that the roles of nominally
stable and nominally unstable directions interchange. Hence, the set Ñ0 has two nominally
unstable directions (with eigenvalues μ−1 and λ/μ) and one nominally stable direction (with
eigenvalue λ−1).

On both sets we set quadratic forms defining the cones to be equal to

Q̃0 = −Δ((p0)1, (p0)2, (p0)3) ,(6.13)

Q̃15 = Δ((p15)1, (p15)2, (p15)3) ,(6.14)

where the coefficients are listed in Table 2.

Lemma 6.8. The center-stable manifold of PH at c15 can be parameterized as a vertical
disk in N15 satisfying the cone conditions with respect to the quadratic form Q15.

Proof. We use Theorem 4.1. Let πa denote a projection onto the parameter coordinate.
With computer assistance we verified that for a ∈ πa(N15) it holds that

Ñ15
PHa=⇒ Ñ15,

and the cone conditions are satisfied with the quadratic form Q̃15. Hence, the first assumption
of Theorem 4.1 is fulfilled.

Then we computed the constants A,M , L which appear in assumptions 2–3 of Theorem 4.1
and we obtained

A ≥ 0.099394300936541294,

M ≤ 0.084042214456891598,

L ≤ 0.0070394636406844067.
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Hence constant Γ from assumption 4 of Theorem 4.1 can be chosen to be equal to Γ =
0.57737423322563175. With this Γ the coefficient δ defined in (4.6) is equal to

δ =
Γ2

‖α‖ ≤ 16.54078540195168,

where α appears in the decomposition of the quadratic form Q̃15(x, y, t) = α(x, t)− β(y) and
‖α‖ = max

{
0.3/λ2, (μ/λ)2

}
= 0.3/λ2; see Table 2.

From Theorem 4.1 it follows that the center-stable manifold of PH at c15 can be param-
eterized as a vertical disk in N15 satisfying the cone conditions with respect to the quadratic
form

Q15(x, y, t, a) = δQ̃15(x, y, z)− a2.

Recall that by Q15 we denote the quadratic form on N15. To finish the proof let us observe
that

Q15(x, y, t, a) = Q̃15(x, y, t)− 2(1.5)−6a2;

see (6.14) and Table 2. Moreover, we have 2(1.5)−6δ > 1. This shows that

δQ15(x, y, t, a) = δ
(
Q̃15(x, y, t) − 2(1.5)−6a2

)
< Q15(x, y, t, a).

Therefore, the center-stable manifold of PH at c15 is a vertical disk in N15 satisfying the cone
condition for the quadratic form Q15.

We have a similar lemma about the parameterization of the center-unstable manifold of
PH at c0 as a horizontal disk in N0.

Lemma 6.9. The center-unstable manifold of PH at c0 can be parameterized as a hori-
zontal disk in N0 satisfying the cone conditions with respect to the quadratic form Q0.

Proof. We will proceed as in Lemma 6.8 but for the map PH−1. With computer assistance
we verified that for a ∈ πa(N0) it holds that

Ñ0
PH−1

a=⇒ Ñ0

and the cone conditions are satisfied. We computed the constants which appear in (4.5)–(4.6),
and we got

A ≥ 0.1877584261322994,

M ≤ 0.2795983187542756,

L ≤ 0.015049353557694945,

Γ = 0.33278415598142302,

δ ≤ 18.316620936531205.

Hence, the center-stable manifold for PH−1 at c0 is a vertical disk in N0 satisfying the cone
condition for the quadratic form

Q0(x, y, t, a) = δQ̃0(x, y, t)− a2.
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From (6.13) and Table 2 we have

Q0(x, y, t, a) = −Q̃0(x, y, t, a) + 2(1.5)−8a2.

Since 2(1.5)−8δ > 1, we have

−δQ0(x, y, t, a) = δ
(
Q̃0(x, y, t, a) − 2(1.5)−8a2

)
< Q0(x, y, t, a),

and the center-stable manifold of PH−1 at c0 can be parameterized as a vertical disk in N0

satisfying the cone conditions with respect to the quadratic form −Q0. This means that the
center-unstable manifold of PH can be parameterized as a horizontal disk in N0 satisfying
the cone conditions with respect to the quadratic form Q0.

Proof of Theorem 6.3. We obtain our conclusion from Lemmas 6.7, 6.8, and 6.9 combined
with the discussion of the strategy of the proof in the first part of section 4.

7. Application to the forced damped pendulum equation. Let us consider an equation
for the forced damped pendulum motion

(7.1) ẍ+ βẋ+ sin(x) = cos(t).

Equation (7.1) is a well-known example of an equation which exhibits chaotic dynamics; see
[10] and references therein. In [3] it has been proven (a computer assisted proof) that for the
parameter β = 0.1 the 2π-time map is semiconjugated to the full shift on three symbols on
some compact invariant set.

Equation (7.1) defines a flow on R
2 × S1, where S1 is a unit circle. Let us define the

Poincaré map Tβ : R
2 → R

2 by

(7.2) Tβ(x, ẋ) = (x(2π), ẋ(2π)) ,

where x(t) is a solution of (7.1) with the parameter β.
The aim of this section is to prove the following theorem.
Theorem 7.1. For all parameter values

β ∈ B = 0.247133729485 + [−1, 1] · 1.2 · 10−10

there exists a hyperbolic fixed point for Tβ corresponding to a 2π periodic solution of (7.1).
Moreover, there exists a parameter value β ∈ B such that the map Tβ has a quadratic homo-
clinic tangency unfolding generically for that fixed point.

The proof of Theorem 7.1 uses the same method as for the Hénon map case. Since all the
details have been discussed in section 6, we will give here only the definition of the sets and
quadratic forms, and we will state the numerical lemmas.

The main difference between the Hénon map case and that of the forced damped pendulum
equation is how we compute derivatives of a map up to the second order, required in the proof.
Since the Hénon map is given explicitly, these derivatives can be computed by hand or using
the Automatic Differentiation tools [9]. For the forced damped pendulum equation we used
the Cr-Lohner algorithm presented in [21]. This algorithm allows us to efficiently integrate
the variational equations for ODEs and compute partial derivatives of Poincaré maps.



HOMOCLINIC TANGENCIES 1657

z4

z5

z6

z0

2 4 6 8 10 12

�3

�2

�1

0

1

2

3 4 5 6 7 8

�2.0

�1.5

�1.0

�0.5

0.0

0.5

Figure 3. Left: Parts of the unstable and stable manifolds of a fixed point of Tβ for β = 0.247133729485.
Right: Periodic orbit and a homoclinic orbit to the periodic orbit for (7.1) projected onto (x, ẋ) coordinates.
This homoclinic orbit corresponds to the quadratic tangency of invariant manifolds. The left picture suggests
also the existence of transversal homoclinic points.

7.1. Heteroclinic chain of covering relations. Let PTβ : PR2 → PR2 denote the map
induced by Tβ on the projective bundle, and let ψ be a local parameterization of the space
PR2 as defined in (6.4). Let

PT : PR2 × R � (x, ẋ, t, β) =
(
(ψ−1 ◦ PTβ ◦ ψ)(x, ẋ, t), β) ∈ PR2 ×R.

Let

β0 = 0.247133729485,

z0 = (2.6410109874338904, 0.063471204982120187),

u0 = (0.76818278871270265, 0.64023058590290362),(7.3)

s0 = (0.67655372773981033,−0.73639327365298942),(7.4)

λ = 211.83022271012155,(7.5)

μ = 0.00099918347695168025.(7.6)

From numerical experiments we got that z0 (see Figure 3) is an approximate fixed point for
Tβ0 with approximate eigenvalues λ, μ and approximate eigenvectors u0, s0, respectively. This
point has been found by the standard Newton method.

Let us denote

c0 = ψ−1((z0, u0), β0),
z1 = z0 + 1.41442890240556 · 10−8u0, c1 = ψ−1((z1, u0), β0),
zi = Tβ0(zi−1) for i = 2, 3, 4, 5, ci = PT (ci−1) for i = 2, 3, 4, 5,
z8 = z0 + 19.0992395815 · 10−8s0, c8 = ψ−1((z8, s0), β0),

zi = T−1
β0

(zi+1) for i = 7, 6, ci = PT−1(ci−1) for i = 7, 6,

z9 = z0, c9 = ψ−1((z0, s0), β0).
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Some of these points are shown in Figure 3. The points z1 and z8 are chosen close to a
heteroclinic trajectory for Tβ0 . Numerical simulation shows that

(7.7) PT−1(c6)− c5 ≈ (3.42 · 10−12, 6.34 · 10−12,−2.32 · 10−8, 0).

In fact, we observe that between c5 and c6 the role of the tangent direction changes and at c6
it becomes repelling.

The reason for which we define two points z1 and z8 and compute their forward and
backward trajectories, respectively, is due to the numerical problems with forward propagation
of the tangent coordinate at z6, z7, even in simulation only. Recall that the tangent coordinate
t becomes strongly repelling at z6 and z7 with eigenvalue of the order 105. Therefore, it is
easier to propagate the preimage of the stable direction at z8 which is attracting at z7 and z6
for the inverse map.

Approximate estimation (7.7) shows us that the points ci, i = 1, . . . , 8, are close to the
possible existing heteroclinic trajectory for PT .

Now we will define the coordinate systems of the h-sets centered at ci’s. Let Mi be the
matrix of the coordinate system of the set centered at ci. We assume that Mi has the form
(6.8). These matrices are computed as follows:

• Put u9 = u0, u1 = u0, u8 = u0 and s9 = s0, s1 = s0, s8 = s0, where u0, s0 are defined
by (7.3)–(7.4).

• For i = 2, 3, 4, 5 we set

ui = πt(ci),

si = πt(PT
−1
β0

(zi+1, πt(ci+1)
⊥)), i = 2, 3, 4,

s5 = u⊥5 .

• For i = 6, 7 we set

si = πt(ci),

ui = πt

(
PTβ0

(
T−1(zi), πt

(
PT−1

β0
(zi, si)

)⊥))
.

As in the case of the Hénon map, the h-sets N0, . . . , N9 for the map PT will be defined
by formula (6.11) with matrices Mi as above and the diameters given in Table 3.

The h-sets N0, . . . , N5 have two unstable directions given by ui and the parameter. The
h-sets N6, . . . , N9 have two unstable directions given by ui and the tangent coordinate.

Now, we can state the following numerical lemma.
Lemma 7.2. The map PT is well defined and continuous on

⋃9
i=0Ni. Moreover, the fol-

lowing covering relations hold true:

(7.8) N0
PT
=⇒ N1

PT
=⇒ · · · PT

=⇒ N9.

Proof. In the computer assisted proof of the above lemma we used the C1-Lohner algorithm
[22] and the CAPD library [8] in order to integrate the variational equations for (7.1) and to
compute the map PT . We used the Taylor method of the order 20 with a variable time step.
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Table 3
Diameters of the h-sets in the heteroclinic sequence for the PT map. The h-sets N0, . . . , N5 have two

unstable directions given by ui and the parameter. The h-sets N6, . . . , N9 have two unstable directions given by
ui and the tangent coordinate.

i 1010 · (di)1 1010 · (di)2 108 · (di)3 1010 · (di)4
unstable dir. stable dir. tangent dir. parameter

0 5 0.2 0.26 1.2(1.01)5

1 0.4 6 2 1.2(1.01)4

2 0.4 6 4 1.2(1.01)3

3 0.6 6 2 1.2(1.01)2

4 5 2 1 1.2(1.01)

5 27 2 1 1.2

6 0.4 15 0.4 1.2(1.01)

7 0.4 8 0.4 1.2(1.01)2

8 0.4 10 1.2 1.2(1.01)3

9 0.4 5 0.2 1.2(1.01)4

To verify the inequalities required for the covering relations we subdivided the boundary of
each h-set with a grid depending on the set under consideration. The total number of boxes
we used is 5546. The C++ program which verifies the existence of covering relations (7.8)
executes within 18 seconds on a computer with the Intel Xeon 5160, 3GHz processor.

7.2. The cone conditions along the heteroclinic chain of covering relations for the
map PT . Recall that for a p ∈ R

n by Δ(p) we denoted a diagonal matrix with pi’s on the
diagonal.

For i = 0, . . . , 9 we define the quadratic form on the h-set Ni by

Qi = Δ((pi)1, (pi)2, (pi)3, (pi)4) ,

where the coefficients are listed in Table 4.
Let us comment on the choice of these coefficients. In the example presented in section 5

there is no dependency on the parameter; hence the cone conditions are easily achievable.
In the general case this dependency has a huge influence on the choice of the parameters in
quadratic forms corresponding to the parameter variable. In fact, this sometimes forces large
scaling (not only by some small factor, like in the Hénon map case).

The other constraints on the coefficients are related to the parameterization of center-
unstable and center-stable manifolds in the first and last sets in the heteroclinic chain of
covering relations.

The main constraint, however, appears for the covering relation in the switch between
manifolds. Here it is necessary to set relatively large coefficients corresponding to both unsta-
ble variables in the set after this switch and a small coefficient for the stable variable in the
main phase space. This can be seen in Tables 2 and 4 for the sets N9 and N6, respectively. In
the next sets we can use the hyperbolicity of the map to make these coefficients more uniform
and to reach constraints at the beginning and at the end of the chain.

For i = 2, . . . , 9 the coordinate systems on Ni are given by the matrices Mi used to define
the sets Ni, respectively.
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Table 4
Coefficients of the quadratic forms on the sets N0, . . . , N9, where λ, μ are approximate eigenvalues of

DTβ0(z0) and are given in (7.5)–(7.6).

i (pi)1 (pi)2 (pi)3 (pi)4
unstable dir. stable dir. tangent dir. parameter

0 80/λ2 −μ2 −(μ/λ)2 (1.1)−5

1 1/λ2 −0.01 −10−7 (1.1)−4

2 1/λ2 −1 −10−5 (1.1)−3

3 1/λ2 −1 −10−5 (1.1)−2

4 1/λ2 −1 −10−5 (1.1)−1

5 10/λ2 −1 −10−5 3

6 1000/λ2 −10−4 106(μ/λ)2 −(1.1)−1

7 1/λ2 −1 (μ/λ)2 −(1.1)−2

8 1/λ2 −1 (μ/λ)2 −(1.1)−3

9 1/λ2 −1 (μ/λ)2 −(1.1)−4

We have the following numerical result.

Lemma 7.3. The cone conditions are satisfied for the sequence of covering relations

N0
PT
=⇒ N1

PT
=⇒ · · · PT

=⇒ N9.

Proof. By Lemma 6.5 it is enough to verify that for i = 0, . . . , 8 the interval matrix

Vi = [DPT (Ni)]
T
I QNi+1 [DPT (Ni)]I −QNi

is positive definite, where DPT is computed in the coordinate systems of Ni and Ni+1. Notice
that to compute DPT we need second order derivatives of the map T . We used the C2-Lohner
algorithm [21] and the CAPD library [8] in order to integrate the second order variational
equations for (7.1). We used the Taylor method of the order 20 and a variable time step. No
subdivision of the sets Ni was necessary; i.e., whole sets Ni were used as an initial condition
for the routine which computes DPT . The C++ program which verifies the cone conditions
from this lemma executes within 1 second on a computer with the Intel Xeon 5160, 3GHz
processor.

7.3. Parameterization of center-unstable and center-stable manifolds at c0 and c9,
respectively.

Lemma 7.4. The following statements hold true:

• The center-stable manifold of PT at c9 can be parameterized as a vertical disk in N9

satisfying the cone conditions with respect to the quadratic form Q9.
• The center-unstable manifold of PT at c0 can be parameterized as a vertical disk in
N0 satisfying the cone conditions with respect to the quadratic form Q0.

The computer assisted proof of the above lemma is essentially the same as the proof of
Lemmas 6.8 and 6.9 for the Hénon map. Therefore, we skip the details. The C++ program
which verifies the assertion executes within 11 seconds on a computer with the Intel Xeon
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5160, 3GHz processor. The most time-consuming part is the verification of the existence of
covering relations for the projected sets in three-dimensional space.

We used the Taylor method of the order 20 and a variable time step when checking the
covering relations and when integrating second order variational equations.

Proof of Theorem 7.1. We conclude the proof as in the Hénon map example.

8. Implementation notes. In order to compute bounds for the Hénon map and the
Poincaré map Tβ and their derivatives we used the interval arithmetic [13], automatic dif-
ferentiation [9], and the Cr-Lohner algorithm [21] developed at the Jagiellonian University by
the CAPD group [8]. The C++ source files of the program with instructions on how it should
be compiled and run are available online [19].

The program has been tested under several Linux distributions, including 32 and 64 bit
architectures and the gcc compiler versions 4.1.2, 4.2.1, and 4.3.2 on the Intel Pentium IV,
Intel Core 2 Duo, Intel Xeon, and the AMD Quad Core processors.

Appendix A. Proof of Remark 3.3.
In the proof we will produce on the plane (μ, x1) the coordinate change of the form

(μ, x1) �→ (ν(μ), t(μ, x1)). It is obvious that such a coordinate change preserves the form of
the curve sμ(x1) = (x1, 0).

The proof consists of several lemmas.
Lemma A.1. The same assumptions as in Remark 3.3 hold. Assume that g is of class Ck,

with k ≥ 3. Then there exists a local coordinate change (μ, x1) �→ (μ, t(μ, x1)) of class Ck,
such that t(μ0, 0) = 0 and in the new coordinates g satisfies the following conditions for μ in
some neighborhood of μ0:

g(μ0, 0) = 0,
∂g

∂x1
(μ, 0) = 0,

∂g

∂μ
(μ, 0) �= 0,

∂2g

∂x21
(μ, 0) �= 0.

Proof. Observe that, since ∂2g
∂2x1

(μ0, 0) �= 0, from the implicit function theorem it follows

that there exists a local function μ �→ x1(μ) of class Ck−1, such that

∂g

∂x1
(μ, x1(μ)) = 0, x1(μ0) = 0.

It is easy to see that if we set
t(μ, x1) = x1 − x1(μ),

then our assertion is satisfied.
Lemma A.2. Assume that f : R2 → R is a Ck-function with k > 2, such that

∂f

∂x
(μ, 0) = 0 ∀μ.

Then there exist functions h : R2 → R of class Ck−2 and r : R → R, r ∈ Ck, such that

f(μ, x) = x2h(μ, x) + r(μ),
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where h(μ, 0) = 2∂2f
∂x2 (μ, 0) and r(μ) = f(μ, 0).

Proof. For any C1-function w : R → R it holds that

w(x) = w(0) +

∫ 1

0
w′(tx)dt · x.

For fixed μ we apply the above formula to w(x) = ∂f
∂x(μ, x) and then again to w(x) = f(μ, x)

and we obtain

f(μ, x) = f(μ, 0) + x2
∫ 1

0

∫ 1

0
s
∂2f

∂x2
(μ, stx)dtds.

From the two above lemmas it follows that we can assume that our function g(μ, x1)
satisfies the following conditions:

g(μ, x1) = x21h(μ, x1) + r(μ),

h(μ0, 0) �= 0, r′(μ0) �= 0.

Observe that since r′ �= 0 in the neighborhood of μ0, we can use locally r(μ) instead of
μ as the parameter. After this observation we can assume now that our function g(μ, x1)
satisfies the following conditions (now μ0 = 0):

g(μ, x1) = x21h(μ, x1) + μ, h(0, 0) �= 0.(A.1)

To finish the proof we need the following lemma.
Lemma A.3. Assume that g satisfies (A.1). Then there exists a local coordinate change in

the neighborhood of (0, 0) of the form

(μ, x1) → (μ, t = x1(1 + w(μ, x1))), w(0, 0) = 0,

such that in these new coordinates we have

(A.2) g(μ, t) = at2 + μ,

where a = h(0, 0).
Proof. We have

h(μ, x1) = ax21 + x21f(μ, x1), f(μ, x1) = O(|(μ, x1)|).
To obtain (A.2) w needs to satisfy the equation

ax21 + x21f(μ, x1) + μ = a(x1(1 + w(μ, x1)))
2 + μ,

which is equivalent to the following condition:

(A.3) f(μ, x1) = 2aw(μ, x1) + aw(μ, x1)
2.

We obtain the solution to (A.3) by application of the implicit function theorem to the following
equation:

F (μ, x1, w) = f(μ, x1)− 2aw − aw2 = 0.

Indeed we have F (0, 0, 0) = 0 and ∂F
∂w (0, 0, 0) = −2a �= 0.
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