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where (x, y, z) ∈ R3 and c ∈ R+ is a parameter, based on the theory
given in [5]. The main difficulty lies in the verification of the (topologi-
cal) transversality of some invariant manifolds in the system. The proof
is computer assisted and combines topological tools including covering
relations and the smooth ones using the cone conditions. These new tech-
niques developed in this paper will have broader applicability to similar
global bifurcation problems.

AMS classification numbers: 37G15, 35B40, 65G20
Keywords: cocoon bifurcation, topological transversality, covering relations,
cone conditions, computer assisted proof

1 Introduction

The goal of this paper is to rigorously prove the existence of cocoon bifurcation
[5] for the Michelson system [12]

ẋ = y

ẏ = z (1)

ż = c2 − y − 1
2
x2

The Michelson system arises, on one hand, as the travelling wave equation
of a PDE called the Kuramoto-Shivashinsky equation, and on the other hand,
as a part of the limit family of the unfolding of a codimension three nilpotent
vector field singularity, see [4, 5] and references therein for the details.

The Michelson system (1) has the following basic properties among others:

• The system is reversible with respect to the involution [10]

R(x, y, z) = (−x, y,−z). (2)

This means that the transformation of the form

(t, (x, y, z)) 7→ (−t, R(x, y, z))

preserves orbits of (1).

• For c > 0 there are only two equilibrium points at

x± = (±
√

2c, 0, 0), (3)

both are of saddle-focus type with dim(Wu(x+)) = dim(W s(x−)) = 2.

It was proven in [13] that, for c sufficiently large, there exists for (1) a unique
transverse heteroclinic orbit connecting x+ and x−, given by the intersection
of two-dimensional Wu(x+) and W s(x−), and the equilibrium points together
with the heteroclinic orbit form the maximal bounded invariant set for (1).
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When the parameter c decreases, the numerical results in [12, 11] show that
(1) exhibits an infinite sequence of heteroclinic bifurcations due to the tangency
of Wu(x+) and W s(x−), each of which creates a pair of new transverse het-
eroclinic orbits. Also numerically, the sequence of values of c for which these
bifurcations occur converges to c̄ ≈ 1.2662. At this value, there appears a
saddle-node bifurcation that creates a periodic orbit γ∗. The sequence of bi-
furcations that appear before and after c = c̄ was studied by Lau[11] mainly
numerically, and was called the “cocoon” bifurcation, because of the shape of
the invariant manifolds controlling the process.

Dumortier, Ibañez and the first author of this paper [5] studied the cocoon
bifurcation from a theoretical and more general point of view, and explained its
occurrence as a consequence of the presence of an organizing center called the
cusp-transverse heteroclinic chain, which is defined as follows:

Let Xλ be a one-parameter family of vector fields on R3 having the following
properties:

(H1) each of the vector fields Xλ is reversible with respect to the linear invo-
lution R with dim(Fix(R)) = 1, where Fix(R) is the fixed point subspace
of R

(H2) There exist two hyperbolic equilibrium points x± /∈ Fix(R) which are
symmetric under the involution R and such that
dim(Wu(x+)) = dim(W s(x−)) = 2.

Definition 1 [5, Definition 1.3] Under the conditions (H1) and (H2), we say
the family Xλ exhibits a cocooning cascade of heteroclinic tangencies centered
at λ∗, if there is a closed solid torus T with x± /∈ T and a monotone infinite
sequence of parameters λn converging to λ∗, for which the corresponding vector
field Xλn has a tangency of Wu(x+) and W s(x−) such that the heteroclinic
tangency orbit intersects with T and has its length within T tending to infinity
as n →∞.

Definition 2 [5, Definition 1.4] A family of vector fields Xλ on R3 satisfying
(H1) and (H2) is said to have a cusp-transverse heteroclinic chain at λ = λ0,
if the following three conditions hold:

(C1) Xλ0 has a saddle-node periodic orbit γ∗ which is symmetric under the
involution R.

Here the saddle-node periodic orbit is meant by a periodic orbit whose
Poincaré map has the unity as its eigenvalue. Under the presence of
the reversibility, this implies that the other eigenvalue of the linearized
Poincaré map is also the unity. See the discussion in the beginning of
Section 7.

(C2) The saddle-node periodic orbit γ∗ is generic and generically unfolded in
Xλ under the reversibility with respect to R. Here the genericity means
that some of the derivatives of the Poincaré map for the saddle-node pe-
riodic orbit are non-zero, see Section 7 and [5] for more details.
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(C3) Wu(γ∗) and W s(x−), as well as W s(γ∗) and Wu(x+), intersect trans-
versely, where Wu(γ∗) and W s(γ∗) stand for the stable and unstable sets
of the non-hyperbolic periodic orbit γ∗.

The name cusp-transverse comes from the fact that under the genericity
condition (C2) from results in [6] (cited as Theorem 2.4 in [5]) it follows that,
the Poincaré map along the saddle-node periodic orbit has a fixed point whose
stable and unstable sets form a cusp (see Figure 1). Condition (C3) says that
they intersect transversely stable and unstable manifolds of equilibrium points
x±. Under the bifurcation, the saddle-node periodic orbit will split into two
periodic orbits for λ on the one side of λ∗, while no periodic orbit will present
near γ∗ for λ on the other side of λ∗.The cocooning cascade occurs for the latter
values of λ.

γ
u

γ
s

Figure 1: The stable and unstable set of the saddle-node periodic orbit on the
Poincaré section [5]

The following theorem was proved in [5, Theorem 1.5]

Theorem 1 Let Xλ ba a smooth family of reversible vector fields on R3 with
(H1) and (H2). Suppose that at λ = λ0 the corresponding vector field Xλ0 has a
cusp-transverse heteroclinic chain. Then the family exhibits a cocooning cascade
of heteroclinic tangencies centered at λ0.

In order to apply this theorem to the Michelson system (1), one has to verify
the presence of the cusp-transverse heteroclinic chain including the conditions
(C1)-(C3). All but (C3) are relatively easy to check by interval arithmetic, but
it is not straightforward to verify the transversality in (C3), because the stable
and unstable sets are associated to a non-hyperbolic periodic orbit and therefore
a standard technique for rigorous enclosure of these manifolds does not work.
Nevertheless, we have succeeded in proving the existence of a cusp-transverse
heteroclinic chain in the Michelson system, and hence we have obtained a com-
puter assisted proof of the following fact:
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Theorem 2 There exists c∞ ∈ [1.2662323370670545, 1.2662323370713253] (com-
pare Theorem 12), such that Michelson system (1) exhibits a cocooning cascade
of heteroclinic tangencies centered at c∞.

The proof of this theorem is based on the ideas from the proof of Theorem 1,
but replaces the condition (C3) by its topological version:

(C3t) Wu(γ∗) and W s(x−), as well as W s(γ∗) and Wu(x+), intersect. More-
over, these intersections are topologically transverse.

Since the main idea of proving Theorem 1 in [5, Theorem 1.5] uses topological
arguments like the intermediate value theorem, it is obvious to see that all
arguments used in the proof are also valid, even if the condition (C3) is replaced
by (C3t). Therefore, once we verify the weaker condition (C3t), we can conclude
the cocooning cascade of heteroclinic tangencies centered at c∞.

In this paper, we use rigorous numerical methods developed by CAPD
group [2, 21, 22] to verify the conditions (C1,C2,C3t).

While this paper focuses on the proof the existence of the cocoon bifurcation
in a concrete system, the approach used in this paper is general and can be
without any changes applied to other systems with a similar bifurcation. A new
result in this context is the existence of a Lyapunov function at the bifurcation
point - see Lemma 16 (after we finished our paper we learned that this fact
in a context of behavior of stable and unstable curves of the degenerate fixed
point has been also established by Fontich in [7], see also the short discussion
at the beginning of Section 9.1). Another new aspect is the introduction of
the notion of the h-set with cones, which allows to link a topological tool,
the covering relation, with cone conditions, a standard object in the smooth
hyperbolic dynamics. This is used to rigorously estimate the stable and unstable
manifolds of fixed points or periodic orbits.

2 Notation

2.1 Intervals

Frequently, when discussing computer assisted proofs of some facts we will use
the notion of an interval hull of some object, which will be always denoted by
[A], where A is the mathematical object. Below we give a precise definition of
the interval hull for the objects we are using in present work.

Definition 3 Let h : Rn → R, f : Rn → R be a C2 map, g : Rn → Rn be a C1

map and U ⊂ Rn. We define

[h(U)] = [ inf
x∈U

h(x), sup
x∈U

h(x)]

[Dg(U)] =
{

A ∈ Rn×n | ∀ijAij ∈
[

∂gi

∂xj
(U)

]}

[
D2f(U)

]
=

{
A ∈ Rn×n |A = AT , ∀ijAij ∈

[
∂2f

∂xi∂xj
(U)

]}
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2.2 Other notation

For a map R : X → X, its fixed point set is denoted by Fix(R) = {x ∈ X |
R(x) = x}.

In Rn, unless it is stated otherwise, we will use the euclidian norm ‖x‖ =√∑
i x2

i to measure distances. Let x0 ∈ Rs, then Bs(x0, r) = {z ∈ R2 | ‖x0 −
z‖ < r} and Bs = B(0, 1).

We will often consider maps and points in Ru×Rs. For z ∈ Ru×Rs we will
usually call x the first coordinate, and y the second one. Hence z = (x, y), where
x ∈ Ru and y ∈ Rs. We will also use the projection maps π1(z) = πx(z) = x
and π2(z) = πy(z) = y.

Let z ∈ Rn and U ⊂ Rn be a compact set and f : U → Rn be a continuous
map, such that z /∈ f(∂U). Then the local Brouwer degree [16] of f on U at z
is defined and will be denoted by deg(f, U, z).

By f : U−→◦ W we will denote a partial (or local map), which means that
the domain of f is contained in U .

3 Covering relations, horizontal and vertical
disks

Notions of covering relation, horizontal and vertical disks between sets are the
main topological tool used to establish the existence of topologically transverse
intersections. For the convenience of the reader we will recall here their defini-
tions and basic theorems about them.

Definition 4 [8, Definition 1] An h-set, N , is a quadruple (|N |, u(N), s(N), cN )
such that

• |N | is a compact subset of Rn

• u(N), s(N) ∈ {0, 1, 2, . . . } are such that u(N) + s(N) = n

• cN : Rn → Rn = Ru(N) × Rs(N) is a homeomorphism such that

cN (|N |) = Bu(N) ×Bs(N).

We set

dim(N) := n,

Nc := Bu(N) ×Bs(N),

N−
c := ∂Bu(N) ×Bs(N),

N+
c := Bu(N) × ∂Bs(N),

N− := c−1
N (N−

c ), N+ = c−1
N (N+

c ).
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Hence an h-set N is a product of two closed balls in some coordinate system.
The numbers u(N) and s(N) are called the nominally unstable and nominally
stable dimensions, respectively. The subscript c refers to the new coordinates
given by homeomorphism cN . Observe that if u(N) = 0, then N− = ∅ and if
s(N) = 0, then N+ = ∅.
Definition 5 [19, Definition 2.2] Assume that N,M are h-sets, such that u(N) =
u(M) = u and let f : N → Rdim(M) be continuous. Let fc = cM ◦ f ◦ c−1

N :
Nc → Ru × Rs(M). We say that N f -covers M , denoted by

N
f

=⇒ M,

if the following two conditions are satisfied

1. there exists a homotopy h : [0, 1]×Nc → Ru × Rs(M) such that

h0 = fc, (4)
h([0, 1], N−

c ) ∩Mc = ∅, (5)
h([0, 1], Nc) ∩M+

c = ∅. (6)

2. There exists a linear map A : Ru → Ru such that

h1(p, q) = (A(p), 0), for p ∈ Bu and q ∈ Bs(N), (7)

A(∂Bu) ⊂ Ru \Bu. (8)

Observe that in the above definition s(N) and s(M) can be different.

Definition 6 [20, Definition 10] Let N be an h-set. Let b : Bu(N) → |N | be
continuous and let bc = cN ◦ b. We say that b is a horizontal disk in N if there
exists a homotopy h : [0, 1]×Bu(N) → Nc, such that

h0 = bc (9)
h1(x) = (x, 0), for all x ∈ Bu(N) (10)

h(t, x) ∈ N−
c , for all t ∈ [0, 1] and x ∈ ∂Bu(N) (11)

We will say that b is a proper horizontal disk in N if it is a horizontal disk
in N and b(Bu(N)) ∩N+ = ∅.
Definition 7 [20, Definition 11] Let N be an h-set. Let b : Bs(N) → |N | be
continuous and let bc = cN ◦ b. We say that b is a vertical disk in N if there
exists a homotopy h : [0, 1]×Bs(N) → Nc, such that

h0 = bc

h1(x) = (0, x), for all x ∈ Bs(N)

h(t, x) ∈ N+
c , for all t ∈ [0, 1] and x ∈ ∂Bs(N). (12)

We will say that b is a proper vertical disk in N if it is a vertical disk in N
and b(Bs(N)) ∩N− = ∅.
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Definition 8 Let N be an h-set in Rn and b be a horizontal (vertical) disk in
N . We will say that x ∈ Rn belongs to b, when b(z) = x for some z ∈ dom(b).

Let Z ⊂ Rn. We will say that Z contains disk b if for all x ∈ dom(b) holds
b(x) ∈ Z.

N+

N+

N+

N+

N− N−

Figure 2: A horizontal disk in an h-set N with u(N) = 2 and s(N) = 1 (left).
A vertical disk in an h-set N with u(N) = 2 and s(N) = 1 (right).

3.1 Representation of h-sets

In the present paper we will use only h-sets possessing exactly one unstable
direction. Therefore we use the following representation. An h-set N in Rn

may be defined by specifying a sequence (x, u, s1, . . . , sn−1), where x, u, si ∈ Rn,
i = 1, 2, . . . , n − 1 are such that u, s1, . . . , sn−1 are linearly independent. We
then set

|N | = {v ∈ Rn | ∃t1,t2,...,tn∈[−1,1] v = x + t1s1 + · · ·+ tn−1sn−1 + tnu}
= x + [−1, 1] · u + [−1, 1] · s1 + · · ·+ [−1, 1] · sn−1.

and take u as the nominally unstable direction and si as the nominally stable
directions. The homeomorphism cN is taken as the affine map cN (v) = M−1(v−
x), where M = [uT , sT

1 , . . . , sT
n−1] is a square matrix. In this representation

Nc = B1 ×Bn−1 = [−1, 1]n is a product of unit balls in the maximum norm.
In such a situation we will write N = h(x, u, s1, s2, . . . , sn−1).
Given an h-set N = h(c, u, s) on the plane by Nr, N l, N t and N b we denote

the right, left, top and bottom edge of |N |, respectively. More precisely,

Nr = c + u + [−1, 1] · s
N l = c− u + [−1, 1] · s
N t = c + [−1, 1] · u + s

N b = c + [−1, 1] · u− s
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4 Topologically transverse intersections

Definition 9 Assume that M1 and M2 are manifolds immersed in Rn, such
that dim(M1) = u and dim(M2) = s, s + u = n.

Assume that N is an h-set in Rn, such that u(N) = u and s(N) = s.
We will say that M1 and M2 have topologically transverse intersection in N ,

if the following conditions are satisfied:

• there exists a proper horizontal disk b1 in N that is contained in M1; and

• there exists a proper vertical disk b2 in N that is contained in M2.

Theorem 3 Assume that M1 and M2 have topologically transverse intersection
in N , then there exist a p ∈ M1 ∩M2 ∩ int N .

Proof: The assertion follows immediately from [20, Thm. 4] applied to the
chain N

Id=⇒ N .

5 Cone conditions

The goal of this section is to introduce a method, which will allow to handle
relatively easily the hyperbolic structure on h-sets.

5.1 Horizontal and vertical disks satisfying cone condi-
tions

Definition 10 Let N ⊂ Rn be an h-set and Q : Rn → R be a quadratic form

Q(x, y) = α(x)− β(y), (x, y) ∈ Ru(N) × Rs(N),

where α : Ru(N) → R, and β : Rs(N) → R are positively definite quadratic
forms.

The pair (N,Q) will be called an h-set with cones.

Quite often we will drop Q in the symbol (N, Q) and we will say that N is
an h-set with cones.

Definition 11 Let (N, Q) be an h-set with cones and let b : Bu → |N | be a
horizontal disk. We will say that b satisfies the cone condition (with respect to
Q), if any x1, x2 ∈ Bu with x1 6= x2 satisfy

Q(bc(x1)− bc(x2)) > 0.

Definition 12 Let (N,Q) be an h-set with cones and let b : Bs → |N | be a
vertical disk. We will say that b satisfies the cone condition (with respect to Q),
if any y1, y2 ∈ Bs with y1 6= y2 satisfy

Q(bc(y1)− bc(y2)) < 0.
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The following theorem says that horizontal and vertical disks satisfying cone
conditions are graphs of Lipschitz functions.

Theorem 4 Let (N,Q) be a h-set with cones and let b : Bu → |N | be a hori-
zontal disk satisfying the cone condition.

Then there exists a Lipschitz function y : Bu → Bs such that

bc(x) = (x, y(x)). (13)

Analogously, if b : Bs → |N | is a vertical disk satisfying the cone condition,
then there exists a Lipschitz function x : Bs → Bu

bc(y) = (x(y), y)). (14)

Proof: We will prove only the first part, the proof of the other part is analogous.
In the first part of this proof we will show that for any x ∈ int Bu(N) there

exists yx ∈ Bs(N), such that

bc(z) = (x, yx), for some z ∈ Nc. (15)

For this we will use the local Brouwer degree
In the second part using the cone condition we will show that yx is uniquely

defined and its dependence on x is Lipschitz. Then we extend the definition of
y(x) to x ∈ ∂Bu.

To prove (15) consider a homotopy π1 ◦ h : [0, 1] × Bu(N) → Bu(N). Let
x ∈ int Bu(N), where π1 : Ru(N) × Rs(N) → Ru(N) is a projection on the first
component. It is easy to see that

deg(π1 ◦ bc, Bu(N), x) = deg(π1 ◦ h1, Bu(N), x) = deg(Id, Bu(N), x) = 1. (16)

This proves (15).
To prove the uniqueness of yx, assume that y1, y2 ∈ Bs(N), y1 6= y2 be such

that
bc(z1) = (x, y1), bc(z2) = (x, y2). (17)

From the cone condition for b it follows that

0 < Q(bc(z1)− bc(z2)) = α(0)− β(y1 − y2) < 0 (18)

which is a contradiction. Hence we have a well defined function

y(x) = yx, for x ∈ int Bu(N). (19)

Observe that from the cone condition it follows that for any x1, x2 ∈ int Bu(N),
x1 6= x2 holds

A‖x1 − x2‖2 ≥ α(x1 − x2) > β(y(x1)− y(x2)) ≥ C‖y(x1)− y(x2)‖2, (20)

where A > 0, C > 0 are some real constants.
This proves the Lipschitz condition. It is easy to see that the function y(x)

can be extended also to the boundary of Bu(N).
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5.2 The link between covering relations and cone condi-
tions

Definition 13 Assume that (N,QN ), (M, QM ) are h-sets with cones, such that
u(N) = u(M) = u and let f : N → Rdim(M) be continuous. Assume that

N
f

=⇒ M . We say that f satisfies the cone condition (with respect to the pair
(N, M)), if any x1, x2 ∈ Nc with x1 6= x2 satisfy

QM (fc(x1)− fc(x2)) > QN (x1 − x2).

Whenever it is convenient, we will also say that the cone conditions are
satisfied for the covering relation N

f
=⇒ M , if the above condition is satisfied.

The basic theorem linking covering relation and cone conditions is:

Theorem 5 Assume that

N0
f0=⇒ N1

f1=⇒ N2
f2=⇒ · · · fk−1=⇒ Nk,

where all h-sets are h-sets with cones and fi (i = 0, . . . , k− 1) satisfies the cone
condition with respect to pair (Ni, Ni+1) . Assume that b : Bs(Nk) → |Nk| is a
vertical disk in Nk satisfying the cone condition.

Then, in N0, there exists a vertical disk b0 : Bs(N0) → |N0| satisfying the
cone condition and such that for all y ∈ Bs(N0) holds

fi−1 ◦ fi−2 ◦ · · · ◦ f0(b0(y)) ∈ Ni, for i = 1, . . . , k

fk−1 ◦ · · · ◦ f0(b0(y)) = bk(y1), for some y1 ∈ Bs(Nk)

Proof: For the proof it is enough to consider only the case of k = 1. For k > 1
the result follows by induction.

Without loss of generality we can assume that N0 = N0,c = Bu(N0)×Bs(N0),
N1 = N1,c = Bu(N1) × Bs(N1), f0 = f0,c. Consider a family of horizontal disks
in N0 dy : Bu(N0) → N0 for y ∈ Bs(N0)

dy(x) = (x, y).

From Theorem 4 in [20] it follows that for each y ∈ Bs(N0) there exists x ∈
Bu(N0), such that

f0(x, y) = b(y1), for some y1 ∈ Bs(N1). (21)

Let us fix y ∈ Bs(N0). We will show that there exists only one x satisfying
(21). For the proof assume the contrary, hence we have x1 6= x2 and x1, x2 both
satisfy (21).

Observe that QN0((x1, y)− (x2, y)) > 0, hence from the fact that f0 satisfies
the cone condition it follows that

QN1(f0(x1, y)− f0(x2, y))) > 0.

11



But the above condition is in a contradiction with the definition of a vertical
disk satisfying the cone condition. Hence (21) defines a function x(y) in a unique
way.

It is easy to see that this function is continuous. For the proof from the
compactness argument it follows that it is enough to prove that if we have a
sequence of pairs (xn, yn), where yn ∈ Bs, yn → ȳ for n →∞ and xn = x(yn),
xn → x̄, then f0(x̄, ȳ) ∈ b(Bs(N1)), but this is an obvious consequence of the
continuity of f0 and the compactness of b(Bs(N1).

It is easy to see that b0(y) = (x(y), y) is a vertical disk in N0. It remains to
show that it satisfies the cone condition.

We will prove this by a contradiction. Assume that we have y1 and y2 such
that

QN0((x(y1), y1)− (x(y2), y2)) ≥ 0,

then
QN1(f0(x(y1), y1)− f0(x(y2), y2)) > 0,

hence the points f0(x(y1), y1) and f0(x(y2), y2) both cannot belong to b1, be-
cause otherwise the cone condition is violated.

5.3 The verification of cone conditions

Assume that (N, QN ) and (M,QM ) are h-sets with cones and a map f : N →
Rdim(M) is C1.

Our intention is to give a condition, which will guarantee that N f -covers
M and it satisfies the cone conditions.

Let [Dfc(Nc)]I be the interval enclosure of Dfc on Nc. Observe that when
dim(M) 6= dim(N) this is not a square matrix.

Lemma 6 Assume that for any B ∈ [Dfc(Nc)], the quadratic form

V (x) = QM (Bx)−QN (x)

is positively definite, then for any x1, x2 ∈ Nc such that x1 6= x2 holds

QM (fc(x1)− fc(x2)) > QN (x1 − x2).

Proof: Let us fix x1, x2 in Nc. We have

fc(x2)− fc(x1) =
∫ 1

0

Dfc(x1 + t(x2 − x1))dt · (x2 − x1).

Let B =
∫ 1

0
Dfc(x1 + t(x2 − x1))dt. Obviously B ∈ [Dfc]I . Hence

fc(x2)− fc(x1) = B(x2 − x1).

We have
QM (fc(x2)− fc(x1))−QN (x2 − x1)
= QM (B(x2 − x1))−QN (x2 − x1)
= V (x2 − x1) > 0.

12



In the light of the above lemma the verification of cone conditions can be
reduced to checking that the interval matrix corresponding to the quadratic
form V for various choices of B ∈ [Dfc(Nc)]I given by

V = [Dfc(Nc)]TI QM [Dfc(Nc)]I −QN

is positively definite.

6 The invariant manifolds of hyperbolic fixed
points, covering relations and cone conditions

6.1 Maps

Assume that f : Rn−→◦ Rn be a local diffeomorphism (hence at least C1).
Assume that z0 = (x0, y0) is an hyperbolic fixed point for f . This by the

definition means that all the eigenvalues of Df(z0) do not belong to the unit
circle.

Let Z ⊂ Rn, x0 ∈ Z, Z ⊂ dom(f). We define

W s
Z(f, z0) = {z | ∀n≥0f

n(z) ∈ Z, lim
n→∞

fn(z) = z0}
Wu

Z (f, z0) = {z | ∀n≤0f
n(z) ∈ Z, lim

n→−∞
fn(z) = z0}

W s(f, z0) = {z | lim
n→∞

fn(z) = z0}
Wu(f, z0) = {z | lim

n→−∞
fn(x) = z0}

Inv+(f, Z) = {z | ∀n≥0f
n(z) ∈ Z}

Inv−(f, Z) = {z | ∀n≤0f
n(z) ∈ Z}

If f is know from the context, then we will usually drop it and use W s(z0), etc.
instead.

Theorem 7 Let f : Rn → Rn be a local diffeomorphism. Assume that z0 is a
hyperbolic fixed point of f , there exists an h-set N with cones, z0 ∈ N ,

N
f

=⇒ N,

and f satisfies cone conditions with respect to the pair (N, N).
Then W s

N (z0) is a vertical disk in N satisfying the cone condition.

Proof: Our first goal is to prove that

Inv+N = W s
N (z0). (22)

To prove (22) it is enough to show that, if fn(z) ∈ N for all n ≥ N, then
limn→∞ fn(z) = z0.

13



Observe that the function V (z) = Q(z − z0) is a Lyapunov function on N ,
i.e. it increases on non constant orbits in N . Hence fn(z) must for n → ∞
converge toward the equilibrium. It is easy to see, by the Lyapunov function
argument that there is only one fixed point in N . This finishes the proof of (22).

Now we show, that W s
N (z0) is a vertical disk in N satisfying the cone con-

dition
First we show that for all y ∈ Bs there exists x ∈ Bu, such that

z = c−1
N (x, y) ∈ W s

N (x0). (23)

By condition (22) it is equivalent to showing that

fn(z) ∈ N, for n ∈ N. (24)

Consider a family of horizontal disks in N dy : Bu(N) → N for y ∈ Bs(N)

dy(x) = (x, y).

Consider an infinite chain of covering relations

N
f

=⇒ N
f

=⇒ N
f

=⇒ · · ·N f
=⇒ · · · (25)

From [19, Corollary 3.10] applied to dy and the chain (25) it follows that for
every y ∈ Bs there exists x ∈ Bu, such that (24) holds.

The next step is to prove that such x is unique. Let us assume the contrary,
then there exists y ∈ Bs and x1, x2 ∈ Bu, x1 6= x2, such that zi = c−1

N (xi, y) for
i = 1, 2 satisfy conditions (23,24). Observe that

Q(z1 − z2) = α(x1 − x2) > 0,

hence from the cone condition and (24) it follows that

Q(fn(z1)− fn(z2) > α(x1 − x2), for n ∈ N.

Passing to the limit n →∞ we obtain

0 = Q(z0 − z0) = lim
n→∞

Q(z1(t)− z2(t)) > α(x1 − x2) > 0.

This is a contradiction. Hence we have a well defined function x(y) on Bs.
From the uniqueness the continuity of x(y) follows easily. Namely, from the

compactness argument it follows that it is enough to prove that if we have a
sequence of pairs (xn, yn), where yn ∈ Bs, yn → ȳ for n →∞ and xn = x(yn),
xn → x̄, then c−1

N (x̄, ȳ) ∈ Inv+N , but this is an obvious consequence of the
closeness of Inv+N .

The last step - the cone condition. Till now we have proved that the set
W s

N (x0) forms a vertical disk in N , given by b(x, y) = c−1
N (x(y), y).

We have to check whether

QN ((x(y1), y1)− (x(y2), y2)) < 0, for all y1, y2 ∈ Bs, y1 6= y2 (26)
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Assume that it does not hold. Then for some z1, z2 ∈ W s
N (x0), z1 6= z2 we have

Q(z1 − z2) ≥ 0.

From the cone condition it follows that

Q(fn(z1)− fn(z2) > Q(f(z1)− f(z2)) > 0, for n > 1.

Passing to the limit n →∞ we obtain

0 = Q(z0 − z0) = lim
n→∞

Q(fn(z1)− fn(z2)) > Q(f(z1)− f(z2)) > 0.

This is a contradiction, and hence proves (26).

6.2 ODEs

Consider an ordinary differential equation

z′ = f(z), z ∈ Rn, f ∈ C1(Rn,Rn). (27)

Let us denote by ϕ(t, p) the solution of (27) with the initial condition z(0) = p.
Assume that z0 is a hyperbolic fixed point for (27). This by the definition

means that all the eigenvalues of Df(z0) have nonzero real part.
Let Z ⊂ Rn, x0 ∈ Z. We define

W s
Z(ϕ, z0) = {z | ∀t≥0ϕ(t, z) ∈ Z, lim

t→∞
ϕ(t, z) = z0}

Wu
Z (ϕ, z0) = {z | ∀t≤0ϕ(t, z) ∈ Z, lim

t→−∞
ϕ(t, z) = z0}

W s(ϕ, z0) = {z | lim
t→∞

ϕ(t, z) = z0}
Wu(ϕ, z0) = {z | lim

t→−∞
ϕ(t, x) = z0}

Theorem 8 Consider (27). Assume that z0 is a hyperbolic fixed point of (27)
Let T > 0 and let ϕT = ϕ(T, ·). Assume that there exists an h-set N with

cones, z0 ∈ N ,
N

ϕT=⇒ N,

and ϕT satisfies cone conditions with respect to the pair (N,N).
Then W s(ϕ, z0) contains a vertical disk in N satisfying the cone condition.

Proof: The assertion follows immediately from Theorem 7 and the obvious
inclusion W s

N (ϕT , z0) ⊂ W s(ϕ, z0).
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7 The existence of a saddle-node bifurcation point
in the Michelson system

Our goal of this section is to prove the conditions (C1) and (C2) for the Michel-
son system (1).

Let us fix the section Θ =
{
(x, y, 0) ∈ R3 | x, y ∈ R}

. On Θ we will use the
coordinates (x, y). The vector field given by (1) is transverse to Θ except on
the parabola c2 − y − 1

2x2 = 0, and therefore as long as an orbit stay away
from this parabola, we can consider the Poincaré return map P on subsets of
Θ. The reader should be warned that we in fact consider the half-return map.
Namely, we define a map P as the first return map to Θ, regardless the direction
of the vector field, and hence, if at our starting point p ∈ Θ z′(p) > 0, then
for q = P (z) we have z′(q) < 0. Therefore the usual Poincaré return map
Π corresponds to P 2 in this notation. In particular, every periodic orbit γ
intersecting Θ corresponds to a fixed point of P 2n, where n is the number of
intersections of γ with Θ in one period with z′ > 0.

It is easy to see that P has the time-reversing symmetry

R ◦ P 2 ◦R = (P 2)−1 (28)

with respect to the involution on Θ given by

R(x, y) = (−x, y).

The fixed point set of R, Fix(R), is the line x = 0.
Now, the conditions (C1) and (C2) can be formulated precisely in terms of

the Poincaré return map P 2 as follows:

(C1) The Poincaré map Π = P 2 has a saddle-node periodic point v∞ of some
period k on Θ ∩ Fix(R) at a parameter value c = c∞.

Let Q = P 2k = Πk. Then from (C1), Q has a saddle-node fixed point v∞
at c = c∞, and hence its linearization DQ(v∞) has unity as an eigenvalue.
Because Q is reversible and orientation preserving, the other eigenvalue is also
unity. Therefore, unless DQ(v∞) itself is the identity matrix, it is a unipotent
matrix, namely it is linearly conjugate to

[
1 0
K 1

]

with K 6= 0 (in fact, it is possible to choose K = 1). Assume we make coordinate
change so that the resulting linearization matrix has the above form. Note that
we still keep the same notation (x, y) for the new coordinates. (As a matter
of fact, we shall see that, in our case, the linearization matrix takes the above
form with respect to the original coordinates, and hence there is no need to
make coordinate change. See Lemma 10.)
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(C2) Under the reversibility (28), the saddle-node bifurcation takes place gener-
ically, namely, the map Q = (Q1, Q2) (under the new coordinates as above)
satisfies

∂Q1

∂c
(c∞, v∞) 6= 0,

∂2Q1

∂y2
(c∞, v∞) 6= 0. (29)

7.1 Existence of the bifurcation point

In order to prove (C1) and (C2) we need to show that for a parameter value
c = c∞ a symmetric periodic orbit is born in the saddle-node bifurcation.

The standard way to achieve this is to look at P k(Fix(R)) ∩ Fix(R) for
various values of the parameter c, because if v ∈ P k(Fix(R)) ∩ Fix(R), then
P 2k(v) = v.

Figure 3 presents the numerical evidence of the existence of the saddle-
node bifurcation. For c > c∞ P 2(Fix(R)) is to the left of Fix(R), at c =
c∞ apparently we have a quadratic-like tangency of P 2(Fix(R)) and Fix(R) -
this is the bifurcation point - and for c < c∞ we have two intersection points
corresponding to two symmetric periodic orbits.

Let P = (P1, P2) : (0,∞)×Θ → Θ be the Poincaré map for the system with
a parameter value c.

With some abuse of notation we will also write P 2 = (P 2
1 , P 2

2 ), hence P 2
i

will be not a square of Pi, but the i-th component of P 2.
To find a bifurcation point satisfying conditions (C1), it is enough to solve

the following system of equations




P 2
1 (c, (0, y)) = 0

∂P 2
1

∂y (c, (0, y)) = 0
(30)

-8. × 10-6 -4. × 10-6 0 2. × 10-6

-3.0298

-3.0297

-3.0296

-3.0295

-3.0294

x

yc>c∞ c=c∞ c<c∞

Figure 3: The image of a part of the y-axis under P 2(c, ·) in the neighborhood
of bifurcation point for certain parameter values.
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As suggested by Figure 3, we expect system (30) to have a unique solution,
hence it should be possible to prove it using the interval Newton method [1, 15]
applied to the map

(c, y) 7→ F (c, y) =
(

P 2
1 (c, (0, y)),

∂P 2
1

∂y
(c, (0, y))

)
. (31)

Put

C = [1.2662323370670545, 1.2662323370713253]
Y = [1.3591065061611036, 1.3591065061634906]

(32)

Lemma 9 The map F defined in (31) is smooth on C × Y , and has a unique
zero (c∞, y∞)in C × Y . Moreover, the inequalities

∂2P 2
1

∂y2
(c∞, (0, y∞)) < 0, (33)

∂P 2
1

∂c
(c∞, (0, y∞)) < 0 (34)

are satisfied.

Proof: Let us denote by (c0, y0) the center of the rectangle C × Y , let X =
C × ({0} × Y ) and let x0 = (c0, (0, y0)). The interval Newton operator for map
F is given by ([1, 15]):

N(C × Y ) = (c0, y0)T − [DF (C × Y )]−1 · F (c0, y0)

=
[
c0

y0

]
−

[
∂P 2

1
∂c (X) ∂P 2

1
∂y (X)

∂2P 2
1

∂y∂c (X) ∂2P 2
1

∂y2 (X)

]−1

·
[

P 2
1 (x0)

∂P 2
1

∂y (x0)

]
. (35)

We need check whether N(C × Y ) ⊂ int C × Y .
In order to compute the partial derivatives that appear in (35), we use the

C2-Lohner algorithm [22] applied to the system consisting of the equations (1)
plus the equation ċ = 0. Observe that this computation gives us bounds for
∂P 2

1
∂y2 (c, (0, y)) and ∂P 2

1
∂y (c, (0, y)) appearing in the conditions (33) and (34).

Let us define the Poincaré section for this system by Θ̃ := (0,∞) × Θ and
the Poincaré map Π̃ : Θ̃ → Θ̃ by

Π̃(c, (x, y)) = (c, P 2(c, (x, y)))

We insert the whole set X as an initial condition in our routine computing the
Poincaré map Π̃ and its partial derivatives. With a computer assistance we
showed that Π̃ is well-defined and smooth on X. Moreover,

[DF (Y × C)] =




[
∂P 2

1
∂c (X)

] [
∂P 2

1
∂y (X)

]
[

∂2P 2
1

∂y∂c (X)
] [

∂2P 2
1

∂y2 (X)
]

 ,
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where
[

∂P 2
1

∂y (X)
]
⊂ [−1.3000889254044523, 1.2564083107236002] · 10−10,[

∂P 2
1

∂c (X)
]
⊂ [−2.5142004837175844,−2.514200482955935],[

∂2P 2
1

∂y∂c (X)
]
⊂ [5.780806228938423, 5.7808062332808534],[

∂2P 2
1

∂y2 (X)
]
⊂ [−3.4588312295127772,−3.4588312278117295]

and

[N(C × Y )] ⊂
[
[1.2662323370671162, 1.2662323370712558]
[1.3591065061621639, 1.3591065061624312]

]
⊂ int (C × Y ).

This proves that F has a unique zero (c∞, y∞) in C × Y . Finally, we observe
that the conditions (33) and (34) hold:

∂2P 2
1

∂y2
(c∞, (0, y∞)) ∈

[
∂2P 2

1

∂y2
(X)

]
< 0,

∂P 2
1

∂c
(c∞, (0, y∞)) ∈

[
∂P 2

1

∂c
(X)

]
< 0.

7.2 The form of derivatives of the Poincaré map at the
bifurcation point

From the previous subsection, we see that v∞ = (0, y∞) is a saddle-node bifur-
cation point of Q(x, y) = P 4(c, (x, y)) at c = c∞. Let

DQ(0, y∞) =
[
a b
c d

]
.

The reversibility implies (R ◦DQ)2 = Id, and hence

Id = (R ◦DQ)2 =
[

a2 − bc b(a− d)
c(d− a) d2 − bc

]
.

This shows that DQ(0, y∞) has one of the following forms:
[

a b
a2−1

b a

]
, a: arbitrary, b 6= 0 (36)

[
a a2−1

c
c a

]
, a: arbitrary, c 6= 0 (37)

[±1 0
0 ±1

]
. (38)

19



Lemma 10 Consider the saddle-node bifurcation point (c∞, v∞), where v∞ =
(0, y∞). Then we have

DQ(v∞) = DP 4(c∞, v∞) =
[

1 0
K 1

]
(39)

with some K > 0.

Proof: As said before, DQ(v∞) has one of the forms (36)-(38) as above, and
both of its eigenvalues have to be equal to 1. We will show that, at the bi-
furcation point, ∂P 4

1
∂y (c∞, v∞) = 0. From (30), we have ∂P 2

1
∂y (c∞, v∞) = 0 and

therefore

∂P 4
1

∂y
(c∞, v∞) =

∂P 2
1

∂x
(c∞, w)

∂P 2
1

∂y
(c∞, v∞) +

∂P 2
1

∂y
(c∞, w)

∂P 2
2

∂y
(c∞, v∞)

=
∂P 2

1

∂y
(c∞, w)

∂P 2
2

∂y
(c∞, v∞),

where w = P 2(c∞, v∞). On the other hand, because of the reversibility, we have

R ◦ P 2(c∞, ·) ◦R ◦ P 2(c∞, ·) = Id,

wherever the left side is well defined. Hence

−P 2
1

(
c∞,

(−P 2
1 (c∞, (x, y)), P 2

2 (c∞, (x, y))
))

= x

holds identically. After taking the partial derivative of the above with respect
to y and evaluating it at (x, y) = (0, v∞), we obtain

−∂P 2
1

∂x
(c∞, w)

∂P 2
1

∂y
(c∞, v∞) +

∂P 2
1

∂y
(c∞, w)

∂P 2
2

∂y
(c∞, v∞) = 0.

From this and (30), we get

∂P 2
1

∂y
(c∞, w)

∂P 2
2

∂y
(c∞, v∞) = 0,

which shows that

∂P 4
1

∂y
(c∞, v∞) =

∂P 2
1

∂y
(c∞, w)

∂P 2
2

∂y
(c∞, v∞) = 0,

and hence, DQ(v∞) = DP 4(c∞, (0, y∞)) takes either of the form (37) with
a = 1, or (38).

Now, we can verify the following with computer assistance:

DP 4(c∞, (0, y∞)) ∈



[
∂P 4

1
∂x (X)

] [
∂P 4

1
∂y (X)

]
[

∂P 4
2

∂x (X)
] [

∂P 4
2

∂y (X)
]

 ,
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where X = C × ({0} × Y ) (see (32) for C and Y ) and
[

∂P 4
1

∂x (X)
]
⊂ [0.99999969282877466, 1.000000304317707][

∂P 4
1

∂y (X)
]
⊂ [−6.595174451007324, 6.5661458936716599] · 10−8

[
∂P 4

2
∂x (X)

]
⊂ [9.9806800319597109, 9.9806800978892678][

∂P 4
2

∂y (X)
]
⊂ [0.99999998913436772, 1.0000000106169058]

(40)

This clearly shows that DP 4(c∞, v∞) has the form

DP 4(c∞, (0, y∞)) =
[

1 0
K 1

]
(41)

with K 6= 0.

7.3 Genericity of the saddle-node bifurcation

We shall show that the conditions (33) and (34) are sufficient for the genericity
of the saddle-node bifurcation.

Lemma 11 Under the above circumstances, the conditions (33) and (34) imply
the genericity condition (C2).

Proof: From Lemma 9, we know that the map Q = P 4 has a saddle-node fixed
point v∞ = (0, y∞) at c = c∞. Lemma 10 then shows that DP 4(c∞, v∞) itself
takes of the form [

1 0
K 1

]

for some K 6= 0, and hence the condition (29) in (C2) in this case read

∂P 4
1

∂c
(c∞, v∞) 6= 0,

∂2P 4
1

∂y2
(c∞, v∞) 6= 0, (42)

in terms of the original coordinates (x, y) on Θ.
A simple calculation shows that

∂

∂c
P 4(c, (x, y)) =

∂P 2

∂c
(c, P 2(c, (x, y)))

+DP 2(c, P 2(c, (x, y))) · ∂P 2

∂c
(c, (x, y)),

and hence, recalling w = P 2(c∞, v∞),

∂

∂c
P 4(c∞, v∞) =

∂P 2

∂c
(c∞, w) + DP 2(c∞, w) · ∂P 2

∂c
(c∞, v∞).
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From the reversibility R ◦ P 2 ◦R ◦ P 2 = Id, a similar calculation yields

∂P 2

∂c
(c∞, w) + DP 2(c∞, w) ·R · ∂P 2

∂c
(c∞, v∞) = 0,

from which we have

∂

∂c
P 4(c∞, v∞) = DP 2(c∞, w) · (I −R) · ∂P 2

∂c
(c∞, v∞),

and therefore we obtain

∂P 4
1

∂c
(c∞, v∞) = 2

∂P 2
1

∂x
(c∞, w) · ∂P 2

1

∂c
(c∞, v∞). (43)

In a similar manner, using ∂P 2

∂y (c∞, v∞) = 0 which is used in the proof of Lemma
10, we also obtain

∂2P 4
1

∂y2
(c∞, v∞) = 2

∂P 2
1

∂x
(c∞, w) · ∂2P 2

1

∂y2
(c∞, v∞). (44)

We claim that ∂P 2
1

∂x (c∞, w) 6= 0. Once this is proven, clearly the condition
(42) follows from the conditions (33), (34), and from (43), (44). From Lemma
10, we have

DP 2(c∞, w) ·DP 2(c∞, v∞) =
[

1 0
K 1

]
.

From the reversibility R ◦ P 2 ◦R ◦ P 2 = Id, we also have

R ·DP 2(c∞, w) ·R ·DP 2(c∞, v∞) = I.

The claim easily follows from these and the fact that K 6= 0. This completes
the proof.

All the results obtained in this section can be summarized as:

Theorem 12 There exist a parameter value c = c∞ and a saddle-node periodic
orbit γ∗ for c = c∞, such that conditions (C1) and (C2) are satisfied.

8 The existence of a cusp-transverse heteroclinic
chain

In this section we present a computer assisted proof of the existence of cusp-
transverse heteroclinic chain involving the equilibrium points x+ and x− and
the periodic orbit which is born at the bifurcation parameter value c∞. Let us
denote by v∞ = (0, y∞) the fixed point for the Poincaré map P 4 which is born
for the parameter value c∞.

In this section the symbol Wu(v∞) stands for the unstable set of v∞ in the
section Θ for the map P 4(v∞, ·), and W s(x−) does the stable manifold of the
equilibrium point x− of the Michelson system (1).

The goal of this section is to prove the following theorem.
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Theorem 13 The sets Wu(v∞) and W s(x−)∩Θ have topologically transverse
intersection on Θ.

The proof of the above theorem consists of two main steps and several nu-
merical lemmas which will be presented in the next subsections.

8.1 An estimation of W u(v∞) near the bifurcation point

In the first step we will construct an estimation for the unstable set Wu(v∞)
near the bifurcation point. From [5] we know that Wu(v∞) has a topology
of the half-line, with the point v∞ at its origin and that Wu(v∞) ∪ W s(v∞)
is a curve with a cusp-singularity at v∞. The proof of this fact is based on
the embedding of a local diffeomorphism into the flow of a vector field. See
[5, §2] and references therein for the details, and [6] for the general theory. In
particular, the local reversible diffeomorphism ϕ around the saddle-node fixed
point is C∞-conjugate to the time-one map of the flow generated by a local
vector field around a singularity. Due to the reversibility, it turns out that the
corresponding vector field singularity has the double zero nilpotent linear part

[
0 1
0 0

]
,

and its stable and unstable sets form a cusp, just as in the case of the Bogdanov-
Takens nilpotent singularity of a planar vector field [3]. Therefore, the proof of
the cusp structure of Wu(v∞) and W s(v∞) is rather indirect, and it may not
be so easy to give any precise estimates for Wu(v∞). An approximate shape of
Wu(v∞) is shown in Figure 4.

-0.0012 -0.0009 -0.0006 -0.0003 0

1.35

1.355

1.36

1.365
x

y

T
H1

H2

Wu(v∞ )

Figure 4: The sets T , H1, H2. The numerical evidence indicating that Wu(v∞)
forms a horizontal disk in H2.

We assume that we have a parameterization s : [0,∞) → Wu(v∞), such that
s is an immersion into R2 and s(0) = v∞.
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Definition 14 For v1, v2 ∈ Wu(v∞), by [v1, v2] we will denote the segment of
Wu(v∞) connecting v1 with v2.

Let T denotes a trapezoid (see Figures 4 and 7) with the vertices T1, T2, T3,
T4 given by

T1 = (0, y0)− u0 + 0.2s0

T2 = (0, y0)− u0 − s0

T3 = (0, y0) + u0 + s0

T4 = (0, y0)− 0.2u + s0

where the vectors u0, s0 are

s0 = (−9 · 10−5, 10−3), u0 = R(s0)

and y0 is the center point of the interval Y , defined in (32).

Remark 14 It should be noted that we do not know the exact location of the
saddle-node point v∞. From Lemma 9 we know that v∞ ∈ {0} × Y and from
the definition of T it follows that v∞ ∈ {0} × Y ⊂ T .

Next we define two h-sets Hi = h(qi, ui, si), i = 1, 2 where

u1 = (10−4, 1.5 · 10−3)

s1 =
3
5
· (−9 · 10−5, 10−3) =

3
5
s0

u2 = (4.5 · 10−4, 4 · 10−3)
s2 = s1

q1 = T2 − u1 + s1

q2 = T2 − 2u1 − u2 + s2

The h-sets H1 and H2 are chosen to be a neighborhood for a local unstable
set Wu(v∞) outside the trapezoid T . The location of the parallelograms |H1|
and |H2| is presented in Figure 4. Notice, that the sets |H1| and |H2| have been
chosen so that T12 = Hr

1 and H l
1 = Hr

2 .
Comment: In fact H1 will not be used as an h-set. We will explicitly use its

edges, only.
The following lemma is the first step in the proof of Theorem 13.

Lemma 15 There exist two points

v1, v2 ∈ Wu(v∞)

such that [v1, v2] can be parameterized as a proper horizontal disk in H2.

The proof of Lemma 15 is given in Section 9.
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Figure 5: The location of h-sets H3, H4 in Θ. See also Figure 6.

8.2 Topologically transverse intersection of W u(v∞) and
W s(x−)

Proof of Theorem 13:
By φ : (0,∞) × R × R3−→◦ R3, we will denote the local flow induced by the

Michelson system (1) with the parameter value c, which is the first parameter
in φ.

The numerical simulation shows that the stable manifold of the equilibrium
point W s(x−) intersects P 4(c∞, |H2|).

The idea of the proof of Theorem 13 is as follows. We choose an approx-
imate point, say q3 on a numerically observed intersection of W s(x−) with
P 4(c∞, [v1, v2]). The point q3 will be used as the center of an h-set H3. Then we
construct a set H4 centered at an approximate point of P 4(c∞, q3) and similarly
H5 will be centered at P 2(c∞, q4). Finally, we construct a three-dimensional h-
set M centered at the equilibrium point x− and show (a computer assisted
proof) that the following sequence of covering relation holds

H2
P 4(c∞,·)

=⇒ H3
P 4(c∞,·)

=⇒ H4
P 2(c∞,·)

=⇒ H5
ΦH(c∞,·)

=⇒ M
ΦM (c∞,·)

=⇒ M, (45)

where ΦH and ΦM will be suitable time shifts along the flow induced by the
Michelson system (1). Moreover, for all these relations, except the first one,
cone conditions are satisfied.

From Lemma 15 we get that Wu(P 4, v∞) contains a horizontal disc in H2.

Since H2
P 4(c∞,·)

=⇒ H3, [18, Lemma 4.7] implies that Wu(P 4, v∞) contains a
proper horizontal disk in H3. From Theorem 8 we know that W s(φ(c∞), x−)
contains a vertical disk in M satisfying the cone conditions. Therefore from
Theorem 5 it follows that Wu(v∞) and W s(x−) have topologically transverse
intersection in H3.

Now we will precisely define the h-sets with cones listed in (45). For all these
h-sets the quadratic form defining cones is Q(x, y) = x2 − y2 for x ∈ Ru and
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y ∈ Rs.
We define Hi = h(qi, si, ui), i = 3, 4, 5 where

q3 = (−0.0038, 1.3337)
q4 = (−0.0335, 1.2607),
q5 = (−0.03798,−3.10109),
s3 = s4 = s5 = (−10−4, 2 · 10−4),
u3 = (10−4, 4 · 10−4),
u4 = u5 = (3 · 10−4, 5.5 · 10−4)

Let u(c), s1(c) and s2(c) be the eigenvectors of the linearized flow in x−(c) =
(−c

√
2, 0, 0). We can find explicit formulae for these vectors, namely

u(c) =

(
3
√

2Q1(c)
cQ2(c)

+
Q2(c)

6
√

2cQ1(c)
,
6Q1(c)
Q2(c)

, 1

)

s1(c) = <
( −1√

2cQ3(c)
− Q3(c)√

2c
,
−1

Q3(c)
, 1

)

s2(c) = =
( −1√

2cQ3(c)
− Q3(c)√

2c
,
−1

Q3(c)
, 1

)

where <(z) is the real part and =(z) is the imaginary part of the complex vector
z ∈ C3 and

Q1(c) =
(
27
√

2c +
√

108 + 1458c2
) 1

3

Q2(c) = −6 · 2 1
3 + 2

2
3 Q1(c)2

Q3(c) =
(
1 + i

√
3
)(

2
2
3 Q1(c)

)−1

+
(
1− i

√
3
)

Q1(c)
(
6 · 2 2

3

)−1

We define a three-dimensional h-set built on these vectors with the parameter
value close to c∞, namely

M = h(x−(c0), 0.1u(c0), 0.2s1(c0), 0.2s2(c0))

where c0 is a center point of C – see (32).
We define ΦH(c, x) = φ(c, 7, x) and ΦM (c, x) = φ(c, 1.4, x). Using the al-

gorithms presented in [20, 19] we proved (45) with a computer assistance – see
also Figure 6.

9 Proof of Lemma 15

The main step in the proof of Lemma 15 is to show that for c = c∞ there exists
a Lyapunov function in the neighborhood of the bifurcation v∞ for P 4. In fact,
we show that the existence of a Lyapunov function is a general phenomenon for
this bifurcation type. By a Lyapunov function we understand a function, which
increases along a nonconstant trajectory.
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Figure 6: Covering relations H2
P 4(c∞,·)

=⇒ H3
P 4(c∞,·)

=⇒ H4.

9.1 The existence of a Lyapunov function in the neighbor-
hood of the bifurcation point v∞ for c = c∞

It should be mentioned here that the existence of Lyapunov function was already
established by Fontich [7], where it was obtained under certain assumptions
about normal forms of the map at the degenerate fixed point (which in our
context is a bifurcation point v∞). Contrary to Fontich approach in our work
we just use coordinates which bring the linearization at the bifurcation point to
a Jordan form and it turns out that one of the coordinates is a desired Lyapunov
function for some iterate of our map.

Lemma 16 Let Q : R2−→◦ R2 be a C2-map and let (0, 0) be a fixed point of Q,
such that

DQ(0, 0) =
[

1 0
K 1

]
. (46)

If ∂2Q1
∂y2 (0, 0) > 0 and K 6= 0, then there exists a neighborhood U of (0, 0) and

an integer n > 0 such that for v = (v1, v2) ∈ U , v 6= 0 holds Qn
1 (v) > v1.

Proof: Let B(r, r) = D2Q(0, 0)(r, r) be the vector valued bilinear form
induced by the second order derivative of Q at (0, 0) and A = DQ(0, 0). We
have

Q(r) = Ar +
1
2
B(r, r) + o(|r|2)

An easy computation shows that

Qn(r) = Anr +
1
2
An−1B(r, r) +

1
2
An−2B(Ar,Ar) + · · ·+

+
1
2
AB(An−2r,An−2r) +

1
2
B(An−1r,An−1r) + o(|r|2)

(47)

From (46) we have

An =
[

1 0
nK 1

]
. (48)
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Consider now, Q1, the first coordinate of Q. From above formulas we obtain

Qn
1 (r) = r1 +

1
2
rT S(n)r + o(|r|2), (49)

where r = (r1, r2)T and S(n) a symmetric 2× 2 matrix given by

S(n) = B1 + AT B1A + · · ·+ (
An−1

)T
B1A

n−1. (50)

From now on we will drop the index in B1. This means that Bij = ∂2Q1
∂xi∂xj

, for
i, j = 1, 2 and x1 = x, x2 = y.

We would like to show now that there exists n, such that S(n) is positively
definite, i.e. S(n)(r, r) > 0 for r 6= 0. Let

B =
[
a b
b c

]
.

We have

(Ai)T BAi =
[
ci2K2 + 2biK + a iKc + b

iKc + b c

]
.

From the above equation we obtain

S(n) =

[
K2cn3

3 + c1n
2 + c2n + c3

Kcn2

2 + c4n + c5
Kcn2

2 + c4n + c5 nc

]

for suitable constants c1, . . . , c5. The determinant of S(n) has the following
form

detS(n) =
K2c2n4

12
+ d3n

3 + d2n
2 + d1n + d0

for some constants d0, . . . , d3. This shows that for a sufficiently large n detS(n)
is positive. Recall that c = ∂2Q1

∂y2 (0, 0) > 0. Hence, S(n)11 > 0 for sufficiently
large n. This proves that S(n) is positively definite for n large enough.

Till now we have shown that D2Qn
1 (0, 0) is positively definite. Let U be a

convex neighborhood containing (0, 0) (in fact star-shaped with respect to (0, 0)
is enough) such that any quadratic symmetric matrix G satisfying

G ∈ [
D2Qn

1 (U)
]
I

(51)

is positively definite.
From the Taylor formula and (48) it follows that for (x, y) ∈ U \ {(0, 0)}

there exits a matrix G satisfying (51) such that

Qn
1 (x, y)− x =

1
2
G((x, y), (x, y)) > 0
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Remark 17 If in the above lemma the sign in the assumption ∂2Q1
∂y2 (0, 0) > 0

is reversed, i.e. we assume that ∂2Q1
∂y2 (0, 0) < 0, then we obtain Qn

1 (v) < v1 for
v ∈ U , v 6= 0.

In the context of cocoon bifurcation for (1) Lemma 16 and Remark 17 suggest
that the first coordinate should be a Lyapunov function for P 4n, for some n > 0,
in a small neighborhood U of v∞. It turns that this can be proven for n = 1
and the neighborhood T of the bifurcation point. On the other hand the sets
H1 and H2 are separated from the bifurcation point v∞, hence one can try to
prove that the first coordinate is a Lyapunov function on H1 and H2 by a direct
verification of either P 4

1 (x, y) < x1 or P 4
1 (x, y) > x1 using interval arithmetics,

because if valid one of these inequalities is satisfied with some nonzero margin.
The following lemma summarizes these observations and it is the main step in
the proof of Lemma 15.

Lemma 18 For v = (v1, v2) ∈ T ∪H1 ∪H2, v 6= v∞, it holds that

P 4
1 (c∞, v) < v1.

Proof: First we focus on T . Here, since v∞ ∈ T is a fixed point, we cannot
hope that P 4(v1, v2) − v1 < −δ for some δ > 0. Therefore we use the second
derivative as in the final part of the proof of Lemma 16. For this end we cover T
with two star-shaped sets with respect to v∞ and on each of them we verify that
interval enclosure of the second derivative of the proposed Lyapunov function
is negatively definite.

Let us denote by T t and T b the subsets of the trapezoid T given by

T t = {(x, y) ∈ T | y ≥ min Y }
T b = {(x, y) ∈ T | y ≤ max Y } ,

where Y is defined in (32) as the rigorous bound for the saddle-node point
(0, v∞) with v∞ ∈ Y .

Obviously T ⊂ T t ∪ T b. With a computer assistance we proved that for all
c ∈ C we have the following estimations

[
D2P 4

1 (c, ·)(T t)
] ⊂

[
a1 b1

c1 d1

]
,

[
D2P 4

1 (c, ·)(T b)
] ⊂

[
a2 b2

c2 d2

]

where
a1 = [−780.16131381343655,−709.93527387806591]
b1 = [−89.947975019107204,−66.727549530917358]
c1 = [−89.947849107194429,−66.727364301250489]
d1 = [−19.331688841150434,−11.453819205730355]
a2 = [−778.05323373414433,−714.78668326675711]
b2 = [−101.63969051099849,−79.522565868200005]
c2 = [−101.63977655838916,−79.522402280329359]
d2 = [−22.635893897013542,−15.224239418346446]

(52)
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An easy computation show that each symmetric matrix G ∈ [
D2P1(c, ·)(T t)

]
or

G ∈ [
D2P1(c, ·)(T b)

]
is negatively definite. Moreover, from Lemma 10 we have

K = ∂P 4
2

∂x (c∞, v∞) 6= 0. From Lemma 16 we obtain that for all v = (v1, v2) ∈ T
and v 6= v∞

P 4
1 (c∞, v) < v1

To finish the proof we check in rigorous computation that P 4
1 (c, v) < v1 for all

c ∈ C and v ∈ H1 ∪H2.
Since H1 and H2 are separated from the fixed point we were able to verify

condition P1(v1, v2) − v1 < −δ in direct C0 computations. We covered the set
H1 by 67290 nonequal pieces (smaller when closer to fixed point) and for each
element in such a grid we verified inequality

P 4
1 ([v1], [v2])− [v1] < −1.3233105116707521 · 10−7,

where ([v1], [v2]) is an element of a grid.
The set H2 has been covered by 5000 equal parts and for each element in

such a grid we verified inequality

P 4
1 ([v1], [v2])− [v1] < −1.1552589508338426 · 10−5.

Remark 19 Notice that the proof of the existence of the estimations (52) is
the most time-consuming part of the numerical proof. In fact, we divided both
the sets T t and T b into 1913 equal pieces as well as their images P 2(C, T t) and
P 2(C, T b) into 990 and 832 parts, respectively. Next we compute the hessian
D2P 4

1 (C, T ) by composition of two Poincaré maps P 2 and its partial derivatives
on a suitable sets.

9.2 The proof of Lemma 15

Recall that by s : [0,∞) → Wu(v∞) we denoted a parameterization of the
unstable set of v∞ for P 4(c∞, ·) on the plane Θ.

Definition 15 Let Z ⊂ R2 be closed and Y ⊂ ∂Z. Assume that s(t0) ∈
Wu(v∞) ∩ Z for some t0 ≥ 0.

We say that Wu(v∞) leaves Z through Y , if the following conditions are
satisfied:

te = sup{t : t ≥ t0, s([t0, t]) ⊂ Z} < ∞
s(te) ∈ Y.

The point s(te) will be called the exit point. If Y = ∂Z, then we just say that
Wu(v∞) leaves Z.
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Let us introduce the following notation. By Tij(v) we will denote the edge of a
trapezoid T (v) connecting Ti(v) with Tj(v).

Proof of Lemma 15: Let us denote by N the set

N = T ∪H1 ∪H2

The proof of the lemma consists of the following steps:

1. we will show that the maximal invariant set for P 4(c∞, ·) in N is a single
point v∞. Hence, Wu(v∞) must leave the set N .

2. we will show that Wu(v∞) must leave the set N through the left edge H l
2.

3. we conclude that this implies that some part of Wu(v∞) is a horizontal
disk in H2.

From Lemma 18 it follows that

P 4
1 (c∞, z) < z1 for (z1, z2) ∈ N \ {v∞}.

This shows by a standard Lyapunov function argument that Wu(v∞) must leave
the set N , hence there exists a point v2 ∈ ∂N ∩Wu(v∞) such that

[v∞, v2] ⊂ N. (53)

Next we will show that v2 ∈ H l
2. Using the algorithms presented in [20, 19]

we prove with a computer assistance that for all c ∈ C the following conditions
hold (see Figures 7 and 8):

P−4(c,Hb
1 ∪Hb

2 ∪Ht
2) ∩N = ∅,

P−8(c,Ht
1 ∪ T14 ∪ T34) ∩N = ∅. (54)

Since for z ∈ N \{v∞}, P 4
1 (c∞, z) < 0 we get v2 /∈ T23. From (53) we obtain

P−4n([v∞, v2]) ⊂ [v∞, v2] ⊂ N

for n > 0. From this and (54), it follows that

v2 /∈ Ht
1 ∪Hb

1 ∪Ht
2 ∪Hb

2 ∪ T14 ∪ T34,

and therefore v2 ∈ H l
2.

It remains to show that there exists v1 ∈ Wu(v∞) such that [v1, v2] can be
parameterized as a proper horizontal disk in H2. Since v∞ and v2 lie in two
disjoint components of N \ Hr

2 and since [v∞, v2] ⊂ N , it follows that there
exists at least one point

ṽ ∈ Wu(v∞) ∩Hr
2 , (55)

hence
D =

⋂
{[w, v2] : w ∈ Wu(v∞) ∩Hr

2}
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is a nonempty set. Moreover, there exists v1 ∈ Wu(v∞) ∩ Hr
2 such that D =

[v1, v2]. We will show that [v1, v2] ⊂ H2. Assume it is not the case, i.e. there
exists v3 ∈ [v1, v2] such that v3 ∈ N \H2. Hence, v3 and v2 lie in two disjoint
components of N \Hr

2 . Then, there exists v4 ∈ Wu(v∞)∩Hr
2 such that [v4, v2]  

[v3, v2]  [v1, v2]. This contradicts the choice of v1.
We have shown that [v1, v2] ⊂ H2, v1 ∈ Hr

2 and v2 ∈ H l
2. Since [v1, v2] is

a connected part of the one-dimensional manifold, it follows that there exists
a continuous function f : [−1, 1] → H2 such that f([−1, 1]) = [v1, v2]. This
completes the proof. Observe also that [v1, v2] has an empty intersection with
Ht

2 and Hb
2 , hence it is a proper disk.

9.3 Technical data.

In order to compute Poincaré maps P and Π̃ with their partial derivatives and
time translations ΦM , ΦH , we used the interval arithmetic [9, 14], set algebra
and the Lohner algorithms [11, 22] developed at the Jagiellonian University by
the CAPD group [2]. The C++ source files of the program with an instruction
how it should be compiled and run are available at [17]. All computations
were performed with the Pentium IV, 3GHz processor and 512MB RAM under
Mandriva Linux 2006 with gcc-4.0.1 and MS Windows XP Professional with
gcc-3.4.4. The computations took approximately 65 minutes.
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[5] F. Dumortier, S. Ibáñez, and H. Kokubu, Cocoon bifurcation in three
dimensional reversible vector fields, Nonlinearity 19 (2006), 305–328.

[6] F. Dumortier, P. Rodrigues, and R. Roussarie, Germs of Diffeomor-
phisms in the Plane, Lect. Notes Math., Vol. 902, Springer-Verlag, 1981.

33



[7] E. Fontich, Stable curves asymptotic to a degenerate fixed point, Non-
linear Analysis, 35(1999) 711-733
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