
On the Petras algorithm for verified integration of piecewise

analytic functions

Ma lgorzata Moczurad, Piotr Zgliczyński
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Abstract

We consider the algorithm for verified integration of piecewise analytic functions presented in

Petras’ paper [6]. The analysis of the algorithm contained in that paper is limited to a narrow

class of functions and gives upper bounds only. We present an estimate of the cost (measured by

a number of evaluations of the integrand) of the algorithm, both upper and lower bounds, for a

wider class of functions. We show examples of functions with cost Θ(| ln ε|/εp−1), for any p > 1,

where ε is the desired accuracy of the computed integral.

Keywords: verified integration, piecewise analytic function

1 Introduction

In [6] K. Petras described an algorithm for verified integration of piecewise analytic functions. By

verified integration we understand a computer program which returns the result with a guaranteed

error bound. As a motivation for developing such an algorithm, in [7] Petras gave several examples

showing how QUADPACK [8], the standard package for numerical integration, can be fooled even

for the analytic functions. The Petras algorithm uses interval arithmetic and formulas for rigorous

error bounds, which require estimates for the function in the complex neighbourhood of the integration

interval.

In our paper we investigate the cost of the Petras algorithm. We want to emphasize that the cost

is measured by the number of evaluations of an integrand for a particular input (a function f and a

parameter ε describing the required accuracy). Therefore, we omit the cost of subroutines in the algo-

rithm, which the full cost analysis should take into account. We should mention the proper treatment

of these issues will require a definition of computable analytic functions. Such definitions exist in the

literature (see for example [2, 3] and the references given there), however in the present work we choose

not to focus on those issues and concentrate on the geometric aspects of the problem.

Our task is, given a piecewise analytic function f on [a, b] and ε > 0, to find a number I, such that∣∣∣∣∣
∫ b

a

f(x)dx− I

∣∣∣∣∣ 6 ε.

If f is analytic, then there are algorithms for integration (based for example on Gauss-Legendre quadra-

ture) with the apparent cost O(| ln ε|). Many authors neglect the problem that constants in those

estimates in fact depend on f , mainly on the shape of its domain of analyticity; see [4] for a discussion

of optimal quadratures depending on the domain of analyticity.
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However, a disturbance of analyticity at some points makes the convergence deteriorate. For the sake

of discussion, let us call them breakpoints or singularities. Knowing the location of singularities is

not enough; we cannot simply partition the interval at those points and apply a standard algorithm

for analytic functions to smaller intervals. The problem is that algorithms require the function to be

analytic on the interval of integration and its neighbourhood (disk or ellipse containing the interval in

the complex plane).

Our case is (seemingly) even more difficult: we know neither the number nor the location of the

breakpoints; we might not even know whether they exist.

We consider the Petras algorithm for verified integration of piecewise analytic functions. The analysis of

the algorithm contained in [6] is not sufficient, because the class of functions considered is unnaturally

restricted and only an upper bound for the cost for this class is given.

The main result of the present paper is a more sophisticated estimate of the cost of the algorithm for a

wider class of functions. Our results still do not cover the whole range of piecewise analytic functions,

but only those that satisfy Petras-type conditions.

The main idea explored in our paper is that the cost depends mainly on the region of analyticity of the

integrand. The difference between a “simple” and a “difficult” function is not that the former is analytic,

while the latter is not. Even an analytic function might be hard to integrate, if it has singularities very

close to the real axis. On the other hand, a piecewise analytic function might be relatively simple, if

the region of analyticity around breakpoints is wide (p 6 1 in the Definition 2). Notice that the cost

analysis focuses on the phenomena occurring in the small neighbourhood of singular points, since the

most significant increase in the number of evaluations of the integrand takes place there. The number

of evaluations generated in the last step of the algorithm (i.e., near breakpoints) is comparable to the

number of evaluations generated in all previous steps.

We show that the cost indeed depends on the order p of ppc and npc conditions that the integrated

function satisfies, i.e., if p > 1, then the cost is Θ
(
| ln ε|/εp−1

)
, while for p 6 1 the cost is Θ

(
ln2 ε

)
, as

shown by Petras. Moreover, we show examples of functions (see Section 8) for which the cost scales as

| ln ε|/εp−1 for any p > 1.

The paper is organized in the following way. Section 2 contains basic definitions and notation. In

Section 3 we present the Petras algorithm. In Section 4 we introduce main tools for its analysis; in

particular the Petras-type conditions ppc and npc are given. In Sections 5 and 6 we show lower and

upper bounds for the cost of the algorithm. Section 7 contains the main theorem of the paper.

2 Notation, core definitions and general assumptions

As usual, by N, Z, R, C we denote the sets of natural numbers (including 0), integers, real numbers and

complex numbers, respectively. By N+ and R+ we denote the set of positive natural and real numbers,

respectively. We use A to denote the closure of a set A. We will use |z| to denote the absolute value of

z ∈ C or z ∈ R. For a point x ∈ C and a set Z ⊂ C we define

dist(x, Z) = inf
y∈Z
|x− y|.

Definition 1 Assume that a, b ∈ R and a < b.

We say that a function f : C ⊃ dom f → C is a piecewise analytic function on [a, b] if there exist a

family {Dj}j∈J , where J ⊂ N, of open, pairwise disjoint sets contained in C, such that
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1. f is analytic on each Dj and

dom f ∩ {x+ iy : a 6 x 6 b} ⊂
⋃
j∈J
Dj ,

2. for (aj , bj) := Dj ∩ [a, b] we have

[a, b] =
⋃
j∈J

(aj , bj).

We define the domain of analyticity of f by

doa f =
⋃
j∈J
Dj .

Example 1 Some examples of piecewise analytic functions on [−1, 1]:

• all analytic functions whose domain contains [−1, 1],

• the function f(z) = exp(−1/z2),

• the function f(z) = | sin(1/z)|.

Definition 2 For a given γ, p > 0 and a closed set S ⊂ [−1, 1] define the region (see Figure 1)

Dpγ,S := {x+ iy : |y| 6 γ · dist(x, S)p}.

When S is a singleton and its only element is clear from the context, we omit the subscript S and write

Dpγ . Notice that Vγ,S used in [6] is a special case of Dpγ,S , namely we have

Vγ,S = D1
γ,S . (1)

(a)

s1 s2 s3

(b)

s1 s2 s3

Figure 1: Region Dpγ,S between s1 and s3, where S = {s1, s2, s3} (a) with p > 1, (b) with p < 1.

As usual we use Qn,[α,β][f ] to denote an n-point quadrature formula for the evaluation of the integral

of f over [α, β]. Rn,[α,β][f ] is the error of the quadrature, i.e.,

Rn,[α,β][f ] =

∣∣∣∣∣
∫ β

α

f(x)dx−Qn,[α,β][f ]

∣∣∣∣∣ .
Definition 3 For fixed A > 1, B > 0, let the rectangle %(α, β,A,B) in the complex plane (see Figure 2)

be defined as

%(α, β,A,B) =

{
x+ iy :

∣∣∣∣x− β + α

2

∣∣∣∣ 6 A
β − α

2
, |y| 6 B

β − α
2

}
.

When the parameters A, B are clear from the context, we omit them and write %(α, β).
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Figure 2: Rectangle %(α, β,A,B) = {x+ iy : α+β
2 −Ad

2 6 x 6 α+β
2 +Ad

2 , −B
d
2 6 y 6 B d

2}

Definition 4 For fixed A > 1, B > 0, we set

m(f ;α, β,A,B) = sup{|f(z)| : z ∈ %(α, β,A,B) ∩ dom f}.

When the parameters A, B are clear from the context, we omit them and write m(f ;α, β).

Originally in [6] the functional m has a different meaning: it is a functional (or perhaps a subroutine)

which returns a value greater or equal to

sup{|f(z)| : z ∈ %(α, β,A,B) ∩ dom f},

which in this paper is realized by a function ComplexBound (see the beginning of Section 3).

For the estimation of error of the quadrature we need know the size of the largest ellipse with the foci

at (α, 0) and (β, 0) which is contained in %(α, β,A,B).

Lemma 1 Let A > 1. If an ellipse with foci at F1 = (α, 0), F2 = (β, 0), major semi-axis a = A(β−α)/2

and minor semi-axis b = B(β − α)/2 is inscribed (i.e., tangent to the edges) in %(α, β,A,B), then

B =
√
A2 − 1.

Proof. By definition of an ellipse the distance from the center of the ellipse to the focal point is√
a2 − b2, thus

β − α
2

=

√(
A(β − α)

2

)2

−
(
B(β − α)

2

)2

.

This gives

B =
√
A2 − 1.

By Lemma 1 the parameters A and B of % are not independent if we want to inscribe an ellipse into

%(α, β,A,B). Therefore, in the sequel, we will only use B =
√
A2 − 1.

For [α, β] = [−1, 1] we have a = A and b = B. In particular for A = 5
4 we have B = 3

4 and the largest

ellipse contained in %(−1, 1, A,B) has c = a + b = 2.

Remark 2 Let A = 5
4 and B = 3

4 .

1. For Gaussian quadrature we have

Rn,[α,β][f ] 6 2 · 4−n · (β − α)m(f ;α, β) (2)

2. For Clenshaw-Curtis quadrature we have

Rn,[α,β][f ] 6 3 · 2−n · (β − α)m(f ;α, β) (3)
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for functions analytic on %(α, β,A,B).

Below we give an explanation of the denominators in (2) and (3). For references regarding the constants

used, see [1] and [5].

The map

T (z) =
α+ β

2
+
β − α

2
z

is an affine isomorphism, such that T (%(−1, 1, A,B)) = %(α, β,A,B). The formulas for Gauss or

Clenshaw-Curtis quadratures and their errors are transported from [−1, 1] to [α, β] by this map.

On the normalized interval [−1, 1] the error of Gauss quadrature contains the term 1/c2n, where c is

the sum of major and minor semi-axes. The transformation of [α, β] onto [−1, 1] multiplies this error

by β − α and gives c = 2 (see Lemma 1). Therefore we obtain the factor (β − α)/22n = 4−n · (β − α).

2.1 General assumptions

When we say ‘the constant’ we actually mean a value that does depend on some previously fixed

variables but does not depend on any variables quantified afterwards.

From now on, unless stated otherwise, whenever we refer to a function f and an interval [a, b], we mean

“a piecewise analytic function f on [a, b], where [a, b] is the range of integration”.

Additionally, we assume that A > 1 and c > 1.

3 The Petras algorithm

In this section we recall an algorithm from [6] for the verified integration of piecewise analytic functions.

We will call it the Petras algorithm. We assume that we have at our disposal the following subroutines

(or oracles):

• UpperBound(f, a, b) which returns an upper bound M for ||f ||∞ = supx∈[a,b]∩dom f |f(x)|,

• IsAnalytic(f, α, β,A) such that if it is true, then f is analytic on %(α, β,A,
√
A2 − 1); we do not

require that the converse is true,

• ComplexBound(f, α, β,A) returning a value greater than or equal to m(f ;α, β,A,
√
A2 − 1) pro-

vided that f is analytic on %(α, β,A,
√
A2 − 1).

In further analysis of the Petras algorithm we will formulate some conditions regarding the properties of

these subroutines, however we will not include their cost in the cost estimate, even though they might

be hard to compute and depend substantially on f . These issues will require the precise definition of

computable analytic functions (see for example [2, 3] and the references given there), which we do not

consider in this paper.

3.1 Formulation of the algorithm

We have a fixed sequence (Qn)n∈N of quadrature formulas to be Gaussian or Clenshaw-Curtis.

The input of the algorithm consists of:

• the integrand f and the interval of integration [a, b]; we require that f is piecewise analytic and

bounded on [a, b],
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• an accuracy bound ε > 0.

The algorithm also uses configuration constants:

• A > 1 is used in the definition of the area % (see Definition 3) which is needed to compute

IsAnalytic and ComplexBound subroutines (recall that B =
√
A2 − 1).

• c > 1 is used in the estimation of function values.

• constants D and E (compare with (2) and (3) in Remark 2). The quadratures Qn satisfy error

estimates of the form

Rn,[α,β][f ] 6 D · E−n · (β − α)m(f ;α, β)

for functions analytic on %(α, β,A,
√
A2 − 1).

The algorithm is as follows.

In: f, [a, b], ε

1. M := UpperBound(f, a, b).

2. We define the initial partition of [a, b] by setting [a0, a1] = [a, b].

3. Assume that we have already partitioned [a, b] into k intervals, i.e.,

[a, b] := [a0, a1] ∪ [a1, a2] ∪ . . . ∪ [ak−1, ak]

and there is J ⊂ {1, . . . , k} such that

IsAnalytic(f, aj−1, aj , A) and ComplexBound(f, aj−1, aj , A) 6 cM, for j ∈ J (4)∑
j 6∈J

|aj − aj−1| >
ε

2M
. (5)

Bisect the longest interval not belonging to J . Repeat step 3 as long as the condition (5) holds.

4. Now
∑
j 6∈J |aj − aj−1| 6 ε/(2M) (condition (5) does not hold)

a) for the intervals [aj−1, aj ] where j ∈ J we calculate the integral using the quadrature Qn,

where

n >
1

lnE
ln

2D(b− a)cM

ε
, (6)

b) for all remaining intervals we take the integral to be 0.

Out:
∑
j∈J Qn;[aj−1,aj ][f ]

Remark 3 The requirement in (4) that f is analytic on %(aj−1, aj , A,
√
A2 − 1) was missing in Petras’

original paper [6].

3.2 Numerical accuracy

Lemma 4 Assume that the Petras algorithm terminates and returns q. Then∣∣∣∣∣
∫ b

a

f(x)dx− q

∣∣∣∣∣ < ε.
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Proof. For each [α, β] for which m(f ;α, β) 6 cM we want the error of the quadrature to be less than

(β − α)
ε

2(b− a)
,

so that (summing the error over all intervals) the global error on [a, b] is less than or equal to ε/2. We

can calculate n using the estimate

Rn,[α,β][f ] 6 D · E−n · (β − α)m(f ;α, β) 6 D · E−n · (β − α)cM < (β − α)
ε

2(b− a)
,

obtaining

n >
1

lnE
ln

2D(b− a)cM

ε
.

Now we can estimate the total error of the quadrature on all the intervals belonging to J :∑
j∈J

Rn;[aj−1,aj ][f ] 6
∑
j∈J

(aj − aj−1)
ε

2(b− a)
6

ε

2(b− a)

∑
j∈J

(aj − aj−1)

6
ε

2(b− a)
(b− a) =

ε

2

Now ‖f‖∞ 6 M and the total of the lengths of all intervals not belonging to J is not greater than

ε/(2M). Hence the error over these intervals is at most M · ε/(2M) = ε/2.

Therefore we obtain

Rn,[a,b][f ] =
∑
j∈J

Rn;[aj−1,aj ][f ] +
∑
j 6∈J

Rn;[aj−1,aj ][f ] 6
ε

2
+
ε

2
= ε.

3.3 The algorithm terminates under reasonable assumptions

It is not obvious whether the algorithm terminates. If the subroutine ComplexBound returns values

which do not “match” the bound c · supx∈[a,b]∩dom f |f(x)| (for example, it always returns 2, while

c · supx∈[a,b]∩dom f |f(x)| ≈ 1) the algorithm might run forever. Thus we have to assure that such case

will never happen. For this we need to provide certain assumptions regarding the quality of subroutines

IsAnalytic, ComplexBound and UpperBound.

Definition 5 We say that the subroutines IsAnalytic, ComplexBound and UpperBound satisfy the

compatibility condition if for any x ∈ [a, b] such that f is analytic in some neighbourhood of x, there

exists an open set U ⊂ C, such that x ∈ U and

%(α, β) ⊂ U =⇒ IsAnalytic(f, α, β,A) and ComplexBound(f, α, β,A) 6 c ·UpperBound(f, a, b)

Theorem 5 Assume that f is a bounded piecewise analytic function on [a, b] and the Lebesgue measure

of points in [a, b] in which f is not analytic is equal to zero. If IsAnalytic, ComplexBound and

UpperBound satisfy the compatibility condition, then the Petras algorithm terminates on f , [a, b] and

any ε > 0.

Proof. From the assumptions about IsAnalytic, ComplexBound and UpperBound, it follows that any

interval created by the Petras algorithm containing only the points of analyticity will be subdivided

(possibly after several subdivisions) into smaller intervals that will eventually be accepted.

Hence the total length of bad intervals (not in J) goes to zero and the algorithm terminates.
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3.4 The case of analytic functions

Lemma 6 Assume [α, β] ⊂ doa f ∩ [a, b] and IsAnalytic, ComplexBound and UpperBound satisfy the

compatibility condition. Then the number of intervals accepted in the Petras algorithm and covering

[α, β] is finite and does not depend on ε and depends on the set U from Definition 5.

Proof. It follows from the compactness of [α, β] and the compatibility condition that there exists

δ = δ(U) > 0, such that any interval of length less than or equal to δ is accepted by the Petras

algorithm.

4 Tools for the analysis of the algorithm

The Petras algorithm has two parts: geometrical and computational. During the geometrical part

(step 3) a partition of [a, b] is constructed based on a region of analyticity and boundedness D. In

the computational part (step 4), the integral is computed using a chosen quadrature on each of the

resulting sub-intervals.

For a piecewise analytic function f and w ∈ R+ we define the region of analyticity and boundedness as

D(f, w) = {z ∈ C | z ∈ doa f ∧ |f(z)| 6 w}.

Notice that in a perfect world, the actual object of concern in the geometrical part should be the set

D = D(f, c · supx∈[a,b]∩dom f |f(x)|). However, the set D is not known explicitly. Instead, the algorithm

implicitly analyzes the set D(f, cM) ⊂ D, where M = UpperBound(f, a, b).

In the cost estimates we say that an interval is “bad“ or “proper“ according to whether or not it needs

to be bisected.

The number of proper intervals generated by the Petras algorithm is denoted by Z(D(f, cM), ε). Recall

that on each of the proper intervals the quadrature (Gauss-Legendre or Clenshaw-Curtis) with

n =

⌈
1

lnE
ln

(
2Dc · M(b− a)

ε

)⌉
= Θ

(
ln
M

ε

)
points (see (6) in step 4 of the algorithm) is calculated, and thus the algorithm performs

N(f, ε) = Θ

(
ln
M

ε

)
· Z(D(f, cM), ε)

evaluations of f . To complete the cost estimate we need to count the number of proper intervals

generated by the algorithm.

For any p > 1 we give examples of functions for which

Z(D(f, cM), ε) = Θ

((
M

ε

)p−1
)
,

while the analysis in Petras’ paper[6] deals with the classes of functions for which

Z(D(f, cM), ε) = O
(

ln
M

ε

)
.
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4.1 Petras-type conditions

Let us fix A and B =
√
A2 − 1. In [6] Petras proposed a condition (recall that Vγ,S is defined by (1))

∃ γ > 0 ∀α, β : [%(α, β) ⊂ Vγ,S =⇒ f is analytic on %(α, β) and

m(f ;α, β) 6 c · sup{|f(x)| : x ∈ [−1, 1] ∩ dom f} ] (7)

to estimate the cost of the algorithm. We find this requirement too strong, as it excludes a lot of

functions.

Before presenting our generalization of Petras’ condition we state several theorems for the function

f(x) = sin(1/x) for x ∈ [−1, 1]. These results imply that this condition does not holds for said f ,

motivating the use of the sets Dp
γ,S in further analysis.

Theorem 7 Let us take an arbitrary Z > 0. Let f(z) = sin(1/z). In the neighborhood of 0 the

condition

∃ γ > 0 ∀α, β ∈ [−1, 1] :

(
%(α, β) ⊂ Vγ,{0} =⇒ sup

z∈%(α,β)

|f(z)| 6 Z

)
does not hold for any γ > 0, i.e.,

∀ γ > 0 ∃α, β ∈ [−1, 1] :

(
%(α, β) ⊂ Vγ,{0} ∧ sup

z∈%(α,β)

|f(z)| > Z

)
.

Proof. Assume z = x+ iy. Let r2 = x2 + y2. Then

1

z
=
x− iy
r2

. (8)

Since

sin
1

z
=

1

2i

(
exp

i

z
− exp

(
− i

z

))
we obtain

sin
1

z
=

1

2i

(
exp

(
i
x

r2

)
exp

y

r2
− exp

(
−i x
r2

)
exp

(
− y

r2

))
and ∣∣∣∣sin 1

z

∣∣∣∣ > 1

2

(
exp
|y|
r2
− exp

(
− |y|
r2

))
. (9)

For any γ > 0 consider a point z = x+ iγx with x > 0, since y = γx > 0 we have

|y|
r2

=
γx

γ2x2 + x2
=

γ

x(γ2 + 1)

and finally by (9) we have∣∣∣∣sin 1

z

∣∣∣∣ >
1

2

(
exp

(
γ

x(γ2 + 1)

)
− exp

(
− γ

x(γ2 + 1)

))
→ ∞, as x→ 0.

Theorem 7 demonstrates that Petras’ condition (7) for function f(z) = sin(1/z) on [−1, 1] does not

hold on Vγ for any γ > 0. Indeed, since limz→0,z∈∂Vγ exp(|y|/r2) = ∞, we see | sin(1/z)| is too large

on the boundary of Vγ . However, we can work around this problem by using the region D2
γ,S instead

of Vγ , so that the values of exp
(
|y|/r2

)
will be restricted.
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Theorem 8 Let S = {0} and let f(z) = sin(1/z). Then for any c > 1 there exists γ > 0 such that:

∀α, β ∈ [−1, 1] :

{
%(α, β) ⊂ D2

γ =⇒ f is analytic on %(α, β) and

sup{|f(z)| : z ∈ %(α, β)} 6 c · sup{|f(x)| : x ∈ [−1, 1] ∩ dom f}
}
.

Proof. If %(α, β) ⊂ D2
γ then it is obvious that f is analytic on %(α, β). Thus it is enough to check the

second part of the conjunction.

Assume z = x+ iy. Let r2 = x2 + y2. As in the proof of Theorem 7, we have

sin
1

z
=

1

2i

(
exp

(
i
x

r2

)
exp

( y
r2

)
− exp

(
−i x
r2

)
exp

(
− y

r2

))
,

so that ∣∣∣∣sin 1

z

∣∣∣∣ 6 1

2

(
exp

(
|y|
r2

)
+ exp

(
−|y|
r2

))
.

For γ > 0, define Wγ by

Wγ =

{
x+ iy :

|y|
r2

6 γ

}
.

Since the function x 7→ x+ 1/x is increasing for x > 1 we have∣∣∣∣sin 1

z

∣∣∣∣ 6 1

2
(exp(γ) + exp(−γ)) , z ∈ Wγ .

Now
1

2
lim
γ→0

(exp(γ) + exp(−γ)) = 1.

By taking γ sufficiently close to 0, we get

sup

{∣∣∣∣sin 1

z

∣∣∣∣ : z ∈ Wγ

}
< c · sup{| sin(1/x)| : x ∈ [−1, 1]}.

To complete the proof it is enough to show that D2
γ ⊂ Wγ . Let y > 0 (the other case is symmetric).

It is easy to see that Wγ describes the complement of a disk of radius 1/(2γ) centered at (0, 1/(2γ)),

namely

z = x+ iy ∈ Wγ ⇐⇒
(
y − 1

2γ

)2

+ x2 >
1

4γ2
.

Observe that Wγ contains the set

W̃γ =

{
x+ iy : |x| 6 1

2γ
; |y| 6 1−

√
1− 4γ2x2

2γ

}
∪
{
x+ iy : |x| > 1

2γ

}
and notice that

1−
√

1− 4γ2x2

2γ
> γx2, for |x| 6 1

2γ .

This shows that D2
γ ⊂ W̃γ ⊂ Wγ .

Theorem 8 says that there exists a region D2
γ where the function z 7→ sin(1/z) is analytic and appropri-

ately bounded. The next theorem says the opposite: there exists a region of the same shape as before,

but such that (on the boundary of this region close to the singular point) the values of the function are

arbitrarily large.
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Theorem 9 Let S = {0} and let f(z) = sin(1/z). For any c > 1 there exists γ > 0 such that for any

α ∈ [−1/γ, 1/γ] and β ∈ (α, 1]

%(α, β) 6⊂ D2
γ =⇒ f is not analytic on %(α, β) or sup{|f(z)| : z ∈ %(α, β)} > c. (10)

Proof. Let us fix c > 1. If α < 0 < β then f is not analytic on %(α, β).

Let us consider the case when f is analytic on %(α, β). Notice that if %(α, β) 6⊂ D2
γ then %(α, β)∩∂D2

γ 6=
∅, where ∂D2

γ is the boundary of D2
γ . Thus let us consider the region

Wγ = ∂D2
γ ∩ {z : Re(z) ∈ [−1/γ, 1/γ]} \ {0}.

Then

sup
z∈%(α,β)

∣∣∣∣sin 1

z

∣∣∣∣ > inf
z∈Wγ

∣∣∣∣sin 1

z

∣∣∣∣ .
Assume z = x+ iy ∈ Wγ and let r2 = x2 + y2. Then (for |x| 6 1/γ)

|y|
r2

=
γx2

x2 + (γx2)2
=

γ

1 + γ2x2
>
γ

2
.

Since (see proof of Theorem 7)∣∣∣∣sin 1

z

∣∣∣∣ >
1

2

(
exp

(
|y|
r2

)
− exp

(
−|y|
r2

))
and x 7→ x− 1/x is an increasing function, we have

inf
z∈Wγ

∣∣∣∣sin 1

z

∣∣∣∣ > 1

2

(
exp

(γ
2

)
− exp

(
−γ

2

))
.

Now, for any c > 1 it is enough to take γ > 0 such that infz∈Wγ
| sin(1/z)| > c, i.e.,

γ > 2 ln(c+
√

1 + c2)

and the condition (10) holds.

The two theorems given above justify why we consider regions bounded by curves γxp. We do realize

that this choice is arbitrary and non-exhaustive. Nevertheless it allows us to show that the region of

analyticity is an important parameter in the cost investigations. In Section 8 we consider the functions

f(z) = zk sin(1/z) which naturally leads us to consider sets Dp
γ .

Although we have only considered the case p > 1 so far, we can in fact extend these definitions to

include any p ∈ R+. We now present a modified version of Petras’ condition, introducing the notion of

order and having a converse implication.

Definition 6 Let us fix A, B and c > 1. Assume that p > 0, M > 0, S = {s1, . . . , sm} with

a 6 s1 < . . . < sm 6 b and γ > 0. We say that a function f satisfies the positive Petras condition of

order p (abbreviated as ppc(p, γ, S,M)) on [a, b], if

%(x, y) ⊂ Dpγ,S =⇒ f is analytic on %(x, y) and m(f ;x, y) 6 cM,

for all x, y such that [x, y] ⊂ [a, b].

11



Definition 7 Let us fix A, B and c > 1. Assume that p > 0, M = supx∈[a,b]∩dom f |f(x)|, s ∈ [a, b],

γ > 0 and β > 0. We say that a function f satisfies the negative Petras condition of order p (abbreviated

as npc(p, γ, s, β)) on [a, b], if of the following conditions are satisfied

%(x, y) 6⊂ Dpγ =⇒ either f is not analytic on %(x, y) or m(f ;x, y) > cM, (11)

for all x, y such that x ∈ [s, s+ β] and y ∈ (x, b],

%(x, y) 6⊂ Dpγ =⇒ either f is not analytic on %(x, y) or m(f ;x, y) > cM, (12)

for all x, y such that y ∈ (s− β, s] and x ∈ [a, y],

We refer to (11) as npc(p, γ, s, β)-right and (12) as npc(p, γ, s, β)-left.

Notice that in the definition above we used Dpγ = Dpγ,{s}.

The idea (how we use ppc and npc conditions to estimate the number of proper intervals) is presented

in Remark 10, while the detailed treatment is contained in Sections 5 and 6. Notice that, in general, we

want to point out the classes of functions for which the cost of the Petras algorithm is Θ(| ln ε|/εp−1).

Therefore we consider only those functions for which npc and ppc are satisfied. To show that the cost

of the algorithm cannot be better it is enough to show one singular point of f where the number of

proper intervals generated by the algorithm is Ω(1/εp−1), yielding a lower bound. To show that the

cost of the algorithm is not worse we have to prove that in any point of S the algorithm cannot produce

more proper intervals than O(1/εp−1), yielding an upper bound.

Remark 10 Let M = UpperBound(f, a, b). Let D = D(f, cM). Assume that a function f satisfies

ppc(p, γ, {s},M) and npc(p′, γ′, s, β) (with γ′ > γ, p′ 6 p) on the whole interval, i.e., for x ∈ [a, b]

in (11,12). Therefore Dpγ ⊂ D ⊂ D
p′

γ′ . If we consider intervals [α, x], [α, α′] and [α, y] such that

%(α, x) ⊂ Dpγ , %(α, α′) ⊂ D, %(α, y) 6⊂ intDp
′

γ′ , %(α, y) ⊂ Dp
′

γ′ ,

then

[α, x] ⊂ [α, α′] ⊂ [α, y].

Thus investigating intervals in Dγ (they are the shortest and therefore their number is the largest) we

are able to estimate the number of proper intervals from above. And while investigating intervals on

the edge of Dγ′ (the longest ones) we are able to estimate the number of proper intervals from below.

In order to use ppc in the cost estimates from above, we need to impose additional requirements

regarding the quality of the subroutines UpperBound, IsAnalytic and ComplexBound.

Definition 8 Assume the function f satisfies ppc(p, γ, S,M) on [a, b]. We will say that UpperBound,

IsAnalytic and ComplexBound are ppc(p, γ, S,M)-compatible for f on [a, b] if

%(x, y) ⊂ Dpγ,S =⇒ IsAnalytic(f, x, y, A) and ComplexBound(f, x, y, A) 6 c UpperBound(f, a, b),

for all x, y such that [x, y] ⊂ [a, b].

4.2 Geometric lemmas

Assume that Γ : [0,∞) → [0,∞) is continuous, Γ(0) = 0 and Γ is strictly increasing for x > 0. We

define

DΓ = {x+ iy : |y| 6 Γ(x)},

12



Γ(x)

0 x y

Figure 3: Points x and y are chosen so that the top left corner of %(x, y,A,B) belongs to the line

x 7→ Γ(x).

The goal of this section is to find, for a fixed x or y, the largest possible d = y−x such that %(x, y,A,B) ⊂
DΓ.

By the definition of % the top left corner of %(x, x+ d,A,B) is at(
x− d

2
(A− 1), B

d

2

)
and we want this point to lie on the line x 7→ Γ(x), thus (see Figure 3)

Γ

(
x− d

2
(A− 1)

)
= B

d

2
. (13)

This is the desired formula for d = y − x parametrized by x, the left end of the interval. To obtain a

formula parametrized by y we substitute y − d for x in equation (13) and obtain

Γ

(
y − d

2
(A+ 1)

)
= B

d

2
. (14)

Theorem 11 There exist strictly increasing, continuous functions dL, dR : [0,∞) → [0,∞) solving

equations (13), (14), respectively. Moreover:

dL(x) <
2

B
Γ(x), x > 0, (15)

dR(y) <
2

B
Γ(y), y > 0. (16)

Proof. It is clear that dL is strictly increasing in x. It is enough to translate %(x, y,A,B), with top

left corner on the line x 7→ Γ(x), to the right. The shifted rectangle will be contained in the interior of

DΓ. Similarly, dR is increasing in y.

For the proofs of (15) and (16) observe that for x > 0 it holds

B

2
dL(x) = Γ

(
x− A− 1

2
dL(x)

)
< Γ (x)

B

2
dR(y) = Γ

(
y − A+ 1

2
dR(x)

)
< Γ(y).

We would like to obtain bounds of the following form

c2Γ(x) 6 dL(x), dR(x) 6 c1Γ(x),

for some c1, c2 > 0. The existence of c1 follows from Theorem 11. The existence of c2 is treated in

Section 4.2.1 for Γ(x) = γxp, p > 1. It turns out that for p 6 1 this is not true; in fact we obtain linear

estimates from above and from below (see Theorem 15 and equation (23)).

13



For the case Γ(x) = γxp let us set

h =
B

2γ
.

Then observe that equations (13) and (14) have the following form

(x− g · d)p = h · d, (17)

provided that we set either

g = gL =
A− 1

2
,

or

g = gR =
A+ 1

2
,

respectively. Equation (17) defines implicitly a function d(x). In the following subsections we will

estimate d(x).

4.2.1 The case p > 1

Our goal in this section is to obtain estimates for the solution of (17) for p > 1. To develop intuitions

consider an integer p and a series expansion of d(x) = d0 + d1x + d2x
2 + . . . . Regrouping the terms

in (17) and taking d0 = 0 we obtain

d(x) =
1

h
xp + dp+1x

p+1 + ...

=
1

h
xp(1 + dp+1x+ ...)

=
c(x)

h
· xp,

where c(x) = O(1) for small x. These considerations lead us to a hypothesis that

d(x) =
c(x)

h
· xp (18)

for any p > 1, such that there exist c1, c2 and

0 < c2 6 c(x) 6 c1,

for a bounded range of x. Therefore from (17) and (18) we have the following implicit equation for c(x)(
1− g · c(x)

h
· xp−1

)p
= c(x).

For given g, h and p > 1 define

x̃ =

(
h

g

) 1
p−1

. (19)

Lemma 12 Let us consider the equation

F (x, c(x)) =
(

1− c(x) · g
h
· xp−1

)p
− c(x) = 0.

This equation has exactly one solution c(x) ∈ [0, 1] which is continuous on [0, x̃] and

∀x ∈ [0, x̃] ∃ c′, c′′ : (0 < c′′ < c′ = 1) ∧ (c′′ 6 c(x) 6 c′).

14



Proof. Notice that for every x, F (x, 1) < 0 and F (x, 0) = 1 > 0 thus there exists c ∈ (0, 1] such that

F (x, c) = 0. We now show the uniqueness of c:

∂F

∂c
= p

(
1− c · g

h
xp−1

)p−1 (
− g
h
xp−1

)
− 1 < 0.

The function c : [0, x̃]→ (0, 1] is continuous. Since [0, x̃] is compact, there exists x0 ∈ [0, x̃] such that

∀x ∈ [0, x̃] : 0 < c(x0) 6 c(x)

hence c′′ = c(x0) is the bound we need.

The following theorem gives us the desired upper and lower estimates for d(x).

Theorem 13 Let p > 1 and d(x) be the nonnegative solution of (17). Then for any x0 ∈ R+ there

exist 0 < c2 < c1 such that for x ∈ [0, x0]

c2 · xp 6 d(x) 6 c1 · xp.

Proof. By (18) we have d(x) = xpc(x)/h. Let x̃ be as in (19), then by Lemma 12 we immediately

obtain:

c̃2 · xp 6 d(x) 6 c̃1 · xp, x ∈ [0, x̃]

for some 0 < c̃2 < c̃1. For x ∈ [x̃, x0] by Theorem 11 we have:

• d(x) is positive, thus there exists c̄2 > 0 such that d(x) > c̄2x
p;

• d(x) < 2γxp/B, thus there exists c̄1 > c̄2 such that d(x) 6 c̄1 · xp.

Taking c1 = max{c̃1, c̄1} and c2 = min{c̃2, c̄2} we obtain our assertion.

4.2.2 The case p < 1

Consider the equation (17) for 0 < p < 1:

(x− g · d)p = h · d
x− g · d = h

1
p · d

1
p . (20)

Similar considerations as before for p > 1 lead us to a hypothesis that

d(x) =
x

g

(
1− c(x) · h

1
p

g
1
p

· x
1
p−1

)
(21)

where c(x) is a bounded positive function. Substituting (21) for d in (20) we obtain the following

implicit equation for c(x)

c(x) =

(
1− c(x) · h

1
p

g
1
p

· x
1
p−1

) 1
p

.

As in the case p > 1 let us define, for given g, h and p < 1

x̃ =
( g
h

) 1
1−p

. (22)

Now, for p < 1 we have an analogue of Lemma 12.
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Lemma 14 Let us consider the equation

F (x, c(x)) =

(
1− c(x) · h

1
p

g
1
p

· x
1
p−1

) 1
p

− c(x) = 0.

This equation has exactly one solution c(x) ∈ [0, 1] which is continuous on [0, x̃] and

∀x ∈ [0, x̃] ∃ c′, c′′ : (0 < c′′ < c′ = 1) ∧ (c′′ 6 c(x) 6 c′).

From (21) and the above lemma we obtain the following bounds for d(x).

Theorem 15 Let p < 1 and d(x) be the nonnegative solution of (17). Then for any x0 ∈ R+ there

exist 0 < c2 < c1 such that for x ∈ [0, x0]

c2 · x 6 d(x) 6 c1 · x.

Proof. The proof is similar to the proof of Theorem 13. From Lemma 14 if follows that there exists

η > 0 such that for x ∈ (0, η] holds
x

2g
6 d(x) 6

x

g
.

Since d(x) is positive on [η, x0] we can find the desired c2 and c1.

4.2.3 The case p = 1

The equation (17) for p = 1 has a form

x− g · d = h · d

thus we obtain

d(x) =
x

g + h
. (23)

Remark 16 In further analysis we will refer to Theorem 15 with p = 1 (as it holds for p 6 1). Thus

it is sufficient to consider two cases, p > 1 and p 6 1.

5 Lower bound under npc condition

We assume

• [a, b] = [−1, 1],

• M = sup{|f(x)| : x ∈ [−1, 1] ∩ dom f},

• D = D(f, cM),

• f satisfies npc(p′, γ′, s, β)-right (with s ∈ S, γ′ > γ, p′ 6 p).

Therefore D ∩ {x + iy | x ∈ [s, s + β]} ⊂ Dp
′

γ′ ∩ {x + iy | x ∈ [s, s + β]}. For the sake of simplicity of

calculations we assume that s = 0.

The case of functions satisfying npc(p, γ, 0, β)-left is analogous and will not be considered separately.
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5.1 Estimation of the number of proper intervals from below

We are interested in the number of proper intervals generated in the segment [s, β] by the Petras

algorithm (computing the integral attaining global precision ε on [a, b]).

Assume that Petras’ algorithm terminates and we obtain to the left of s proper intervals [αi, αi+1] for

i = 0, . . . , n such that

s < α0 < α1 < . . . < αn, with αn−1 < β 6 αn, (24)

where α0 6 ε/(2M).

Since s = 0 thus β can be treated as a distance from the singular point.

5.1.1 Case p > 1

Lemma 17 Assume that p > 1 and f satisfies npc(p, γ, 0, β)-right. Then, for sufficiently small (ε/M),

the number of proper intervals intersecting the segment [0, β] is Ω
(

(M/ε)
p−1
)

. Therefore we have

Z(D, ε) = Ω

((
M

ε

)p−1
)
.

Proof. Let αi for i = 0, . . . , n be as in (24).

Let ε/(2M) < β. From Theorem 13 (with h = B/(2γ′) and g = gL = (A − 1)/2) it follows that there

exists c1 > 0, such that

dL(x) 6 c1 · xp,

therefore

αi+1 − αi 6 dL(αi) 6 c1 · αpi , i = 0, . . . , n− 1

It is easy to see that if x(t) is a solution of x′ = c1 · xp with an initial condition x(0) = ε/(2M), then

x(i) > αi, i = 0, . . . , n.

The solution of x′ = c1 · xp is given by

x(t) =
x(0)

[1− x(0)p−1c1(p− 1)t]
1
p−1

,

hence we can calculate the exit time to the right from [ε/(2M), β] (taking x(t) = β), i.e.,

n > t =

(
M

ε

)p−1
2p−1

c1(p− 1)
− 1

c1(p− 1)βp−1
= Ω

((
M

ε

)p−1
)
.

5.1.2 Case p 6 1

Lemma 18 Assume that p 6 1 and f satisfies npc(p, γ, 0, β)-right. Then, for sufficiently small ε/M ,

the number of proper intervals intersecting the segment [0, η], where η = min{x̃, β}, for x̃ as in (22), is

Ω (ln(M/ε)). Therefore we have

Z(D, ε) = Ω

(
ln
M

ε

)
.

17



Proof. Let αi for i = 0, . . . , n be as in (24). Let η = min{x̃, β} and ε/(2M) < η. Let k be such that

αk−1 < η 6 αk. Hence k is the number of proper intervals in [0, η].

By Theorem 15 (with h = B/(2γ′) and g = gL = (A − 1)/2) it follows that there exists c2 such that

for x ∈ [0, x̃]

dL(x) 6 x

(
1

gL
− c2 · x

1
p−1

)
6

x

gL
.

Now, for αi ∈ [0, η], we have

αi+1 − αi 6 dR(αi) 6
αi
gL

thus

αi+1 6 αi

(
1 +

1

gL

)
and, since α0 6 ε/(2M), we obtain

αi 6 α0

(
1 +

1

gL

)i
6

ε

2M

(
1 +

1

gL

)i
.

Therefore in particular

η 6
ε

2M

(
1 +

1

gL

)k
and

k >
ln
(

2Mη
ε

)
ln
(

1 + 1
gL

) − 1,

thus according to the Definition 9 we obtain our assertion.

6 Upper bound from ppc condition

We assume:

• [a, b] = [−1, 1],

• S = {s1, . . . , sm} ⊂ R, where −1 6 s1 < . . . < sm 6 1, be a set of points such that the function

f is analytic in each open interval (si, si+1) for i = 1, . . . ,m− 1,

• M = UpperBound(f,a,b),

• D = D(f, cM),

• f satisfies ppc(p, γ, S,M), therefore Dpγ,S ⊂ D,

• UpperBound, IsAnalytic and ComplexBound are ppc(p, γ, S,M)-compatible for f on [−1, 1].

Observe that the assumption about ppc compatibility of the subroutines UpperBound, IsAnalytic and

ComplexBound implies that these routines also satisfy the compatibility condition (Def. 5).
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6.1 The modified Petras algorithm

We consider a modified Petras’ algorithm (abbreviated mpa) in which a decision if an interval is proper

or bad is made using the ppc condition. More precisely, instead of checking condition (4) we use the

following

%(aj−1, aj) ⊂ Dpγ,S , j ∈ J.

Additionally, if mpa decides that it is still running (the length of all bad intervals is greater than

ε/(2M)), then it bisects all bad intervals in step 3 in the Petras algorithm before checking condition

(5); thus in mpa all bad intervals have the same length.

Notice that any interval accepted by mpa is contained in an interval accepted by Petras’ algorithm.

Thus we can state:

1. the union of proper intervals generated in Petras’ algorithm contains the union proper intervals

generated in mpa: ⋃
j∈J(MPA)

[aj−1, aj ] ⊆
⋃

j∈J(PA)

[aj−1, aj ];

2. the sum of lengths of proper intervals generated in Petras’ algorithm is greater than or equal to

the sum of lengths of proper intervals generated in mpa:∑
j∈J(PA)

|aj − aj−1| >
∑

j∈J(MPA)

|aj − aj−1|,

where J(PA) and J(MPA) are sets of indices of proper intervals in Petras’ algorithm and mpa,

respectively; it is obvious that for bad intervals the converse inequality holds;

3. if mpa terminates then Petras’ algorithm terminates as well, since by (ii) we have∑
j 6∈J(PA)

|aj − aj−1| 6
∑

j 6∈J(MPA)

|aj − aj−1| 6
ε

2M
.

Thus we have proved the following lemma.

Lemma 19 mpa terminates. The cost of mpa provides an upper bound for the cost of Petras’ algorithm.

6.1.1 Preliminary estimates for mpa

Our goal is to find a lower bound for the distance to S of the set of proper intervals obtained in mpa.

Lemma 20 There exists constant T0 such that the distance to S of the set of proper intervals obtained

in mpa is greater than or equal to ε/(MT0). The constant T0 depends on S, A, c, γ and p.

Proof. In this proof we will write x for both the coordinate x and the distance dist(x, S), and the

precise meaning should be clear from the context.

Consider two cases:

1. For p > 1 the shape of Dpγ,S is as in Figure 4.

From Theorem 13 we know that:

interval [x, x+ d] is proper, iff d 6 dL(x), where dL(x) 6 c1,L · xp,
interval [x− d, x] is proper, iff d 6 dR(x), where c2,R · xp 6 dR(x).
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γxp

s

x x+ dx− d

Figure 4: An interval [x, x+ d] is proper, but [x− d, x] is bad.

Consider x (as in Figure 4). Since [x, x+ d] is proper and [x− d, x] is bad, we have:

c2,R · xp 6 dR(x) < d 6 dL(x) 6 c1,L · xp. (25)

Hence, at any stage of the algorithm, all points x which are the closest to the points from S

satisfy the estimate (recall that all bad intervals have the same length):(
d

c1,L

) 1
p

6 x <

(
d

c2,R

) 1
p

.

Thus, if x1 and x2 are the closest to some singular point, then

0 <

(
c2,R
c1,L

) 1
p

<
x1

x2
<

(
d

c2,R

) 1
p

(
d
c1,L

) 1
p

=

(
c1,L
c2,R

) 1
p

< +∞.

2. For p 6 1 from Theorem 15 we know that for sufficiently small x

interval [x, x+ d] is proper, iff d 6 dL(x), where dL(x) 6 x/gL,

interval [x− d, x] is proper, iff d 6 dR(x), where there exists g+
R such that

x

g+
R

< x

(
1

gR
− c1,Rx

1
p−1

)
6 dR(x).

Since [x, x+ d] is proper and [x− d, x] is bad, we have:

x

g+
R

< d 6
x

gL
. (26)

Hence, at any stage of the algorithm, all points x which are the closest to the points from S

satisfy the estimate (recall that all bad intervals have the same length):

d · gL 6 x < d · g+
R .

Thus if we have points x1 and x2 which are the closest to some singular point, then

0 <
A− 1

A+ 1
≈ gL

g+
R

6
x1

x2
6
d · g+

R

d · gL
=
g+
R

gL
≈ A+ 1

A− 1
< +∞.

Hence for any p > 0 at any stage of the mpa, for any points xi, xj which are the closest to a singular

point from S:

0 <
xi
xj

6 T < +∞, (27)

where T is a constant depending on p, γ, S, but independent of ε and M . Because (27) holds for the

minimal and maximal distance denoted by xmin, xmax we have

xmax 6 T · xmin. (28)
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−1
x1 x2

s1

x3 x4

s2

. . . x2m−1 sm = 1

Figure 5: Singularities s1, . . . , sm and blocks of bad intervals between x2i−1 and x2i for i = 1, . . . ,m.

Bad intervals are in the neighbourhood of any singular point from S, so there exists I 6 2m such that

for any 1 6 i 6 I a point xi is an end of the connected block of proper intervals (see Figure 5).

While the algorithm is running
ε

2M
<
∑

16i6I

xi 6
∑

16i6I

xmax

and from (28) we have
ε

2M
<
∑

16i6I

T · xmin 6 2m · T · xmin

obtaining

xmin >
ε

4mMT
. (29)

Let us stress that (29) holds as long as the stopping condition in mpa is not satisfied. We need to

estimate how far we can go in the last stage.

Let x1 be a point from the proper interval, which is the closest to some s ∈ S from right or left. For

simplicity we will assume that s < x1, the other case is analogous. Let d be the length of bad intervals,

which will be now divided by 2. Let x2 (with s < x2 < x1) be such that [x2, x1] is covered by proper

intervals of length d/2. Therefore interval [x2, x2 + d/2] is proper.

1. Case p > 1. By (25), (29) and Theorem 13 we have the following estimates

c2,R · xp1 < d

d

2
< dL(x2) 6 c1,L · xp2

 =⇒ x2 >

(
1

2
· c2,R
c1,L

)1/p

x1 >

(
1

2
· c2,R
c1,L

)1/p
ε

4mMT
.

2. Case p 6 1. By (26), (29) and Theorem 15 we obtain

x1

g+
R

< d

d

2
< dL(x2) 6

x2

gL

 =⇒ x2 >
1

2
· gL
g+
R

· x1 >
1

2
· gL
g+
R

· ε

4mMT
.

Observe that in both above cases we have obtained

x2 >
ε

MT0
,

for some constant T0 depending on S, A, c, γ and p
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6.2 Estimation of the number of proper intervals from above

Lemma 21

Z(D, ε) = O

((
M

ε

)p−1
)
, if p > 1,

Z(D, ε) = O
(

ln
M

ε

)
, if p 6 1.

Proof. For any si, i = 1, . . . ,m we will count the number of proper intervals created by mpa to right

of si that cover a segment [sRi , β], where β = (si + si+1)/2 if i < m and β = 1 for i = m; and sRi is the

nearest point from the proper intervals to the right of si. By the symmetry the estimate will be also

good for the intervals to the left of points from S.

Let us fix si. We can assume that s = 0 and β 6 2. We consider the intervals to right of s.

Let us assume that [αi, αi+1] is obtained during mpa by bisecting an interval [u, v]. Since [u, v] was

bisected, it was bad, thus

v − u > dR(v). (30)

From Theorem 13 for p > 1 and Theorem 15 for p 6 1 we know that dR(x) > w(x), where w(x) = c2x
p

if p > 1 and w(x) = c2x, if p 6 1, for some c2 > 0 and c2 < 1 if p 6 1.

0 αi αi+1 z
‖

αi+1 + (αi+1 − αi)

L R

Figure 6: The case (L)

0 z
‖
αi − (αi+1 − αi)

αi αi+1

L R

Figure 7: The case (R)

Two cases are possible as a result of the bisection:

(L) [αi, αi+1] is the left part in [αi, z] (see Figure 6), where z = αi+1 + (αi+1−αi), and from (30) we

have

z − αi = 2(αi+1 − αi) > dR(αi+1 + (αi+1 − αi))
> w(αi+1 + (αi+1 − αi)) > w(αi+1).

(R) [αi, αi+1] is the right part in [z, αi+1] (see Figure 7) so for both z > 0 and z 6 0 it holds (by (30))

2(αi+1 − αi) = αi+1 − z > dR(αi+1) > w(αi+1).

Therefore in both cases the following estimate holds:

αi+1 − αi >
1

2
· w(αi+1). (31)

Let

α0 < α1 < · · · < αn, αn > β

be the end points of proper intervals obtained by mpa to the right of s = 0. From Lemma 20 it follows

that

α0 >
ε

MT0
. (32)
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Substituting αn−i by yi (0 6 i 6 n) in (31) we obtain

yi+1 6 yi −
1

2
· w(yi).

It is easy to see that

yi 6 y(i),

where y(t) is a solution of

y′ = −1

2
· w(yi) = −ayp

∗

i . (33)

with p∗ = max(1, p), a = 1/2 · c2 and y(0) = y0 = αn.

For p > 1 the solution of (33) is of the form

y(t) =
y(0)

(1 + a · y(0)p−1(p− 1)t)
1
p−1

and setting y(0) = β and y(t) = ε/(MT0) (compare (32)) we calculate

t =

(
MT0β
ε

)p−1

− 1

aβp−1(p− 1)

=
(MT0)p−1

εp−1
· 1

a(p− 1)
− 1

a(p− 1)βp−1
.

Observe that t is an upper bound for n, hence

n 6

(
M

ε

)p−1
(

T p−1
0

a(p− 1)

)
.

By taking into account all points in S and the proper intervals on both side we obtain

Z(D, ε) 6
(
M

ε

)p−1
(

2mT p−1
0

a(p− 1)

)
.

This finishes the proof for the case p > 1.

For p 6 1 the solution of (33) is of the form

y(t) = e−aty(0),

and setting y(0) = β and y(t) = ε/(MT0) (compare (32)) we calculate

t =
1

a
ln
βT0M

ε

6
1

a
ln

2T0M

ε
.

Observe that t is an upper bound for n, hence

n 6
1

a
ln
M

ε
+

1

a
ln(2T0).

By taking into account all points in S and the proper intervals on both side we obtain

Z(D, ε) 6 m

a
ln
M

ε
+
m

a
ln(2T0).

This finishes the proof for the case p 6 1.
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7 The cost of Petras’ algorithm

Finally we can state a theorem estimating the cost of Petras’ algorithm for functions satisfying ppc and

npc conditions. As we mentioned in the introduction by the cost we understand the number of evalu-

ations of an integrand at the nodes produced by the algorithm. Therefore this is not a comprehensive

evaluation, because we neglect the cost of checking analyticity, calculating bounds and the precision of

arithmetic operations.

Theorem 22 Assume that S = {s1, . . . , sm}, m > 1. Let M = UpperBound(f,a,b). Consider functions

satisfying the following conditions

• ppc(p, γ, S,M)

• npc(p, γ′, s0, β) for some s0 ∈ S,

• UpperBound, IsAnalytic and ComplexBound are ppc(p, γ, S,M))-compatible for f on [a, b].

Then the cost of Petras’ algorithm for such f is

Θ

(∣∣∣∣ln Mε
∣∣∣∣ (Mε

)p−1
)
, for p > 1,

Θ

(
ln2 M

ε

)
, for p 6 1.

The constants in Θ depend S, p, γ, γ′, A and c.

Proof. First notice that by Lemmas 17 and 18 for s0 ∈ S the number of proper intervals created

during the execution of the algorithm is

Ω((M/ε)p−1), for p > 1,

Ω(ln(M/ε)), for p 6 1.

In Lemma 21 we obtained the upper bound for the number of proper intervals created during the

execution of the algorithm:

O((M/ε)p−1), for p > 1,

O(ln(M/ε)), for p 6 1.

Hence we obtain the assertion of the theorem.

8 Functions giving rise to the cost Θ
(
| ln ε|/εp−1

)
In Section 4.1 we have shown that function f(z) = sin(1/z) satisfies ppc(2, γ, {0}, 1) and npc(2, γ, 0, 1).

The cost of Petras’ algorithm for such functions is Θ (| ln ε|/ε). In this section we give examples of

functions for which the cost is Θ
(
| ln ε|/εp−1

)
, for any p > 1.

Theorem 23 Let S = {0} and let f(z) = sin(1/zp−1), where p ∈ N, p > 1. Then for any c > 1 there

exists γ > 0 such that for any α, β ∈ [−1, 1]

%(α, β) ⊂ Dpγ =⇒ f is analytic on %(α, β) and

sup{|f(z)| : z ∈ %(α, β)} 6 c · sup{|f(x)| : x ∈ [−1, 1] ∩ dom f}.
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Proof. Let γ 6 1. If %(α, β) ⊂ Dpγ then it is obvious that f is analytic on %(α, β). Thus it is enough

to check the second part of the conjunction.

Let us set n = p− 1. Assume z = x+ iy ∈ Dp
γ ∩ {z : |Re (z) | 6 1}. Let r2 = x2 + y2. As in the proof

of Theorem 7, we have∣∣∣∣sin 1

zn

∣∣∣∣ 6 1

2

(
exp

∣∣∣∣Im( 1

zn

)∣∣∣∣+ exp

(
−
∣∣∣∣Im( 1

zn

)∣∣∣∣)) .
By (8) we have

Im

(
1

zn

)
=

1

r2n

((
n

1

)
xn−1y −

(
n

3

)
xn−3y3 + . . .

)
and it is easy to see that for z ∈ Dp

γ ∩ {z : |Re (z) | 6 1} and for some constant Φ = Φ(n),∣∣∣∣Im( 1

zn

)∣∣∣∣ 6 Φ

r2n
|xn−1y| 6 Φ

γ|x|n−1|x|p

|x|2n
= Φγ.

For z ∈ Dp
γ ∩ {z : |Re (z) | 6 1} we have (because x 7→ x+ 1

x is increasing for x > 1)∣∣∣∣sin 1

zn

∣∣∣∣ 6 1

2
(exp(Φγ) + exp(−Φγ))→ 1, as γ → 0.

Thus there exists c > 1 such that taking γ sufficiently small we get

sup

{∣∣∣∣sin 1

zp−1

∣∣∣∣ : z ∈ Dp
γ ∩ {z : |Re (z) | 6 1}

}
< c · sup

{∣∣∣∣sin 1

xp−1

∣∣∣∣ : x ∈ [−1, 1]

}
.

0 1

dx(%)

dy(%)

Figure 8: Rectangle %(α, β) does not have to be entirely contained in Dp
γ ∩ {z : |Re (z) | 6 1}, but for

small γ the projecting part (%(α, β)\(Dp
γ ∩ {z : |Re (z) | 6 1}) = 2(dx(%)× dy(%))) is small.

Note that (see Figure 8) the rectangle %(α, β) does not have to be entirely contained in the region

Dp
γ ∩ {z : |Re (z) | 6 1}, but the width and height of the projecting area linearly depend on γ (dx(%) <

γ(A−1)/B and dy(%) < γ — see Theorem 11) and the function is continuous in the wide neighbourhood

of 1, therefore further reducing γ we obtain

sup

{∣∣∣∣sin 1

zp−1

∣∣∣∣ : z ∈ %(α, β)

}
6 c · sup

{∣∣∣∣sin 1

xp−1

∣∣∣∣ : x ∈ [−1, 1]

}
.

Theorem 23 says that for z 7→ sin(1/zp−1) there exists a region Dpγ ∩ {z : |Re (z) | 6 1} where the

function is analytic and appropriately bounded. The next theorem says that there exists a region of

the same shape as before, but such that (on the boundary of this region close to the singular point)

the values of the function are arbitrarily large.

Theorem 24 Let S = {0} and let f(z) = sin(1/zp−1), where p ∈ N, p > 1. Then for any c > 1 there

exist γ > 0 and η > 0 such that for any α ∈ [−η, η] and β ∈ (α, 1]

%(α, β) 6⊂ Dpγ =⇒ f is not analytic on %(α, β) or

sup{|f(z)| : z ∈ %(α, β)} > c · sup{|f(x)| : x ∈ [−1, 1] ∩ dom f}.
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Proof. Let us fix γ > 0 and consider points z = x+ iy ∈ ∂Dp
γ∩{z : |Re (z) | 6 1}. We will restrict our

attention to x > 0 and y = γxp > 0. By (8), for sufficiently small x and for some constants Φ,Φ′ > 0

there is

Im

(
1

zp−1

)
=

1

r2(p−1)

((
p− 1

1

)
xp−2y −

(
p− 1

3

)
xp−4y3 + . . .

)
>

γΦx2(p−1)

r2(p−1)

=
γΦx2(p−1)

x2(p−1)(1 + γ2x2(p−1))p−1

=
γΦ

(1 + γ2x2(p−1))p−1

> γΦ′.

Observe that (compare the proof of Theorem 9), since x 7→ x− 1/x, we have

inf

{∣∣∣∣sin 1

zl

∣∣∣∣ : z ∈ Wγ

}
>

1

2

(
exp

∣∣∣∣Im( 1

zl

)∣∣∣∣− exp

(
−
∣∣∣∣Im( 1

zl

)∣∣∣∣))
>

1

2
(exp(γΦ′)− exp(−γΦ′)) ,

where Wγ = ∂Dp
γ ∩ {z : |Re (z) | 6 η}\{0}.

Now, for any c > 1 it is enough to take γ > 0 big enough to have infz∈Wγ
| sin(1/zl)| > c.

From the above theorems it follows that functions f(z) = sin(1/zp−1) for p ∈ N, p > 1 satisfy the

assumptions of Theorem 22, thus their cost scales as | ln ε|/εp−1.

9 Appendix: asymptotic rate of growth

Here we recall the notation Ω, O, Θ.

Definition 9 Let f, g : R→ R+ .

1. We say that f is at least of order g, if there exist ε0 > 0 and c > 0, such that:

∀ 0 < x 6 ε0 : f(x) > c · g(x).

Notation: f(x) ∈ Ω(g(x)).

2. We say that f is at most of order g, if there exist ε0 > 0 and c > 0, such that:

∀ 0 < x 6 ε0 : f(x) 6 c · g(x).

Notation: f(x) ∈ O(g(x)).

3. We say that f is exactly of order g, if there exist ε0 > 0, c1 > 0 and c2, such that:

∀ 0 < x 6 ε0 : c1 · g(x) 6 f(x) 6 c2 · g(x).

Notation: f(x) ∈ Θ(g(x)).
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