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1. Introduction

We want to study topological entropy of multidimensional perturbations of one-
dimensional maps. Since the spaces we consider are not necessarily compact, there
are several possibilities for defining topological entropy. We are mainly interested in
invariant compact sets, so we define topological entropy h(f) of f as the supremum
of topological entropies of f restricted to compact invariant sets.

A continuous map is called compact if it maps bounded sets into relatively com-
pact sets (the sets with compact closures).

Let f : R → R be a continuous map. Let V be a real Banach space and let a
continuous decomposition V = R ⊕W be given. According to this decomposition
we will represent elements v ∈ V as pairs v = (x,w), where x ∈ R and w ∈ W . By
Br we will denote the closed ball in W of radius r centered at 0, and by Cr the
infinite cylinder R×Br.

Let F : [0, 1] × Cr → V be a continuous and compact map. We will use the
notation Fλ for the partial map with the fixed λ, so Fλ(v) := F (λ, v) for v ∈ Cr.
Suppose that F0(x,w) = (f(x), 0) for each (x,w) ∈ Cr (we will call such F0 one-
dimensional). In such a situation we say that the maps Fλ are multidimensional
perturbations of f .

In this paper we prove the following theorem.

Theorem 1.1. Let F : [0, 1] × Cr → V be a continuous and compact map, such
that Fλ are multidimensional perturbations of a continuous map f : R→ R. Then
lim infλ→0 h(Fλ) ≥ h(f).

Since we work anyway with compact intervals of the real line rather than the
whole line, in the above theorem we can also consider f defined on an interval and
F on the corresponding set (with Cr replaced by the product of this interval and
Br).

Let us discuss a context in which our results are of special importance (apart
of rather obvious situations when the space V has finite dimension). There is a
class of partial differential equations for which the asymptotic dynamics is finite
dimensional, i.e. is determined by a finite number of modes. This class, called
dissipative [Hale, 1988], includes Navier-Stokes equations, Kuramoto-Sivashinsky
equations and many others systems. Then we can ask an important question: what
dynamical properties of the finite dimensional model can be extended to the full
PDE? In this paper we are interested in the estimate for topological entropy in the
case of a one-dimensional model.

To be more explicit, let us consider briefly the Kuramoto-Sivashinsky equations
(KS) introduced in the context of phase turbulence [Kuramoto, 1980] and flame
front propagation [Sivashinsky, 1977]. It is known that the time evolution for KS
equations is compact (see [Hale, 1988] and references given there). Therefore, each
Poincaré return map, if well defined, is compact. The numerical experiments in
[Christiansen et al., 1997] show that a suitably chosen Poincaré map P is essentially
one dimensional and can be modeled by a one-dimensional map p. Now we build a
homotopy by

F (λ, x, w) = λP (x,w) + (1− λ)(p(x), 0).

This homotopy is compact. We cannot claim that we can use Theorem 1.1 to es-
timate rigorously topological entropy for the Poincaré map P , because even there



Entropy for multidimensional perturbations 3

is no rigorous proof that the Poincaré map P studied numerically in [Christiansen
et al., 1997] exists. However, the ideas used in the proof of Theorem 1.1, contin-
uation of topological horseshoes and relation between topological horseshoes and
entropy, combined with recently developed rigorous numerics for KS equations (see
[Zgliczyński & Mischaikow, 2000]) can be used to give rigorous estimates for topo-
logical entropy.

2. Topological Theorems

In this section we present a definition and theorems about covering relations from
[Zgliczyński, 1999c] (the finite dimensional version is presented in [Zgliczyński,
1999a], [Zgliczyński, 1999b]).

We use the same notation as in the preceding section. In W we have a norm
‖·‖W , and then in V we use the norm ‖(x,w)‖V = max(|x|, ‖w‖W ). By % we denote
the metric in V induced by this norm. Note that W may be a zero-dimensional
space.

A set P of the form P = [a, b]×Br for some a < b will be called a cylinder. We
denote

L(P ) := {a} ×Br , R(P ) := {b} ×Br , V (P ) := L(P ) ∪R(P )

and
H(P ) := [a, b]× ∂Br .

If dim W = 0 then H(P ) = ∅. Further,

SL(P ) := (−∞, a)×Br and SR(P ) := (b,∞)×Br .

The sets SL(P ) and SR(P ) are equal to the left and right components of the com-
plement of P in Cr, respectively.

The following definition is very general. In particular, if the set A below is small,
it does not describe an interesting situation. Whenever we will be using it, A will
be large.

Definition 2.1. Let f : Cr → V be a continuous and compact map and let A ⊂ V .
Let N and M be two cylinders. We say that N f -covers M with respect to A (and
write N ⇒

f,A
M) if

L(N) ∩A 6= ∅ , R(N) ∩A 6= ∅ , f(N) ∩M ⊂ A , f(A ∩N) ⊂ Cr ,

and either

f(L(N) ∩A) ⊂ SL(M) and f(R(N) ∩A) ⊂ SR(M)

or
f(L(N) ∩A) ⊂ SR(M) and f(R(N) ∩A) ⊂ SL(M) .
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Remark 2.2. The covering relation used in [Zgliczyński, 1999a], [Zgliczyński,
1999b] coincides with the one given above when N ∪M ⊂ A. ¤
Remark 2.3. Our Definition 2.1 differs slightly from a similar Definition 1 of
[Zgliczyński, 1999c]. The one given here does not involve any apriori given set
containing N∪M . Despite this differences in the definitions, the proofs of theorems
about covering relations from Sec. 1 of [Zgliczyński, 1999c] do not require any
changes, and hence are valid for the covering relation defined above. ¤

The following theorem, which follows immediately from Theorem 4 of [Zgliczyński,
1999c], summarizes the most important property of covering relations: closed loop
of covering relations (with respect to an appropriate set) gives rise to a periodic
point realizing this loop.

Theorem 2.4. Let N1, N2, . . . , Nn be cylinders. Let Fi : [0, 1] × Ni−1 → V , i =
1, . . . , n (where N0 = Nn), be continuous and compact maps. Assume that there
exist maps fi : R→ R such that Fi,0(x, y) = (fi(x), 0) for i = 1, . . . , n. Let

A =
⋃

i

Fi([0, 1]×Ni−1).

Suppose that for every λ ∈ [0, 1] and i = 1, . . . , n we have Ni−1 ⇒Fi,λ,A Ni. Then
for each λ there exists x(λ) ∈ intN0 such that

Fi,λ ◦ Fi−1,λ ◦ · · · ◦ F1,λ(x(λ)) ∈ intNi for i = 1, . . . , n− 1

and
Fn,λ ◦ Fn−1,λ ◦ · · · ◦ F1,λ(x(λ)) = x(λ).

Definition 2.5. Let a0 < a1 < · · · < a2s−1. For i = 0, . . . , s − 1 set Ni =
[a2i, a2i+1] × Br and let N = N0 ∪ N1 ∪ · · · ∪ Ns−1. A continuous compact map
f : N → V will be said to have a topological s-horseshoe if there exists a compact
homotopy F : [0, 1] × N → V such that F1 = f , the map F0 is one-dimensional,
and for A := F ([0, 1]×N) we have Ni ⇒Fλ,A

Nj for i, j = 0, . . . , s− 1.

Theorem 2.6. If f has a topological s-horseshoe then for any sequence (α0, α1, . . . ,
αn−1), where αi ∈ {0, . . . , s − 1}, there exists x ∈ Nα0 such that f i(x) ∈ Nαi

for
i = 1, . . . , n− 1 and fn(x) = x. Moreover, h(f |N ) ≥ log s and

lim
n→∞

1
n

log Card{x ∈ N : fn(x) = x} ≥ log s.

Proof. The statements about periodic points follow immediately from Theorem 2.4.
Periodic points provide also (n, ε)-separated sets of sufficient cardinalities in order
to prove the statement about the entropy. According to our definition of entropy, in
order to complete the proof we need to find a compact invariant set containing all
periodic points whose existence is guaranteed by Theorem 2.4. We claim that the
set K of all points at which all iterates of f are defined, intersected with the closure
of f(N), has those properties. Clearly, it contains all periodic points mentioned
above and is invariant. Since f is compact (it was assumed in Definition 2.5) and N
is bounded, the closure of f(N) is compact. Since f is continuous and N is closed,
K is closed. Thus, K ∩ f(N) is compact.
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3. Topological Entropy for Interval Maps

In this section we recall results about relations between the topological entropy and
the existence of horseshoes for interval maps and explain how to replace horseshoes
by topological horseshoes.

The definition of a horseshoe for an interval map (see [Misiurewicz & Szlenk,
1980], [Alsedá et al., 1993]) is the same as the definition of the topological horseshoe
from the preceding section (with dim W = 0), except that the intervals involved
may have common endpoints. That is, instead of taking a0 < a1 < · · · < a2s−1 and
Ni = [a2i, a2i+1], we may take b0 < b1 < · · · < bs and Ni = [bi, bi+1]. However,
the way around this difficulty is well known: we remove two extreme intervals of
a horseshoe and shorten the rest of them to obtain a topological horseshoe (see
for instance the proof of Proposition 4.3.2 of [Alsedá et al., 1993]). Hence, if an
interval map f has an s-horseshoe and s > 2 then it has a topological s−2-horseshoe.
Moreover, if f has an s-horseshoe then fn has an sn-horseshoe (see [Misiurewicz
& Szlenk, 1980], [Alsedá et al., 1993]) and therefore fn has a topological sn − 2-
horseshoe.

The above result can be combined with the following theorem on horseshoes and
entropy [Misiurewicz, 1979], [Alsedá et al., 1993].

Theorem 3.1. Let I be a closed interval and let f : I → I be continuous. If
h(f) > 0 there exist sequences (kn)∞n=1 and (sn)∞n=1 of positive integers such that
for each n the map fkn has an sn-horseshoe and

lim
n→∞

1
kn

log sn = h(f).

What we get is the same theorem, but with horseshoes replaced by topological
horseshoes.

Theorem 3.2. Let I be a closed interval and let f : I → I be continuous. If
h(f) > 0 there exist sequences (kn)∞n=1 and (sn)∞n=1 of positive integers such that
for each n the map fkn has a topological sn-horseshoe and

lim
n→∞

1
kn

log sn = h(f).

4. Proof of Theorem 1.1

We start with an auxiliary lemma. In its proof we will use a simple fact that a set
K in a metric space X is relatively compact if from every sequence of points of K
one can choose a subsequence convergent to a point of X.

Lemma 4.1. Assume that F : [0, 1] × Cr → V is continuous and compact. Then
F k, defined by F k(λ, v) = (Fλ)k(v), is also continuous and compact.

Proof. Set G(λ, v) = (λ, F (λ, v)). Then F k is equal to Gk (this is simply the k-
th iterate of G) composed with the projection to the second coordinate. Thus,
it enough to show that G is continuous and compact. Continuity is obvious. To
show compactness, fix a bounded set K ⊂ [0, 1] × Cr and choose a sequence of
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points (λn, vn) from G(K). By the compactness of F we can choose a sequence vni

convergent in V , and then we can choose a convergent sequence from the sequence
λni

(since [0, 1] is compact). This procedure gives us a convergent subsequence of
(λn, vn). Thus, G(K) is relatively compact.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Fix a number a < h(f). From Theorem 3.2 it follows
that there exist positive integers s and k such that the map fk has a topological
s-horseshoe and (1/k) log s > a. Let Ii = [a2i, a2i+1] be the intervals from the
definition of the topological horseshoe. Set Ni = Ii × Br, N =

⋃n−1
i=0 Ni and

A = F (N). From the compactness of F and by Lemma 4.1 it follows that A is a
compact set.

Observe that we have Ni ⇒
F k
0 ,A

Nj for i, j = 0, . . . , s− 1. Since F k is uniformly

continuous on [0, 1] × (A ∩ Cr), the above covering relations hold if we replace
F0 by Fλ with λ sufficiently small. Now we apply Theorem 2.6 to conclude that
h(F k

λ ) ≥ log s. Then h(Fλ) ≥ (1/k) log s > a. This completes the proof.

Remark 4.2. By Theorem 2.6, we have proved also that under the same assump-
tions

lim inf
λ→0

lim
n→∞

1
n

Card{x ∈ Cr : Fn
λ (x) = x} ≥ h(f).

¤
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