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Abstract

We present a modification of the Lohner algorithm for the computation
of rigorous bounds for solutions of ordinary differential equations together
with partial derivatives with respect to initial conditions. The modified
algorithm requires essentially the same computational effort as the original
one. We applied the algorithm to show an existence of several periodic
orbits for Rössler equations and the 14-dimensional Galerkin projection
of the Kuramoto-Sivashinsky PDE.
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1 Introduction

In recent years we witness a growing number of computer assisted proofs in the
dynamics of ODE’s, where the computer is used to check rigorously assump-
tions of abstract theorems from the dynamical systems theory (see for example
[AZ, GZ, HZHT, MM, T, RNS]). For all these proofs rigorous bounds for an
appropriate Poincaré map were obtained with a computer assistance.

The goal of this paper is to present a modification of the Lohner algorithm
[Lo, Lo1], which for a given autonomous ordinary differential equation

dx

dt
= f(x), x ∈ Rn, f ∈ C∞ (1)

and a section Θ, computes rigorously the Poincaré map P (x0) and ∂P
∂x (x0),

where x0 ∈ Θ.
For this end we need to solve a system of ODE’s consisting of equation (1)

and the variational equation corresponding to it

dV

dt
(t, x0) =

∂f

∂x
(x(t)) · V (t, x0), V ∈ Rn×n (2)

with an initial condition V (0, x0) = Id, where by Id we denote the identity
matrix.

Once we have rigorous bounds for a trajectory of equations (1) and (2) we
need to consider its intersection with Θ to obtain P and its derivatives.

1Research supported in part by Polish KBN grant 2 P03A 011 18 and NSF grant DMS-
9706903
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By ϕ(t, x0) we will denote a solution at the time t of (1) with an initial
condition x(0) = x0. It is obvious from equations (1-2) that V (t, x0) = ∂ϕ

∂x (t, x0).
By a C0-algorithm we refer to a procedure which gives rigorous estimates

for ϕ(t, x) (or the Poincaré map P (x)). By a C1-algorithm we mean a rigorous
procedure for the computation of ϕ(t, x) and ∂ϕ(t,x)

∂x (or P (x) and ∂P
∂x ).

Examples of C0-algorithms: algorithms based on the logarithmic norms
(used in [MM, GZ]), the Lohner algorithm [Lo] or the Hermite-Oberschkoff
method proposed by Nedialkov and Jackson (see [NJ] for much more complete
list).

One can perform a C1-computation just by a direct application a C0-algorithm
to the problem consisting of equations (1) and (2). This approach totally ignores
the structure of the system (1-2) and usually leads to a very poor performance
and long computation times (see section 6 for more comments). In this paper
we present a modification of the Lohner algorithm, which allows to perform
the C1-computations essentially in the same time as the one required for the
C0-algorithm.

The reader should be aware that the basic problem with rigorous compu-
tations of solutions of equation (1) is our inability to obtain good rigorous
bounds on the difference between two nearby solutions (we will refer to it as
the Lipschitz part of error). A part of this inability is due to the very nature
of the interval computations – a phenomenon called the wrapping effect, which
is discussed in virtually every paper in the field of rigorous computations for
ODE’s (see [NJ] and references given there). This is the reason for the apparent
complexity of the Lohner-type algorithms – the original Lohner algorithm, the
Hermite–Obreschkoff method [NJ] or the algorithm presented here, because an
essential part of these algorithms is devoted to controlling the Lipschitz part of
error to avoid or rather to suppress the wrapping effect. This complexity results
in the slowness of these algorithms compared to the ones based on logarithmic
norms or the direct interval evaluation, when we consider the time needed to
compute one initial condition. But the bounds for the Lipschitz part of error
obtained using this approach are so poor, that it turns out that the Lohner-type
algorithms are much faster in the task of computing the image of Poincaré map
of a cube with a desired accuracy.

There also exists another way to control effectively the Lipschitz part of
error. We call it a division method. It was used in [MM, T, T1]. To explain the
main idea let us consider the computation of P ([x]), where [x] is a box in Rn and
P is a Poincaré map. As we compute ϕ(t, [x]) along the trajectory the obtained
image (denoted here by 〈ϕ(t, [x])〉 ) becomes soon considerably bigger than the
true image ϕ(t, [x]) and usually starts to grow exponentially at much faster rate
than the intrinsic growth rate from the ODE under consideration. To deal with
this problem we divide at some moment t the current value of 〈ϕ(t, [x])〉 into
smaller pieces and we continue evolve them separately. The division procedure
can be applied many times until we reach the Poincaré section. It turns out
that the small pieces will move away one from another at the rate given by the
ODE and since they are smaller their growth rate due to the numerics will be
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usually smaller than that for the undivided set, hence resulting in much better
bounds. In the result we allow the intrinsic dynamics of ODE to take part in the
control of the Lipschitz part of error, but this happens at the cost of managing
the division process and the computation of a larger number of initial value
problems.

One can expect that the optimal algorithm will be a combination of both the
Lohner-type approach and the division method, but how to link them in the most
efficient way will probably depend on the particular ODE under consideration.

Sections 2 and 3 contain a detailed description of the proposed C1-Lohner
algorithm. In section 6 we discuss briefly the relative cost of the C0-Lohner and
the C1-Lohner algorithms, we also address there the issue of a direct computa-
tion of solutions of equations (1-2) using the C0-Lohner algorithm. Section 5
we describe how we extract P (x) and ∂P

∂x ) from rigorous estimates for ϕ(t, x)
and ∂ϕ(t,x)

∂x .
In section 7 we report on two applications of the proposed algorithm to

obtain proofs of an existence of single periodic orbits for the Rössler equation and
the 14-dimensional Galerkin projection of the Kuramoto-Sivashinsky equations.
The algorithm described here was also successfully applied to the Henon-Heiles
hamiltonian (see [AZ2]) and to the planar restricted circular three body problem
(see [WZ]) to obtain an infinite number of geometrically distinct homo- and
heteroclinic orbits to some periodic orbits.

The Appendix contains the formulas we used to generate the Taylor expan-
sion for the applications described in section 7.

2 C1-Lohner algorithm

The goal of this section is to present the C1-Lohner algorithm for ODEs. In
fact we give a description of three algorithms: the original Lohner algorithm
(C0-computation) and two C1-algorithms called C1

1 - and C1
2 -algorithm.

We want to solve the system consisting of equations (1) and (2) with the
following initial conditions

x(0) ∈ [x0] ⊂ Rn, V (0, [x0]) = Id (3)

2.1 Notation

In the sequel, by arabic letters we denote single valued objects like vectors, real
numbers, matrices. Quite often in this paper we will use square brackets, for
example [r], to denote sets. Usually this will be some set constructed in the
algorithm. Sets will be also denoted by single letters, for example S, when it
is clear from the context that it represents a set. In situations when we want
to stress (for example in the detailed description of algorithm) that we have a
set in a formula involving both single-valued objects and sets together we will
rather use square bracket, hence we prefer to write [S] instead of S to represent
a set. From this point of view [S] and S are different symbols in the alphabet

3



used to name variables and formally speaking there is no relation between the
set represented by [S] and the object represented by S. Quite often in the
description of the algorithm we will have a situation that both variables [S]
and S are used simultaneously, then usually S ∈ [S], but this is always stated
explicitly.

For a set [S] by [S]I we denote the interval hull of [S], i.e. the smallest
product of intervals containing [S]. The symbol hull(x1, . . . , xk) will denote the
interval hull of intervals x1, . . . , xk. For any interval set [S] = [S]I by m([S]) we
will denote a center point of [S]I . For any interval [a, b] we define a diameter
by diam([a, b]) = b − a. For an interval vector or an interval matrix [S] = [S]I
by diam ([S]) we will denote the maximum of diameters of its components. For
an interval [x−, x+] we set right([x−, x+]) = x+ and left([x−, x+]) = x−.

For a set X ⊂ Rd by intX we denote an interior of X.

2.2 Taylor coefficients for x(t, x0) and V (t, x0)

Let Φ(h, x, p) denotes the Taylor method of order p for equation (1). For a
description of a procedure for generation of Φ for an arbitrary order for a wide
class of functions the reader is referred to [Mo, Ra]. The basic idea of this proce-
dure can be explained as follows. Let us set x(t, x0) = ϕ(t, x). By differentiation
with respect to t of (1) and (2) we obtain

d2

dt2
x(t, x0) =

d

dt
f(x(t, x0)) = df(x(t, x0)) · f(x(t, x0))

d2

dt2
V (t, x0) =

d

dt
(df(x(t, x0)) · V (t, x0)) =

df2(x(t, x0))(f(x(t, x0), f(x(t, x0)) + df(x(t, x0)) · df(x(t, x0)) · V (t, x0).

We see that the second derivatives with respect to t of x(t, x0) and V (t, x0)
are functions of x(t, x0) and V (t, x0), only. Hence there exists functions a1 :
Rn → Rn and b1 : Rn × Rn×n → Rn×n such that

d2

dt2
x(t, x0) =

d

dt
f(x(t, x0)) = a1(x(t, x0)) (4)

d2

dt2
V (t, x0) =

d

dt
(df(x(t, x0)) · V (t, x0)) = b1(x(t, x0), V (t, x0)) (5)

An easy induction shows that in general for i ≥ 2 we have

di

dti
x(t, x0) =

di−1

dti−1
f(x(t, x0)) = ai−1(x(t, x0)) (6)

di

dti
V (t, x0) =

di−1

dti−1
(df(x(t, x0)) · V (t, x0)) = bi−1(x(t, x0), V (t, x0)) (7)

for some functions ai : Rn → Rn and bi : Rn ×Rn×n → Rn×n. In the sequel we
will use the following notation

di

dti
f = ai (8)
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di

dti

(
∂f

∂x
V

)
= bi (9)

In this notation the symbols di

dti f and di

dti

(
∂f
∂xV

)
are the functions of x and V .

Explicit formulae for Taylor coefficients for polynomials of degree 2 are given
in the Appendix.

2.3 An outline of algorithms

Before we present the Lohner algorithm and our C1-modification of it we would
like to stress the main points in the Lohner original algorithm [Lo]

• Even to perform C0-computations one needs some kind of a C1-data,
because a direct evaluation of Φ(h, x0, p) using an interval arithmetic leads
to the wrapping effect, which allows to integrate equation (1) for a very
short time, only.

• The C1-information about ϕ is obtained by computing a partial derivative
of an explicitly given Φ(h, x, p) instead of estimating ∂ϕ(h,x)

∂x .

• The rearrangement computations together with the knowledge of ∂Φ(h,x,p)
∂x

reduce considerably the wrapping effect.

Obviously to have a rigorous procedure one needs also to take care of the er-
rors introduced by the finite computer arithmetic (round-off errors) and the
discretization error of the numerical method used (the Taylor method in the
Lohner algorithm). The round-off errors are taken care of by the interval arith-
metic (see [Lo, MZ] and references given there).

The basic idea of modification of an original Lohner algorithm, which leads
to a C1-Lohner algorithm presented here, is the realization that ∂Φ(h,x,p)

∂x is
also a Taylor expansion for ∂ϕ(h,x)

∂x , hence with a little additional computational
effort we can turn a C0-algorithm into a C1-algorithm. More precisely we have
the following

Lemma 1 Consider the problem (1,2,3). Let h > 0. Assume that [W1] ⊂ Rn

is a compact and convex set such that

ϕ([0, h], [x0]) ⊂ [W1] (10)

and [W3] ⊂ Rn×n is a compact and convex set, such that

V ([0, h], [x0]) ⊂ [W3]. (11)

Then

• ∂ϕ
∂x (t, x) = V (t, x) for t ∈ [0, h] and x ∈ [x0]

• V (h, [x0]) ⊂ ∂Φ(h,[x0],p)
∂x + hp+1

(p+1)!

(
dp

dtp

(
∂f
∂xV

)
([W1], Id)

)
· [W3]
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Let us remind the reader (see section 2.2), that the symbol dp

dtp

(
∂f
∂xV

)
is a

function of x and V , hence it makes sense to plug-in [W1] for x and Id for V .
Proof: The first assertion is obvious.

To prove second one we show that it is a Taylor expansion for V of order p
plus a remainder term.

Observe that by the definition of Φ it follows that

Φ(h, x, p) =
p∑

i=0

∂iϕ(0, x)
∂ti

hi

i!
(12)

We differentiate the above formula with respect to x to obtain

∂Φ(h, x, p)
∂x

=
p∑

i=0

∂i

∂ti
∂ϕ(0, x)

∂x

hi

i!
=

p∑

i=0

di

dti
V (0, x)

hi

i!
. (13)

It remains to compute an enclosure for the remainder term [R] ⊂ Rn×n given
by

[R]ij =
hp+1

(p + 1)!
dp+1

dtp+1
Vij(θijh, x) (14)

for i, j = 1, . . . , n and x ∈ [x0], where θij ∈ [0, 1] depends on x.
We will derive a different expression for the remainder term. Observe that

for t, s ≥ 0 we have

V (t + s, x) = V (s, ϕ(t, x)) · V (t, x). (15)

Hence after taking m derivatives with respect to s we obtain for s = 0 the
following identity

dm

dtm
V (t, x) =

(
dm

dtm
V (0, ϕ(t, x))

)
· V (t, x). (16)

Hence for m = p+1, taking into account that ϕ(θijh, x) ⊂ [W1], V (t, x) ⊂ [W3]
for x ∈ [x0], and equations (7) and (9) we obtain

[R] ⊂ hp+1

(p + 1)!

(
dp

dtp

(
∂f

∂x
V

)
([W1], Id)

)
· [W3] (17)

Remark 2 Observe that we can enclosure the remainder term for V (h, [x0]) in
second assertion of Lemma 1 by

[R] =
dp

dtp

(
∂f

∂x
V

)
([W1], [W3])

h(p+1)

(p + 1)!
, (18)

but the formula given there is cheaper to compute and gives better bounds.
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Let us fix pe and pv being respectively the orders for the Taylor methods
used to solve equations (1) and (2) respectively. For the C1

2 -algorithm we require
that pv ≥ pe.

In the description below the objects with an index k refer to the current
values and those with an index k + 1 are the values after the next time step.

One step of the Lohner algorithms is a shift along the trajectory of system
(1-2) with following input and output data:
Input data:

• tk - a current time

• hk - a time step

• [xk] ⊂ Rn, such that ϕ(tk, [x0]) ⊂ [xk]

• (for C1-algorithms, only) [Vk] ⊂ Rn×n, such that ∂ϕ
∂x (tk, [x0]) ⊂ [Vk]

Output data:

• tk+1 = tk + hk - a new current time

• [xk+1] ⊂ Rn, such that ϕ(tk+1, [x0]) ⊂ [xk+1]

• (for C1-algorithms, only) [Vk+1] ⊂ Rn×n, such that ∂ϕ
∂x (tk+1, [x0]) ⊂ [Vk+1]

We do not specify here a form (a representation) of sets [xk], and [Vk].
They can be interval sets, balls, doubletons etc. (see [MZ]). This issue is very
important in handling the wrapping effect and will be discussed in detail in
section 3.

One step of the algorithm consists from the following parts:

Part 1a. A computation of a rough enclosure [W1] for equation (1).

[W1] is a compact and convex set such that

ϕ([0, hk], [xk]) ⊂ [W1] (19)

Part 1b. (Required for C1
1 -algorithm). A computation of a rough enclosure

[W2] for equation (1).

[W2] is a compact and convex set, such that

ϕ([0, hk],m([xk])) ⊂ [W2] (20)

Part 2. (Required for C1-algorithms). A computation of a rough enclosure
[W3] for equation (2).

[W3] is a compact and convex set, such that

V ([0, hk], [xk]) ⊂ [W3] (21)

Part 3. A computation of ∂Φ
∂x and (for C1-algorithms) [Vk+1].

Part 4. A computation of [xk+1]
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2.4 Part 1 - a computation of a rough enclosure for equa-
tion (1)

Let [Y ] = [Y ]I be an interval set, such that [xk] ⊂ [Y ]. It is easy to see that, if

[[xk] + [0, hk]f([Y ])]I ⊂ int [Y ] (22)

holds, then
ϕ([0, hk], [xk]) ⊂ [W1] = [[xk] + [0, hk]f([Y ])]I , (23)

where by [[xk] + [0, hk]f([Y ])]I we denote the interval enclosure of the set [xk]+
[0, hk]f([Y ]).

Equation (22) suggests an iterative procedure. We can start with some [Y0]
such that [xk] ⊂ [Y0] and then set [Yi+1] = [[xk]+ [0, hk]f([Yi])]I , till (22) holds.
This procedure does not always work, for example usually hk cannot be too
large for this procedure to succeed.

Sometimes, if some a-priori bounds, B, for the solutions of (1) are known
we can take these bounds as [W1]. To tighten these bounds we can refine [W1]
as follows

[W1] = B ∩ [[xk] + [0, hk]f(B)]I . (24)

2.5 Part 2 - a computation of a rough enclosure for the
variational part

In this section by ‖x‖ we denote an arbitrary norm.
In order to present and justify the procedure for producing a rough enclosure

for the variational part we need to recall a notion of the logarithmic norm of a
square matrix.

Definition 1 [HNW, Def. I.10.4] Let Q be a square matrix, then we call

µ(Q) = lim
h>0,h→0

‖Id + hQ‖ − 1
h

the logarithmic norm of Q.

Theorem 3 [HNW, Th. I.10.5] The logarithmic norm is obtained by the fol-
lowing formulas

• for the Euclidean norm

µ(Q) = the largest eigenvalue of 1/2(Q + QT ).

• for the max norm ‖x‖ = maxk |xk|

µ(Q) = max
k


qkk +

∑

i 6=k

|qki|


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• for the norm ‖x‖ =
∑

k |xk|

µ(Q) = max
i


qii +

∑

k 6=i

|qki|



The following theorem was proved in [HNW] (Theorem I.10.6)

Theorem 4 Consider the differential equation

dx

dt
= f(t, x), f ∈ C1, x ∈ Rn. (25)

Let t0 < t1 < . . . < tk = tN . Let x(t) be any solution of (25) on the interval.
[t0, tN ]. Let ν(t) denote the Euler polygon, so that

ν′(t) = f(ti, xi), for ti < t < ti+1, i = 0, . . . , N − 1. (26)

Suppose that we have the estimates for t0 ≤ t ≤ tN

µ

(
∂f

∂x
(t, η)

)
≤ l(t), for η ∈ [x(t), ν(t)] (27)

‖ν′(t)− f(t, ν(t))‖ ≤ δ(t) (28)
‖ν(t0)− x(t0)‖ ≤ ρ (29)

Then for tN ≥ t > t0 we have

‖x(t)− ν(t)‖ ≤ eL(t)

(
ρ +

∫ t

t0

e−L(s)δ(s)ds

)
, (30)

where L(t) =
∫ t

t0
l(s)ds.

In fact the proof of above given in [HNW] is valid for any function ν, which
is piecewise C1. Hence we can take ν(t) to be also the solution of (25) in above
theorem. In this situation δ(t) = 0 and we obtain the following

Theorem 5 Let Z be a convex set and µ(∂f
∂x (x)) ≤ l for x ∈ Z. Suppose that

ϕ(t, x) ∈ Z and ϕ(t, y) ∈ Z for all t ∈ [0, h]. Then

‖ϕ(h, y)− ϕ(h, x)‖ ≤ ehl‖y − x‖
‖∂ϕ(t, x)

∂x
‖ ≤ etl, for t ∈ [0, h]

The enclosure procedure can be formulated as follows:
Input parameters:

• hk - a time step

• [xk] ⊂ Rn and [Vk] ⊂ Rn×n
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• [W1] ⊂ Rn - compact and convex, such that ϕ([0, hk], [xk]) ⊂ [W1]

On output we compute [W3] as follows:

1. l = µ(∂f
∂x ([W1]))

2. We define an interval matrix [W ] ⊂ Rn×n by [Wij ] = [±max(el[0,hk])] i, j =
1, . . . , n

3. [W3] =
(
Id +

[
[0, hk] · ∂f

∂x ([W1])
]

I
· [W ]

)
∩ [W ]

From Theorem 5 it follows that V ([0, hk], [xk]) ⊂ [W ], where [W ] is defined
in the second step of the above procedure. The next step is an attempt to refine
this enclosure by using equation (2).

2.6 Part 3 - A computation of the variational part

Input parameters:

• hk - a time step

• [xk] ⊂ Rn and [Vk] ⊂ Rn×n

• [W1] ⊂ Rn - compact and convex, such that ϕ([0, hk], [xk]) ⊂ [W1]

• (for C1-algorithms) [W3] ⊂ Rn×n such that V ([0, hk], [xk]) ⊂ [W3]

From the linearity of equation (2) with respect to V it follows that

V (tk + hk, [x0]) ⊂ V (hk, [xk]) · [Vk],

hence to compute [Vk+1] it is enough to compute bounds for V (hk, [xk]), which
we will denote [Jk]. To control the Lipschitz part of error for the x-variable
we will use the matrix [Ak], which for the C1

1 -algorithm is equal to [Jk] (the
partial derivative of the flow with respect to initial conditions) and for C0- and
C1

2 -algorithms we use instead the partial derivative of the Taylor expansion (this
is an original Lohner approach) .

To be more specific, we proceed as follows
C1

1 -algorithm: We set

[Ak] = [Jk] = Id +
pv∑

i=1

d(i−1)

dt(i−1)

(
∂f

∂x
V

)
([xk], Id)

hi
k

i!
+

hpv+1
k

(pv + 1)!

(
dpv

dtpv

(
∂f

∂x
V

)
([W1], Id)

)
· [W3] (31)

From Lemma 1 it follows that we have

∂ϕ

∂x
(hk, [xk]) = V (hk, [xk]) ⊂ [Jk] = [Ak]. (32)
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C1
2 -algorithm: We set

[Ak] = Id +
pe∑

i=1

d(i−1)

dt(i−1)

(
∂f

∂x
V

)
([xk], Id)

hi
k

i!
. (33)

The remainder of the Taylor expansion of the order pv plus the error term are
given by

[∆Ak] =
pv∑

i=pe+1

d(i−1)

dt(i−1)

(
∂f

∂x
V

)
([xk], Id)

hi
k

i!
+

hpv+1
k

(pv + 1)!

(
dpv

dtpv

(
∂f

∂x
V

)
([W1], Id)

)
· [W3] (34)

Finally we set
[Jk] = [Ak] + [∆Ak] (35)

Observe that by Lemma 1 we have

∂Φ
∂x

(h, [xk], pe) ⊂ [Ak]

∂ϕ

∂x
(hk, [xk]) = V (hk, [xk]) ⊂ [Jk].

On output:

• the interval matrix [Ak], such that for C0- and C1
2 algorithms we have

∂Φ
∂x

(hk, [xk], pe) ⊂ [Ak] (36)

and for the C1
1 -algorithm we have

∂ϕ

∂x
(hk, [xk]) ⊂ [Ak]. (37)

• (for C1-algorithms, only) the interval matrix [Vk+1], such that

∂

∂x
ϕ(hk, [xk]) ⊂ [Jk] (38)

V (tk + hk, [x0]) ⊂ [Vk+1] = [Jk] · [Vk] (39)

We do not specify here, how we evaluate the product [Jk] · [Vk]. This depends
on the representation of [Vk] and is discussed in Section 3.

Let us stress here that what we add in C1-algorithms, when compared to
the C0-algorithm, is only the computation of the error term for [Jk] plus an
evaluation of [Jk] · [Vk], because the Taylor expansion for V is already computed
in [Ak], which is also is present in the C0-algorithm.

11



2.7 Part 4 - a moving forward with x

Input parameters for C0- and C1
2 -algorithm

• hk - a time step

• [xk] ⊂ Rn - a current estimate for ϕ(tk, [x0])

• [W ] ⊂ Rn - a compact and convex set, such that ϕ([0, hk], [xk]) ⊂ [W ]
(this is the set [W1] obtained in 1a)

• [Ak] ⊂ Rn×n, such that ∂Φ
∂x (hk, [xk], pe) ⊂ [Ak]

Input parameters for C1
1 -algorithm

• hk - a time step

• [xk] ⊂ Rn - a current estimate for ϕ(tk, [x0])

• [W ] ⊂ Rn - a compact and convex set, such that ϕ([0, hk], m([xk])) ⊂ [W ]
(this is the set [W2] obtained in 1b)

• [Ak] ⊂ Rn×n, such that ∂ϕ
∂x (hk, [xk]) ⊂ [Ak]

On output we set

[xk+1] = Φ(hk,m([xk]), pe) +
dpe

dtpe
f([W ])

hpe+1
k

(pe + 1)!
+ [Ak]([xk]−m(xk)). (40)

3 The rearrangement computations.

It is well known that the straightforward interval evaluation of the products of
matrices and vectors leads immediately to the so-called wrapping effect (see for
example [Lo, NJ, AZ]). As it will follow from the discussion below we can avoid
it to some extend, by treating the products appearing in the algorithm carefully.
We will refer to this part of the algorithm as the rearrangement computations.

3.1 Evaluation of equation (40)

To discuss various methods of an evaluation of equation (40) following [Lo, Lo1]
we decompose [xk] as follows

[xk] = xk + [rk], where xk = m([xk]), [rk] = [xk]− xk (41)

We set

xk+1 = m

(
Φ(hk,m([xk]), pe) +

dpe

dtpe
f([W ])

hpe+1
k

(pe + 1)!

)

[zk+1] = Φ(hk,m([xk]), pe) +
dpe

dtpe
f([W ])

hpe+1
k

(pe + 1)!
− xk+1

12



With these notations equation (40) becomes

[rk+1] = [Ak][rk] + [zk+1] (42)

Evaluation 1. In [MZ] terminology this approach is called an interval set. This
is a direct evaluation of (42) using interval arithmetic. This method is simple
and fast, but usually produces very bad bounds due to the wrapping effect.

To avoid the wrapping effect Lohner proposed the following: instead of rep-
resenting [rk] as an interval vector, he proposed to use parallelograms (interval
vectors in other coordinate systems) i.e. [rk] = Bk[r̂k], where Bk are nonsingular
matrices and [r̂k] are interval vectors. Equation (42) becomes

[rk+1] = [Ak][rk] + [zk+1] = Bk+1

(
B−1

k+1[Ak]Bk[r̂k] + B−1
k+1[zk+1]

)
(43)

In computer calculations it is usually impossible to find an exact inverse of a
given matrix. So in fact we deal with interval matrices [Bi] and [B−1

i ].
Finally we calculate [r̂k] as follows

[r0] = [B0][r̂0], [B0] = {Id} (44)
[r̂k+1] =

(
[B−1

k+1][Ak][Bk]
)
[r̂k] + [B−1

k+1][zk+1] (45)
[rk+1] = [Bk+1][r̂k+1] (46)

It should be stressed that only [r̂k] is computed using the interval arithmetic.
When evaluating r.h.s of equation (45) we do first matrix multiplications as
indicated by brackets. This is the place where we can reduce the wrapping effect,
if we make a good choice of [Bk]’s . We evaluate formula (46) to compute rough
enclosures and an at the end of computations (while considering the intersection
of the orbit of [x0] with a Poincaré section).
Evaluation 2. In the [MZ] terminology this approach is called a parallelepiped.
We choose Bk+1 ∈ [Ak][Bk]. This is not a method recommended for general
applications. The main problem with this method is the need of calculating the
inverse of a matrix.
Evaluation 3. In the [MZ] terminology this approach is called a cuboid. Choose
a matrix U ∈ [Ak][Bk], we perform an approximate floating-point QR-decom-
position of U . Let the matrix Q be a Q-factor from this decomposition. The
matrix Q is very close to an orthogonal one. Next, we apply an interval Gram-
Schmidt procedure to columns of Q to obtain a matrix [Q0]. Observe that [Q0]
contains an orthogonal matrix, Q1, hence Q−1

1 = QT
1 ∈ [Q0]T .

We set Bk+1 = Q1, B−1
k+1 = QT

1 . This leads to

[Bk+1] = [Q0], [B−1
k+1] = [Q0]T . (47)

Slightly different approach (probably more efficient) was proposed originally
by Lohner. Namely, instead of orthogonalizing of columns of Q he proposed to
compute rigorously inverse of Q. Observe that since Q is almost orthogonal,
the rigorous Q−1 can be obtained very easily with little cost.
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Evaluation 4. In the [MZ] terminology this approach is called a doubleton.
This method is designed to handle the situation, when the initial error is large
in comparison to local errors produced in every step. Lohner proposed to sepa-
rately keep track of the error originating from [r0] and the local errors produced
in every step. An example of such a method is given by

[rk+1] = [Ek+1][r0] + [r̃k+1] (48)
where [r̃k+1] = [Ak][r̃k] + [zk+1] (49)

and [Ek+1] = [Ak][Ek], [E0] = Id (50)

and [r̃k] is evaluated using any method described previously (preferably evalu-
ation 3). It is easy to see that the matrix [Ek] corresponds to ∂ϕ(tk+1,·)

∂x . We
still have some wrapping effect in the product [Ak][Ek], which becomes more
and more important when we want to follow the trajectory for a longer time.
To avoid this Lohner proposed the following

[rk+1] = Ck+1[r0] + [r̃k+1] (51)
where [r̃k+1] = [Ak][r̃k] + [zk+1] + ([Ak]Ck − Ck+1)[r0], [r̃0] = 0 (52)

and C0 = Id, Ck+1 ∈ [Ak]Ck (53)

and [r̃k] is evaluated using any method described previously (preferably evalu-
ation 3).

The tests in [MZ] on the Rössler equation and the Lorenz equation show
that the last approach - a doubleton is by far better than the previous ones.

3.2 Evaluation of equation (39)

To evaluate (39) we mimic the approach from the previous subsection.
Evaluation 1. The direct interval evaluation.

To discuss other evaluations let us decompose first the interval matrices [Vk]
into the center point and the ’remainder’

[Vk] = Vk + [∆Vk], (54)

We can rewrite equation (39) as follows

Vk+1 + [∆Vk+1] = [Jk]Vk + [Jk][∆Vk] (55)

Let

Vk+1 = m([Jk]Vk) (56)
[Zk+1] = [Jk]Vk − Vk+1. (57)

We have
[∆Vk+1] = [Jk] · [∆Vk] + [Zk+1] (58)

We see that this equation has the same structure as equation (42), where
[∆Vk] corresponds to [rk], [Zk+1] to [zk+1] and [Jk] to [Ak]. Hence we can treat
it with similar methods.
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For any family of nonsingular matrices [Bk] for k = 0, 1, . . . we set [∆Vk] =
[Bk][∆̃Vk]. Equation (58) becomes

[∆Vk+1] = [Bk+1]
(
[B−1

k+1][Jk][Bk][∆̃Vk] + [B−1
k+1][Zk+1]

)
(59)

We define the following scheme for an evaluation of equation (58)

[∆Vk] = [Bk][∆̃Vk]

[∆̃V0] = 0, [B0] = Id

[ ˜∆Vk+1] =
(
[B−1

k+1][Jk][Bk]
)
[∆̃Vk] + [B−1

k+1][Zk+1]

Evaluation 2. Choose Bk+1 to be any matrix in [Jk] · [Bk].
Evaluation 3. Take any U ∈ [Jk] · [Bk], perform the QR-decomposition of U
and set [Bk+1] = [Q]. Just as in the previous subsection this method appears
to be better than the previous evaluations.
Evaluation 4. Since we start with a zero matrix ([∆V0] = 0), there is no a
Lipschitz part at the beginning and we apply any of the previous evaluations
(preferably the 3-rd one) till ∆̃Vk become ’thick’ (its diameter becomes larger
than some threshold value). Suppose that this happens after k0 steps. Then we
switch to a doubleton representation as follows

[∆Vk] = CV
k [∆V0] + ∆Vk, k ≥ k0

CV
k+1 ∈ [Jk]·CV

k , ∆Vk+1 = [Jk] · [∆Vk] + ([Jk] · CV
k − CV

k+1)[∆V0] + [Zk+1].

We initiate the variables CV
k0

, [∆V0], ∆Vk0 and redefine [Bk0 ] as follows

[∆V0] = [∆̃Vk0 ], CV
k0

= m([Bk0 ]),

∆Vk0 = ([Bk0 ]− CV
k0

)[∆V0], [Bk0 ] = Id.

The interval matrix [∆Vk] is evaluated using any of the previous evaluation
methods (preferably evaluation 3).

4 Rigorous estimates between time steps

The goal of this section is to answer the following question, which is very im-
portant in the computation of the Poincaré map:

How to estimate ϕ(t, x) and ∂ϕ
∂x between time steps?

Obviously for this purpose we can use rough enclosures [W1] and [W3]. Here
we present a much more efficient and relatively cheap approach.

The following lemma tells us how well is ϕ(τ + t, x) for t ∈ (0, h) approxi-
mated by the segment joining ϕ(τ, x) and ϕ(τ + h, x).
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Lemma 6 Let Z ⊂ Rn be a convex set such that ϕ(τ + t, x) ∈ Z for t ∈ [0, h],
then ∣∣∣∣ϕi(τ + t, x)−

(
(1− t

h
)ϕi(τ, x) +

t

h
ϕi(τ + h, x)

)∣∣∣∣ ≤

h2

2
max
z∈Z

∣∣∣∣∣∣
∑

j

∂fi

∂xj
(z) · fj(z)

∣∣∣∣∣∣
(60)

Proof: Without any loss of generality we can assume that τ = 0, hence
ϕ(τ, x) = x. Observe that we can represent the interval joining x and ϕ(h, x)
as follows

(1− t

h
)x +

t

h
ϕi(h, x) = x + t

ϕ(h, x)− x

h
(61)

(1− t

h
)x +

t

h
ϕi(h, x) = ϕ(h, x)− (1− t

h
)(ϕ(h, x)− x) (62)

We will use formula (61) for t ∈ [0, h/2] and formula (62) t ∈ [h/2, h].
Assume that t ∈ [0, h/2]. From the mean value theorem we obtain for some

θ1, θ2, θ3 ∈ [0, 1]

|ϕi(t, x)− (xi + t
ϕi(h, x)− xi

h
)| = |(ϕi(t, x)− xi)− t

ϕi(h, x)− xi

h
| =

= |t||fi(ϕ(θ2t, x))− fi(ϕ(θ1h, x))|

= |t||θ2t− θ1h|
∣∣∣∣∣∣
∑

j

∂fi

∂xj
(ϕ(θ3h, x)) · fj(ϕ(θ3h, x))

∣∣∣∣∣∣
≤

h2

2

∣∣∣∣∣∣
∑

j

∂fi

∂xj
(z) · fj(z)

∣∣∣∣∣∣

where z = ϕ(θ3h, x) ∈ Z.
Similarly for t ∈ [h/2, h] we have

|ϕi(t, x)− (ϕi(h, x)− (1− t/h)(ϕi(h, x)− xi))| =
|(ϕi(t, x)− ϕi(h, x)) + (1− t/h)(ϕi(h, x)− xi))| =
|(t− h)fi(ϕi(θ1h, x) + (1− t/h)hfi(ϕi(θ2h, x)| =

(h− t)|θ1h− θ2h|
∣∣∣∣∣∣
∑

j

∂fi

∂xj
fj(z)

∣∣∣∣∣∣
≤ h2

2

∣∣∣∣∣∣
∑

j

∂fi

∂xj
(z) · fj(z)

∣∣∣∣∣∣

where z = ϕ(θ3h, x) ∈ Z.

When we apply Lemma 6 to the system (1-2) then for r.h.s in equation (60)
for Vij we obtain the following expression

∑

l

∂V ′
ij

∂xl
fl +

∑

lm

∂V ′
ij

∂Vlm
V ′

lm =
∑

kl

∂2fi

∂xk∂xl
Vkjfl +

∑

l

∂fi

∂xl
V ′

lj =
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∑

kl

∂2fi

∂xk∂xl
Vkjfl +

∑

lm

∂fi

∂xl

∂fl

∂xm
Vmj

Hence we have proved the following

Lemma 7 Let Z ⊂ Rn and M ⊂ Rn×n be convex set such that ϕ(τ + t, x) ∈ Z
and V (τ + t, x) ∈ M for t ∈ [0, h], then

∣∣∣∣Vij(τ + t, x)−
(

(1− t

h
)Vij(τ, x) +

t

h
Vij(τ + h, x)

)∣∣∣∣ ≤

h2

2
max

z∈Z,A∈M

∣∣∣∣∣
∑

kl

∂2fi

∂xk∂xl
(z)Akjfl(z) +

∑

lm

∂fi

∂xl
(z)

∂fl

∂xm
(z)Amj

∣∣∣∣∣

Lemmas 6 and 7 offer a justification for the following procedure for the es-
timation of ϕ([0, hk], [xk]) and V (tk + [0, hk], [x0])

PROCEDURE:
Input parameters:

• hk - a time step

• [xk] ⊂ Rn, such that ϕ(tk, [x0]) ⊂ [xk]

• [xk+1] ⊂ Rn such that ϕ(hk, [xk]) ⊂ [xk+1]

• [W1] ⊂ Rn compact and convex, such that ϕ([0, hk], [xk]) ⊂ [W1]

• (for C1 algorithms ) [Vk] ⊂ Rn×n, such that V (tk, [x0]) ⊂ [Vk]

• (for C1 algorithms ) [Vk+1] ⊂ Rn×n, such that V (tk + hk, [x0]) ⊂ [Vk+1]

• (for C1 algorithms ) [W3] ⊂ Rn×n compact and convex, such that V ([0, hk], [xk]) ⊂
[W3]

Output:
We compute [Ek] ⊂ Rn such that

ϕ([0, hk], [xk]) ⊂ [Ek],

and for C1-algorithms [Mk] ⊂ Rn×n such that

V (tk + [0, hk], [x0]) ⊂ [Mk].

We proceed as follows

• if 0 ∈ fi([W1]), then

[Ek]i := hull([xk]i, [xk+1]i) + [−1, 1] · h2
k

2

∣∣∣∣∣∣
∑

j

∂fi

∂xj
([W1]) · fj([W1])

∣∣∣∣∣∣
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• if 0 /∈ fi([W1])i, then i-th coordinate is strictly monotone on [W1], hence
we set

[Ek]i = hull([xk]i, [xk+1]i)

For C1-algorithms:
We define

[W4] = [W3] · [Vk]. (63)

It is easy to see that V (tk + [0, hk], [x0]) ⊂ [W4].

• if V ′
ij([W1], [W4]) =

∑
l

∂fi

∂xl
([W1]) · [W4]lj contains 0, then

[Mk]ij = hull([Vk]ij , [Vk+1]ij) +

[− 1, 1] · h2
k

2

∣∣∣∣∣
∑

kl

∂2fi

∂xk∂xl
([W1]) · [W4]kj · fl([W1])+

∑

lm

∂fi

∂xl
([W1]) · ∂fl

∂xm
([W1]) · [W4]mj

∣∣∣∣∣

• if V ′
ij([W1], [W4]) does not contain 0, then Vij(tk + t, [x0] is strictly mono-

tone for t ∈ [0, hk], hence we can set

[Mk]ij = hull([Vk]ij , [Vk+1]ij).

5 Poincaré map

The goal of this section is to show how from the bounds for ϕ(t, x) and ∂ϕ
∂x

obtained by C0- and C1-Lohner algorithms we can compute P (x) and ∂P
∂x .

In Section 5.1 we derive the formulas, which express ∂P
∂x in terms of ∂ϕ

∂x .
In Section 5.2 we discuss in details the procedure which allows to compute

P and ∂P
∂x from the data obtained from the Lohner algorithm.

In Section 5.3 we discuss the issue of errors related to the computation of
intersection of the trajectory with a section. Insights gained in this section are
then used in Section 5.4 to describe an efficient time step selection scheme near
the section.

Let α : Rn → R be a C1 function. We define a section, Θ, by the

Θ = {x | α(x) = 0, f(x) · ∇α(x) > 0}. (64)

We assume that Θ is a local section for equation (1).
For x ∈ Rn by tp(x) we will denote the return time to Θ. This means that

ϕ(tp(x), x) ∈ Θ. (65)
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The Poincaré map P : Θ ⊃ dom (P ) → Θ can be seen as a restriction the section
of the map P̃ : Rn ⊃ U → Rn given by

P̃ (x) = ϕ(tp(x), x). (66)

From now on we will not distinguish between the map P̃ and P , and we will
use the same symbol P to denote both of them. Hence we effectively treat a
Poincaré map as a map defined on some open subset in Rn for two reasons, we
want to avoid any particular coordinate system on Θ and we want to allow for
maps between the different sections.

To infer the derivatives of P : Θ → Θ we have consider how Θ is embedded
in Rn. For example, when α(x) = x1 − C and we use (x2, . . . , xn) to represent
the points on Θ, then we just drop the first row and the first column from the
matrix ∂P̃

∂x .

5.1 A formula for partial derivatives of Poincaré map

The Poincaré map P is defined by

P (x) = ϕ(tP (x), x), (67)

where tP : Rn → R satisfies the following equation

α(ϕ(tp(x), x)) = 0. (68)

Since Θ is a local section, it follows easily from the implicit function theo-
rem that tp is a smooth function. We compute now the derivatives of tp. We
differentiate equation (68) with respect to xj for j = 1, . . . , n to obtain

n∑

i=1

∂α

∂xi
(fi

∂tP
∂xj

+
∂ϕi

∂xj
) = 0

(∇α · f)
∂tP
∂xj

+
n∑

i=1

∂α

∂xi

∂ϕi

∂xj
= 0

Hence
∂tP
∂xj

= − 1
∇α · f

n∑

i=1

∂α

∂xi

∂ϕi

∂xj
(69)

Now we can compute ∂Pi

∂xj

∂ϕi(tP (x), x)
∂xj

= fi
∂tP
∂xj

+
∂ϕi

∂xj
=

∂ϕi

∂xj
− fi

∇α · f
n∑

k=1

∂α

∂xk

∂ϕk

∂xj
(70)

For example if α(x) = x1 − C we obtain

∂Pi

∂xj
= − fi

f1

∂ϕ1

∂xj
+

∂ϕi

∂xj
(71)

Hence we have proved the following
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Lemma 8

∂Pi

∂xj
(x) =

∂ϕi

∂xj
(tp(x), x) + (72)

− fi

∇α · f (ϕ(tp(x), x)) ·
n∑

k=1

∂α

∂xk
(ϕ(tp(x), x))

∂ϕk

∂xj
(tp(x), x)

5.2 Computation of Poincaré map

In this section we describe how from the data supplied by the Lohner algorithm
we can obtain P ([x0]) and ∂P

∂x ([x]). In this section we assume that we have
a prescribed sequence of time steps hk. A proposal for an efficient time step
selection scheme near the Poincaré section is given in Section 5.4.

Let us set tk =
∑k−1

i=0 hi, where hi is the time step used in (i + 1)-th step of
the Lohner algorithm.

From the Lohner algorithm we have

1. a sequence [xN+k] ⊂ Rn, k = 0, . . . , s, such that ϕ(tN+k, [x0]) ⊂ [xN+k]

2. a sequence [VN+k] ⊂ Rn×n, k = 0, . . . , s, such that ∂ϕ
∂x (tN+k, [x0]) ⊂ [VN+k],

such that the following conditions are satisfied

ϕ((0, tN ], [x0]) ∩Θ = ∅ (73)
α([xN ]) < 0 (74)

α([xN+s]) > 0 (75)

For k = 0, . . . , s− 1 we define [EN+k] ⊂ Rn, [MN+k] ⊂ Rn×n as the output
of the procedure described in Section 4. We have

ϕ([tN+k, tN+k+1], [x0]) ⊂ ϕ([0, hN+k], [xN+k]) ⊂ [EN+k] (76)
∂ϕ

∂x
([tN+k, tN+k+1], [x0]) = V ([tN+k, tN+k+1], [x0]) ⊂ [MN+k] (77)

We set

〈P 〉 =
s−1⋃

k=0

[EN+k] (78)

〈V 〉 =
s−1⋃

k=0

[MN+k]. (79)

The sums in above equations are realized by taking the interval enclosures.
We have

ϕ([tN , tN+s], [x0]) ⊂ 〈P 〉 (80)
∂ϕ

∂x
([tN , tN+s], [x0]) ⊂ 〈V 〉. (81)
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Assume now that on 〈P 〉 we have

∇α(〈P 〉) · f(〈P 〉) > 0. (82)

From the above equation it follows that α(t) = α(ϕ(t, x)) is an increasing func-
tion for x ∈ 〈P 〉. Hence from equations (73-75), (80) and (81) it follows imme-
diately that for all x ∈ [x0] the Poincaré map, P , is well defined and

tP ([x0]) ⊂ (tN , tN+s) (83)
P ([x0]) ⊂ [P ] := 〈P 〉 ∩Θ (84)

∂ϕ

∂x
(tP (x), x) ∈ 〈V 〉, ∀x ∈ [x0]. (85)

Finally from Lemma 8 it follows that

∂Pi

∂xj
([x0]) ⊂ 〈dP 〉ij := 〈V 〉ij −

fi

∇α · f ([P ]) ·
n∑

k=1

∂α

∂xk
([P ])〈V 〉kj . (86)

Let us remind the reader that the map P in the above formula is treated as
map P : Rn → Rn (see the beginning of Section 5). To infer the derivatives of
a Poincaré map P : Θ → Θ we have consider how Θ is embeded in Rn. For
example, when α(x) = x1 − C and we use (x2, . . . , xn) to represent the points
on Θ, then we just drop the first row and the first column from the matrix 〈dP 〉
defined in equation (86).

5.3 Estimates for the section error

Let us consider a planar example. We assume that we have a section Θ defined
by α(x) = x1−C = 0 and near Θ the flow is represented by the following system
of equations

x′1 = 1, x′2 = a, a ≥ 0, a ∈ R (87)

It is easy to see that the trajectory of a point (x1, x2), where x1 < 0 will
intersects the section Θ at the point P (x1, x2) = (0, a|x1|+x2) and tp(x1, x2) =
|x1|.

Let [x] = [x−1 , x+
1 ]× [x−2 , x+

2 ], where [x−1 , x+
1 ] < 0. We have

diam (tp([x])) = x+
1 − x1

− (88)
P ([x]) = {0} × [a|x+

1 |+ x−2 , a|x−1 |+ x+
2 ]. (89)

Consider now the computation of P ([x]) using the method described in Sec-
tion 5.2. For this end assume that [xN ] = [x] and the sum in equation (67) is
realized as the interval enclosure, then we have

[x−1 , x+
1 + tN+s − tN ]× [x−2 , x+

2 + a(tN+s − tN )] ⊂ 〈P 〉
{0} × [x−2 , x+

2 + a(tN+s − tN )] ⊂ [P ].
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Hence we obtain

diam ([P ])− diam (P ([xN ])) = a · ((tN+s − tN )− diam (tP ([xN ]))) (90)

The above equation gives us the difference between the computed image and
the true image of the Poincaré map. We will call this difference a section error
and we will denote it by ∆S. In general situation ∆S is a (n− 1)-dimensional
vector and ∆Si is a section error for the i-th coordinate on section.

A higher dimensional generalization of the above example leads to the fol-
lowing formula (for small boxes [xN ] and sections given by α(x) = xj −C) and
the considerations given in Section 4

∆Si ≈ fi

f1
· ((tN+s − tN )− diam (tp([xN ]))) + Ch2, (91)

where fi

f1
should be evaluated on P ([xN ]), h is the time step used close the

section Θ and C is some constant depending on f (see Lemma 6).
From the above formula we see that in order to minimize the section error

we can do three things

1. Take small time steps close to Θ, to minimize the Ch2 term.

2. Choose the section Θ to be as orthogonal to the flow as possible (to make
fi

f1
small). In this case it is reasonable to use a different coordinates, y,

locally close to the section Θ, so that in new coordinates α̃(y) = y1 − C
and the flow is very close to the parallel flow y′1 = f̃1(y1, . . . , yn), y′i = 0
for i > 1.

3. Minimize tN+s − tN to make it as close as possible to tp([xN ]). This is issue
is addressed in Section 5.4.

5.4 The choice of time steps close to the section

Let us first estimate the diameter of the Poincaré return time, tp([x0]) =
tp([xN ]). If we assume that [xN ] is small and we are very close to Θ, then
we can assume that d

dtα(ϕ(t, x)) = ∇α · f(x) is approximately constant, while
our trajectory is crossing the section. For simplicity we also assume that
diam (α(ϕ(t, [xN ]))) is also constant. From this we obtain the following esti-
mate

tp([xN ]) ≈ hC =
diam (α([xN ]))
∇α · f(x)

, (92)

where x is any point in [xN ]. The number hC will be called in the sequel the
estimated crossing time.

Similar considerations allows one to make nonrigorous, but reasonably good
guesses about the time need to get very close to section and the time need to
get past the section, but very close to it.
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A TIME STEP SELECTION SCHEME CLOSE TO THE SEC-
TION
Let h > 0, D > 1 (we used D = 12, D = 36 in our implementation) and ε > 0
(this should be a small number, we used ε = 10−2)

1. We compute [xk], [Vk] k = 1, . . . , N − 1 using Lohner algorithm with a
constant time step hk = h as long as equation

ϕ([0, hk], [xk]) ∩Θ = ∅, (93)

is satisfied. For the N -th step we have

ϕ([0, hN−1], [xN−1]) ∩Θ 6= ∅, (94)

2. We discard the data obtained for the N -th step. We find a new value for
hN−1, such that the Lohner algorithm applied to [xN−1] gives

α([xN ]) < 0, (95)
and

−εdiam (α([xN ])) < right (α([xN ])) (96)

Obviously if we are doing C1-computation we have to recompute [VN ].

3. We set h̄ = min( h
D , hC). This will be our time step, while we will be crossing

the section.

4. With hN+k = h̄ for k = 0, . . . we continue to compute [xN+k] (and [VN+k])
until for k = s we have

α([xN+s]) > 0. (97)

5. We check if the following condition holds

left (α([xN+s])) < ε · diam ([xN+s−1]) (98)

If the above condition is not true, then we discard the value of [xN+s]
(and [VN+s]). We decrease the value of hN+s−1 and we recompute [xN+s]
(and [VN+s]), until equations (97) and (98) are satisfied.

Observe that from conditions (96) and (98) it follows that we overestimate
the diameter of the Poincaré return time, tp([xN ]) by the factor approximately
equal to 1 + 2ε.

Point 3 is necessary in case when [xN ] is relatively large, so that the esti-
mated crossing time becomes unacceptable for us (either the term h2C in equa-
tion (91) becomes to large or the enclosure procedures cannot be completed).
In this case we just use the previous time step divided by D. In this case we will
cross the section in several time steps. When [xN ] is small we cross the section
in one or two steps.
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6 Remarks and discussion

6.1 A cost comparison of C0- and C1-algorithms

Let us observe that, the C0- and C1
2 -algorithms are identical on the x-variables,

i.e. for the same order and [x0] , the sequence of time steps hk and the same
rough enclosure procedure they return the same estimate for ϕ(t, [x0]). This is
not the case for the C1

1 -algorithm, because instead of the partial derivative of
the Taylor method, the partial derivative of the flow is used.

With respect to a cost for the same order observe that C1-algorithms add
the following

1. the computation of an enclosure [W2] (for C1
1 -algorithm, only)

2. the computation of the error term of the Taylor method for equation (2)
(all derivatives of V up to order pv + 1) (if pv ≥ pe then this is the most
expensive part of the algorithm)

3. the rearrangement computations of V .

From the items listed above 1 and 3 appear to be quite cheap when compared
to the second one. Hence we expect that the C1-algorithm with pv = pe = r
will run in the time comparable to C0-algorithm with the order pe = r− 1. We
tested it on Poincaré maps for the Rössler equation and the Galerkin projection
of KS-equations described in section 7. These tests show that the computation
times of the C1-algorithm with pv = pe = r are usually less that twice the
computation time for the C0-algorithm with the same time step and with the
order pe = r + 1. The test was performed over the orders 3, 4, . . . , 9.

6.2 Remarks on a direct integration of the system (1-2)
using C0-Lohner algorithm

As it was mentioned in the introduction one can do a C1-computation by simply
applying the original Lohner algorithm to the system of equations (1-2).

Observe that the dimension of the phase space for this system is n + n2,
where n is the dimension appearing in equation (1). This has an immediate
consequence for the computation time of the Taylor expansion. For example
from the formulas given in the Appendix it follows that for a second degree
polynomial and an order p the computation time has a leading term C(p)n4,
where C is constant depending of the order only. Hence one can expect that
the proposed algorithm will be about (n + 1)4-times faster.

But there is also one even more important issue. It turns out that the
Lohner algorithm applied to system (1-2) performs quite poorly with respect
to controlling the growth of the computed image. For example we weren’t able
using this approach to compute any of the Poincaré maps considered in section 7.
Apparently, the QR-decomposition for the system (1-2), which plays a crucial
role in controlling the wrapping effect by choosing a good coordinate frame,
become very quickly dominated by the variational variables (the V -variables).
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This produces a huge wrapping effect in x-variables and leads to meaningless
results, i.e. the computed rigorous bounds are so large, that become impractical
or the program returns overflow. There is an obvious cure to this problem: do
the QR-decomposition separately for x-variables and for the variational part.
This is what we are doing in the proposed C1-algorithm.

7 Applications - Proofs of an existence of peri-
odic orbits for ODEs

In this section we report on some numerical experiments using the proposed
C1-Lohner algorithm for a computation of a Poincaré map,P , for some ODE’s
defined by second degree polynomial vector fields. For this class of ODE’s we
implemented the C1

1 -Lohner algorithm in C + + (we used Borland C++ 5.01
compiler). The iterative formulas we used to obtain the Taylor coefficients are
given in the Appendix. The computations were performed on PC Pentium
III 733 MHZ machine. The orders pv and pe were equal. We used always a
fixed time step,h, but close to a Poincaré section we reduced h significantly (see
Section 5 for more details).

7.1 Interval Newton method for maps

The goal of this subsection is to recall the interval version of the Newton method
(see [A] and the references given there) for finding zeros of a function f : Rn →
Rn.

The following theorem was proved in [A, Thm. 1]

Theorem 9 Let f : Rn → Rn be a C1 function. Let X = Πn
i=1[ai, bi], ai < bi.

Assume the interval enclosure of Df(X), [Df(X)]I , is invertible. Let x0 ∈ X
and we define

N(x0, X) = −[Df(X)]−1
I f(x0) + x0 (99)

Then

0. if x1, x2 ∈ X and f(x1) = f(x2), then x1 = x2

1. if N(x0, X) ⊂ X, then ∃!x∗ ∈ X such that f(x∗) = 0

2. if x1 ∈ X and f(x1) = 0, then x1 ∈ N(x0, X)

3. if N(x0, X) ∩X = ∅, then f(x) 6= 0 for all x ∈ X

When looking for the fixed point of the map P we set f = I − P , hence the
set N(x0, X) will be given by

N(x0, X) = −[I −DP (X)]−1
I (x0 − P (x0)) + x0 (100)

We can formulate an interval Newton algorithm for finding fixed points of
the map P as follows.
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INTERVAL NEWTON ALGORITHM. Let X be a product of intervals. We
define the function N(x0, X) as follows

x0 = mid(X), N(x0, X) = −[I −DP (X)]−1
I (x0 − P (x0)) + x0 (101)

Step 1. Compute N(x0, X).

Step 2. If N(x0, X) ⊂ X, then return success.

Step 3. If X ∩N(x0, X) = ∅, then return fail. There are no fixed points in X.

Step 4. If X ⊂ N(x0, X), then we modify the computation parameters. For ex-
ample decrease a time step, eventually increase the order of the algorithm
used to compute P . Go to step 1.

Step 5. Define a new X by X := X ∩N(x0, X) and go to step 1.

7.2 Rössler equations

The Rössler equations [R] are given by

x′ = −(y + z)
y′ = x + 0.2y (102)
z′ = 0.2 + z(x− a),

where a is a real parameter. We focus here at the values of a = 2.2, where
numerical simulations strongly suggest an existence of an attracting limit cycle
and a = 5.7, where numerical simulations suggest an existence of a strange
attractor.

We investigate the Poincaré map on a section Π = {x = 0, y < 0}. In the
sequel we will denote this map by P . On Π we will use (y, z) as the coordi-
nates. All data for the Rössler equation presented in subsections 7.3 and 7.4 are
expressed in these coordinates.

7.3 Rössler equations for a = 2.2, a proof of an existence
of an attracting periodic orbit

For a = 2.2 numerical simulations suggest an existence of an attracting limit
cycle γ, which gives rise to an attracting fixed point, x0 ≈ (−3.9205, 0.063858),
for P on Π. An existence of such periodic orbit (using a topological method
based on the Conley index) was recently proved with a computer assistance by
Pilarczyk [P] (the computation time was around 2 hours). The fact that the
orbit is actually attracting was not established there.

Using x0 obtained by an iteration of a nonrigorous Newton method, as the
starting location of the fixed point, we verified (for the first iterate of the interval
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Newton method) that N(x0, X) ⊂ X, where X = x0 + [−2.5 · 10−2, 2.5 · 10−2]2.
The time step was h = 10−2 and the order of the numerical method was p = 4.

Below we list some data from this computation

N(x0, X) = x0 +
{
2.287225 · 10−8 + [−1.094486 · 10−7, 1.094486 · 10−7]

}×{−1.273267 · 10−10 + [−6.702682 · 10−9, 6.702682 · 10−9]
} ⊂ X

For x0 − P (x0) we obtained

x0 − P (x0) = [−3.672362 · 10−8, 2.247709 · 10−8]×
[−8.317404 · 10−10, 8.398115 · 10−10]

diam(x0 − P (x0) = 5.920072 · 10−8

We obtained the following values for all entries of DP (X)

DP (X)11 = [−1.786834, 4.775295 · 10−1]
DP (X)12 = [1.998447, 4.929028]
DP (X)21 = [−4.231020 · 10−2, 4.040204 · 10−2]
DP (X)22 = [−3.912754 · 10−2, 6.046568 · 10−2]

diam(DP (X)) = = 2.930582

The computation times were 5 seconds for DP (X) and 3 seconds for P (x0).
The reader may notice that the diameter of the computed DP (X) is quite

large, hence with these data we cannot establish that the fixed point found is
attracting.

It turns out that increasing order of the method, while keeping the size of
X constant and the time step h constant, still gives the diameter of DP (X) of
the same size.

To prove that we have here an attracting fixed point for P one needs either to
perform the next iterate of the interval Newton algorithm with the set N(x0, X)
obtained above or to choose a smaller starting set. Below we present an example
of such set.

For the initial X = x0 + [−1, 1]2 · 10−6, h = 10−2 and p = 4 we obtain

N(x0, X) ⊂ x0 +
{
4.546329 · 10−9 + [−2.075644 · 10−8, 2.075644 · 10−8]

}×{−1.358635 · 10−11 + [−8.82068 · 10−10, 8.82068 · 10−10]
} ⊂ X

For x0 − P (x0) we obtained

x0 − P (x0) =
(
[−3.672362, 2.247709] · 10−8

)×(
[−8.317404, 8.398115] · 10−10

)

diam(x0 − P (x0)) = 5.920072 · 10−8

The entries of DP (X) are

DP (X)11 = [−5.568081 · 10−1, −5.567340 · 10−1]
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DP (X)12 = [3.377049, 3.377150]
DP (X)21 = [−2.063501 · 10−3, −2.061059 · 10−3]
DP (X)22 = [1.246689 · 10−2, 1.247005 · 10−2]

diam(DP (X)) = 1.019493 · 10−4

The eigenvalues of DP (X) are given by

λ1 = [−9.0097845007 · 10−5, 7.6326532192 · 10−6]
λ2 = [−5.4431024142 · 10−1, −5.4421251092 · 10−1]

Hence the fixed point found is attracting.

7.4 Rössler equations for a = 5.7, a proof of an existence
of an unstable periodic orbit

The goal of this section is to show that the proposed C1-Lohner algorithm works
well enough to obtain an existence of an unstable fixed point.

For the parameter value a = 5.7 numerical simulations suggest an exis-
tence of a strange attractor. In [Z1] (see also [Z2]) it was proved with a
computer assistance that the Poincaré map, P , has a symbolic dynamics on
there symbols. In particular it follows from [Z1] that there exists a fixed point
x∗ ∈ [−9,−7] × [−0.02, 0.08] for P . Below using the C1-Lohner algorithm and
the interval Newton method we find coordinates of this point which much better
precision.

For x0 ≈ (−8.38095, 0.0295902), X = x0 + [−10−3, 10−3]2, h = 10−2 and
p = 4 we were able to verify that

N(x0, X) = x0 +
{−4.327904 · 10−8 + [−3.322230 · 10−7, 3.322230 · 10−7]

}×{−3.937174 · 10−8 + [−6.728499 · 10−9, 6.728499 · 10−9]
} ⊂ X

For x0 − P (x0) we obtained the following values

x0 − P (x0) = [−1.038311 · 10−6, 1.176263 · 10−6]×
[3.310963 · 10−8, 4.566477 · 10−8]

diam(x0 − P (x0)) = 2.214574 · 10−6

The computed bounds for DP (X) are given by

DP (X)11 = [−2.438481, −2.372972]
DP (X)12 = [1.946089, 1.988827]
DP (X)21 = [−1.334871 · 10−3, −8.601484 · 10−4]
DP (X)22 = [7.680544 · 10−4, 1.019349 · 10−3]

diam(DP (X)) = 6.550938 · 10−2
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The eigenvalues of DP (X) are

λ1 = [−3.3231261746 · 10−2, 3.3213281643 · 10−2]
λ2 = [−2.4380463797, −2.3716018363]

Hence the fixed point found is hyperbolic with one stable and one unstable
direction.

7.5 A 14-dimensional Galerkin projection of Kuramoto-
Sivashinsky equations

The Kuramoto-Sivashinsky equation [KT, S] (we will use shortcut KS equation
in the sequel) introduced in the context of a wave front propagation is given by

ut = −νuxxxx − uxx + 2uux (t, x) ∈ [0,∞)× (−π, π), ν > 0. (103)

Assuming odd and periodic boundary conditions KS-equation can be reduced
(see [ZM]) to the following infinite system of ordinary differential equations for
the coefficients of the Fourier expansion of u

ȧk = k2(1− νk2)ak − k

k−1∑
n=1

anak−n + 2k

∞∑
n=1

anan+k k = 1, 2, 3, . . . (104)

We will refer to coordinates ak as modes. In this paper we focus on ν = 0.127.
For this parameter value numerical simulations suggests an existence of an at-
tracting limit cycle, whose projection (a1, a3) is an ellipse on which the point
moves in the clockwise direction.

We focus on the following two sections

Θ1: angle −π/4 in the (a1, a3) plane: a1 + a3 = 0, a1 > 0, a′1 + a′3 < 0

Θ2: angle −5π/4 in the (a1, a3) plane: a1 + a3 = 0, a1 < 0, a′1 + a′3 > 0

On these sections we use the following coordinates: (c1, c2, c3, c4, . . .) =
(
√

a2
1 + a2

3, a2, a4, a5, . . .). We will call them section coordinates.
Let R be a map which leaves even modes and changes sign of odd modes:

a2k → a2k and a2k+1 → −a2k+1. It is easy to see that R leaves the system
(104) invariant (R is the symmetry of the equations) and sections Θ1 and Θ2

are mapped one onto another by this symmetry.
Let P1→2 : Θ1 → Θ2 and P2→1 : Θ2 → Θ1 denote the Poincaré maps

between sections Θ1 and Θ2. We have

P2→1 = RP1→2R (105)

For the full Poincaré map on section Θ1 we obtain that

P = P2→1P1→2 = RP1→2RP1→2 = (RP1→2)2. (106)

Hence any fixed point for RP1→2 is a fixed point for P .
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For ν = 0.127 and the dimension of the Galerkin projection d = 14 we
have the following approximate fixed point for RP1→2 (expressed in section
coordinates)

x0 = (0.548852, 1.32064, −0.34417, 0.106402, 0.0322448,

−0.0153075, −0.00196743, 0.00166589, 2.79272 · 10−5,

−0.000147416, 1.04171 · 10−5, 1.11144 · 10−5, −1.76484 · 10−6)

We started the interval Newton algorithm with the following parameters

δ = 10−5, X = x0 + [−δ, δ]d−1

p = 4, h =
1

2d2(νd2 − 1)
≈ 0.000106773

and were able to check the assumptions of Theorem 9 and show that the fixed
point found is attracting. Below we give some numerical data from these com-
putations.

N(x0, X) = x0 + (−4.799947 · 10−7 + [−2.301085 · 10−7, 2.301085 · 10−7],
4.638543 · 10−7 + [−1.421597 · 10−7, 1.421597 · 10−7],

−3.642497 · 10−7 + [−1.266866 · 10−7, 1.266866 · 10−7],
−4.326831 · 10−8 + [−5.090406 · 10−8, 5.090406 · 10−8],

7.367633 · 10−8 + [−3.519784 · 10−8, 3.519784 · 10−8],
−2.027772 · 10−9 + [−9.687707 · 10−9, 9.687707 · 10−9],
−1.034572 · 10−8 + [−7.233898 · 10−9, 7.233898 · 10−9],

1.377686 · 10−9 + [−1.960368 · 10−9, 1.960368 · 10−9],
1.100782 · 10−9 + [−1.555556 · 10−9, 1.555556 · 10−9],

−2.520153 · 10−10 + [−5.082655 · 10−10, 5.082655 · 10−10],
−8.833202 · 10−11 + [−7.110429 · 10−10, 7.110429 · 10−10],

3.422440 · 10−11 + [−7.501527 · 10−10, 7.501527 · 10−10],
9.362639 · 10−12 + [−2.636542 · 10−9, 2.636542 · 10−9]) ⊂ x0 + X

The rigorous bound for the matrix norm of DRP1→2(X) corresponding to
the norm ‖x‖m = maxi |xi| is

‖DRP1→2(X)‖m = max
i=1,...,d−1

∑

j

|DRP1→2(X)ij | < 0.82, (107)

which shows that the fixed point found is attracting.
In Tables 1 and 2 we list two first rows and columns DRP1→2 to give

the reader the feeling about the sizes of the obtained bounds. The entries
DRP1→2(X)ij are decaying as i and j increases. For the diameter we have

diam(DRP1→2) = 2.538517 · 10−1
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Table 1: Two first rows of DRP1→2(X)

j DRP1→2(X)1j DRP1→2(X)2j

1 [4.450702, 6.989218] · 10−1 [−5.042949, −4.544209] · 10−1

2 [0.8580582, 7.208375] · 10−2 [6.742856, 7.952010] · 10−2

3 [−2.103405 · 10−2, 1.077716 · 10−3] [4.114357 · 10−2, 4.521749 · 10−2]
4 [7.242173 · 10−3, 1.785252 · 10−2] [−1.489896 · 10−2, −1.274972 · 10−2]
5 [−4.405318 · 10−3, −2.183634 · 10−3] [4.344733 · 10−3, 4.762542 · 10−3]
6 [−7.412482 · 10−4, −5.316928 · 10−4] [1.905524 · 10−4, 2.181210 · 10−4]
7 [1.844130 · 10−5, 1.331995 · 10−4] [−1.752168 · 10−4, −1.579311 · 10−4]
8 [−4.380603 · 10−5, 8.325807 · 10−6] [3.447287 · 10−5, 4.318816 · 10−5]
9 [1.565435 · 10−6, 2.055378 · 10−5] [−1.268904 · 10−5, −9.857161 · 10−6]

10 [−3.177638 · 10−6, 4.527249 · 10−6] [−7.197865 · 10−7, 2.291789 · 10−7]
11 [−3.236594 · 10−6, 1.487707 · 10−6] [6.155755 · 10−7, 1.206583 · 10−6]
12 [−1.415723 · 10−6, 1.494335 · 10−6] [−2.936788 · 10−7, 4.853580 · 10−8]
13 [−9.496676 · 10−7, 1.017148 · 10−6] [−1.434915 · 10−7, 8.756737 · 10−8]

and it is reached for (1, 1) entry.
Table 3 contains the computed bounds for x0 −RP1→2(x0).
The period of the fixed point found is approximately equal to 2.242. The

computation times were 1540 seconds (25.7 minutes) and 628 seconds (10.5
minutes) for C1- and C0-computations, respectively.

We performed a similar computation for d = 7, 8, 9-dimensional Galerkin
projection and each time we obtained a proof of an existence of an attracting
fixed point. For a comparison, for d = 7 the computation times for h = 5 ·10−4,
δ = 10−5 were 52 and 25 seconds for C1- and C0-computations, respectively.

8 Conclusions and future directions

It is quite obvious that one can hope to improve the algorithm proposed here, in
terms of bounds produced at a given computation cost, by constructing much
better rough enclosures (for example by using a low order Taylor method - (see
[Lo])) or by introducing a smart time step selection scheme.

But it appears to us that major improvements can be obtained if one will
be able to control the Lipschitz part of the error (as it was discussed in the
introduction). Another possible huge improvement should be possible if one will
be able to evaluate the Taylor formula (or any other formula used as a numerical
method) in a way, which will allow for as many cancellations of various terms
as possible, so that the computed range using interval arithmetic will be close
to the ideal one. To explain what we mean let us consider the computation of
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Table 2: Two first columns of DRP1→2(X)

i DRP1→2(X)i1 DRP1→2(X)i2

1 [4.450702 · 10−1, 6.989218 · 10−1] [8.580582 · 10−3, 7.208375 · 10−2]
2 [−5.042949 · 10−1,−4.544209 · 10−1] [6.742856 · 10−2, 7.952010 · 10−2]
3 [3.448295 · 10−1, 4.253800 · 10−1] [−5.718379 · 10−2,−3.723603 · 10−2]
4 [2.070086 · 10−2, 1.004633 · 10−1] [5.415046 · 10−3, 2.537533 · 10−2]
5 [−9.715707 · 10−2,−6.493140 · 10−2] [2.745561 · 10−3, 1.070263 · 10−2]
6 [−8.989916 · 10−3, 8.344327 · 10−3] [−5.325052 · 10−3,−1.055837 · 10−3]
7 [6.416967 · 10−3, 1.640791 · 10−2] [−1.843014 · 10−3, 6.005894 · 10−4]
8 [−2.897343 · 10−3, 6.205670 · 10−4] [2.720738 · 10−5, 8.916281 · 10−4]
9 [−2.582180 · 10−3, 2.064264 · 10−4] [−3.203044 · 10−4, 3.720348 · 10−4]

10 [−2.153901 · 10−4, 6.846829 · 10−4] [−1.697652 · 10−4, 6.874759 · 10−5]
11 [−5.261595 · 10−4, 7.236297 · 10−4] [−1.706955 · 10−4, 1.737552 · 10−4]
12 [−6.866004 · 10−4, 6.194646 · 10−4] [−1.857865 · 10−4, 1.971323 · 10−4]
13 [−2.308010 · 10−3, 2.286113 · 10−3] [−6.751461 · 10−4, 6.790530 · 10−4]

e−x using a series expansion

e−x = 1− x + x2/2!− x3/3! + . . . . (108)

Assume that we want to compute e−[0,h], for some h > 0. It is easy see
that the direct interval evaluation of (108) will give us an interval contain-
ing [e−h, cosh(h)], because to compute a possible upper bound we insert x = 0
for the odd powers and x = h for the even powers. One can imagine that much
worse things may happen in a higher dimensional situation, when we evaluate
the higher order terms of the Taylor method, which are complicated expres-
sions, on a rough enclosure, which in many applications can have a considerable
diameter. An example of an approach, which deals well with this problem for
the Euler method was presented in [T, T1], where monotonicity properties of
the vector field were exploited.

Let me finish with pointing out two important directions in the context
applications of rigorous numerics to the dynamics of ODE’s and PDE’s, which
apparently require a development of new efficient algorithms.

Bifurcations of periodic orbits for ODE’s The C1-algorithm developed here
should allow to trace rigorously branches of periodic orbits for ODE’s, but
to treat a rigorously bifurcation point one needs some C2-information,
which clearly requires an efficient C2-algorithm for ODE’s.

The dynamics of dissipative PDEs The dynamics of many important PDE’s
(for example the Navier-Stokes equations) is effectively finite dimensional
(see for example [ZM] and references given there). The tools developed in
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Table 3: The bounds for x0 −RP1→2(x0)

i x0,i −RP1→2(x0)i

1 [2.100324 · 10−7, 2.120372 · 10−7]
2 [−2.094023 · 10−7,−2.085218 · 10−7]
3 [1.639110 · 10−7, 1.647684 · 10−7]
4 [1.873067 · 10−8, 1.925487 · 10−8]
5 [−3.372191 · 10−8,−3.350485 · 10−8]
6 [8.123026 · 10−10, 8.859718 · 10−10]
7 [4.608611 · 10−9, 4.645857 · 10−9]
8 [−5.926317 · 10−10,−5.824013 · 10−10]
9 [−4.717564 · 10−10,−4.629766 · 10−10]

10 [1.055226 · 10−10, 1.099981 · 10−10]
11 [3.324677 · 10−11, 4.100305 · 10−11]
12 [−1.666509 · 10−11,−1.160854 · 10−11]
13 [−6.625590 · 10−12, 1.340692 · 10−12]

[ZM] promise that one can exploit this finite-dimensionality to perform rig-
orous computations for these equations. For this end one needs to develop
an efficient algorithm for solving ODE’s with a controlled perturbation.

9 Appendix. Iterative formulas for the Taylor
method for second degree polynomial

Consider the ordinary differential equation

x′ = f(x), , x ∈ Rn, f is a polynomial of degree 2 (109)

and let ϕ(t, x0) be a local flow induced by (109).

Theorem 10 Let x(s) = x(s)(t, x0) = ds

dts ϕ(t, x0), then

x
(1)
i = fi (110)

x
(2)
i =

∑n
j=1

∂fi

∂xj
x

(1)
j (111)

x
(r)
i =

∑n
j=1

∂fi

∂xj
x

(r−1)
j +

n∑

j,k=1

∂2fi

∂xjxk
arkj if r > 2 (112)

where

arkj =

{
r−3∑
s=0

(
r − 2

s

)
x

(r−2−s)
k x

(1+s)
j

}
. (113)
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In above formulas the functions fi, ∂fi

∂xj
and ∂2fi

∂xjxk
are all evaluated at x =

ϕ(t, x0).

Proof: The formula for r ≤ 3 is obviously satisfied. So suppose that the formula
holds for r − 1 and we will show it for r. The term involving ∂fi

∂xj
is obviously

correct.
Consider now the coefficient of the term x

(r−2−s)
k x

(1+s)
j . If s = 0 then

this coefficient may result only from the differentiation of x
(r−3)
k x

(1)
j which was

multiplied by
(
r−3
0

)
=

(
r−2
0

)
.

For 0 < s ≤ r−1−3 we have two possibilities of obtaining x
(r−2−s)
k x

(1+s)
j : we

differentiate either xk or xj . This gives us the coefficient
(
r−3

s

)
+

(
r−3
s−1

)
=

(
r−2

s

)
.

For s = r − 3 we have the coefficient
(
r−3
r−4

)
from the last term in the sum

over s and we have to add to it 1 =
(
r−3
r−3

)
which arises from the differentiation

of ∂fi

∂xj
x

(r−2)
j . Hence we obtain a coefficient

(
r−2
r−3

)
.

By taking partial derivatives of x
(r)
i (t, x0) we obtain easily the following

Theorem 11 Let Dbx
(r)
i = Dbx

(r)
i (t, x) := ∂x

(r)
i

∂xb
(t, x). We have

Dbx
(1)
i =

n∑

k=1

∂fi

∂xk
Dbx

(0)
k (114)

Dbx
(2)
i =

n∑

j,k=1

∂2fi

∂xj∂xk
x

(1)
j Dbx

(0)
k +

n∑

j=1

∂fi

∂xj
Dbx

(1)
j (115)

and for r > 2

Dbx
(r)
i =

n∑

j,k=1

∂2fi

∂xj∂xk
x

(r−1)
j Dbx

(0)
k +

n∑

j=1

∂fi

∂xj
Dbx

(r−1)
j +

n∑

j,k=1

∂2fi

∂xjxk
Dbarkj ,

where

arkj =
∑r−3

s=0

(
r−2

s

)
x

(r−2−s)
k x

(1+s)
j

Dbarkj =
∑r−3

s=0

(
r−2

s

){
Db(x

(r−2−s)
k ) · x(1+s)

j + x
(r−2−s)
k ·Db(x

(1+s)
j )

}

In above formulas the functions fi, ∂fi

∂xj
and ∂2fi

∂xjxk
are all evaluated at ϕ(t, x).

Observe that Vib(t, x) = ∂ϕi

∂xb
(t, x) is in the notation used in above theorem equal

to Dbx
(0)
i (t, x).

It is clear from the expressions given in Theorems 10 and 11, that to compute
the functions x(s) and Dbx

(s) it is enough to specify x(0) = ϕ(t, x0) and Dbx
(0)
i =

∂ϕi

∂xb
(t, x0).

34



The functions di

dti f and di

dti

(
∂f
∂xV

)
used in Section 2 are given by

(
ds

dts
f

)
(x0) = x(s+1)(x0)

(
ds

dts

(
∂f

∂x
V

))

ib

(x0, V0) = Dbx
(s+1)
i (x0, V0),

where x0 ∈ Rn and V0 ∈ Rn×n.
The derivative of the Taylor method of order p and a time step h is given by

∂

∂xb
Φi(h, x, p) = δib +

p∑
s=1

(
ds−1

dts−1

(
∂f

∂x
V

))

ib

(x, Id)
hs

s!
=

δib +
p∑

s=1

Dbx
(i)(x, Id)

hs

s!
,

where δij is a Kronecker symbol: δij = 1 if i = j and δij = 0 otherwise.
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