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1 Introduction

In the study of nonlinear PDEs there is a huge gap between what we can observe
in the numerical simulations and what we can prove rigorously. One possibility
to overcome this problem are the computer assisted proofs. This paper is an
attempt in this direction. We give a computer assisted proofs of the existence
of multiple periodic orbits, both stable and unstable ones, for the Kuramoto-
Sivashinsky PDE on the line with periodic and odd boundary conditions. The
approach is a mixture of rigorous numerics and topological methods and does
not make any use of any special features of Kuramoto-Sivashinsky PDE, or any
global existence results nor spectral gap etc and therefore should be applicable to
other systems of dissipative PDEs, like for example Navier-Stokes or Ginzburg-
Landau equations.

One of the main goals of this paper is to present the algorithm for a rigorous
numerical integration of a certain class of dissipative PDEs. To be more specific
we consider PDEs of the following type

uy = Lu+ N(u, Du,...,D"u), (1)

where u € R, z € T, ( T¢ = (R/27)" is an d-dimensional torus), L is a linear
operator, N - a polynomial and by D*u we denote s-th order derivative of u, i.e.
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the collection of all partial derivatives of u of order s. In fact N might contain
in constant term a time independent forcing, smooth enough (time dependence
also does not hurt), but we will not consider it here. We require that L is
diagonal in the Fourier basis {€**}, czq4, namely

Leikm _ )\keikm, (2)
and the eigenvalues \j satisfy
A= —u([k])[E[? (3)
0 < vy <w(lk]) <o, for |k| > K_ (4)
p > T (5)

The fact that we are considering functions on the torus means that we impose
periodic boundary conditions. We may eventually seek odd or even solutions or
impose some other conditions.

Our approach starts with replacing (1) by an infinite ladder of ordinary

differential equations for Fourier coefficients of u(t,z) = Y, ug(t)e’ . We
obtain p
% = Aeup + Nip(u),  for all k € Z4. (6)

The next step is to split the phase space for (6) into two parts: the finite dimen-
sional part, X, containing the Fourier modes most relevant for the dynamics of
(1) and the tail T C X*. After this splitting the problem (6) is replaced by two
problems (7) and (8). The first part consists of a finite dimensional differential
inclusion for p € X, given by

dp

EEP(Lp—&-N(p—i—T)), peX (7)

where P is a projection onto X. The second part is concerned with the evolution
of T', which is governed by an infinite set of inequalities of the form

duk,j
dt

)\kuk7j—|—Nk_,j < <)\kuk7j—|—N,j:j, j=1,...,n and for k not in X (8)

where N, ]fj are suitably chosen constants. Obviously, to infer from (7) and (8)
any information on the behavior of solutions of the full system (6) one needs
some consistency conditions. A systematic treatment of this issue is at the heart
of our method of self-consistent bounds, which was introduced in [ZM] and later
developed in [ZAKS, ZGal, ZNS, Z2].

The main example treated in this paper is the Kuramoto-Sivashinsky PDE
[KT, S] (in the sequel we will refer to it as the KS equation)

Ut = —VUppas — Upg + (uZ)I7 v>0 9)
where z € R, u(t,z) € R and we impose odd and periodic boundary conditions
u(t,z) = —u(t, —z), u(t,z) = u(t,x + 2m). (10)

The choice of the KS equation for this study is motivated by the following facts



e the existence theory and asymptotic properties of solutions of (9) are well
established, see for example [CEES, FT, FNST] and the literature cited
there. It should be stressed that we are not using these results in our work,
but they assure us that all interesting dynamics is ’finite dimensional’ and
should be accessible using the method of self-consistent bounds combined
with topological tools.

e there exists a lot of numerical studies of the dynamics of the KS equation
(see for example [CCP, HN, JKT, JJK]), where it was shown that the
dynamics of the KS equation is highly nontrivial and it is well represented
by relatively small number of modes.

e we believe that the experience gained and new tools developed in the study
of the KS equation may help in the rigorous study of the dynamics of the
Navier-Stokes equations or the Ginzburg-Landau equation [Si].

We implemented the proposed algorithm for the KS equation (9) with the odd
and periodic boundary conditions (10). Using it we proved the existence of
several periodic orbits, both attracting and unstable ones, for various param-
eter values of v in the interval [0.02991,0.128]. Proofs are topological and are
based on the Brouwer Theorem in case of attracting orbits and on the Miranda
Theorem[Mi] in case of unstable ones. The main difference between this pa-
per and [Z2] is the generality and the efficiency of the algorithm for a rigorous
integration of (9). The algorithm described in [Z2] required some preparatory
work to construct the a-priori bounds, which have to be verified during the
computation, moreover the tail was fixed in the computation. The present al-
gorithm allows for the tail evolution and do not require any a-priori bounds to
start the computation, hence it could be used also to obtain rigorous bounds for
the forward orbit of any initial condition with a finite description, this was not
possible using the previous algorithm. Other improvements, while rather tech-
nical, are also of great importance for the performance of the algorithm. They
include a new function for the generation of the rough enclosure for differential
inclusions, which allows to use much larger time steps. All these improvements
taken together result in more than 6 fold speed up of the proof of the existence
of periodic orbit for v = 0.127. This orbit has the reflectional symmetry and
this fact was essential in the proof because it allowed us to consider the half-
Poincaré map instead of the full Poincaré map. Our attempts to compute the
full Poincaré map along this periodic orbit using the previous algorithm failed
due to blow-up of rigorous enclosures produced, which was due to the instability
of the numerical estimates in the flow direction. Using the current algorithm
we were able to overcome this problem and also treat smaller values of v, which
are more difficult computationally and are more interesting from the dynamics
standpoint.

The choice of odd boundary conditions was motivated by earlier numerical
studies [CCP, JKT], but the basic mathematical reason is: equation (9) with
periodic boundary conditions has the translational symmetry, which implies
that for fixed value of v periodic orbits (fixed points, etc) are members of one-



parameter families of periodic orbits (fixed points, etc). The restriction to
the subspace of odd functions breaks this symmetry and gives a hope that
the dynamically interesting objects are topologically isolated, which is later
confirmed by proofs.

The content of this paper can be described as follows: in Sections 2 and 3
we outline the method of self-consistent bounds and discuss how it can be used
for the study of dynamics of dissipative PDEs. This material is based on [ZM,
ZNS, ZGal], but some new theorems about the applicability to other dissipative
PDEs are added in Section 3. In Section 4 we present a Lohner-type algorithm
for the integration of ordinary differential inclusions, which in the context of the
rigorous integration of PDEs is used to provide enclosures for (7). In Section 5
we present a new effective enclosure theorem for ordinary differential inclusions
and an enclosure algorithm based on it. In Sections 6, 7 and 8 we discuss the
algorithm with an evolving tail for the rigorous integration of dissipative PDEs
with periodic boundary conditions. In Section 9 we treat the issue of Poincaré
maps. In the remaining sections we report on the computer assisted proofs of
the existence of periodic orbits for the KS equation, both apparently stable and
unstable ones. We say ’apparently’ to indicate that we were unable to establish
rigorously, whether these orbits are stable or unstable, but the nonrigorous
simulation clearly indicates their dynamical character and the set-up of the
proof takes this into account.

1.1 Notation

Let (T, p) be a metric space. For aset X C T by int X, X and X we denote the
interior, the closure and the boundary of X, respectively. If X C Y C T, then by
int y X and by dy X we will denote respectively the interior and the boundary of
X with respect to the metric space (Y, p). By B(c,r) = {z | p(c,x) < r} we will
denote the ball of radius r. For a point p € T put p(p, X) = inf{p(p,q) |q € X}.
We define B(X,¢) = {y| p(y,X) < €}. The Hausdorff distance, dist (G, H),
between two closed sets G and H is defined by the formula

dist (G, H) = max{sup p(q, H), sup p(h,G)}.
q€G heH

For —oo < tg < t1 < oo by C([to, t1], R®) we will denote the set of all continuous
functions defined on [tg,¢1] with the values in R® and by Cy([to, t1], R®) we will
denote the set of all bounded and continuous functions defined on [tg, ¢1] with
the values in R®.

Let ¢f(R™) denotes the set of all nonempty, convex and compact subsets
of R™. A multivalued map f : R” — ¢f(R"™) is said to be continuous if it is
continuous with respect to the Hausdorff distance.

For an ordinary differential equation

' = f(z), reR" (11)

where f € C!, by ¢ we will denote the local flow induced by (11). We set



o(t, o) = x(t) where x(¢) is the unique solution of (11) with the initial condition
x(0) = xo.
Let f: R™ — ¢f(R™) be continuous. Consider a differential inclusion

7 € f(z), (12)

By a solution of (12) through zo we will understand a C! function z : (tg,t1) —
R™, such that 0 € (tg,1), (0) = xo and (12) holds for ¢ € (tg,t1). Moreover,
we will always assume that the solution is defined on the maximal existence
interval.

We define the local flow, ¢, induced by (12) as follows: (t,z9) € R x R™ is
in the domain of ¢ if for all solutions x through xg the value of x(¢) is defined
and then

o(t,z9) = {x(t) |z : (to,t1) — R™ is a solution through z¢}. (13)

While we will use the same symbol (¢, z) to indicate the local flow induced
both by an ODE or an inclusion it will be always clear from the context what
type of the flow we are considering.

In the sequel we will use an expression of the form

¢([0, 1], z0) C Z. (14)

Such expression means that ([0, k], zo) is defined for ¢ € [0, h] and the stated
inclusion holds, i.e. ¢(t,x0) C Z for t € [0, h)].

2 The method of self-consistent bounds

We begin with an abstract nonlinear evolution equation in a real Hilbert space
H (L? or some its subspaces in our treatment of dissipative PDEs) of the form

du

= Fu) (15)
where the domain of F' is dense in H. By a solution of (15) we understand a
function w : [0, tnax) — dom (F), such that u is differentiable and (15) is satis-
fied for all ¢ € [0, tmas). (For the discussion of classical solutions of dissipative
PDEs see Section 3.3)

The scalar product in H will be denoted by (u|v). Throughout the paper
we assume that there is a set I C Z¢ and a sequence of subspaces Hy, C H for
k € I, such that dim Hy = d; < oo and Hy and Hjys are mutually orthogonal
for k # k'. Let Ay : H — Hy, be the orthogonal projection onto Hy. We assume

that for each v € H holds
u:Zuk = ZAku. (16)
kel kel

The above equality for a given u € H and k € I defines uj. Analogously if B is
a function with the range in H, then By(u) = AxB(u). Equation (16) implies
that H = ®k€I Hk.



For k € Z¢ we define

For n > 0 we set

X, = @ H,,

|k|<n,kel
1
Y, =X,

by P, : H— X, and @, : H — Y,, we will denote the orthogonal projections
onto X,, and onto Y,,, respectively.

Definition 1 We say that F : H D dom (F') — H is admissible if the following
conditions are satisfied for any i € R, such that dim X; > 0

o X, C dom(F)
o PI:X, = X;is a C' function

Definition 2 Assume F is admissible. For a given number n > 0 the ordinary

differential equation
¥ = P,F(z), reX, (17)

will be called the n-th Galerkin projection of (15).
By o™ (t,x) we denote the local flow on X, induced by (17).

Definition 3 Assume F' is an admissible function. Let m, M € R withm < M.
Consider an object consisting of: a compact set W C X, and a sequence of
compact sets By, C Hy, for |k| > m, k € I. We define the conditions C1, C2,
C3, C4a as follows:

C1 For |k| > M, k€I holds 0 € By, .

C2 Let a = maxaep, ||a|| for |k| > m, k € I and then 3 -, rer ai < oo.
In particular
W& g >mBe C H (18)

and for every u € W @ ey |k)>mBr holds, ||Qnull < Z‘k|>n’kel az.
C3 The function u — F(u) is continuous on W & [[yeq psm Be C H.

Moreover, if we define fork € I, fi, = MAXyeW ST, e 01 m B |Fy(u)|, then
S [ < oo.
Cda For |k| > m, k € I By, is given by (19) or (20)
B, = B(ck,rk), rp >0 (19)
B, = I¢_[a;,al], ay <af,s=1,...,d (20)

s s

Let u € W @ s> By. Then for |k| > m holds:



o if By is given by (19) then
up € 8HkBk = (uk — Clek(u)) < 0. (21)
o if By is given by (20) then

ups = a, , = Fys(u) >0, (22)
Up,s = azs = Fjs(u) <O0. (23)

In the sequel we will refer to equations (21) and (22-23) as isolation equa-
tions.

Definition 4 [ZM, Def. 2.1, 2.11] Assume F is an admissible function. Let
m,M € R with m < M. Consider an object consisting of: a compact set
W C X, and a sequence of compacts By, C Hy, for |k| > m,k € I. We say that
set W @ Iy |kj>mBr forms self-consistent bounds for F' if conditions C1, C2,
C3 are satisfied.

If additionally condition Cja holds, then we say that W & Iyer k|>m Bk
forms topologically self-consistent bounds for F’

If F is clear from the context, then we will often drop F', and we will speak
simply about self-consistent bounds or topologically self-consistent bounds.

In our previous works on the KS equation [ZM, ZAKS, Z2], we had I = Z,,
Hy =R and By, = [a;,af]. The conditions from Def. 3 are generalizations of
the conditions given there to a more general setting.

Reader familiar with our earlier works should be also warned that in the
terminology of [Z2, Def. 2] conditions C1,C2,C3,C4a defined self-consistent a-
priori bounds. In this paper we returned to the terminology used in [ZM] and
we dropped the phrase a-priori.

Given self-consistent bounds W and {By}rer, k|>m, by T (the tail) we will
denote

T = H B, CYy,.
|k|>m

Here are some useful lemmas illustrating the implications of conditions C1,
C2, C3.
From condition C2 it follows immediately that

Lemma 1 If W & T forms self-consistent bounds, then W & T is a compact
subset of H.

The following lemma is an immediate consequence of conditions C2 and C3.

Lemma 2 Given self-consistent bounds W @& T, then

lim P,(F(u)) = F(u), wuniformly forue WeaeT

n— oo



The lemma below was proved in [Z2, Lemma 5], where the definition of self-
consistent bounds required conditions C1,C2, C3 and C4a and dim H; = 1, but
the condition C4a and the dimension of Hy were not used in the proof. Hence
we can write this lemma as follows

Lemma 3 Let W & T forms self-consistent bounds for (15). Let {d,}nen C R
be a sequence, such that lim,_, d,, = 00. Assume that, for all n, x, : [t1,t2] —
W @ T is a solution of

dp

o = Fa.(E@),  p(t) € Xa,. (24)
Then there exists a convergent subsequence {d,, }ien such that,

limy oo pn, = @™, where x* : [t1,t2] = W & T and the convergence is uniform
on [t1,ts]. Moreover, x* satisfies (15).

Later we will need a slightly stronger version of the above lemma, which we

state without a proof, because the proof of Lemma 3 works also for this version.

Lemma 4 Let W; & T;, i = 1,...,k forms self-consistent bounds for (15). Let
{d,}nen C R be a sequence, such that lim,,_, o d,, = co. Assume that, for all n,
Tyt 1, t2] = Ule W; ® T; is a solution of

dp

7 = Fa.(F@),  p(t) € Xa,. (25)
Then there exists a convergent subsequence {d,, }ien such that,
lim; oo p, = x*, where x* : [t1,t3] — Ule W; & T; and the convergence is

uniform on [t1,ts]. Moreover, * satisfies (15).

3 The existence of uniform bounds for all Ga-
lerkin projections for short time steps

Consider equation (1). We assume that conditions (3),(4) and (5) are satis-
fied. If a(t,z) is a sufficiently regular solution of (1), then we can expand it in
Fourier series a(t,x) = Y, ca ax(t)e™™™ to obtain an infinite ladder of ordinary
differential equations for the coefficients ay,

d
% = Moay + Ni(a), ke Z¢, (26)

where Ny (a) is k-th Fourier coefficient of function N(a, Da,...,D"a).
Observe that ai € C™ and (26) are not independent, because the reality of
a imposes the following condition

a_j = ag. (27)

To put (26) in the context of the previous sections we define

1=2% H={(arker | »_ lar|* < o0}
kel



and consider the subspace defined by condition (27). This subspace is invariant
for all Galerkin projections of (1) onto X,,. Other constraints like oddness or
evenness of a(t,x) may cause the change of I, moreover also the basis in our
Hilbert space may change accordingly, for example for the KS equation (9)
with odd and periodic boundary conditions (10) we have I = Z, and u(t,z) =
> ker —2ag(t) sin(kz), where aj € R and equation (26) becomes [CCP, ZM]

k—1 0o
dak
o = E*(1 — vk*)ay, — kn; AnQ—n + 2knz::1anan+k, k=1,2,3... (28)

Observe that conditions (3),(4) and (5) are satisfied for the KS equation.
Namely we have v(|k|) = v — ﬁ, p =4, r = 1. For the Navier-Stokes equations

with periodic boundary conditions p = 2, » = 1 and v(k) = v, where v is the
viscosity.

3.1 Estimates

In this subsection our goal is to prove the following

Lemma 5 Let s > so = d+ 7. If lax] < C/k®|, |ag| < C, then there exists
D =D(C,s)

| N [Nol < D (29)

=

Before we proceed with the proof we need several lemmas. To make expres-
sion of some formulas less cumbersome in this subsection for 0 = {0}¢ € Z? we
redefine its norm by setting |0| = 1.

Lemma 6 Let vy > 1. For any a,b > 0 the following inequality is satisfied
(a+b)7 <27 a? +b7) (30)

Proof: This is an easy consequence of the convexity of function z — z7 for
v > 1. Namely

R v Y
(a+ b)Y =2 (a—2|—b) <2 (Cl;b) — 2 (a4 1)

O
The following lemma was proved in [Sa]

Lemma 7 Assume that v > d. Then there exists Cg(d,y) € R such that for
any k € 74\ {0} holds

1 Col(d
2 TR RP S P
1€29\{0,k}



Proof: From the triangle inequality and Lemma 6 we have

i (k=i k)
|k —dklr = [k—i|]7]k]Y
—1 .
S e L L D PV W A N S
|k —i|[|k[Y |k[Y |k =]
Hence
1 -1/ 1 1
- < e e I
S s X g ) |
kezd\{0,i} keZ\{0,i}
97 1
o2
keza\ {0}
0

Now we want to include also the vectors of zero length in the sum appearing
in Lemma 7.

Lemma 8 Assume that v > d. Then there exists Co(d,y) € R such that for
any k € Z% holds

vy v vy
k1,ko€Z% k1 +ka=k |k1| |k2| |k|

Proof: Consider two cases k = 0 and k& # 0.
If k£ = 0, then there exists C(d,7) € R such that

1 1 ~
=14 = 0(d, ).
D e 2.~ G

k1,k2 €Z% k1 +ko= k1€Z\{0}

If k # 0, then from Lemma 7 it follows that

1 2 1
E - = 4 E — <
o e I L1l R A . I LA
1,ko €24 k1+ko=k k1,ko €L \{0},k1+k2—k

Cq(d,y) +2
kP

Hence the assertion holds for Cy(d,~) = max(C(d,v),Co(d,v) +2). O

Lemma 9 Assume v > d. For anyn € Zy, n > 1 there exists C,(d,y) € R
such that for any k € Z* holds

3 1 < Cnld) (33)

vy R AT v Yy
Koo €745 i [ |7 k2 | || ||

10



Proof: By induction. Case n = 2 is contained in Lemma 8. Assume now that
the assertion holds for n. We have

1
Z kilvlkolY - - - |k v
k1,7€2,~'77€n+1€Zd72?:+11 ki=k | 1‘ | 2| | n+1|
1 1
Z |k +1|’v Z ‘k;1|7|]<;2|~/ ..... |k |v =
kn41€22 " k1,ko,.. kn€24,570 | ki=k—kni1 "
Ky i1 €2 kil [k = Knga|” k[
O
Proof of Lemma 5: For the proof it is enough to assume that N is a monomial.
After formally inserting the Fourier expansion for w, Du, ..., D"u we obtain the
expression of the following type
Ni(u) = Z Vky * Uk "+ * Uy (34)
ki+-+ki=k
where each of the variables vg,, 2 = 1,...,[ is some Fourier coeflicient of one the

components of u or its partial derivatives of the order less than or equal to 7.
Observe that for the Fourier coefficients of partial derivatives up to order r
we have the following estimates

HB1+ 4By, C C
< < . (35)
P R e R T
From conditions (34) and (35), and Lemma 9 we obtain
cn cC,(d,s —r
N € Y e < SR
kyethy =k I "

O

3.2 Existence theorems

The main result in this section is Theorem 11, which states that equation (26)
satisfying conditions (3), (4), (5) has solutions within self-consistent bounds for
a sufficiently short time.

Theorem 10 Consider (26). Assume that conditions (3), (4) and (5) hold.
Let be so=p+d+1 and m € R.

Consider compact set W C X,,, and a sequence of compact sets By, C Hy, for
|k| > m, such that there exist s > s and C € R and the following condition is

satisfied

C

Then W & ey, k|>m Bk satisfies conditions C2,C3.

11



Proof: Condition C2 is obvious. It remains to prove C3. Let T' = Hyer, x)>m Bk-
The first question is whether W & T C dom F. Consider u € W & T. From
Lemma 5 it follows that Fy(u) is defined and for |k| > m holds

D
Bl < wiClRP™ + DIk < o (38)
for some constants D and Dy. Hence
fi = |Fo(u)| < —22 k| > m. kel (39)
k — uénVI%éT EU)| = ‘k|8*p’ m,

For s > so we have 35, ., fi < co. From this it follows that W & T C
dom (F).
It remains to prove the continuity of F: W & T — H. From condition (39)
it follows that
lim > [ApF(z)]* =0 (40)

n—00
|k|>n

uniformly on W @ T'. Hence it is enough to prove that F : W & T — Hy is
continuous.

Let us fix £ € I and assume u™,u* € W@ T, for n € N and v™ — u* for
n — 0o. We have (compare the proof of Lemma 5)

Fi(u) = Aug + Ni(u) = Mpwg + Y Nii(w), (41)
ieJ
where J is some set of multindices and for each ¢ € J, N ; is monomial depend-
ing on the finite number of u;, i.e.

Nii = aug, ~Up, - ... U, forsomeaecCandki+---+k=%k

The term Ajuy is continuous, hence it is enough to consider N, only. Let
us fix € > 0. From Lemma 5 it follows that there exists a finite set S C J, such
that

Z | Ng,i(uw)] < €/3, foralue WaT. (42)
i€J\S
There exists L, such that for all ¢ € S monomials Ny, ;(u) depend in fact on the
variables u; for || < L, hence ) . g Ni i(u) is continuous on W & T'. Therefore
there exists ng, such that

> Nei(w™) = Nii(u®)

i€S €S

i€S

< €/3. (43)

From (43) and (42) we obtain for n > ny

[N (u") = Ni(u*)] < D Nea(u™) =Y Niea(u®)| +
ies i€s
>INk + > [Nis(ut)] <e.
i€J\S i€J\S

12



Hence lim,, oo Ni(u™) = Ni(u*). O
Now we are ready to state and prove our main theorem in this section.

Theorem 11 Consider (26). Assume that conditions (3), (4) and (5) hold.
Let sop=p+d+1

Let Z ® Ty form self-consistent bounds for (26), such that for some Cy and

s > sg holds o

< 20

|To.x| < ek

Then there exist h > 0, W & Ty - self-consistent bounds for (26) and L > 0,
such that for alll > L and u € P(Z @ Ty)

|kl >m, kel, s>sp (44)

@l([O,h],u) cCWeoT. (45)
and
Cy
T k| < &’ k| >m,k € I. (46)

Proof: Let W C X,,, be a compact set, such that Z C int x,, W.
By eventually increasing Cy we can assume that

lug| < forallu e W@ Ty and k € I. (47)

e
|k
We set C7 = 2Cy and define the tail 77 by

— C
Ty = H|k|>m,k€IB (0; |/€|15> . (48)

From Lemma 5 it follows that there exists D = D(C}, s), such that

D
[Nk (u)] < T for all u, such that |ug| < ‘(]flls (49)
Let u € W Th and |ug,| = “?Tl‘s for some |ko| > K_.
1d » 9
3 g (Whko ltko) < —volKol? o | + |utkg [ Nio ()] < (50)
(—voC1lkol"™" + Dlko|"™*) fu, | (51)
d|uko ‘2
<0 ko| > L 52
dt ’ | 0| ) ( )
for L sufficiently large.
Consider now the differential inclusion
1’ € PLF(x) + A, re X, AcC Xy (53)

where the set A represents the Galerkin projection errors on W @ 77 and is
given by
A:{PLF(U)—PLF(PLU)|UEW€BT1}. (54)

13



As it was mentioned in the introduction, by a solution of differential inclusion
(53) we will understand any C* function z : [0,t,,] — X, satisfying condition
(53).

It is easy to see that there exists h > 0, such that if z : [0, ¢,,] — X, where
tm < h, is a solution of (53) and x(0) € Pr(Z @ T(0))), then

o(t) €intx, PL(W S T1),  tel0,h]. (55)

Namely, it is enough to take h > 0 satisfying the following condition

h- (ug$%§lg ‘PLF(UH —|—Igleag{(5|) < dist (PL(Z@T()),axLPL(WEBTl)> (56)

Let I > L and let u : [0,t1) — X; be a solution of

v = P F(u), u(0) = up € P(X & Tp). (57)
By changing the vector field in the complement of Pj(W & T1) we can assume
that t1 = Q.
Let

tm = sup{t > 0| u([0,t]) C PRL(W & T1)}. (58)

Obviously ¢, > 0. It is enough to prove that t,,, > h. Observe that for ¢ € [0, t,,]
Pru(t) is a solution of (53), hence from (55) we obtain

PLU([O,tm]) C int XLPL(W (&) Tl) (59)
From (52) it follows immediately that
Qru([0,tm]) C inty, RQL(W & T1). (60)

Hence
u(ty) € int x, P(W & Ty). (61)

From above condition and the continuity of w it follows that for some § > 0
holds
u(tm +t') € int x, (W & TY), t' € 10,9 (62)

hence t,,, = h. I

3.3 Classical solutions from self-consistent bounds

The goal of this section is to address the question, whether the solutions of (1)

obtained through the method of self-consistent bounds are classical solutions.
To formulate the answer in an abstract setting we need some assumptions

about the behavior of the derivatives for functions from Hj,.

For s > 0 let C5,,.(n) = C*(T? R™) denote the space of functions on the

d-torus of class C*. For u € Cp,,.(n) we set |ulo = sup,cpa [u(z)|, where on R™
we use any fixed norm.
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Definition 5 Let H = @y H,. We say that the decomposition of H into Hy
1s r-smooth, when the following conditions are satisfied:

e there exists a partial linear map v : H O dom (1) — C}..(n), such that
@OrerHy C dom (¢) and ker(r) = {0},

e there exists constant R, such that for each k € I, u € Hy and for | =
1,...,7 holds
Olu(u)
8$Z‘18$Z‘2 PN 813il 0

for any (i, ...,i) € {1,...,d}".

< Rlk|'[ul, (63)

Observe that the Fourier expansion, which means that Hj is the space
spanned by e; - expikx, where {ej}jzlw,n is a canonical basis in R", is ob-
viously an r-smooth decomposition of Lo ([0, 27], R™) for any r.

Theorem 12 Consider (26). Assume that conditions (3), (4) and (5) hold.
Let sp =d+p+1.
Assume that H = @yerHy is an s-smooth decomposition of H, for s > sq.
Let w : [t1,t2] > W T C H, where W & T are self-consistent bounds for
(26), such that for some constants m,C € R, s > sg

C

holds, then u is a classical solution of (1).

Proof: We define a(t, z) by

a(t,x) =Y u(ux(t))(x). (65)

kel

From our assumptions it follows that the above series is converging uniformly
on [t1,ts] x T?. Also for any partial derivative of order less than or equal to p

holds o u(usp)
a . AR
8xi18:vi2 ces (%cil B kzel 8xi18xi2 cee 8% ' (66)

Moreover the convergence is uniform on [ty, t] X T<. Since s > sg, hence also the
Fourier expansions for La and N(a) (see Lemma 5) are converging uniformly
on [t1,ts] x T¢. This finishes the proof. [J

In fact from the proof of the above theorem one can obtain the information
about the regularity of solutions. For the results of this type using this approach
for Navier-Stokes equation we refer the reader [ZNS].
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3.4 Analyticity of solutions

The goal of this section is to prove using the self-consistent bounds approach
the results from [F'T, Sa] about the analyticity of solutions.
To discuss the analyticity we need first several lemmas.

Lemma 13 Assume that for some v > 0, a > 0 and D > 0 there is |ug| <

De ™ for k€ 24\ {0}.

Then the function u(z) = Y, cza uke™™ is analytic.

Lemma 14 Let s > so = d+r and ¢ > 0. If |ag| < C‘T%Iw, lag] < C, then

there exists D = D(C, s)

De—lk]

Ny | < —
| k|— |k.|s—7"

[Nol <D (67)

Proof: From the triangle inequality and Lemma 9 we have

D

ki,ko,....kn €245 | ki=k

e—alkil . g=alkal ... ... e—lkn]
[k |Y|ko|Y <« |k ]y

o alk] 3 1 < Guld, )e ¥
YNkoly - - - v = ¥
2 e L] [fen| ||
The remainder of the proof is essentially the same as the proof of Lemma 5 [J

Lemma 15 Consider (26). Assume that conditions (3), (4) and (5) hold. Let
So=p + d + 1.
Let Z ® Ty form self-consistent bounds for (26), such that for some Cy and

s > sg holds .
|To.xl < ﬁ k| >m, kel s> s (68)
Then there exists h > 0, ¢ > 0, Co and L > 0, such that for | > L and
u € P(Z ®Ty) holds
@t u) =Y pes uk(t) is defined for t € [0,h] and

Coe—dlklt
|w@ns—§%fa kel,teloh). (69)
Proof: Let h > 0, W & Ty, L > 0 be as obtained in Theorem 11. It remains to
prove (69).
Let us choose C5 so that
Cy
T > [|[(W e Tkl Vk e I. (70)

Let D = D(Cs, s) be as obtained in Lemma 14.
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Let us fix

D 1/(p—r)
K. > . 71
(e ()
From (70) it follows that there exists 0 < gg < (vo — #), such that for
2 e
0 < g < qo holds

Cse—lklh

S e T ke Lk < K (72)

We will show now that for any Galerkin projection P, with [ > L and u €

. e—alklt e—alkolt
P(Z & Ty), if |ug(to)] < % for |k| > K. and |ug,(to)| = % for

some |ko| > K. and g € [0, h], then

dlu
Winl 1) < kol (1)1 (73

From Lemma 14 we have

d|ug, | De—lkolto
——0 (ty) < —vglko|? t _ 74
g (to) = —volkol |uk, (to)| + ool (74)
Hence to obtain (73) it is enough to show that
De—dlkolto Coe—kolto
———— < (volkol” — glko|) ——— (75)
Kol Kol
Since
(volk[” — qlk]) < (vo — @)[k[", (76)
then it is enough to prove for |k| > K. and ¢ small enough that
D < (1)0 — q)|k|p*TC'2. (77)
This for ¢ < vg is equivalent to
q<wvg— = qy- (78)

CoKEP™

Observe that with our choice of K. we have g, > 0.
It is now easy to observe that (73) and (72) implies (69). O

Lemma 16 Consider (26). Assume that conditions (3), (4) and (5) hold. Let
So=p-+ d+1

Let Z® T, form self-consistent bounds for (26), such that for some Cy, ¢ > 0
and s > sg holds

Coe™ 1 k

Torl < ———
| 0,k|_ |k|s )

k| >m, kel, s> s (79)
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Then there exists h > 0, ¢ > 0 and L > 0, such that for I > L and
u € P(Z @ Tp) holds
ot u) =Y pes uk(t) is defined for t € [0,h] and

—q1k|
it < 2o, keltefon (50)

Proof: Let h > 0, W & Ty, L > 0 be as obtained in Theorem 11 for Z & Ty,
where

~ C
\To,k|§ﬁ, k| >m, kel, s> sg. (81)

Since Ty C Tp, then to complete the proof it remains to prove (80).
Let us choose Cy so that

C
ﬁ >|(WaT)kl, Vkel (82)
Let D = D(Cy,s) be as obtained in Lemma 14.
Let us fix )
D p=r
K. > . 83
(o) (53)
There exists 0 < qg, such that for 0 < g1 < ¢p holds
Coe— 1kl
22 S WeT), Vkel |k < K.. (84)

|k[*

We will show now that for any Galerkin projection P, with [ > L and u €
. e—a1lkl e—a1lkol
P(Z & Tp), if up(to)] < Lm— for |k| > K. and |uy,(to)| = S5 for
some |kg| > K. and g € [0, h], then
d|u,|
dt

(to) < 0. (85)

From Lemma 14 we have

d|ug,| De~lkol

o (to) < —wolkolP |lur, (to)] + o= (86)

Hence to obtain (85) it is enough to show for |k| > K, and ¢; > 0 small enough
that

De— kol Cre~0lkol
< volk 87
e < wlkl (57)
This is equivalent to
D < 'UOKE_TCQ7 (88)

which is satisfied due to (83).
We choose ¢; < min(qg, qo)-
It is now easy to observe that (85) and (84) implies (80).
(]

From Lemmas 15 and 16 we obtain easily the following
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Theorem 17 Consider (26). Assume that conditions (3), (4) and (5) hold.
Let s =d+p—+ 1.

Assume that H = Qe Hy is an s-smooth decomposition of H, for s > sq.

Let w: [t1,ta] > W T C H, where W & T are self-consistent bounds for
(26), be a solution of (26) such that for some constants m,C € R, s > sg

C
|Ty,| < ﬁ k| >m, kel, (89)

holds, then w is a classical solution of (1), which for anyt € (t1,ts] is an analytic
function of x.

Moreover, the following holds for some ¢ > 0

Cye-alklt—t)

ur(0)] < 2 (90)

4 The algorithm for rigorous enclosure of solu-
tions of perturbations of ODEs and differen-
tial inclusions

4.1 The interval arithmetic and notation used in the de-
scription of algorithms

The interval arithmetic [Mo, MZ] is a suitable tool to deal with the non-rigorous
computer arithmetic, because it replaces a mathematical object, r, a real number
or a collection of reals composing a vector, a matrix etc, by an interval or a
collection of intervals, r, such that r € r. Moreover, the arithmetic operations on
the interval objects can be defined so that the result of the interval computation
always contains the result of the corresponding real operation.

In the description of algorithms we will use the same conventions as in [ZLo]
regarding the notation of single valued and multivalued (interval) objects. In
the sequel, by arabic letters we denote single valued objects like vectors, real
numbers, matrices. Quite often we will use square brackets, for example [r],
to denote sets. Usually this will be some set constructed by some algorithm.
Sets will also be denoted by single letters, for example S, when it is clear from
the context that it represents a set. In situations when we want to stress (for
example in the detailed description of an algorithm) that we have a set in a
formula involving both single-valued objects and sets we will rather use the
square bracket, hence we prefer to write [S] instead of S to represent the set.
From this point of view [S] and S are different symbols in the alphabet used
to name variables and formally speaking there is no relation between the set
represented by [S] and the object represented by S. If in the description of
an algorithm we will have a situation that both variables, [S] and S, are used
simultaneously, then usually S € [S], but this is always stated explicitly.

For a set [S] by [S]; we denote the interval hull of [S], i.e. the smallest
product of intervals containing [S]. The symbol hull(zy, ..., x;) will denote the
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interval hull of intervals x1,..., 2. The set Y C R™ will be called an interval
set if Y =TI, Y;, where Y; are closed intervals (we will allow also for degenerate
intervals I = [a, a]).

For any interval I = [a,b] we define a diameter of I diam (I) and the func-
tions left(I), right(I), IT and I~ by

diam(I)=b—a
Im =left(I)=a
I't = right(I) = b.

For ¢ > 0 and X = [a — d/2,a + ¢/2], where § > 0 we define
inflate(X,¢) = [a — ¢d/2,a + ¢§/2].

For any interval set (vector, matrix) [S] by m([S]) we will denote a center
point of [S] and by diam ([S]) we will denote the maximum of diameters of its
components.

In the description of algorithm we will use the expression a € bool to indicate
that a is a boolean variable with the possible values false and true. Sometimes
integer constants 0 and 1 might used for false and true, respectively.

4.2 An outline of the algorithm

For the purpose of the rigorous integration of dissipative PDEs we will study
the following nonautonomous ODE,

a'(t) = f(a(t),y(t)) (91)

where 2 € R™ and y : R D D — R" is bounded and continuous, and f is C*.
Assume that we have some knowledge about y(t), for example |y(t)| < e for
0 <t <t;. We would like to find a rigorous enclosure for x(t).

What we describe below is basically the algorithm for the rigorous enclosure
of the solutions of the differential inclusion

dx
Pty e 1) +19), (92)

where [§] C R™. In the context of the rigorous integration of dissipative PDEs
the function y(¢) in (91) represents the tail and [§] in (92) is the Galerkin
projection error.

For a bounded and continuous function y : [0, 00) — R™ let (¢, 29, y) denotes
a solution of equation (91) with the initial condition z(0) = xg. For a given
Yo € R™ let B(t, xo,yo) be a solution of the following Cauchy problem

o' = f(z,y0), x(0) =m0 (93)

with the same initial condition x(0) = zy. Observe that system (93) is a par-
ticular case of (91) with y(¢) = yo.
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We are interested in finding rigorous bounds for (¢, [zo], [yo]), where [zo] C
R™ and [yo] C C([0,00),R™). The set [yo] might be defined be some dynamical
process, in this case we may need to compute the range of [yg] during each time
step or be given explicitly, for example: y € [yo] iff y is bounded and continuous
and y(t) € [—e¢, €™

To achieve the above mentioned goal we propose a modification of the orig-
inal Lohner algorithm [Lo, Lol]. Our presentation and notation follows a de-
scription of the C%-Lohner algorithm presented in [ZLo] and almost coincide
with the content of Section 6 from [Z2]. The main difference compared to [Z2]
is in how the first and the fifth parts are realized in the context of dissipative
PDEs. This is described in the subsequent sections.

4.3 A fundamental estimate

The following lemma is a particular case of Theorem 1 in Section 13 in [W](see
subsection IV "The Lipschitz condition’), a self-contained proof (with precisely
specified assumptions) can also be found in [KZ].

Lemma 18 Assume tg,h € R and h > 0. Let f : R™ x R™ — R™ bpe
a C'-function. For a fized y. € R™ and a bounded and continuous function
y : [to,to + h] = R™ consider

o = fz,ye), w(to) =0 (94)
= f(ma yC) + (f(x,y(t)) - f($,yc)), x(tO) = Zo- (95)

Let w1, x5 : [to, to + h] = R™ be solutions of (94) and (95), respectively. We
assume that

o W, C R™ is a convex set and y([to,to + h]) C W,,.

o Let Wi C Wy CR™ be convex and compact, such that for s € [to,tg + h]
holds

1‘1(8) e W (96)
xa(s) € Wh (97)

Then the following inequality holds for t € [tg,to + h] and fori=1,...,np

|21, (t) — 22,4(t)] < (/t: e/t=9¢C ds) , (98)

K3

provided C € R™ and J € R™*™ gatisfy the following conditions

Ci

v

Sup{|fi(xay6)_fi(x7y)‘7 xGWhyeWy}v izl"'w”’l
sup ng;(WQ,Wy) ifi=1j,

Jij _ .
! sup gﬁ;(Wz,Wy) ifi#j.
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Comment: It is very important for the application to dissipative PDEs,
that in the above lemma the terms on the diagonal in matrix J can be negative.
As aresult of this fact the increasing of the dimension of the Galerkin projections
does not result in a significant increase of ||e”t|| for ¢ > 0. This fact allows also
to obtain the equicontinuity of all Galerkin projections, which can be later used
to obtain an ODE-type uniqueness proof for dissipative PDEs (see [ZGal]).

4.4 One step of the algorithm

The basic outline of the algorithm is nearly the same as in [Z2]. The only, but
essential, difference is that in the case of dissipative PDEs we have an efficient
procedure for the computation of the evolution of the tail.
In the description below the objects with an index k refer to the current
values and those with an index k + 1 are the values after the next time step.
We define

[kl = {y € Cp([0, 0], R") [ y(t) = 2(tx + ) for some z € [yo]}.
We will also use the following notation for [y] C Cp([0, c0), R?)
[l([tr, t2]) = {2(t) | 2 € [yl ¢ € [tr, 22]}-

One step of the Lohner algorithm is a shift along the trajectory of system
(91) with the following input and output data:
Input data:

e 1, is a current time
e hy is a time step
e [z;] C R™, such that p(tg, [xo], [yo]) C [k]
e bounds for [y]
Output data:

® {11 =tk + hi is a new current time

e [zkp41] CR™, such that @(tk+1, [z0], [y0]) C [Th+1]
e bounds for [yx4+1].

We do not specify here the representation of sets [zx]. This issue is very
important in the handling of the wrapping effect and is discussed in detail in
[Lo, Lol, Mo, MZ] (see also Section 3 in [ZLo]).

One step of the algorithm consists from the following parts:

1. Generation of a-priori bounds for ¢ and [yo]([tk, tr+1])-

We find convex and compact set [Ws] C R™ and convex set [W,] C R™,
such that

90([05 hk]? [Ik]a [ykD c [WQ]a (99)
[k ([0, he]) C [W)y]. (100)
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M

. We fix y. € [W,].

99

. Computation of an unperturbed z-projection. We apply one step of
the C%-Lohner algorithm to (93) with the time step hj and the initial
condition given by [zx] and yo = y.. As a result we obtain [Tp41] C R™
and convex and compact set [W1] C R™, such that

[T+l
[Wh].

P(hi, [Tr], ye)

C
@([07 hk]a ['Tk]v QC) C

4. Computation of the influence of the perturbation. Using formulas
from Lemma 18 we find set [A] C R™, such that

So(tk-i-lv [330], [yo]) - @(hk’ [xk}v yc) + [A] (101)

Hence
@(trt1, [zo], [wo]) C [Tht1] = [Trs1] + [A] (102)

5. Computation of [yj41]

4.5 Part 1 - comments

In the context of an ordinary differential inclusion (92) we can set [W,] = [4].
The question of finding [WW3] is treated in Section 5.

In the context of a dissipative PDE we cannot find [W,] and [W5] using
independent routines, some consistency conditions are necessary. This question
is treated in detail in Sections 6, 7 and 8.

4.6 Part 4 - detalils

We use Lemma 18.
1. We set
0 = ) — fey) o € Wiy € W]}
right(|[6:]]), i=1,...,n
right (SL(Wal. W) ifi =,
vight (|92 (Wal,IW,))|) - if i # j.

£
!

2. D= foh e =) ds
3. [Az] = [7Di;Di}7 for i = ].,. Lo

For the computation of fot eAt=9)C ds, see Section 6.5 in [Z2].
After we compute A to avoid the wrapping effect we perform a rearrange-
ment, see Section 6.6 in [Z2].
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4.7 Part 5 - comments

For ordinary differential inclusions (92) we don’t have to do anything. In the
context of PDEs this is a very important issue and it is treated in Section 7.4.

5 Generation of a-priori bounds for ordinary dif-
ferential inclusions

The goal of this section is to present an algorithm for the generation of a-priori
bounds for ordinary differential inclusions. We will frequently refer to such a-
priori bounds as the rough enclosure. The main result is Theorem 23 and the
algorithm based on it is presented in Section 5.3. These developments realize
for differential inclusions Part 1 of the algorithm outlined in Section 4.

5.1 A naive rough enclosure function

We start with the following easy theorem.

Theorem 19 Consider a differential equation
¥ = f(z), zeR" (103)

where f € C'. Let ¢ be a local flow induced by (103), h € R and X, Z be
interval sets, X C int Z. Suppose that

Y = interval hull(X +[0,h]f(Z)) Cint Z (104)

then
¢([0,h],X) CY (105)

An easy proof is left to the reader. Above theorem can be also derived from
Theorem 23 with D = ().

Let Y be as in the above theorem, we will refer to it as the first order
enclosure, because it is based on the first order Taylor formula. Analogous
theorems using higher order Taylor formulas are possible, but our experience
show that they are not much better.

Remark 20 From Theorem 19 it follows immediately that, if we take h suffi-
ciently small, then there exists the first order enclosure. In fact any interval set
Z, such that X C int Z is good for sufficiently small h.

Observe that condition (104) imposes severe restrictions on the size of h
even in the situation, when it is obvious that the enclosure should exists for any

h > 0. As an example we consider a single linear equation

2’ = f(x) = —Lu, L>0, zeR. (106)
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Assume that (104) holds for some intervals X,Y,Z and f(z) = —Lz. By
taking diameters of both sides of (104) we obtain

hL - diam (Z) < diam(Z), (107)
hL < 1. (108)
On the other side is easy to see that the interval ¥ = [—max | X[, max|X]] is

the enclosure for any h > 0.
An natural generalization of (108) to multidimensional nonlinear system is

hldf| <1, (109)

where |df| is the maximum of the norm of df (z) for = over the region of interest.

In the context of the Galerkin projection of dissipative PDE from condition
(109) it follows that in order to obtain the first rough enclosure for n-th Galerkin
projection the time step must satisfy

hlAk| < 1, for |k| <n. (110)

This usually leads to unreasonably small time steps, which is dictated not by
the dynamics of the system under the consideration, but by the inclusion in the
integration of highly damped variables of little relevance for the dynamics. In
the next section we will present an enclosure theorem and an algorithm based
on it, which allows to use considerably larger time steps.

5.2 The rough enclosure algorithm based on isolation

Our goal is to devise a rough enclosure routine, which will take into account the
strong damping for some variables and will overcome the restriction on h given
by (109).

Before we proceed further we need a few easy lemmas.

Lemma 21 Let N be a constant. Let x(t) be a C* function. If

CC%C < Ax+ N, (111)
then for t > 0 holds
N\ N
z(t) < (x(O) — _)\) e + Y (112)
Similarly, if
dx
T > Az + N, (113)
then for t > 0 holds
x(t) > (x(O) - i) M+ _% (114)
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Lemma 22 Let N be a constant. Let x(t) be a C'-function. If

dx

— <A N 11
o < Az + N, (115)
then for t > 0 holds
z(t) < — if 2(0) < &% (116)
z(t) < z(0), ifx(0) > L (117)
Similarly, if
dr >+ N (118)
dt ’
then for t > 0 holds
z(t) > — if 2(0) > (119)
z(t) > 2(0), ifx(0) < (120)
We assume that our problem can be written as
dl’i .
7 € fi(zx) = Nixy + Ny(x), i=1,...,n (121)

where N; : R” — ¢f(R) is a multivalued continuous function and by ¢ we will
denote the (local) flow induced by (121) (see Section 1.1 for the definition).
Now we state a theorem which is a basis of our improved enclosure function.

Theorem 23 Consider (121). Leth > 0 and X C Z C R™ be interval sets. Let
D c {1,...,n} (the set of dissipative(damped) directions), such that if k € D,
then

A < 0 (122)
d
Apag + N]; < % < Apay + N];L (123)
where N(Z) C (N, ,Ni).
For k € D we set
N:I:
b o= b 124
k —Ak ( )
gf = (XE b)) M 1 (125)
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LetY =1I7_,Y;, be such that

Yi = X+ [0.0fi(Z),  i¢D (126)
Y, = Z i€ D. (127)
Then
¢([0,h], X) C Y, (128)
provided the following conditions are satisfied fori=1,...,n
1. ifi & D, then
Y, Cint Z; (129)

2. upper bounds: fori € D

if Z7 <bf, then Z} >gt (130)
3. lower bounds: fori e D

if Z;7 >0b;, then Z; <g; (131)

Proof: After a modification of the right-hand side of (121) outside a sufficiently
large ball we can assume that all solutions of (121) are defined for ¢t € R.

By a small stretching of Z in dissipative directions we can construct a new
interval set Z, such that

Zi = Zi, i¢D (132)
Zi C intZ;, i€D (133)
Ni(Z) < (N;,N}), keD (134)
X;+[0,h)fi(Z) C intZ =intZ;, i¢D. (135)
Obviously _

Y Cint Z. (136)

Let us fix 2o € X and z(t) be a solution of (121) through z( and let
T =sup{t€[0,h] | Vse[0,t] z(s) €Y} (137)

To finish the proof it is enough to show that T = h. _
If T < h, then there exists 6 > 0, such that T+ < h and (T +t) € Z.
Hence from Lemma 21 it follows that

x;(T+t)€intY; C Z;, forie D andte (0,9]. (138)
Hence
x(s) € Z, forse|0,T+ 4] (139)
By applying the Mean Value Theorem to z; for i ¢ D for ¢t € [0, ] we obtain
(T +t) €xoy+ (T +1t) fi(Z) Cros+[0,h]fi(Z) C Vi (140)

From this and (138) it follows that
z([0,T+6]) CY.
This is in a contradiction with the definition of T', hence T' = h. [
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5.3 The algorithm for rough enclosure for differential in-
clusions

The initial guess: We define

Z, = Xi+[0,hf(X), N0 (141)

N = N(2) (143)
N

, = = 144

bi -\ ( )

We define set D, the set of dissipative coordinates, as follows: i € D iff \; <
—0.01.

It appears to me that the natural size of the enclosure in i-th direction will
be given by diam (X;Ug;). We will use it to modify the set Z in the dissipative
directions.

We choose two real constants ¢ > 1 and 0 < ¢g < 1 (we use ¢ = 1.1, ¢ = 0.1)
and we redefine Z; by setting:

Z; = inflate(Z;, ¢), i1¢ D (145)
For i € D we recompute IN; and b; and we set
g7 = (XF b + b7
w; = diam([g;, g1 UX;)
. X, if X;F > b,
Zi = AT oy
min(b;, g + cqw;), if X;" < b/,

S [x if X7 <b,
B max(g; — cqw;,b; ), if X; >b; .

Validation and a new guess. For each ¢ we initialize the array validated,
by validated[i] = true.
For each ¢ ¢ D, we set

Yi = Xi +[0,h]fi(2). (146)
If not Y; C int Z;, then we set validated[i] = false and define a new guess by
Z; = inflate(Y; U Z;, c). (147)
For each i € D we do the following:
e we compute N; and b;. If not b; C X;, then we compute g;t and w;.

e if not Z;" > b (this implies that X;" < b]") and if Z;" < g/, then we set
validated[i] = false and we define a new guess by setting

Z5 =min(b, g + cqw;). (148)
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e With Z,~ we proceed symmetrically, i.e.
if not Z; < b; (this implies that X;” > b;) and if Z; > g, , then we set
validated[i] = false and we produce a new guess by setting
Z; =max(g; — cqw;,b;) (149)
Finally the enclosure is validated if validated[i] = true for all i.
We iterate the above step until we achieve the validation or the number of
steps is larger than some limit (equal to max(5,n/2) in my program, where n
is the dimension of the phase space).

If we achieved the validation then, we refine the obtained enclosure as follows.
We compute for all i N; = N;(Y), b; and b; and we set

Xt it Xt >bf

+ i i Z Yio .

Y = {g?, ifXj'<b;", fori e D (151)
X, X <b

Yo = {70 PSSV gieD. (152)
g;, X >0 .

We can iterate the refinement a few times.

6 Treatment of the tail for dissipative PDEs

In this section we discuss how to realize Parts 1 and 5 of the algorithm for the
rigorous integration of dissipative PDEs. The algorithm itself is presented in
the next section.

We consider the problem (26) derived from (1) and we adopt the notation
used in Sections 2 and 3. Let us stress that we do not assume the local existence
of solutions of (1), it is a byproduct of the algorithm.

During the computation we want the bounds for solutions to be given by self-
consistent bounds. These bounds will be valid for sufficiently high dimensional
Galerkin projections of (26), so we can use Lemma 3 to obtain the existence of
solutions of (26).

Notations: For self-consistent bounds W @ T we will denote by m(T') and
M(T) the numbers m and M from Definition 3, respectively. In the sequel we
will often use variables T', T'(h), T([0, h]) to indicate the tail. By T(0) we will
usually denote the initial tail (or a candidate for such set), by T'(h) the tail at
time ¢t = h (or a candidate) and by T'([0, h]) the tail for ¢ € [0, h] (or a candidate).
For tail T, by ¢(t,z0,T), where t € R and xg € X,,,(), we will denote the set
all possible values of x(t), where x is a solution of differential inclusion (153) (a
C'-function) defined on the maximum interval of the existence

x e Pm(T)F(.’L‘ + T), l‘(O) = xy. (153)
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If some particular x(t) does not exists for some ¢, then also ¢(t, zg,T) is unde-
fined. In the sequel we will use expression of the form

¢([0,h), 20, T) C Z. (154)

It means that ([0, h], zo,T) defined, hence any solution of (153) is defined for
t € [0, h], and the stated inclusion holds.

Standing assumptions: In this section we assume that [ = Z, and Hy =
R, hence the sets By, in self-consistent bounds can be represented as [a, , am,
where a, < a:, a,f € R. In this situation we can also assume that m, M € N.
The generalization to a more general situation is straightforward, it is enough
to take By = I1% [ay, ., a; ] for m < |k| < M and By, = By« (0,7%) for |k| > M.

Moreover, we assume that conditions (3), (4) and (5) are satisfied.

Lemma 24 Assume that Wy C R™ and T are self-consistent bounds for (26).
Let Xo C Wa and T'(0) C T be self-consistent bounds for (26), such that
m(T) =m(T(0)) and M(T(0)) = M(T). Assume that

([0, h], X0, T) C Wo. (155)
Let N,;t be such that
Ny < Nig(z +q) < N;F, forallk>m,x €Wy andqe T (156)
Assume that for k > m holds
e < 0. (157)
For k > m we define bf, git, T(h)if and T([0,h])E as follows

+
bE = N (158)
g
g = (TOF —b)eM" + 0 (159)
T(hy = gi (160)
T, ST = b
- T(0), if T(0), <by,
T([0, h = A : ="k 162
([0, 1)), {gk i) > b (162)
If
T([0,n]) C T, (163)
then for any n > M holds
©"([0,h], Xo ® P,T(0)) C W@ P,T([0,h]), (164)
¢"(h, Xo ® P, T(0)) C Wa@ P,T(h). (165)

Moreover, for any uy € Xo @ T'(0) there exists u : [0,h] — Wa & T([0,4]) a
solution of (26), such that u(0) = ug and u(h) € Wa @ T'(h).
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Proof: It is enough to prove (164), because (165) follows then immediately
from Lemma 21 and the last assertion is a consequence of Lemma 3 applied to
self-consistent bounds Wo @ T and conditions (164) and (165).

To prove (164) let us fix n > M, p € Xy and y € P,T(0). For sufficiently
small € > 0 let W(e) C R™ and V(e) C R®™™ be such that

Wy C int W (e),

W(e) C B(Wa,e€)
P,T([0,h]) C int V()
V(e) € B(Pu.(T([0, h])), €)

and for z +q € W(e) @ V(e) and k = m,...,n holds
Ny < Ni(z +q) < N,

where N;& are the constants from condition (156).
We define

ty = sup{t € [0, 1] | &"([0,1],p + y) C Wa & P.T([0,h])}. (166)

To finish the proof it is enough to show that ¢; = h. If this is not the case, then
there exists 0 > 0, t1+d < h, such that we have ¢™ ([0, t+4], p+y) C W(e)@V (e).
Hence we can use the constants N,;t in Lemma 21 for ¢ € [0, + J] to obtain

Qme"([0,t1 + 6], p+y) Cint P, T([0, hl)).
From conditions (155) and (163) it follows that

Hence
©"([0,¢1 + 0], p+y) C Wad P,T([0, h]. (167)

But this is in the contradiction with the definition of ¢; and our assumption
that t; + 6 < h. Hence t; = h. O

Lemma 25 Same assumptions and definitions as in Lemma 24. If additionally

for k> M(T) we have
N, =-N/,  T(0), =-T(0), (168)
then Wo @ T'(h) are self-consistent bounds for F.

Proof: Observe that T'(h), C T([0,h])r C T) for all & > m, hence Wy @
T(h) C We@®T. From this it follows that conditions C2 and C3 are satisfied on
Wa & T(h). To finish the proof is enough to notice that T'(h), = —T(h); for
k>M. O
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6.1 Uniform treatment of the tail, polynomial bounds

In a computer program we cannot work directly with an infinite sequence of
intervals [a,;,a;i']. We need to have a finite number of formulas describing

[ay; , af].

Definition 6 Let m < M be positive integers. The structure, T, consisting of
the sequence of pairs {ay, ,a; }rer k>m, such that

° a;ﬁaiforallke],

e there exists C > 0 and s > 0, such that

af =—a; = |kc|15’ fork > M (169)

will be called the polynomial bound.
For polynomial bound T, by m(T), M(T), s(T) and C(T') we will denote the
numbers m, M, s and C, respectively.
We define T,;t by
+ +
T, =a,.
When discussing algorithms we will also use the expression T € PolyBd to
say that T is a polynomial bound.
We define the near tail of T' by nearTail(T) = H,,<p<mlay ,a;] and the far
tail of T by farTail(T) = Wy nlay, , af].

In my implementation for the KS-equation we consider polynomial bounds
with fixed values of m and M. For such class of tails it is easy to define and
implement the arithmetic and set theoretic operations.

For example the question of the verification of inclusion T}, C by, for |k| > M,
where T, b € PolyBd and M (b) = M(T) = M can be handled as follows:

e if C(b) =0, then T}, C by, for |k| > M, iff C(T") = 0.
e if C(b) #0 and C(T') =0, then T} C by, for k| > M.

o if C(b) # 0. Let K = min{|k|] k € I,|k|] > M}. Then T C by for
|k| > M, iff the following two conditions are satisfied

S(T) > s (170)
C(T) C(b)

6.2 Uniform computation of 0.

In the context of a computer assisted proof using the enclosure function based
on Lemma 24 we have to explain how the expressions for b,f and g,f can be
handled using polynomial bounds. In the remainder of this section we will
use the notations from Lemma 24. Moreover, we assume that T and N are
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polynomial bounds such that m(T) = m(N) = m and M(T) = M(N) = M
and for all other polynomial bounds introduced below we have these values of
m and M.

For the further discussion we assume that A satisfies conditions (3) and (4).
We define an auxiliary function V : Ry — Ry by

V(z) = inf{v(k]) | k € I, |k| > z}. (172)
Observe that the assumption A, < 0 for |k| > m implies that
0 <v(m) <. (173)
Now we are ready to explain how the formula

Ni

5 (174)

b =
can be treated in a finite programmable way in terms of polynomial bounds.
We define b € PolyBd as follows
near tail to calculate the near tail of b we evaluate (174) fork € I, m < k < M

far tail for k > M we set

~_ C CN)
+ — —
by = b, = |k[s®) — V(M)|k|s(N)+p (175)
+
Observe that with such definition we have b, > iv)’:k for all |k] > M (with a

reversed inequality for b, ) and this change corresponds to taking bigger value for
N, in an application of Lemma 21. Hence the formulas for T'(h) and T'([0, h])
give valid enclosures, when we use the polynomial bound b,f defined above.

6.3 Uniform computation of 7T'(h)

In Lemma 24 the following expression was obtained
T(h)E = (T(0)F —bF) " + b3 (176)

We want to represent T'(h) as the polynomial bound. This is achieved by finding
a larger set which is a polynomial bound and contains the product of intervals
defined by equation (176).

The near tail of T'(h) is defined by a direct evaluation of (176). The far tail
requires some analytical work. We have

Lemma 26 Let I, m, M, A\, be as above. For any r € R and h > 0, there
exists E = E(r,h, M) > 0, such that

E
€>\kh < |k|r’ fOT |]€| > M. (177)
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Proof: It is enough to observe that the function |k|"e~%*I"" where a =

inf{v(|k|), |k| > M} > 0, is bounded. O

Now we are ready to give a formula for T(h)i for k > M

= JE[*T© [s®)=s(T(0) k[s® —
C(T(0)) - E(s(b) — s(T(0)), h, M) + C(b)
K[+ '
Hence we set
C(T(n) = C(T(0) - E(s(b) = s(T(0)), h, M) + C(b),

s(T'(h)) = s(b)

7 The enclosure procedure for the tail

The goal of this section is to describe the function, which constructs the rough
enclosure (Part 1 of the algorithm) and computes the tail after the time step
(Part 5) for dissipative PDEs. The proposed function is based on Lemma 24
and uses the notion of the polynomial bound introduced in Section 6.1.

As in Section 6 throughout this section we assume that the range of k is [ =
Zy and dim Hy = 1. The modification required for other dissipative equations
with periodic boundary conditions is obvious and will not be discussed. We have
m, M € Z, fixed in advance and all polynomial bounds will use these values.

We assume that we have the enclosure function for the differential inclusion
(see Section 5.3)

¥ € PhF(x+T) (178)
where £ € R™ and T is the tail.

We assume that this function has the following declaration
function incl_enclosure(h € R, [z] C R™,T € PolyBd, [W>] C R™) € bool.

This function constructs the set [Ws] C R™, such that

([0, h], [z],T) C [We]. (179)

If it succeeds then true is returned and [W3] is updated, otherwise it returns
false. In both cases the parameter 7' is unchanged.

7.1 Case of an a-priori given tail

We have the set A C R™ representing the a-priori bounds used to compute the
global tail, Tg = Mksm [T 4, Tdh 4 )-

We generate [W3] by calling function incl_enclosure(h, [z], T, [Wa]) : bool
and we check whether [Ws] C A. If this is the case, then the pair ([Wa],Tg) is
validated.

This is the approach used in [Z2]. Tt turned out to be ineffective when
compared to the one with the evolving tail described below.
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7.2 Basic functions

We assume that we have a function computing the nonlinear term in (26) with
the following declaration

function N ([z] C R™,T € PolyBd) € PolyBd,

where [z] and T are such that such that for all £ > m holds

inf  Ni(z,y) > N ([2],T), sup  Ni(x,y) < NT([2],T), (180)
(zy)elloT (zy)elz]oT

and for k > M we have

Q

_ow)
ks(N) *

N (2], T) = =N; ([, T) (181)
For the KS equation in our implementation we have s(N) = s(T) — 2, but it is
possible to obtain s(N) = s(T) — 1 (see Lemma 5).

There is an unpleasant feature of our implementation of N([z],T) (but it
appears to be a rather inherent for such approach): it happens that (see formula
(258) in Section 8): we have two tails 7o C T3, such that Ty, = Ty for
m < k < M + 1 (the near-tails of T7 and Ty are the same), but s(771) < s(7%)
(the far tail in T3 is decaying faster than that in 77), but nevertheless

NA—Z+1([Z]7T1) <NJ\4/_I+1([Z]aT2)7 (182)

which later produces worse isolation intervals (for k ~ M + 1) for Ty than for
T1. This phenomenon results from the following fact, when we try to bound Ny
by %, then taking larger s forces larger C, which may result in larger value of
Ny for k=~ M + 1.

To handle the above issue we introduce the function (the method) decpower,
which for the polynomial bound 7" will produce a new polynomial bound 7" with
a slower decay rate for the far tail. Namely if 77 = T.decpower(d), then

T oc T (183)
T, = Ty, form<k<M+1 (184)
s(T")y = s(T)—d. (185)

The following obvious lemma tells how to check condition T'([0, h]) C T from
Lemma 24.

Lemma 27 The same assumptions and definitions as in Lemma 24. Assume
that

TO)CT
z'fT(O)'kF < b;, then T,:' > g,': fork>m
if T(0), > b, , then T, < g, fork>m.

Then
T([0,h]) C T.
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Now we are ready to describe the algorithm for the tail validation.

function validate_tail(h € R, [2] C R™,T(0) € PolyBd,T € PolyBd,
gen_new € bool) € bool
Input parameters:

e h > 0 is the time step

e [z] C R™ represents the a-priori bounds for x([0, h]),
e T(0) is the initial condition for the tail,

e T is the candidate for T'([0, h]),

e gen_new tells whether to generate (update) T

Output: true is returned if T is validated, otherwise false is returned. Addi-
tionally if gen_new is equal to true, then T is updated as follows : in case it is
validated, then we find better (smaller) T, otherwise we produce the new guess
for T. If gen_new is equal to false, then T is left unchanged. For the precise
meaning of validation see Theorem 29.

the body of the function:

e we set
validated = false, farTailValidated = false, kvalidated[k] = false for
m< k<M.

e computation of N € PolyBd, b € PolyBd and gi for m < k < M

Ny = NS([ELT) (186)
N:t

bE = —§ form <k <M (187)
Ak

gt = (TO)F -bvE) e +bf,  form<k<M  (188)

To define by for kK > M we proceed along the lines described in Section 6.2.
We set

_ C(N) C(b)
+_ _
bk - bk V(M)kS(N)“’ ks(d)’ (189)
where for the KS equation from (28) we have V(M) =v — W
Observe that with such b, we have for k > M
N
k<t (190)
—\

and the equality holds for k = M + 1 only.
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e validation, we set validated = true if the assumptions in Lemma 27 are
satisfied, because if it is the case, then from Lemma 24 we obtain the
desired enclosure.

Below we discuss this verification in some detail.

The first check T(0) C T is discussed in Section 6.1. In it does not hold
then we exit the function returning false.

Next we have to check the following conditions for all £ > m

if T(0)f < bf, then T/ >gf (191)
if 7(0), > b,, then T, <g.. (192)

For the near tail (m < k < M) we verify the above conditions one by one,
setting kvalidated[k] = true when (191) and (192) are satisfied for k& and
kvalidated[k] = false, otherwise.

For the far tail (k > M) we proceed as follows. First of all observe that
due to symmetry of all polynomial bounds involved it is enough to verify
condition (191), only.

We have three cases:

I. s(b) > s(T'(0)) and C(T'(0)) # 0.
We check that

Tf >gf, for M+1<k<IL, (193)

[ C) T
L= <C<T<0>>) (194)

If (193) is satisfied we set farTailValidated = true.
To justify the above condition let us notice that if ¥ > M + 1 and
k > L, then T(O); > b; for k > M + 1. Observe also that if
L < M +1, then condition (193) is satisfied, because there are no k’s
in this range.

II. s(b) = s(T(0)) or C(T(0)) =0
If

where

C(T(0)) > C(b), (195)

then we set farTailValidated = true, because in this situation we
have T'(0)} > b for k > M + 1, hence there is nothing more to
check.

If (195) does not hold, then we should check whether 7;% > g;.
Since in this case we have T(0){ < g{ < b{, we will instead check
the stronger condition

TF > bf, for k> M, (196)
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which is equivalent to the following two conditions
s(T) <s(b),  Thrpr = birys- (197)

If the above conditions are satisfied then we set farTailValidated =
true.

IIT1. s(b) < s(T(0)) and C(T'(0)) # 0.
Let us define

1
C(T(0)) T =—®
L = —_— . 1
("o 19
It is easy to see that
TO)}; > b, forM<k<L (199)
T < bf, for k> L and k > M. (200)

Hence for k > M and k > L we have to check that T;% > g;". Like in
the previous case we replace g,:“ by bﬁ and we obtain the following
two conditions

s(T) < s(b), T

=y (201)

p+1
where p = max(M, int(L)) and int(L) is the largest integer less than
or equal to L.

If the above conditions are satisfied then we set farTailValidated =
true.

e update of T. There are two update modes depending on the current value
of the boolean variable validated.

If validated = true, then we proceed as follows (compare formulas (161)
and (162) in Lemma 24):
For i =m + 1 to M we update T,j: as follows

if bf <T(0)} then |, T,F =T(0)], (202)
if b > T(0); then |, T =gt (203)
if b, > T(0); then |, T, =1T(0),, (204)
if b, < T(0), then T, =g;- (205)

For the far tail we perform the modification only if by C T(0)g, for k > M
and C(T'(0)) # 0. If this is the case, then we leave s(T') unchanged and
we set

C(T) = C(T(0))(M + 1)*M)==(TO), (206)
With this modification we obtain farTail(T(new)) C fartail(T(old)) and
Tri+1 =T0)pr41-

Now, if validated = false, then we modify only these coordinates in the
near tail, for which the validation failed (kvalidated[k] = false). Below
we present the details.
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We have two parameters 0 < d, < 1 and dp > 1 (in my program dg = 0.1,
dy = 1.01). For k = m + 1 to M, such that kvalidated[k] = false we do
the following

if b > T;" then TF = (1 —dy)gi +dgb),  (207)
if b, <7} then |, Ty, = (1—dy)g, +dgby,  (208)
Ty = inflate(Ty, ds). (209)

If farTailValidated = true and by, C T(0), for k& > M holds and
C(T(0)) # 0, then we modify T as follows: we leave s(7T) unchanged
and we set

O(T) = C(T(0))(M 4 1)) =sTO), (210)

If farTailValidated = false, then we define the new far tail so that
b, UT(0)y, C Tj. For this end we leave s(T") unchanged and we set

O(T) = max (dgC(b)(M +1)3M=5®) o (T(0))(M + 1)S<T>—8<T<0>>) .
The above situation happens for an empty (zero) tail.

Remark 28 Let us remark that it is essential for our function to work
that we keep s(T) unchanged instead of setting s(T) = s(T(0)), because
increasing s may result in worse estimates for Ny for k ~ M + 1, see
comments at the begin of this subsection.

e return validated.

End of the function validate_tail
It turns out that it makes sense to define a separate function for the valida-
tion of the far tail.

function validate_far_tail(h € R, [z] C R™,T(0) € PolyBd,T € PolyBd) €
bool

Input parameters:
e h > 0 is the time step
e [z] C R™ represents the a-priori bounds for x(0, h]),
e T(0) is the initial condition for the tail,
e T is the candidate for T'([0, h]),

Output: true is returned iff 7(0) C T and conditions (191-192) for k > M +1,
otherwise false is returned.

We omit the discussion of this function because it is really contained in the
description of function validate_tail (see variable farTailValidated).
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Theorem 29 Assume that validate_tail(h,[z], T(0), T, gen_new) returns true.
Let n > M, let (z(t),y(t)) € R™ x R"™™ fort € [0, h] be a solution of

¥ = P,F(z,y) (211)
Yy = PaQuF(z.y), (212)

such that x(t) € [z] for t € [0,h] and y(0) € T'(0), then
y(t) €T, for t € [0, h). (213)

Proof: For the proof it is enough to compare the checks performed in the val-
idation part with Lemmas 27 and 24. In particular it is easy to see, that if
validated = true, then T([0, h]) C T, where T'([0, h]) is defined as in Lemma 24.
In the update part the substitution neartail(T) = neartail(T(]0,h])) is per-
formed for the near tail and for the far tail we substitute it with some enclosure
of T([0,k])y for k > M. O

7.3 The enclosure algorithm

We assume that we have the function guessfarTail, which produces a reason-
able initial guess for the far tail. For the KS equation on the line with odd and
periodic boundary conditions such a function is given in Section 8.2.

function enclosure_with tail(h : real,[z] C R™,T(0) : PolyBd,[Ws] C
R™ T : PolyBd,T_is_good_init_guess : bool) : bool;
begin
max_iter = T(0).M/2;
maxdcount = 3;
if not 7T_is_good_init_guess
Tinitial = guessfarTail([z],T(0));
else Tinitial=T;
validated = false;
dcount = 0;
while(lvalidated and (dcount < mazdcount)) do
[W2] = [x] + [Ovh] ' PmF([JJ]),
T = Tinitial;
T.decpower(dcount); // now Tinitial C T with slower decay
if validate_far_tail(h, [W3],7(0),7) then
validate_tail(h, [Ws], T(0), T, true);
// we have now the initial guess for the tail in variable T'
1 =1;
while ((lvalidated) and (i < max_iter)) do
if incl_enclosure(h, [z],T,[Ws]) then
validated=validate_tail([W2], T(0), T, true);
1=1+1;
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end while;
end if;
dcount = dcount + 1
end while
if not validated return false

i = 1; /* the refinement loop */
max_iter = 1;
while (¢ < maz_iter) do
incl_enclosure(h, [z], T, [Ws]);
validate_tail([Ws], T'(0), T, true);
1=1+1;
end while;
return validated;
end
From Theorem 29 and the above algorithm we obtain immediately the fol-
lowing

Theorem 30 Let h > 0, assume that [z] ® T(0) are self-consistent bounds,
m =m(T(0)) and M = M(T(0)). Assume that
enclosure_with_tail(h, [x],T(0), [W2], T, Tisgoodinitialguess) returns true.
Then for any n > M, z(0) € [x] and y(0) € P, T(0) holds
¢"([0,h), 2(0) ® Poy(0)) < [Wa]® P,T. (214)

Moreover, W3] ® T are self-consistent bounds.

7.4 Computation of T'(h)

Assume that [zo] @ T(0) and [W2] @ T'([0, h]) are self-consistent bounds, such
that for n > M holds

¢" ([0, h),z(0) ® P, T(0)) C [Wa] & P,T([0,h]). (215)
From Lemma 24 it follows that
T(h)if = (T(0)F — bF) eM" +bf,  for k > m, (216)

where b € PolyBd satisfies

N = N([Ws],T([0,h])) € PolyBd (217)
e C by, form<k. (218)
“\

To enclosure T'(h) we proceed along the lines outlined in Section 6.3. We need
to find E = E(r,h, M) defined in Lemma 26 for the KS equation given by (28).
As the first step in this direction we prove the following lemma.
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Lemma 31 Assume A\, = —vk* + k2, where v > 0. Let r,E,h € R, E > 0,
h > 0. Assume that for some K > 0 holds

E
Mk < — 219
< oo (219)
—4hvK* + 2hK? + 7 <0, (220)
4vK? > 1. (221)

Then for any k > K holds
et < kgr (222)

Proof: It is enough to show that the function f(k) = e**k" is nonincreasing
for k > K.
We have

F(k) = XNphe" k" + re" M kT = (Xgkh + r)k" el

Hence f'(k) <0 if
g(k) = —4hvk* + 2hk? + 1 < 0. (223)

We want the above condition to hold for £ > K. We will show it by proving
that ¢’(k) < 0 for k > K, because in view of (220) we know that g(K) < 0.
Observe that ¢’(k) < 0 iff the following condition holds

4hk(—4vk* +1) <0 (224)

since we are interested in k£ > 0, hence we obtain

4vk® > 1, for k > K. (225)
O
We look for C(T'(h)), such that for k > M we have
C(T(h))
T(h) < TO)feM" + b < o (226)

To compute C(T'(h)) we use Lemma 31 with r = s(b) — s(7'(0)). We check
whether K < M + 1 (if this is not the case we return the failure message).
Hence we have to verify that

—4hv(M +1)* + 2h(M +1)* + s(b) — s(T(0)) <0, (227)
w(M+1)2 > 1. (228)

If above conditions are satisfied then we set
B = eh)\M+1(M + 1)3(5)—S(T(0))_ (229)
Now from (176) it follows that we can set

C(T(0))E + C(b)
ks(®) ’

TE(h) =+ (230)

42



Observe that with the above definition of T'(h) there is no guarantee that
T(h)k>m C Tk, hence in the final step we set

T(h) := T[0, k] N T(h).

Remark 32 To obtain some intuitions about conditions (227) and (228) let
us consider the typical numbers for the KS equation (28). For example for the
possible chaotic case for the KS we have r = 2, v = v ~ 0.03, M = 3m = 36,
h~ ﬁ We obtain

4vM? ~ 155.5
M*y 2M?

()t 2w(X)

—4dhvM* + 2hM? + 7 = —4

;2=

—162 + + 2~ —158

81
vM?
So conditions (227) and (228) are satisfied with large margin.

7.5 Estimates during the time step

From the results of Section 6 (the monotonicity of the bounds) it follows that
we have the following refinement of the enclosure T' = T'(]0, h])

7([0, h]) € T(0) UT(h). (231)

We will use it in the section region in the computation of the bounds for the
Poincaré map (see [ZLo, Section 5]).

8 Finding a good guess for the far tail for the
KS equation

We will discuss here the question: How to obtain a good initial guess for the far
tail?

By a good guess we understand T € PolyBd, such that condition (163) in
Lemma 24 (T'([0,h]) C T )is likely to be satisfied. In this section we consider
the KS equation (28) and we derive heuristic conditions, which will guarantee
that

Ni([2],T)
—k

Observe that (232) together with condition T'(0)r C T} for k > M (this is a
minimal requirement for 7" being the tail enclosing evolution of 7'(0) ) implies
that

C Ty,  fork> M. (232)

T([0,h))r C Ty,  for k> M. (233)

In this section as the result of the analysis of (232) we will obtain:
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e the relation between possible values of M and s for T, ( see condition
(263))

e the function realizing the guess of the far tail (see Section 8.2)

The KS equation with odd and periodic boundary conditions in the Fourier
domain can be written as (compare (28))

a, = k*(1 —vk®ay, — k(FS(k) —2-1S(k)), k=1,2,... (234)
where
k—1
FS(k) = Y anakhn (235)
n=1
IS(k) = ) ananyk (236)
n=1
B, = —FS(k)+2IS(k) (237)
N, = kB (238)

We fix T' € PolyBd. Let N = N(W,T) € PolyBd, where W C R™ is
a compact set, which will not be important in the following discussion. In the
sequel we assume that C = C(T) and s = s(T'). First we need to find D = C(N)
(see [ZM, Corollary 3.7]), such that

(239)

Here we will organize the computation of D slightly differently than in [ZM]
to get a better feeling about the dependence of D on C' and s. There are also
some mistakes in the printed version of [ZM] on page 279 in formulas for D;
and Dy, which where derived from (correct) Lemma 3.6 in [ZM] (but fortunately
these errors were not present in the actual programm, which was based on the
correct Lemma 3.6).

First, we seek the bounds for F'S(k) and I5(k)

PSR < o, TS| < o4 (240)
and then we obtain Dy + 2D,
By < 2320 (241)
The following lemmas has been proven in [ZM].
Lemma 33 [ZM, Lemma 3.4] Let M < k < 2M. Then
, i
FS(k) C 2k—M§<k/2 anap—n + e(k)az , +2C ; (k—in)sH’ 1],

where e(k) =1 if k is even and e(k) = 0 when k is odd.
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Lemma 34 [ZM, Lemma 3.5] Let k > 2M. Then

c [ 2t C40 2
F —1,1].
Sth) € = <2M+1Z"+(2M+1)5+1+(s1)M8>[ /1]

Lemma 35 [ZM, Lemma 3.6] Let k > M. Then

C C
IS(k)Cks_l(M+1)<(M+ls - +Zlanl>
Let us set
Di(k<2M) = max{k* '|FS(k)|, M <k<2M}, (242)
g5t 4 c2°

D 2M) = 24

1(k > 2M) <2M+1Z| "|+(2M+1)S+1+(s—1)M8>( 3)
From the above lemmas it follows immediately that
Dy = max(Di(k>2M),Dy(k <2M)) (244)
C C

= 4

Dy (M +1) ((M+1S I +Za"> (245)

8.1 Dependence of D; on C and s

We will make several assumptions regarding the candidate tail (these numbers
are typical for attracting periodic orbits for v = 0.1 — 0.127)

Zsup lan] ~ A=2 (246)
L weT

c < 10" (247)

s =~ 12 (248)

M =~ 40 (249)

J\is < 107° (250)

Consider first Ds. It is easy to see that the term linear in C' is dominant,
namely

M c CAM 415 (s 1)
(nz_:l |“”|> / ((M+1)5—1(s—1)) ~ c =

24019 .10
1015

=221107% ~2-10%-107* = 200

Hence we have

O < — (251)



Remark 36 D, appears to depend linearly on C'. The dependence on s appears
to be insignificant.

Now we take a closer look at Dy(k > 2M) observe first that the third term
is considerably larger than the second one. Namely we have

c4 C2° s—1 C2°

= . 252
@M+ 1) ~ MM +1) 2M+1 (s— D)M° (252)
The first term is dominating the other two. Namely we have
gs+1 M
20t Lm0l 24(s—1) 10 (253)
c2s ~ c ~
e (2M +1)-%

Hence we obtain the following
Remark 37 It appears that

25T A

——C=2VC
2M +1

Dy(k>2M) ~
Moreover, it is also clear that Di(k > 2M) is several orders of magnitude
larger than Dy. There is also the significant dependence on s.

The expression for D1 (k < 2M) appears to be more difficult to analyze. For
further discussion let us define

FSi(k) = |2 Z anak_n—I—e(k:)ai/2 (254)
k—M<n<k/2
k—M—1 |
FSc(k) = 2C Y ———. (255)
—~ (k—n)

We have
FS(k)| < FSi(k) + FSa (k).
Let us make a few observations :
e F'Si(k) contains the largest number of terms for & = M + 1, hence we
expect that it achieves is the maximum value for k = M + 1. It is much

less obvious where the maximum for k*~'FS; (k) will be, but in my ex-
periments it turns out that it is achieved also for k = M + 1,

e in the term F'Sc(k) the number of terms increases with k, but since there
are only a few dominating modes (say d) we can approximate F'Sc(k) and
k>~ FSc (k) for k> M — 1+ d by

FSc(k) =20 (3 lan]) /4° (256)

A
kT ESe (k) ~ 20 (Y Jaul) /k < M2+ :

C (257)
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From above considerations it follows that

2A
Di(k<2M) =~ (M +1)*"'FS; (M + 1 C.
Summarizing it appears that
2514
hence for large C
28+1A o
D ~—C. 2
(Co)m s (259)
Consider now isolation equation (232) for k > M
C D
—_> 260
e TEY (260)
An easy computation shows that it is equivalent to
1
k? <y—]€2>czp, k> M. (261)

It turns out that it is enough to check the above inequality for k = M + 1, only.
Hence we obtain

(M +1)? <y - M) C>D (262)

After using (259) we obtain
(M +1)2(2M + 1) (u -
A

1
TME1)2
artr) > 9+, (263)

8.2 The function for generation of the initial guess.

It appears that equation (263) should serve as the basic test, whether the en-
closure is possible with the given values of s and M, because it guarantees that
a ’large’ enclosure for the far tail always exists. In this situation it is enough to
increase C' in some geometric fashion until we enter into the linear regime for
D(C).

It is also easy to compute Cp, where the linear regime approximately begin.
From (258) we obtain

Di(k<2M)-(2M +1
oy = Dalk = 28+)1A( +1 (264)

The above considerations lead to the following procedure for guessing the
enclosure for the far tail.

Guess of the enclosure for the tail
Input: [z] C R™, T(0) € PolyBd
Output: T € PolyBd, this is a candidate for T'([0, h]).
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0. m(T) = m(T(0)), M(T) = M(T(0))
1. Computation of A, Dy (k < 2M)

2. Computation of s(T'). We seek the largest integer, S,q., such that condition
(263) holds and simee < s(T(0)). We set s(T') = Smaz-

3. Computation of C'(T'). We take the maximum of C(T'(0)) and 3Cf, where
C, is given by (264).

Warning: If we start with an empty near tail and we just evaluate A and
D; on the initial condition, then we end up with D;(k < 2M) = 0, which leads
Cr = ¢(T) = 0. But even in this case a correct value of s(T) is generated,
and while this is really not a good guess since the tail is empty, the enclosure
function works, because the update step in function validate_tail produces a
new candidate, T', such that C(T') # 0.

8.3 Other equations.

The analysis presented in this section was restricted to the KS equation (9) and
used heavily the fact that N was quadratic. But it is quite obvious that this
approach could be generalized to a general polynomial function N. Observe
that in this case we should obtain the following expression

CAy + C?Ay + -+ CPA,
ks—r

where A; are functions of M,s. Just as in the case of the KS equation the
functions A; for i > 1 will contain positive powers M in the denominator, hence
for bounded set of possible C' the terms A;C? for i > 1 could be made as small
as need by taking sufficiently large M and then we are in the situation already
considered for the KS equation earlier in this section.

|Ng| <

(265)

9 Computation of the Poincaré map

The goal of this section is to discuss the question of the computation of the
Poincaré map for (26).

We fix parameters m and M for all self-consistent bounds appearing in the
sequel.

To compute the Poincaré map we need the estimates for the trajectory during
the time step. As such estimates one can use the rough enclosure obtained in
Part 1 of the algorithm, but these estimates are usually too crude and can be
easily improved. For the tail this was discussed in Section 7.5 and for the main
variables (r € X,,) the procedure is described in Section 6.7 in [Z2].

Consider a sequence 0 =ty < t; < --- < ty and let h; = t; — t;_1 be the
corresponding time steps. Assume that we apply our algorithm for the rigorous
integration of (26) to some initial condition X @ Ty using the time steps h;. To
facilitate the further discussion we introduce the following notation
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e by @(t;, Xo®Ty) we will denote the result of i-th iteration of our algorithm
for the sequence of time steps hq,...,h;

e for any h > 0 and the self-consistent polynomial bounds V' by $([0, k], V)
we will denote the enclosure for ¢([0, h], V') obtained by our algorithm.

Using the above conventions we have:
For any n > M and o € Xy @ Ty

‘Pn(tupn(170)) € @(tivXO@To)a 1= 1)"'5N (266)
(pn([ti_l,ti],Pn(Z‘o)) C @([O,hi],(ﬁ(ti_l,Xo@To)), P = 1,...,N.(267)

Extending in a natural way the above notation we set

C =

O([tis tivr], Xo @ To) = | J @([0, hiva], D(tivi—1, Xo © To)). (268)

=1

We have for any n > M
" ([ti, tivk], Po(Xo © To)) C &([ti; tivi], Xo & To). (269)

In the computer assisted proofs of the existence of periodic orbits we consider
the Poincaré maps for all Galerkin projections P,, of (26) for n > M. Moreover,
we want to obtain such bounds in a single application of the algorithm as in
Theorem 30. For this purpose we will always define the section of (26) in terms
of X,,.

We define the section § C H as follows:

Let o : X,,, = R be a C'-function.

e 0={x e H|aP,z) =0}
e P, (0) is a submanifold in X, of the codimension one.

In our computation for the KS equation we always use « linear (affine). For the
purpose of the computation of the Poincaré map we need to add some transver-
sality condition with respect to (26). But since the vector field defined by (26)
might be not defined on 8, we rather formulate an easy theorem containing the
transversality condition as an assumption, which has to be verified during the
execution of the algorithm.

In paper [Z2] we considered the Poincaré map on section ¢, denoted there by
Gy, as a multivalued map defined on P,,(#) with values in P,,(#). Here we will
rather treat Gy be as a multivalued map with both the domain and the range
being infinite dimensional.

Definition 7 Consider (26) and the section 6. For n > M let us denote the
Poincaré map for ©" by G, 9. Then we define the Poincaré map Gg as follows:

x €domGy, iff PpredomGng foralln>M
Go(x) = convex hull({Gpo(Pp(x)) |n > M}), z€domGy
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For two sections 6; and 6, analogously define Gy, ¢, .9, and Gy, 4,. In this
notation we have Gy = Gyp_g.

Theorem 38 Consider (26). Let Xo ® Ty be self-consistent bounds, such that
there exists N, a sequence of real numbers t; fori=1,..., N and two sequences
of self-consistent bounds X;®T; fori=1,...,N and W;®V; fori=1,... , N—-1
such that

0<ty <---<tn, (270)
P(t,Xo®To) C Xi0T, (271)
o(0,ti1 — ), X, @ Ty) € W@V, i=1,...,N—1, (272)
Ptig1 —ti, Xo®T;) C Xigy1 B Tiga, i=1,...,N—1. (273)

Assume that
a(X1) <0, a(Xy)>0 (274)
Va(P(z)) - PpF(z) >0, forallz e J' Wia v, (275)

then for any n > M and any x € P,(Xo ® Vi) there exists a uniquely defined
ty(x), such that t, < tj(z) <ty and

" (ty (z), ) € 0. (276)

Moreover, the map t,, ¢ : Po(Xo®Ty) — R is continuous. Consequently the map
Gr,o : Po(Xo ® To) — Pob, given by Gno(x) = ¢"(tno(x), ) is well defined
and continuous and

N-1
Gno(Po(Xo @ Tp)) C Py (e nlYwe m) (277)
=1

Proof: From conditions (271-273) it follows that

" (t, Pu(Xo® Tp)) C Xi@Th, (278)
O"([0,tip1 — i), P (X; @ Ty)) € WidVi, i=1,...,N—1, (279)
O (tig1 — i, Py(X; ©T3)) € Xigr @ Tiga, i=1,...,N —1(280)
To finish the proof observe that
dao @n t: €z n n
00 PD) _ Ga(Po(p" (1,2))) - PuF(2 (L)) > 0
O
In the context of Theorem 38 the algorithm computing Gy will give

N-1
Go(Xo @ Tp)) C Go(Xo @ To) =0 | Wi @ Vi, (281)
=1

where by é; we denote the bounds for Gy computed by our algorithm.
We also introduce the following
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Definition 8 Same assumptions as in Theorem 38. We define the transition
time tg, by
tgy = (t17 tN)

The extension of Theorem 38 and Definition 8 to maps obtained as the
transition between sections 0, and - is straightforward and is left to the reader.

An important issue in this context is the realization of the intersection ap-
pearing in formula (281). In our implementation 6 is always linear. We have
found the following approach to be the most efficient: we introduce a new coor-
dinate system (an affine transformation) in X,,, such that if (z1,...,2;) denote
the new coordinates, then § = {z; = 0}. We will refer to these coordinates as
the section coordinates. Moreover, if we are close to the section (in the section
region), then we express all enclosures W; @V} in these coordinates. This means
that formulas for rigorous estimates during the time steps from [Z2, Sec. 6.7]
have to be evaluated directly in the section coordinates. In this situation the
intersection (281) is just a projection onto (22, ...,z2;) of all sets W; @ V;.

This approach has also an another advantage. When one uses the Brouwer
Theorem to prove the existence of a fixed point for the smooth map P (Poincaré
map) one needs, B, a set homeomorphic to a ball such that P(B) C B. Usually
the shape of B has to be carefully chosen. Assume that xg is a good approxima-
tion of this fixed point and vy, ..., v, are approximate eigenvectors of dP(x).
Then good candidate set for B is given by

B= {.Z‘Q + Zaivi ‘ a; € [—(52‘,51‘]}, (282)
i=1
for some §; >0 fori=1,...,n.
It is then desirable to express the computed value of P(B) directly using the
linear coordinate frame induced by vy, ..., v,.

10 Periodic orbits for the KS equation - topo-
logical theorems

In this section and the following ones we report on the computer assisted proofs
of the existence of multiple periodic orbits for the KS equation (9) with peri-
odic and odd boundary conditions (10). These orbits are obtained using the
algorithm for the rigorous integration of dissipative PDEs described in earlier
sections.

In the Fourier domain the system (9-10) is given by (28) and has the reflec-
tional symmetry R, which acts as follows

a2k — G2k, A2k4+1 — —A2k+1, ke Z+. (283)

We consider v € [0.02991,0.128]. For the description of various periodic
orbits and Silnikov connections, indicating the existence of the chaotic dynamics
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for v € (0.111,0.133), the reader is referred to [JJK] and the literature cited
there. One should be aware that in [JJK] the KS equation is written in a different
form and the parameter « = 4/v is used. Let us focus on the periodic orbits
branch denoted in [JJK] by Ymops. This branch, consisting of R-symmetric
attracting periodic orbits, bifurcates off the positive bimodal fixed point branch
for v ~ 0.13254. As v decreases the branch vy, ¢ undergoes the period doubling
bifurcation at v ~ 0.1223 losing its stability, which is inherited by an asymmetric
periodic orbit. Along the branch g, we proved the existence of periodic
orbits, both stable and unstable ones, respectively before and past the period
doubling bifurcation. We proved also the existence of an orbit on the non-
symmetric branch bifurcating from vygepy-

Other periodic orbits, whose existence is proven in this paper are unrelated
t0 Yrops and were chosen, with the objective to be in the chaotic region [CCP]
or close to it.

To prove the existence of periodic orbits, which in numerical simulations
appears to be attracting, a Brouwer-type theorem was used - see section 10.1.
For the apparently unstable orbits we use the covering relations [ZGi] and the
Miranda Theorem [Mi] - see section 10.2.

10.1 Brouwer-type existence theorem

We fix parameters m and M, and we assume that these parameters are used for
all self-consistent bounds appearing in the computations.

Theorem 39 Consider (26), assume that conditions (3), (4) and (5) hold. Let
sop =d+p+1. Let 0 be a section. Assume that there exists set B ® Ty C
P,(0) ® Y, such that

o B® Ty are self-consistent bounds,

e B is homeomorphic to (m — 1)-dimensional closed ball,

e Gy,oy(BeTy) C BeTy

o there exists a > 0 and b > 0, such that a <t <b for allt € tg,_,,(B®Tp)
o forall0 <t <tg,,,(B®Ty) holds p(t,B®Th)NO=0.

Then there exists t* € tg,  ,(Boty), v : R — H a solution of (26), such that
u(0) € B@® Ty and u(t*) = u(0) (hence u(t) is periodic) .

Moreover, if all self-consistent bounds used in the computation of Go—o(B &
To) were polynomial bounds with s > sq, then u defines a classical solution of

(1).

Proof: Let t,, 9_,o(z) be the Poincaré return time to section P, () for z € X,
for ¢™. From Theorem 38 we obtain for n > M

tn,9—>9(Pn(B 2 TO)) - tge»ﬂ’
Gn,9—>9(Pn(B ©Tp)) C Po(B @ To).
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From the Brouwer Theorem applied to G,, g—¢ on P, (B ® Tp) for each n > M
we obtain a periodic orbit for n-th Galerkin projection. Let us denote this orbit
by u™. We have u™ : R — X,, and ", such that «(0) = u(t") € P.(B ® Tp),
t" € tg,_,. By picking up a subsequence we can assume that t" — t*.

Let tpmar = Tight(tg,_,,). Observe that the set ¢([0, tmax], B®Tp) is a finite
sum of self-consistent bounds (one for each time step), hence from Lemma 4, it
follows that we can pick up in (u™) a convergent subsequence, which is converg-
ing to u* a solution of (26). It is easy to see (see the proof Thm. 8 in [Z2]) that
u* is periodic of period t*.

The assertion regarding the classical solution is an immediate consequence
of Theorem 12. [

To obtain orbits with the reflectional symmetry, R, we will use the following
obvious modification of Theorem 39.

Theorem 40 Consider (26), assume that conditions (3), (4) and (5) hold. Let
sop=d+p+1.

Assume that there exists a symmetry R : H — H, such that R(dom (F)) =
dom (F') and Fo R= Ro F on dom (F).

Let 0 be a section. Assume that there exists set B® Ty C P (0) ® Y., such
that

o B® Ty are self-consistent bounds,
e B is homeomorphic to (m — 1)-dimensional closed ball,
e RoGy,re(B®Ty) C BeTy

o there exists a > 0 and b > 0, such that a <t < b for allt € tg,_, ,,(B®Tp)

for all0 <t <tg,  .,(B®Ty) holds p(t, B® To) N RO = 0.

Then there erists t* € tg,  ..(Bat,), v : R — H a solution of (26), such that

u(0) € B® Ty and u(t*) = Ru(0), hence u is R-symmetric periodic orbit.
Moreover, if all self-consistent bounds used in the computation of Gg_g(B &

To) were polynomial bounds with s > sq, then u defines a classical solution of

(1).

10.2 Covering relations and the Miranda Theorem

The notion of the covering relation was introduced in papers [Z0, Z1]. Here we
follow the most recent and the most general version introduced in [ZGi] and the
reader is referred there for proofs.

Definition 9 A h-set, N, is the object consisting of the following data
e |N| - a compact subset of R™, a support of N
e u(N),s(N)€{0,1,2,...}, such that u(N)+ s(N) =n
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e a homeomorphism cy : R — R™ = R¥N) 5 RS(N)  such that
N(INI) = By (0,1) x By (0,1).
We set

- aBu(N)(O 1) X BS(N (071
N =B u(N )(0 1))(635(1\[ (O,l

)
)
N™ =cy'(No), NT=c' (V)

Hence a h-set, N, is a product of two closed balls in some coordinate system.
The numbers, u(N) and s(N), stand for the dimensions of nominally unstable
and stable directions, respectively. The subscript c refers to the new coordinates
given by homeomorphism cpy. Usually we will identify the h-set with its support.
According to this convention |N| = N

For the unstable periodic orbits for the KS-equation considered in this paper
it is enough to consider h-sets with v = 1, so we have only one nominally
expanding direction. This restriction enables us to give sufficient conditions for
the existence of covering relations, which are easy to verify.

Definition 10 Let N be a h-set, such that u(N) =1. We set

N = {~1} x By (0,1)
N = {1} x Byn(0,1)
S(N). = (—o0,—1) x R*™)
S(N)L = (1,00) x R*™V),

We define

N = (NI), T = e (NF9),
S(NY = A (S(N)), S(N) = e (S(NY").

We will call N'*, N, S(N)! and S(N)" the left edge, the right edge, the left
side and right side of N, respectively.

It is easy to see that N~ = N U N"°,

We will not recall here the definition of covering relation in full generality,
as we restrict ourselves to the case of u = 1, and will reformulate Theorem 16
from [ZGi] as the definition.

Definition 11 Let N, M be two h-sets in R™, such that w(N) = u(M) =1 and
s(N)=s(M)=s=mn—1. Let f: |N| = R™ be continuous.
We say that N f-covers M with degree w = £1, denoted by

N L2
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Left side
Ri ght side

Figure 1: An example of an h-set on the plane.

if there exists qo € B4(0,1), such that the following conditions are satisfied
Flen([=1,1] x {@o})) < it (S(M)'U|M|US(M)") (284)
fANDNMT = 0, (285)
and one of the following two conditions holds
f(N'®) c S(M)" and f(N"®) C S(M)" (286)
f(N*) c S(M)" and f(N"¢) C S(M)". (287)
w =1 if condition (286) is satisfied and w = —1 if condition (287) holds.
Quite often we will drop w in the symbol of the covering relation.

Remark 41 A wusual picture of a h-set on the plane with u(N) = s(N) =1 is
given in Figure 1. A typical picture illustrating covering relation on the plane
with one “unstable’ direction is given on Figure 2.

From Theorem 9 in [ZGi] we immediately obtain the following Miranda
Theorem [Mi].

Theorem 42 If N Ly N, then there exists x € int N such that f(z) = z.

In the context of computation of the Poincaré map for (15) we have the
following easy

Lemma 43 Assume that By®Ty, Bo@®Ts are self-consistent bounds and By, Bs
are (m — 1)-dimensional h-sets. M = M (Ty) = M (1) and u(B1) = u(Bg) =1
Assume that

Go,0,(By & Th) C  (int S(Ba)' UByUS(B2)") & My (Ty 4, Ty, )(288)
and one of the following two conditions holds

PGo,0,(B @ T1) € S(By)'  and PpGo,—9,(BI¢ @ Ty) C S(Bs)" (289)
PnGo, 0,(B @ T1) € S(Ba)" and  Pp,Go, 0,(Bi¢ ®T1) C S(By)!, (290)
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then for every n > M

G010

B @Pn(Tl) = " B @P’n(TQ) (291)
Definition 12 We say that

Go, 04

BioTy = BT
if BL @11, By ® Ty satisfy assumptions of Lemma 43 for the map Go, 0, .

Now we are ready to state

Theorem 44 Consider (26), assume that conditions (3), (4) and (5) hold. Let
so =d+p+1. Let 0 be a section. Assume that there exists set B ® T C
P, (0) ®Y,,, such that

e BB T are self-consistent bounds,
e B s an (m — 1)-dimensional h-set,

BeTy ¥ BaT,,

there exists a > 0 and b > 0, such that a <t < b for allt € tg, . ,(B®Ty),

for all0 <t <tg, ,(B®Ty) holds p(t,B®Ty)NE=0.

Then there exists t* € tg,  ,(Bom,), ¥ : R — H a solution of (26), such that
u(0) € B® Ty and u(t*) = u(0).

Moreover, if all self-consistent bounds used in the computation of Go—o(B &
To) were polynomial bounds with s > sg, then u defines a classical periodic
solution of (1).
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Proof: For each n the existence of periodic orbit for n-the Galerkin projection
follows directly from Lemma 43 and Theorem 42. Then we continue as in the
proof of Theorem 39. [

To obtain orbits with the reflectional symmetry, R, we will use the following
modification of Theorem 44.

Theorem 45 Consider (26), assume that conditions (3), (4) and (5) hold. Let
sop=d+p+1.

Assume that there ezists a symmetry R : H — H, such that R(dom (F)) =
dom (F') and Fo R=Ro F on dom (F).

Let 0 be a section. Assume that there exists set B@T C Pp(0) ® Yy, such
that

e B&®T are self-consistent bounds,

e B is an (m — 1)-dimensional h-set,

BoT, ™5™ Bo T,

there exists a > 0 and b > 0, such that a <t < b for allt € tg, , ., (B&Tp)

for all0 <t < tg, ., (B®Ty) holds p(t,B®Ty) N RI = 0.

Then there erists t* € tg,  ..(BeT,), ¥ : R — H a solution of (26), such that

u(0) € B® Ty and u(t*) = Ru(0), hence u is R-symmetric periodic orbit.
Moreover, if all self-consistent bounds used in the computation of Gg_g(B &

To) were polynomial bounds with s > sq, then u defines a classical solution of

(1).

11 The outline the computer assisted proofs of
the existence of periodic orbits

In our computations we used the formulas for the Galerkin errors developed in
[ZM, ZAKS]. The programm was written in c++, the gnu compiler was used.
We tested our program under Linux and Windows operating systems. The
source code is available at [ZS]. The computations have been performed using
the interval arithmetics from the CAPD package developed at the Jagiellonian
University, Krakow, Poland [CAPD]. This interval package was based on the
double precision arithmetic.

The general scheme of the proof is the same as in [Z2]. Since we want
to discuss both symmetric and non-symmetric orbits at the same time we set
R =id for non-symmetric orbits. The proof consists of the following steps:

1. the initialization: setting up the parameters: dimensions m and M, finding
an approximate periodic orbit, choosing the section 67, finding suitable
coordinates on 61,

2. the construction of initial tail T,
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3. the construction of a set Ny @ Tj, such that for attracting orbits holds:
RogglﬁRgl(No@To) C No & Tp. (292)
For unstable orbits we require that

RoGy, . re,(No®Tp) C
int (S(No)' UNoUS(No)") & s (T, Toy)- (293)

This step includes the rigorous integration of (28).

4. for unstable orbits only, the verification that one of the following conditions
is satisfied

PR oG, o ro, (N & Ty) € S(Np)'  and
PmR o g91—>R91 (Nge S2) TO)) - S(NO)T (294)

PR oGy, sre, (NI ®Ty) € S(No)™ and
PR oGy, re, (NG¢ @ Tp) C S(No). (295)

This step includes rigorous integration of (28).

5. the conclusion of the proof, an application of Theorems 39, 40, 44 or 45.

11.1 Part 1 - the initialization

We set the values of m, the time step h, the order of numerical method r and
d - the number of coordinates in the diagonalization of DG as in Tables 3 and
9. We set M = 3m.

Starting with xp, a good candidate for periodic orbit for m-th Galerkin
projection of the KS equation, we construct the section 8 and the section co-
ordinates as in [Z2, Sec. 5.1]. 67 is a linear section through z( orthogonal to
P,,F(xp). In our proofs we have found it most efficient to choose the point xg
on the section o = {a; —a3 =0, (a3 —a3) > 0}. We define section 6; as a
section perpendicular to P, F(zg) at xq, given as follows

a(z) = (P F(xo)|z) — (P F(x0)|zo), o >0. (296)

The main difference in this part of the proof, when compared to [Z2], is in
the choice of the section coordinates, previously we had used the orthogonalized
etgenvectors, now we use the normalized eigenvectors.

The normalized eigenvectors coordinates are constructed as follows: zq is
an approximate fixed point for the map g = RGp, 0, R, : 01 D U — 6. We
introduce a new orthogonal coordinate frame such that xg is at the origin. The
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first coordinate direction is P, F'(zg). To obtain the other directions we remove
from the canonical basis {e;};=1,... m the vector e;,, such that

(P (F (o) [eqo)| = max (P (F(w0)les)]-

X
i= ,m

yeee

Next we apply the Gram-Schmidt orthogonalization procedure to the system

P F(z0),€1,--.,€i5—1,Cig+1,-- -5 Em. The resulting vectors define the new co-
ordinate directions. Observe that in these coordinates the section is given by
condition z; = 0. On section 6 we use (y1,...,Ym-1) = (T2,...,%m) as the

temporary coordinates.

Next, we compute nonrigorously an approximate Jacobian matrix Dg(xg)
using 7-th order Taylor method and the time step h. The matrix Dg(xzg) €
Rm—Dx(m—1) jg expressed using the temporary coordinates. From the matrix
Dg(xg) we extract D € R¥? in an upper left corner, hence

Dij = Dg(z0)i;,  fori,j=1,...,d. (297)

Next, we apply to Da diagonalization procedure based on the QR-~decomposition
algorithm [R] to obtain the approximate eigenvectors vy, vs, ..., vq correspond-
ing to approximate eigenvalues A1, ..., Ay, which are ordered as follows

Al = [Aof = -+ > [Adl

The vectors v; are normalized as follows. Let |v] be the euclidian norm. If
Ai € R, then we require |v;] = 1. If we have a pair of complex eigenvalues
Aj+1 = A, then eigenvectors v; and v;41 are such that

Dg(xo) - (v +i(vjy1)) = Aj - (v +ivj41)
max(|v;l, |vj1]) = 1.

Some of the diagonalization data for a symmetric periodic orbit for v = 0.127
can be found in Table 3 and 4 in [Z2].

Vectors {vy,...,v4} define a new coordinate system on RY and together
with coordinates y441,-..,Ym—1 define the new coordinates on 6, such that
our candidate for the fixed point is at the origin, i.e. zg = 0. We will denote
these coordinates by ¢; and we will call them the section coordinates.

11.2 Part 2 - the construction of initial tail 7.

The initial tail was constructed using the routine described in [Z2, Section 5.2].
In this routine for all periodic orbits we used the following settings: the partition
parameter p = 50, the stretching parameter e = 1.25 and n;s, = 0. It produced
W @ Hismlay a;]. In the present proof we used only Ty = Iy~ [ay, , a;].

In the proofs it turns out that this initial tail shrinks usually by a huge
factor, see Tables 5, 6, 11 and 12. Essentially the role of this step was to verify
that for a given value of M finding the topologically self-consistent bounds is
possible, i.e. there exists s > s such that (263) holds.
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11.3 Part 3 - the construction of Ny @ T

Our goal is to construct a set N C 64, such that
No®1y C dom (gglﬁRel) (298)

and either (292) or (293) holds, respectively for attracting and unstable orbits.
We constructed Ny as a result of the following simple algorithm (the section

coordinates are used to represent sets Ny and Nj).

Algorithm

1. Initialization. We assign the values for §, h the time step, the order of
numerical method for the computation of Gy, ,rg, and iter, the number
of times the loop consisting of steps 2 and 3 described below should be
executed, as in Tables 3 and 9.

We initialize Ng & T as follows
No®To=[-06,0""taT, (299)
where T is the initial tail obtained in Section 11.2.

2. Computation of the Poincaré map. We compute N1 ®T; = RoGg, re, (No®
Tp). If the computation is terminated successfully then we go to step
3, otherwise the execution of the algorithm is interrupted and false is
returned.

3. If
Nod Ty C Ny Ty, (300)

then the execution of the algorithm is interrupted and false is returned.

If (300) holds, then we continue as follows.
e For an attracting orbit we check whether
Ny @&Ty C Ny @ Ty, (301)

then we set Ng & Ty = N1 @ T we go to step 4.

o In the case of an unstable orbit we check whether (293) holds, which
in terms of N1 @ T} can be expressed as follows

Ny @ Ty Cint (S(No)' UNoUS(No)") @& Mo (Ty 1, o). (302)
If it holds, then we set Ny & Ty = N1 & T we go to step 4.
If condition (301) or (302) is not satisfied then we set

Ny = N1 N Ny,
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and if T} is not a subset of Tj, then we define a new value for Ty as follows:

TO = POlde(TO @] Tl), (303)
Ty = inflate(Tp,2), (304)

where by PolyBd(To UT}) we denote the smallest polynomial bounds con-
taining Tp U7y and an inflation of polynomial bounds is understood com-
ponentwise.

Next, we jump back to step 2.

4. Further refinement. We iterate several times the computation of the Poincare
map and set Nog @ Tp = R o Gp, s re, (No ® Tp) and return true.

End of algorithm
Let us comment about (303-304). In principle since in each iteration set Ny
is smaller we should always obtain that 17 C Ty, which is a natural consequence
following fact:
if ACB, then f(A) C f(B). (305)

But our algorithm does not fulfill the above condition. Hence we increase the
tail for the next iteration to make sure that 77 C Tg, which was always the case.

11.4 Part 4 - the verification of conditions for image of
the boundary for unstable orbits

We compute R o Gg, . ra, (Nt @ Tp) and R o Gy, s re, (N3¢ @ Tp). In both cases
we input the whole left and right edges as the initial condition.

12 Example theorems and data from the proofs

12.1 Exemplary theorems about the attracting orbits

In this section we present two exemplary theorems about the existence of the

apparently attracting periodic orbits for the KS equation. We use the phrase

apparently attracting to highlight the fact that in numerical simulations it is

clearly visible that the orbit is attracting, but we are not able to prove that.
First theorem is about the orbit with the reflectional symmetry.

Theorem 46 Let ug(z) = ,1€0:1 —2ay, sin(kx), where ay, are given in Table 1.
Then for any v € 0.127 + [-1077,1077] there exists function u*(t,z), a
classical solution of (9 - 10), such that

lug —u*(0, )|, < 3.27-1073 llug — u*(0,-)||co < 2.35-1072  (306)
and u* is periodic with respect to t with period T € 2 -[1.1216,1.1227] and has

the reflectional symmetry, R .
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Table 1: Coordinates of ug - the approximation of the initial condition for the

periodic orbit in Theorem 46.

a1=2.012101e-001

a3=2.012104e-001

a5=-4.230936e-002
a7= 6.940179e-003
ag= -7.944708e-004

a=1.289980
a4=-3.778664e-001
ae= 4.316156e-002
ag=-4.156467e-003
a10= 3.316085e-004

Table 2: Coordinates of ug - the approximation of the initial condition for the

periodic orbit in Theorem 47.

a1=2.559307e-001
a3=2.559308e-001
a5=-4.780290e-002
a7=7.352651e-003
a9=-7.561954e-004
a11=6.833019¢-005

a2=1.096696
a4=-3.079613e-001
ae= 3.002048e-002
ag=-2.530191e-003
a10=1.624854e-004
a12=-8.789133e-006

a13=-5.429533e-006

The theorem below present an example of the orbit without the reflectional
symmetry.

Theorem 47 Let ug(z) = 211@3:1 —2ay, sin(kx), where ay, are given in Table 2.
Then for v = 0.1215 there exists a function u*(t,x), a classical solution of
(9 - 10), such that

luo — u* (0, )|, < 1.3-107%  |jug — u*(0,-)||co < 8-107° (307)

and u* is periodic with respect to t with period T € [3.0744,3.0745]. Moreover,
this orbit does not have the reflectional symmetry R.

Proof: The existence was obtained using Theorem 39. To prove that the or-
bit does not have the reflectional symmetry R, we checked that RoGyg, —, ro, (No@
To) N (No @ Tp) = 0. This check was performed by computer. O

In fact more is proven than it is stated in the above theorems, because any
detailed information about the tail is missing in the statement. Some partial
information on it is contained in Tables 5 and 6 where the far tail described by
kc;i and from the near tail we have data for a +1- More comprehensive data
are contained in the companion files, where also the complete results of each
iteration of R o Gy, . re, are given.

We also have proved the existence of periodic orbits for v 0.127, v
0.125 and v = 0.032, see companion files for more details. There were several
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Table 3: The parameters used in the proofs of the existence of apparently at-
tracting periodic orbits for the KS equation. The Sym column tells whether the
periodic orbit has the reflectional symmetry R , iter contains the number of iter-
ates in the algorithm required to fulfill assumptions of Theorem 39 or 40, comp.
time - the computation time for one iterate on 1.73 GHz Windows machine. d
- is the number coordinates in the diagonalization of the Poincaré map, iter -
the number of iterates in the construction of N. In the first row the expression
0.127 4= 1077 means that the whole interval [0.127 — 1077,0.127 + 10~7] was
inserted for v.

v Sym | m h order ) iter | d | comp. time
0.127+1077 | Yes | 10 | 8e4 5 4de-4 2 9 21 sec
0.127 Yes | 10 le-3 4 2e-4 1 9 14 sec
0.125 Yes | 11 le-3 5 2e-4 2 8 25 sec
0.1215 No | 13 | 4e4 6 5e-5 2 10 300 sec
0.032 Yes | 23 | 1.5e-4 5 8e-5 2 12 457 sec

Table 4: Some data from the proof of the existence of apparently attracting
periodic orbits for the KS equation. The columns Lo, H;, C° C' contain
the estimate on the distance in the corresponding norm, between the center of
P,,(N & Tp) and the periodic orbit. In the first row the expression 0.127 + 1077
means that the whole interval [0.127 — 1077, 0.127 + 10~7] was inserted for v.

v period Lo H, CcY !

0.127£1077 | 2-[1.1216,1.1227] | 3.22e-03 | 9.00e-03 | 2.10e-03 | 6.30e-03
0.127 2-[1.1218,1.1225] | 1.39e-03 | 3.97e-03 | 9.48¢-04 | 3.14e-03
0.125 2-[1.2382,1.2386] | 6.59e-04 | 1.92e-03 | 4.40e-04 | 1.44e-03
0.1215 [3.0744, 3.0745] 1.24e-04 | 3.63e-04 | 7.53e-05 | 2.42e-04
0.032 2-[0.4092,0.4094] | 9.59e-04 | 5.89e-03 | 9.46e-04 | 5.86e-03
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Table 5: Some data from the proof of the existence of apparently attracting
periodic orbits for the KS equation. We compare the parameters describing the
far tail, at the start of the proof (subscript ¢) and after the proof (subscript e).
In each case M = 3m. In the first row the expression 0.127 + 107 means that
the whole interval [0.127 — 1077,0.127 4+ 10~ 7] was inserted for v. The numbers

are rounded to three significant decimal digits.

v C; Si a:MH C. Se ajMH
0.127+ 107 | 1.35e+11 | 12 | 1.71e-7 781 12 | 9.91e-16
0.127 1.35e+11 | 12 | 1.71e-7 761 12 | 9.66e-16
0.125 1.02e+11 | 12 | 4.25e-8 714 13 | 8.80e-18
0.1215 6.55e+10 | 12 | 3.90e-9 0.632 13 | 9.42e-22
0.032 5.0de+15 | 12 | 3.64e-7 | 1.19e+5 | 12 | 8.60e-18

Table 6: Some data from the proof of the existence of apparently attracting
periodic orbits for the KS equation. We compare the ai 41 in the near tail at
the start of the proof (subscript ¢) and after the proof (subscript e). In the
first row the expression 0.127 £ 1077 means that the whole interval [0.127 —
1077,0.127 4+ 107 7] was inserted for v. The numbers are rounded to seven
significant decimal digits.

v [ai_erl? a’jjmjtl] [ae_,m—i-l’ a:,m-&-l}

0.127 £ 107 | -3.947040e-7 +2.308717e-4*[-1,1] |  7.954821e-5 +1.464614e-6%-1,1]
0.127 -3.947036e-7 +2.308715e-4*[-1,1] | 7.960494e-5 +1.089191e-6*[-1,1]
0.125 2.658711e-5 +5.525438e-5%[-1,1] | -1.563315e-5 +1.874870e-7%[-1,1]
0.1215 1.536957e-6 +7.212824e-6%[-1,1] 2.417373e-7 +2.491650e-9%[-1,1]
0.032 -8.072115e-5 4+1.308558e-4*[-1,1] | -1.141919e-005 +1.749282e-007*[-1,1]
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objectives behind these choices of the parameter value. For a given value of
v the main objective always was the minimalization of the computation time,
having in mind that the eventual computer assisted proof of the existence of the
symbolic dynamics, will require the partition of the domain into pieces for the
computation of the Poincaré map.

e v =(.127. This is a stable symmetric orbit on vg,ps. This case was done
mainly for the comparison with [Z2]. The speed up factor (taking into
account different speed of the machines used) is around 6.

e v = 0.127+ [-1077,1077]. The same orbit as for v = 0.127. We tried
to see how much we can extend the v-interval of the existence of periodic
orbit in single computation. We expected much larger interval of the
diameter around 10~#, but we could not do better than 10~7.

e v = (.125. This is an stable symmetric orbit on vyg,p,s. This case differs
from v = 0.127 as follows: here the pair of leading eigenvalues is complex
A12 &= —0.051 £4%0.0725, there they were real. This case was the test for
the choice of the good coordinates in case of complex eigenvalues.

e v = 0.1215. This is a non-symmetric stable periodic orbit on branch
bifurcating from ~yg,p¢. Contrary to all other cases this one required the
rigorous integration of the full Poincaré map. Using the previous approach
from [Z2] this was impossible. It turns out also that the leading eigenvalue
is complex and is approximately equal to —0.041 ¢ % 0.312.

e v = (0.032. This is an stable symmetric orbit. This is the parameter
value very close to the range v ~ 0.0291, where the chaotic dynamics was
numerically observed in [CCP]. This computation required m = 23 and
resulted in the longest computation time per iterate (see Table 3).

12.2 Two exemplary theorems about unstable orbits

Below we present two exemplary theorems on the existence of apparently un-
stable periodic orbits with and without the reflectional symmetry. We use the
phrase apparently unstable to highlight the fact that in numerical simulations it
is clearly visible that the orbit is unstable, but we are not able to prove that.

Theorem 48 Let up(x) = 2,161:1 —2ay, sin(kz), where ay, are given in Table 7.
Then for v = 0.1215 there exists a function u*(t,x), a classical solution of
(9 - 10), such that

luo — u* (0, )|, < 1.4-107%,  [jug — u*(0,-)||co < 8.9-1074 (308)

and u* is periodic with respect to t with period T € 2 -[1.5458,1.5468] and has
the reflectional symmetry, R.

Proof: We check the assumption of Theorem 45. [J
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Table 7: Coordinates of ug - the approximation of the initial condition for the
periodic orbit in Theorem 48.

a1= 2.450030e-01 as= 1.041504

as= 2.450008e-01 | a4=-2.760777e-01
as=-4.371381e-02 | ag= 2.531410e-02
a7= 6.346057e-03 | ag=-1.996817e-03
a9=-6.177255e-04 | ai0= 1.185220e-04
ai11= 5.275889e-05

Table 8: Coordinates of ug - the approximation of the initial condition for the
periodic orbit in Theorem 49.

a1=2.608268¢-01 ap=1.115112
a3=2.608267e-01 a4=-3.208590e-01
as= -4.953884e-02 | ac= 3.199156e-02
ar= 7.802341e-03 ag=-2.766005e-03
ag= -8.196012e-04 | aio= 1.826998e-04
ai1= 7.575075e-05 | a12=-1.023717e-05
aiz= -6.157452e-06

Theorem 49 Let ug(x) = Z,lil —2ay, sin(kz), where ay, are given in Table 8.
Then for v = 0.1212 there exists a function u*(t,x), a classical solution of
(9 - 10), such that

luo — u*(0,)||L, < 2.6-107%, |lug — u*(0,-)||co < 1.6-107% (309)

and u* is periodic with respect to t with period T € [3.1221,3.1222]. Moreover,
this orbit does not have the reflectional symmetry R.

Proof: We use Theorem 44 to obtain the existence of periodic orbit .

To prove that the orbit does not posses the reflectional symmetry R, we
checked that Ro Gy, . re, (No ® To) N (No @ Tp) = §. This check was performed
with computer assistance. [J

We have proved the existence of apparently unstable periodic orbits for sev-
eral parameter values.

e v = (.1215. This symmetric orbit belongs to Yrropy-

e 1 = 0.1212. For this parameter value we have proven the existence of three
different periodic orbits. A pair on non-symmetric orbits (one is obtained
from another by the application by R) and the symmetric one. The non-
symmetric orbits apparently belong to the chaotic attractor, while the
symmetric does not.
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Table 9: The parameters used in the proofs of the existence of apparently un-
stable periodic orbits for the KS equation. The Sym column tells whether the
periodic orbit has the reflectional symmetry R , iter contains the number of
iterates in the algorithm required to fulfill assumptions of Theorem 44 or 45,
comp. time - the computation time for one iterate on 3 GHz Linux machine. d
- is the number coordinates in the diagonalization of the Poincaré map. For the
meaning of other columns see the text.

v Sym | m h | order ) iter | d | comp. time
0.02991 | Yes | 25 | le-4 5 5e-5 | 3 |12 600 sec
0.1212a | No | 13 | 4e4 5 25| 1 |12 185 sec
0.1212s | Yes | 14 | be4 7 5e-5 1 9 190 sec
0.1215 Yes | 11 | 2e-3 8 le-4 | 2 10 18 sec

Table 10: Some data from the proof of the existence of apparently unstable
periodic orbits for the KS equation. The columns Lo, H;, C° C' contain
the estimate on the distance in the corresponding norm, between the center of
P,,(N @& Tp) and the periodic orbit.

v period Lo H; CY Ct

0.02991 | 2-[0.449023,0.449067] | 6.9e-04 | 4.4e-03 | 7.0e-04 | 4.4e-03
0.1212 a [3.12211, 3.12219] 2.6e-04 | 7.5e-04 | 1.6e-04 | 5.1e-04
0.1212 s 2 - [1.58136,1.58192] 5.8¢-04 | 1.9¢-03 | 4.0e-04 | 1.38¢e-03
0.1215 2 - [1.54587,1.54679] 1.4e-03 | 4.1e-03 | 8.7¢-04 | 2.8e-03

Table 11: Some data from the proof of the existence of apparently unstable
periodic orbits for the KS equation. We compare the parameters describing the
far tail at the start of the proof (subscript i) and after the proof (subscript e).
In all cases M = 3m. The numbers are rounded to three significant decimal
digits.

v C; Sq a;fMH C. Se a:MH
0.02991 | 9.23e+15 | 12 | 2.48e-07 | 7.66e+05 | 13 | 2.71e-19
0.1212 a | 7.26e+10 | 12 | 4.32¢-09 0.866 13 | 1.29e-21
0.1212 s | 5.35e+10 | 12 | 1.34e-09 0.224 14 | 3.02e-24
0.1215 1.31e+11 | 12 | 5.51e-08 146 13 | 1.83e-18
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Table 12: Some data from the proof of the existence of apparently unstable
periodic orbits for the KS equation. We compare the af[n 41 in the near tail
at the start of the proof (subscript i) and after the proof (subscript e¢). The
numbers are rounded to seven significant decimal digits.

v [a;m+1’ aj_erl] [a;m+17 a’:,m-&-l]

0.02991 | -3.576929¢-05 +7.912748e-05*[-1,1] | -1.403123e-06 +3.789903¢-08*[-1,1]
0.1212 a | 1.611572e-06 47.856836e-06%[-1,1] | 4.285918¢-07 +6.233822¢e-09*[-1,1]
0.1212 s | 3.098196e-07 42.554750e-06*[-1,1] | 2.533126e-07 +1.948557e-09*[-1,1]
0.1215 4.528402e-06 +7.478529e-05*[-1,1] | -5.638356e-06 +3.676028e-07*[-1,1]

e v = 0.02991, this the parameter value considered in [CCP]. The orbit is
on the chaotic attractor.

12.3 Final comments

Tables 5, 6, 11 and 12 show how much the tail has improved during the com-
putation and this is the basic reason why the method proposed here is so much
better than the one from [Z2]. When we compare the initial tail with the tail
at the end of the proof we see the improvement of several orders of magnitude
(2-3 orders for diameter of a,,+; and much more for the far tail). This results
and is also a consequence of the significant decrease of the Galerkin projection
errors, which is due to the fact that we allow the tail to evolve and the Galerkin
errors are computed locally, while in [Z2] the tail was fixed and the Galerkin
errors were computed globally.
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