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Abstract

We present a method of self-consistent a-priori bounds, which allows us
to study rigorously the dynamics of dissipative PDEs. As an application
we present a computer assisted proof of the existence of a periodic orbit
for the Kuramoto-Sivashinsky equation

ut = (u2)x − uxx − νuxxxx, u(t, x) = u(t, x+2π), u(t, x) = −u(t,−x),

where ν = 0.127.
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1 Introduction

The goal of this paper is to develop further the method of self-consistent a-priori
bounds for dissipative PDEs. The proposed approach, introduced in [ZM], en-
ables a rigorous computer assisted study of the dynamics of dissipative PDEs.
The method consists of two basic parts: a reduction of a PDE to a finite di-
mensional differential inclusion and a finite dimensional part, which is based
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on standard finite dimensional tools from dynamics. While in paper [ZM] the
finite dimensional part was based on the Conley index and treated primarily as
a question of the existence of fixed points, in this paper we focus on Poincaré
maps and finite-dimensional tools for the detection of periodic orbits.

The method of self-consistent bounds is similar in spirit to the Cesari method
introduced in [C]. In fact, in the context where the Cesari method was used
originally, namely for proofs of the existence of solutions to boundary value
problems for second order ODEs, our method is slightly stronger, as we drop
one of Cesari’s conditions (see [ZM, Section 2.4] for more details). We would
like to stress here that from our point of view the Cesari method is static, as
one can obtain from it steady states for PDEs, only.

In our method we look for solutions of dissipative PDEs, whose Fourier
expansions are converging fast enough. This means that we restrict ourselves
to regular functions. This may appear to be a limitation of the method but, in
fact it is not, as bounded solutions of PDEs, which are defined on an unbounded
time interval, are usually very regular, see [FT, HG, K].

This paper is organized as follows. In Section 2 we present the basics of the
method of self-consistent a-priori bounds from [ZM, ZAKS] (with some minor
modifications), which sets up the framework for treating all high-dimensional
Galerkin projections as a single differential inclusion. In Section 3 we discuss
the notion of a Poincaré section and a Poincaré return map in the context of
self-consistent bounds. In Section 4 we present, as an application of the tools de-
veloped in the preceding section, a result about the existence of a periodic orbit
for the Kuramoto-Sivashinsky PDE with odd and periodic boundary conditions
for ν = 0.127. This result is formulated as Theorem 9. Section 5 contains a
description of a computer assisted proof of this theorem. In Section 6 we present
a modification of the Lohner algorithm [Lo, Lo1, ZLo], which was used in the
rigorous integration of a differential inclusion in the proof of Theorem 9.

We believe that, besides providing some tools for the rigorous detection of
periodic orbits for dissipative PDEs, this paper shows that rigorous numerics
for these systems is possible, hence one can think, for example, about rigorous
numerical shadowing algorithms similar in spirit to the ones developed in [HYC,
HYC1, H] (see Subsection 3.2).

1.1 Notation

Let X be a metric space. Let U ⊂ V ⊂ X, by int V U we will denote an interior
of U relatively to V . Let X be a vector space and let Y ⊂ X, then by conv (Y )
we will denote the smallest closed convex set containing Y . For a set X by 2X

we denote a set of all subsets of X. For x ∈ R we set |x|∞ = maxi=1,...,n |xi|.
For S ⊂ Rn by IHull(S) we denote an interval enclosure of a set S, i.e., the
smallest set of the form I1 × I2 × · · · × In, where for i = 1, . . . , n, Ii = [ai, bi]
and ai ≤ bi.
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2 The method of self-consistent bounds

In this section we describe the method of self-consistent bounds. The method
was introduced in [ZM](see also [ZAKS]) and was linked there to the Conley
index. In this paper we will show how other finite dimensional topological tools
can be used with this method.

Our method begins with the reduction of the full dynamical system to a
lower-dimensional system which can be studied numerically. In particular, we
begin with a nonlinear evolution equation in a Hilbert space H (L2 in our
treatment of Kuramoto-Sivashinsky) of the form

du

dt
= F (u) (1)

where the domain of F is dense in H. By a solution of (1) we understand a
function u : [0, tmax) → dom (F ), such that u is differentiable and (1) is satisfied
for all t ∈ [0, tmax).

We assume that {ei | i = 0, 1, . . .} forms a complete orthogonal basis for H.
In the case of the Kuramoto-Sivashinsky equation F (u) = Lu+B(u, u), where
L is the linear part and B is the nonlinear part, the functions {ei} are chosen
to be eigenvalues of L.

Fix m ∈ N and let
Pm : H → Xm

be the orthogonal projection from H onto the finite-dimensional subspace span-
ned by {e1, e2, . . . , em}. Let

Qm := I − P : H → Ym

be the complementary orthogonal projection. Finally, let

Ak : H → R

be the orthogonal projection onto the subspace generated by ek.
Given u ∈ H, let Pmu = p and Qmu = q. Equation (1) can be rewritten as

dp

dt
= PmF (p, q) (2)

dq

dt
= QmF (p, q) (3)

The strategy adopted is fairly simple: study the dynamics of the low-dimensional
Galerkin projection (2); and draw conclusions about the dynamics of (1). Before
turning to the precise conditions, consider the following heuristic description of
our approach.

Let W ⊂ Xm, V ⊂ Ym and set Vj = Qj(V ) for j > m. Furthermore,
given qj ∈ Vj assume that limj→∞ ||qj || = 0. Our only knowledge concerning
the higher order modes or “tails” of the solutions is that they project into V .
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This implies that our knowledge of the vector field is reduced to the following
differential inclusion:

dp

dt
∈ PmF (p, V )

where p ∈ W . Numerical calculations on this equation are used to find topo-
logical invariants (the Conley index, the fixed point index) which guarantee the
existence of specific dynamics, e.g., fixed points, periodic orbits, symbolic dy-
namics, positive entropy, etc. It is simultaneously argued that the topological
invariant is the same for any j-dimensional Galerkin projection of (1) for j ≥ m.
Thus, the same dynamical object exists for each sufficiently high Galerkin ap-
proximation. Finally, it is shown that the limit of these objects leads to the
desired dynamics for the full system (1).

2.1 Self-consistent Bounds

As one might expect the orthonormal basis {ei} and the sets W and V must be
chosen with care. The first issue that needs to be dealt with is analytic in nature
- solutions to the ordinary differential equations must approximate solutions of
the partial differential equation. This leads to the following definition.

Definition 1 Let H be a Hilbert space and let {e1, e2, . . . } be an orthonormal
basis in H. We say that F : H ⊃ dom (F ) → H is admissible (with respect to
the basis {ei}) if the following conditions are satisfied for any i ∈ N

• Xi ⊂ dom (F )

• PiF : Xi → Xi is a C1 function

Definition 2 Assume F is an admissible function. Letm,M ∈ N withm ≤ M .
A compact set W ⊂ Xm and a sequence of pairs {a±k ∈ R | a−k < a+k , k ∈
N} form self-consistent a priori bounds for (1) if the following conditions are
satisfied:

C1 For k > M , a−k < 0 < a+k .

C2 Let âk := max |a±k | and set û =
∑∞

k=0 âkek. Then, û ∈ H and in particular,
û is bounded in the norm on H (||û|| < ∞ ).

C3 The function u 7→ F (u) is continuous on

W ⊕
∞∏

k=m+1

[a−k , a
+
k ] ⊂ H.

Moreover, if we define fk = maxu∈W⊕
∏∞

k=m+1[a
−
k ,a+

k ] |AkF (u)| and set f̂ =∑
fkek, then f̂ ∈ H. In particular, ||f̂ || < ∞.
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C4a Let u ∈ W ⊕Π∞
k=m+1[a

−
k , ak+]. Then for k > m:

Aku = a+k ⇒ AkF (u) < 0, (4)

Aku = a−k ⇒ AkF (u) > 0. (5)

The above definition differs slightly from Def. 2.1 in [ZM], namely condition
C4a is added. In [ZM] this condition was used as part of topologically self-
consistent bounds (Def. 2.11), which we are not using here.

At this point the reader may wonder if it is hard to find a tail, i.e., {a±k }
satisfying C1-C4a. This turns out be a relatively easy task. For example, for
Kuramoto-Sivashinsky PDEs or Navier-Stokes equations (see [ZM, Z]) to satisfy
C1, C2 and C3 it is sufficient to take a±k = ±C

|k|s for s large enough. It turns

out that with a careful choice of C = C(W, s) condition C4a is also satisfied.
This choice of tail means that we consider sufficiently regular functions, which
may appear as a limitation of our approach. But in fact it is not, as bounded
solutions of PDEs, which are defined on an unbounded time interval, are usually
very regular, see [FT, HG, K].

Given self-consistent a-priori bounds W and {a±k }, let

V :=
∞∏

k=m+1

[a−k , a
+
k ] ⊂ Ym.

Our goal is to numerically solve (2) on W and draw conclusions about the
dynamics of (1) on the set W ⊕ V ⊂ H. To do this we will make use of the
following results, the first two of them are obvious:

Lemma 1 Given self-consistent a priori bounds W and {a±k }, W ⊕ V is a
compact subset of H.

Lemma 2 Given self-consistent a priori bounds W and {a±k }, W ⊕ V , then

lim
n→∞

Qn(F (u)) = 0, uniformly for u ∈ W ⊕ V

The following Proposition was proved in [ZM, Prop. 2.4]

Lemma 3 Let W and {a±k } be self-consistent bounds for (1). A function a :
[0, T ] → W ⊕ V given by

a(t) :=

∞∑
k=0

ak(t)ek

is a solution to (1), if and only if, for each k ∈ N and all t ∈ [0, T ]

dak
dt

= AkF (a). (6)
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Lemma 4 Let W and {a±k } be self-consistent bounds for (1). Let {nk}k∈N ⊂
N ∪ {∞} be any sequence. Assume that for all k xk : [t1, t2] → W ⊕ V is a
solution of

dp

dt
= Pnk

(F (p)), p(t) ∈ Xnk
. (7)

Then the family of functions {xk} is relatively compact i.e., every sequence
contains a convergent subsequence.

Proof: From Lemma 1 it follows that setW⊕V is compact, hence by the Ascoli-
Arzela lemma it is enough to show that the functions xk are equicontinuous.

For this end observe that |x′
k| is bounded from above by supx∈W⊕V |F (x)|,

which is bounded due to the compactness of W ⊕ V and condition C3.

Lemma 5 Let W and {a±k } be self-consistent bounds for (1). Let {nk}k∈N ⊂ N
be a sequence, such that limk→∞ nk = ∞. Assume that, for all k, xk : [t1, t2] →
W ⊕ V is a solution of

dp

dt
= Pnk

(F (p)), p(t) ∈ Xnk
. (8)

Then there exists a convergent subsequence
liml→∞ xkl

= x∗, where x∗ : [t1, t2] → W ⊕ V and the convergence is uniform
on [t1, t2]. Moreover, x∗ satisfies (1).

Proof: The existence of a convergent subsequence follows from Lemma 4. With-
out any loss of generality we can assume that the whole sequence {xk} converges
uniformly to x∗. Obviously x∗ is continuous.

We will show that, for all i ∈ N and t ∈ [t1, t2],

Pix
∗(t) = Pix

∗(t1) +

∫ t

t1

PiF (x∗(s)) ds. (9)

Let us fix an i. Observe that for k big enough (such that nk > i, hence PiPnk
=

Pi) we have

Pixk(t) = Pixk(t1) +

∫ t

t1

PiF (xk(s)) ds. (10)

Observe that Pixk converges uniformly to Pix
∗, hence it remains to show that∫ t

t1
Pi(F (xk(s)) ds converges uniformly with respect to t ∈ [t1, t2] to∫ t

t1
Pi(F (x∗(s)) ds. This follows immediately from the uniform continuity of F

on W ⊕ V , because by C3 F is continuous on W ⊕ V , hence also uniformly
continuous on this set.

From differentiation of (9) we obtain

d

dt
Pix

∗(t) = PiF (x∗(t)), (11)

hence by Lemma 3 it follows that x∗ is a solution of (1).
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3 Poincaré sections and maps

In this section we assume a Standing Hypothesis:
F is admissible, W and {a±k } are self-consistent a priori bounds for (1).

We set
V := Π∞

k=m+1[a
−
k , a

+
k ]

Definition 3 Let α : W ⊃ dom (α) → R be a C1-function defined on some
open (with respect to Xm) set. We say θ ⊂ {x ∈ (intXmW )⊕ V | α(Pmx) = 0}
is a section for (1) if

• Pm(θ) is an (m− 1)-dimensional manifold

• there exists a set U , such that U ⊂ W , U = intXmU , Pm(θ) ⊂ U and a
real number β > 0 such that for all x ∈ U and q ∈ V∣∣∣∣∣

m∑
k=1

∂α

∂xk
AkF (x+ q)

∣∣∣∣∣ > β

Let us make a few comments regarding the above definition:

• the section θ is defined in terms of m-first modes, hence Pn(θ) is a section
for the n-th Galerkin projection of (1) for n ≥ m

• the notion of section depends on the self-consistent a priori bounds W⊕V .

The n-dimensional Galerkin projection of (1), given by

dx

dt
= PnF (x), x ∈ Xn, (12)

due to the admissibility of F , induces a local flow φn(t, x0), where φn(·, x0) is
the unique solution to (12) with an initial condition x(0) = x0 ∈ Xn.

Definition 4 Let θ be a section for (1). Then Pn(θ) is a section for (12) and
we define a first return time to the section θ function by

tn,θ(x) = inf{t > 0 | φn(t, x) ∈ Pn(θ)}, x ∈ Xn (13)

Definition 5 Consider sections θ1 and θ2. We assume that either θ1 = θ2 or
θ1 ∩ θ2 = ∅. Let

Dn = {x ∈ Pn(θ1) | tn,θ2(x) < ∞}. (14)

We define a Poincaré map, Gn,θ1→θ2 : Dn → Pn(θ2), between sections θ1 and
θ2 by

Gn,θ1→θ2(x) = φn(tn,θ2(x), x). (15)

It is well known, that Gn,θ1→θ2 is continuous.
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Now we would like to define a notion of the Poincaré map and of the first
return time for (1). Since we did not assume the local uniqueness for (1) we will
only define these notions with respect to a given solution of (1).

Definition 6 Let x : [0, tmax) → H be a solution (1) such that x(0) = x0. Let
θ1, θ2 be sections, such that either θ1 = θ2 or θ1 ∩ θ2 = ∅.

• tθ2(x0) = inf{t > 0 | x(t) ∈ θ2}

• if tθ2(x0) < ∞ and x0 ∈ θ1, then Gθ1→θ2(x0) = x(tθ2(x0))

Observe that the map Poincaré G defined above is in principle a multivalued
map (it will in fact be multivalued in the case of nonuniqueness).

Definition 7 Let θ0, θ1, . . . , θr be sections, such that either θi−1 = θi or θi−1 ∩
θi = ∅ for all i = 1, . . . , r. We say that Gθr−1→θr◦Gθr−2→θr−1◦· · ·◦Gθ0→θ1(y0) =
yr iff there exists a solution, x : [0, tmax) → H, of (1) and a sequence of points
y1, . . . , yr−1 such that

• yi ∈ θi for i = 0, . . . , r

• there exists a sequence of real numbers 0 = t0 < t1 < · · · < tr < tmax,
such that x(ti) = yi and for all t ∈ (ti−1, ti) x(t) /∈ θi.

Lemma 6 Let θ be a section for (1) and let for n ≥ m Gn = Gn,θ→θ.
Let {kn} ⊂ N \ {1, . . . ,m− 1}, such that limn→∞ kn = ∞. Assume that for

any n there exists a function xkn : [0,∞) → W ⊕Pkn(V ) a solution of the kn-th
Galerkin projection of (1) (i.e. (12) with n = kn), such that Gkn(xkn(0)) =
xkn(0).

Moreover, we assume that there exists a constant T > 0, such that

Tn = tkn,θ(xkn(0)) ≤ T, for all n. (16)

Then there exists a solution x∗ : [0,∞) → W ⊕V of (1), such that x∗(0) ∈ θ
and G(x∗(0)) = x∗(0). In particular x∗ is a nonconstant periodic solution of
(1).

Proof: Without any loss of generality we can assume that kn = n (and we
consider only n > M).

Observe that Tn is equal to the period of xn. Without any loss of generality
we can assume Tn → T ∗ ≤ T . Observe that from Def. 3 it follows that there
exists ϵ > 0, such that for all n, Tn ≥ ϵ, hence also T ∗ ≥ ϵ.

From Lemma 5 it follows that there exists a subsequence xnk
converging

uniformly on compact time intervals (we assume that the whole sequence con-
verges) to x∗ : [0,∞) → W ⊕ V , which is a solution of (1). Since x∗(0) ∈ θ,
then x∗ is not a constant function. It is also easy to see T ∗ is a first return time
to θ (see Def. 6). It remains to show that x∗(T ∗) = x∗(0).
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We have

∥x∗(0)− x∗(T ∗)∥ ≤ ∥x∗(0)− xn(0)∥+ ∥xn(0)− xn(Tn)∥+
∥xn(Tn)− x∗(Tn)∥+ ∥x∗(Tn)− x∗(T ∗)∥ =

∥x∗(0)− xn(0)∥+ ∥xn(Tn)− x∗(Tn)∥+ ∥x∗(Tn)− x∗(T ∗)∥.

The first two terms are arbitrarily small as n → ∞ due to the uniform conver-
gence and the last term tends to zero due to the continuity of x∗.

3.1 Basic Differential Inclusion and computation Poincaré
maps for all Galerkin projections

In this subsection we discuss how we can obtain information about Poincaré
maps for the n-th Galerkin projection for n > M .

Consider a differential inclusion

dx

dt
∈ Pm(F (x)) + E, x(0) = x0 ∈ Xm (17)

where E = conv ({PmF (x+ q)− PmF (x) | x ∈ W, q ∈ V }) and x ∈ C1.
We will refer to (17) as a Basic Differential Inclusion for (1) and self-

consistent a priori bounds W ⊕ V .

Definition 8 Given a multivalued map F : D → 2Y . A map f : D′ → Y is a
selector for F iff D′ ⊂ D and for all x ∈ D′ f(x) ∈ F(x).

Definition 9 Consider sections θ1 and θ2, such that either θ1 = θ2 or θ1∩θ2 =
∅. We define a Poincaré map Gθ1→θ2 : Pm(θ1) ⊃ D → 2Pm(θ2) and the set of
first return times tGθ1→θ2

: D → 2R+ by

• for any x0 ∈ θ1 let S(x0) be a set of right full solutions of (17), i.e. defined
for t ∈ [0, tmax), so that either tmax = ∞ or x(t) cannot be extended to
t > tmax

• x0 ∈ D = dom (Gθ1→θ2) iff for all x ∈ S(x0) there exists t1 > 0 such
x(t1) ∈ θ2 and

x([0, t1]) ⊂ intXmW. (18)

• Let x0 ∈ dom (Gθ1→θ2), for x ∈ S(x0) and let tx > 0 be a smallest positive
number such that x(tx) ∈ θ2. We set

Gθ1→θ2(x0) = {x(tx) | x ∈ S(x0)},
tGθ1→θ2

(x0) = {tx | x ∈ S(x0)}

The following statement telling that, PmGn,θ1→θn , the m-dimensional pro-
jection of the Poincaré map computed for the n-th Galerkin projection is a
selector for Gθ1→θ2 is rather obvious, but is of fundamental importance in our
approach, hence we alleviate it to the theorem status.
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Theorem 7 Consider sections θ1 and θ2, such that either θ1 = θ2 or θ1∩θ2 = ∅.
Let G = Gθ1→θ2 be a Poincaré map for (17). Let Gn = Gn,θ1→θ2 .

Then for all n > M

• domG ⊕QmPnV ⊂ domGn

• for all p+ q ∈ domG ⊕ PnV holds

φn([0, tn,θ(p+ q)], p+ q) ∈ W ⊕QmPnV

Gn(p+ q) ∈ G(p)⊕ intQmXnQmPnV

Proof: Let us consider the n-th Galerkin projection

dp

dt
= PmF (p+ q) (19)

dq

dt
= QmPnF (p+ q), (20)

where p ∈ Xm and q ∈ QmXn.
Let p0 + q0 ∈ domG ⊕QmPnV . Let x(t) = (p(t) + q(t)) for t ∈ [0, tmax) be

a solution of system (19-20) with an initial condition p(0) = p0 and q(0) = q0
extended to the right to the maximum existence interval. Observe that p0 ∈
intXmW . From condition C4a it follows that q(t) ∈ intQmXnV for t ∈ (0, h)
for h sufficiently small.

Observe that as long as p(t) + q(t) ∈ intXmW ⊕ QmPnV for all t ∈ [0, t1),
then p(t)+q(t) for t ∈ [0, t1) is a solution of the differential inclusion (17). From
this observation the assertion follows immediately.

From Theorem 7 it follows that a computation of G gives bounds for Gn for
all n > M . The question of how to actually compute G rigorously is treated in
[ZPLo], a shorter description can be found in Section 6.

The next theorem, which uses the Brouwer fixed point theorem as a finite
dimensional tool, illustrates how the information about differential inclusion (17)
can be used to obtain a periodic orbit in the case of an apparently attracting
periodic orbit.

Theorem 8 Assume that we have self-consistent bounds for (1) and a section
θ. Let G be a Poincaré map on θ for (17).

Assume that there exists a set B ⊂ Pm(θ), such that

• B is homeomorphic with an (m− 1)-dimensional closed ball,

• B ⊂ domG,

• G(B) ⊂ B,

• there exists a constant T > 0 such that, for any x0 ∈ B and any t ∈
tGθ1→θ2

(x0) we have t ≤ T .
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Then there exists a function u : [0,∞) → W ⊕V a solution to (1), such that
u(0) ∈ θ and G(u(0)) = u(0). In particular u is T ∗-periodic for some T ∗ > 0.

Proof: Consider the n-th Galerkin projection of (1). Let Gn = Gn,θ→θ. From
Theorem 7 it follows that for all n > M we have

Gn(B ⊕QmPnV ) ⊂ B ⊕QmPnV (21)

φn([0, tn,θ(x0)], x0) ⊂ W ⊕QmPnV, for x0 ∈ B ⊕QmPnV (22)

From the Brouwer theorem [DG] it follows that for all n > M there exists a
fixed point, xn, of Gn. Now the assertion follows easily from Lemma 6.

3.2 How to prove the existence of unstable periodic orbit
and/or of symbolic dynamics.

Theorem 8 is an example, which shows us how to link the method of self-
consistent bounds with finite dimensional tools (the Brouwer theorem) to ob-
tain some results about the existence of nontrivial periodic orbits for dissipative
PDEs, in this case an apparently stable one. To obtain the existence of an
unstable periodic orbit and/or symbolic dynamics (horseshoe-like chaotic be-
havior) one can use the method of covering relations [GiZ, Z0, Z1, Z2] as the
finite dimensional tool. This has been previously successfully tested in the con-
text of ODEs: for example in papers [Z2] and [GaZ] it was used to establish the
existence of symbolic dynamics for Rössler and Lorenz equations, respectively.

Moreover, this approach (covering relations) can be used to obtain rigorous
numerical shadowing algorithms similar in spirit to the ones developed in [HYC,
HYC1, H] in finite dimension.

4 The existence of a periodic orbit for the Kuramoto-
Sivashinsky PDE with ν = 0.127

In this section we show an application of the method of self-consistent a pri-
ori bounds to the proof of the existence of a periodic orbit for the Kuramoto-
Sivashinsky partial differential equation (we will use the shorthand ”KS-equation”
in the sequel).

The KS-equation [KT, S] introduced in the context of a wave front propa-
gation is given by

ut = −νuxxxx − uxx + (u2)x (t, x) ∈ [0,∞)× (−π, π), ν > 0. (23)

Assuming odd and periodic boundary conditions

u(t, x) = u(t, x+ 2π), u(t, x) = −u(t,−x). (24)

The existence, uniqueness, and regularity properties for solutions of problem
(23) and (24) in suitable Sobolev spaces have been established by several authors
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Table 1: Coordinates of u0 - an approximation of an initial condition for periodic
orbit in Theorem 9.

a1 = 2.012106e− 01 a2 = 1.289980
a3 = 2.012109e− 01 a4 = −3.778662e− 01
a5 = −4.230950e− 02 a6 = 4.316159e− 02
a7 = 6.940217e− 03 a8 = −4.156484e− 03
a9 = −7.944907e− 04 a10 = 3.316061e− 04
a11 = 7.939456e− 05 a12 = −2.390962e− 05
a13 = −7.087251e− 06 a14 = 1.568377e− 06

(see [CEES, FT] and references given there). Nevertheless, we would like to
stress that we are not using these results in our investigations.

The KS-equation can be reduced (see [ZM]) to the following infinite system
of ordinary differential equations

ȧk = k2(1− νk2)ak − k
k−1∑
n=1

anak−n + 2k
∞∑

n=1

anan+k k = 1, 2, . . . (25)

where

u(t, x) =
∞∑
k=1

−2ak(t) sin(kx).

The above representation of u in terms of ak has its origin in the following easy
observation: if u(t, x) =

∑∞
k=−∞ bk(t)e

ikx satisfies boundary conditions (24),
then bk = iak and ak = −a−k.

We will refer to coordinates ak as modes. In this paper we focus on ν =
0.127. For this parameter value numerical simulations suggest the existence of
an attracting limit cycle, whose projection onto the (a1, a3)-plane is an ellipse-
shaped curve, on which the point moves in the clockwise direction.

Theorem 9 Let u0(x) =
∑14

k=1 −2ak sin(kx), where ak are given in Table 1.
There exists a function u∗(t, x) a classical solution of (23 - 24) for ν = 0.127,
such that

∥u0 − u∗(0, ·)∥L2 < 5 · 10−5, ∥u0 − u∗(0, ·)∥C0 < 7 · 10−5 (26)

and u∗ is periodic with respect to t, with period this was in the printed
version T ∈ (2.44296, 2.4438), correct value is: T ∈ 2 · (1.12214, 1.12219)

5 Proof of Theorem 9

We choose H = l2 as our Hilbert space. We will adopt the following convention.
By x, u, x0, u0 we will denote the points from H, by ai we will always denote
coordinates of points in H.
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Let R be a map which leaves even modes and changes the sign of odd modes:
a2k → a2k and a2k+1 → −a2k+1. It is easy to see that R leaves the system (25)
and any Galerkin projection of it invariant.

To define a Poincaré section we use linear functions as follows: the section
θ = θη is defined by the following conditions

η(x) = η0 +

m∑
i=1

ηiai = 0, η′(x) > 0. (27)

By the condition η′(x) > 0 we mean that the following inequality is satisfied for
x ∈ θη

m∑
k=1

∂η

∂xk
AkF (x) > 0. (28)

The above condition means that trajectories of the Basic Differential Inclusion
intersect the hyperplane defined by η = 0, so that η(x(t)) is an increasing
function of time.

Let θ1 = θη be a linear section as described above. We define a symmetric
section, θ2, by θ2 = Rθ1. Hence θ2 is defined by the following conditions

β(x) = η0 +
m∑
i=1

(−1)iηiai = 0, β′ > 0. (29)

By the symmetry we have for any Galerkin projection

Gn,θ2→θ1 = RGn,θ1→θ2R (30)

For the full Poincaré map on section θ1, Gn, we obtain that

Gn = Gn,θ2→θ1Gn,θ1→θ2 = RGn,θ1→θ2RGn,θ1→θ2 = (RGn,θ1→θ2)
2. (31)

Hence any fixed point for RGn,θ1→θ2 is a fixed point for Gn.
Let G be a Poincaré map for the Basic Differential Inclusion (17) for the

transition θ1 → Rθ1.
The proof is computer assisted and consists of the following steps:

1. an initialization: setting up the parameters: dimensions m and M , finding
an approximate periodic orbit, choosing the section θ1, finding suitable
coordinates on θ1

2. a construction of self-consistent bounds

3. a construction of a set N ⊂ W , such that RG(N) ⊂ intN

4. a conclusion of the proof, an application of Theorem 8.

13



Table 2: Approximate coordinates for the starting point on the periodic orbit
for ν = 0.127.

a1 = 0.201211 a2 = 1.28998
a3 = 0.201211 a4 = −0.377866

a5 = −0.0423095 a6 = 0.0431616
a7 = 0.00694021 a8 = −0.00415648
a9 = −0.00079449 a10 = 0.000331606
a11 = 7.93945e− 05 a12 = −2.39096e− 05
a13 = −7.08724e− 06 a14 = 1.56839e− 06

5.1 Part 1 - an initialization

In the proof we used m = 14 and M = 3m = 42.
We define a point x0 as in Table 2. This point is an approximation to a true

periodic point for (23) and was found as follows. Let us define a section σ by
a1 − a3 = 0, (a1 − a3)

′ > 0. Consider the map f = RGm,σ→Rσ. Since we are
looking for an attractive fixed point we just iterated a map f for some initial
value until |f(x) − x|∞ < 10−6. A fourth order Runge-Kutta method, with a
time step h = 1

|2m2(1−νm2)| = 0.000106773 was used in these computations.

We define the section θ1 as a section perpendicular to PmF (x0) at x0, namely
we set

α(x) = (PmF (x0)|x)− (PmF (x0)|x0), α′ > 0. (32)

Let θ2 = Rθ1. We define section coordinates on θ1, which will be used later in
the proof as follows.

The map g = RGm,θ1→θ2 : θ1 ⊃ U → θ1, where x0 ∈ U , has x0 as an ap-
proximate fixed point. Next we compute nonrigorously an approximate Jacobian
matrix Dg(x0) using a fourth order Runge-Kutta method to compute the tra-
jectory of x0 and a second order Taylor method for the variational part, with the
time step h = 1

|2m2(1−νm2)| = 0.000106773. The matrix Dg(x0) ∈ R(m−1)×(m−1)

is expressed in coordinates ãi=1,...,13, defined as follows. Let i0 be such that
|AiF (x0)| achieves the maximum value for i = i0 (for our periodic orbit i0 = 3).
Then we set

ãi =

{
ai if i < i0,

ai+1 if i ≥ i0.
(33)

Let r = 8. From the matrix Dg(x0) we extract an (r × r)-square matrix in an

upper left corner to define D̃ ∈ Rr×r by

D̃ij = Dg(x0)ij , for i, j = 1, . . . , r. (34)

Next we apply to D̃ a diagonalization procedure based on the QR-decomposition
algorithm [R] to obtain the approximate eigenvectors v1, v2, . . . , vr correspond-
ing to approximate eigenvalues λ1, . . . , λr. We assume, additionally, that we

14



Table 3: Approximate eigenvalues for D̃

1 0.5258
2 0.090375
3 3.5019e-08
4 1.6503e-08
5 -3.7784e-09
6 -4.0167e-11
7 -8.9431e-10
8 -6.6955e-11

Table 4: Four leading approximate eigenvectors for D̃

i v1 v2 v3 v4
1 0.31728 -0.070268 0.046791 0.088001
2 -0.81436 0.8341 -0.33709 0.23897
3 0.47674 -0.53787 0.92972 -0.45521
4 0.033933 -0.024953 -0.017497 -0.82473
5 -0.086464 0.095695 -0.13781 0.16446
6 -0.0095825 0.0093288 -0.0094954 0.14042
7 0.01127 -0.012669 0.019939 -0.019339
8 0.0016374 -0.0016399 0.0017784 -0.02442

have
|λ1| ≥ |λ2| ≥ · · · ≥ |λr|. (35)

Some of the diagonalization data are contained in Tables 3 and 4. It is clear
from these tables that eigenvalues are decaying rapidly to zero and the high
modes are strongly damped.

To an ordered collection of eigenvectors {v1, . . . , vr} we apply an interval
Gramm-Schmidt orthogonalization procedure, to obtain a new orthonormal set
of vectors {w1, . . . , wr}. These vectors define a new coordinate frame on Rr and
together with coordinates ãr+1, . . . , ãm define the new coordinates on θ1, such
that x0 = 0. We will denote these coordinates by ci and we will refer to them
as section coordinates.

It is essential here that the Gramm-Schmidt diagonalization procedure is
performed using an interval arithmetic, because in this way we obtain a rigorous
orthogonal transformation from the cartesian coordinates, ã, on section θ1 to the
section coordinates and its rigorous inverse. Both transformations are needed
later in the proof, because the integration of the Basic Differential Inclusion for
(23) is done in the cartesian coordinates, but all the important proof sets are
defined using the section coordinates.
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5.2 Part 2 - a construction of self-consistent a priori bounds.

We have to define a set W ⊂ Xm and {a±k }k>m. In principle it is enough to
take any W ⊂ Xm such that Pmγ ⊂ W , where γ is an approximate periodic
orbit for an m1-dimensional Galerkin projection of (23) (m1 ≥ m). For W , we
construct {a±k } using the algorithm described in Section 3.3 of [ZM]. But it is
obvious that, to obtain the proof with a relatively small dimension m (hence in
short computation time), it essential that we choose W as a small neighborhood
of γ. It is also very important how we let Ak(W ) decay.

The set W was constructed as follows

1. we generate an approximate periodic trajectory for anm1-dimensional Galerkin
projection, with m1 > m. In our proof m1 = 16. A fourth order Runge-
Kutta method with a fixed time step h = 1

2|m2
1(1−νm2

1)|
was used for this

purpose. As a result of this procedure we obtain a finite ordered set of
points Z ⊂ Xm1 , which apparently is very close to the m1-dimensional
projection of the periodic orbit we are after.

2. we define an auxiliary set W̃ ⊂ Xm as follows. On the plane (a1, a3) we
introduce polar coordinates (r, ϕ). For i = 0, . . . , p − 1 (p = 70 in the
proof) we define sets Si by

Si =

{
(a1, a3) | (a1, a3) ̸= (0, 0), ϕ(a1, a3) ∈

[
2πi

p
,
2π(i+ 1)

p

]}
(36)

Next we define sets Di(n,Z) ⊂ Xm for i = 0, 1, . . . , p− 1 by

Di(n,Z) = IHull{Pnz | z ∈ Z,

(A1(z), A3(z)) ∈ S(i−1) mod p ∪ Si ∪ S(i+1) mod p},

where, for a set Y ⊂ Rk, by IHull(Y ) we denote the smallest product of
intervals containing Y .

For a stretching factor parameter, e (e = 1.1 in the proof) and any interval
I = [a, b] we define a new interval, stretch(I, e) by

stretch(I, e) = (a+ b)/2 +

[
−e

b− a

2
, e

b− a

2

]
. (37)

For an interval set X = Πk
i=1Ii, where Ii is an interval we set

stretch(X, e) = Πk
i=1stretch(Ii, e) (38)

We introduce another parameter niso - the number of coordinates for which
we force an isolation, but still we include them in computations (in the
proof niso = 3).

We define, for i = 0, . . . , p− 1,

W̃i = stretch(Di(m− niso), e) (39)
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Table 5: The interval enclosure of W from the proof of Theorem 9. The tail is
given in Table 6. Columns: c-coordinate index, bounds for the c-th coordinate

c bounds
1 [-0.427501,0.427482]
2 [1.06609,1.33357]
3 [-0.866305,0.866316]
4 [-0.391295,-0.129789]
5 [-0.18118,0.181172]
6 [-0.0271086,0.0474366]
7 [-0.0201397,0.0201411]
8 [-0.00485958,0.00629999]
9 [-0.00182595,0.00182582]
10 [-0.000718572,0.000425729]
11 [-0.000150202,0.000150379]
12 [-3.49005e-05,7.58671e-05]
13 [-1.81432e-05,1.81445e-05]
14 [-6.24288e-06,2.6964e-06]

We set

W̃ =

p−1∑
i=0

W̃i. (40)

Obviously W̃ ⊂ Xm−niso . For this set and M we compute the self-
consistent bounds to obtain a collection of pairs {ã±k }k>m−niso

.

We set, for i = 0, . . . , p− 1,

Wi = W̃i ×Πm
k=m−niso+1[ã

−
k , ã

+
k ] (41)

We set W =
∪p−1

i=0 Wi. Table 5 contains the interval enclosure of W i.e.
the smallest product of intervals containing W .

Finally, forW andM we compute self-consistent a priori bounds {a±k }k>m

using the algorithm outlined in Section 3.3 in [ZM]. Table 6 contains these
bounds together with the initial bounds used to start the algorithm (see
Section 5 in [ZM] for more details).

Let

En = conv
(
{AnF (x)−An(F (Pn(x))) | x ∈ W ⊕Πk>m[a−k , a

+
k ]}
)

(42)

The interval En measures the influence of the tail on the n-th coordinate
of the vector field and we will call the interval vector E the Galerkin
projection error. Having self-consistent bounds we can compute E in the
Basic Differential Inclusion (17). Table 7 contains the Galerkin projection
errors from the proof.
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Table 6: The self-consistent a priori bounds from the proof of Theorem 9. m =
14, M = 3m = 42, the initial far tail (for k > M) is given by a+k = −a−k =
780.898/k4. The final far tail (for k > M) is given by a+k = −a−k = 2.67593e+
10/k12. Columns from left to right, c-coordinate index, initial bounds for the c-
th coordinate, final bounds for the c-th coordinate (with an isolation for c > m),
the ratio of diameters of the final and initial bounds.

c initial end ratio
15 [-0.0159165,0.0159165] [-1.98015e-06,1.97985e-06] 0.0001244
16 [-0.0122413,0.0122413] [-3.16413e-07,5.00703e-07] 3.33754e-05
17 [-0.00957066,0.00957066] [-1.80681e-07,1.80742e-07] 1.88819e-05
18 [-0.00759164,0.00759164] [-4.12298e-08,4.03705e-08] 5.37436e-06
19 [-0.00609963,0.00609963] [-1.48467e-08,1.48436e-08] 2.43379e-06
20 [-0.00495741,0.00495741] [-4.13123e-09,3.34701e-09] 7.54249e-07
21 [-0.00407088,0.00407088] [-1.21175e-09,1.212e-09] 2.97694e-07
22 [-0.00337422,0.00337422] [-2.87756e-10,3.57275e-10] 9.55824e-08
23 [-0.0028206,0.0028206] [-9.93966e-11,9.93814e-11] 3.52368e-08
24 [-0.00237615,0.00237615] [-3.01295e-11,2.22132e-11] 1.10142e-08
25 [-0.00201598,0.00201598] [-8.19686e-12,8.19757e-12] 4.06612e-09
26 [-0.00172161,0.00172161] [-2.01848e-12,2.23854e-12] 1.23635e-09
27 [-0.00147912,0.00147912] [-6.76212e-13,6.76347e-13] 4.5722e-10
28 [-0.00127789,0.00127789] [-1.8801e-13,1.65843e-13] 1.38453e-10
29 [-0.00110977,0.00110977] [-5.57064e-14,5.5693e-14] 5.01902e-11
30 [-0.000968438,0.000968438] [-1.46681e-14,1.36154e-14] 1.46027e-11
31 [-0.00084892,0.00084892] [-4.42188e-15,4.42286e-15] 5.20941e-12
32 [-0.000747297,0.000747297] [-1.2231e-15,1.23527e-15] 1.64485e-12
33 [-0.000660445,0.000660445] [-6.11705e-16,6.11627e-16] 9.26143e-13
34 [-0.000585859,0.000585859] [-7.91392e-16,7.77735e-16] 1.33917e-12
35 [-0.000521518,0.000521518] [-2.03049e-15,2.0304e-15] 3.89334e-12
36 [-0.000465776,0.000465776] [-6.03481e-15,6.0351e-15] 1.29568e-11
37 [-0.000417291,0.000417291] [-1.20708e-14,1.20708e-14] 2.89266e-11
38 [-0.000374957,0.000374957] [-4.19424e-14,4.19423e-14] 1.1186e-10
39 [-0.00033786,0.00033786] [-8.8779e-14,8.8779e-14] 2.62769e-10
40 [-0.000305241,0.000305241] [-1.94964e-13,1.94964e-13] 6.38721e-10
41 [-0.000276468,0.000276468] [-3.35639e-13,3.35639e-13] 1.21403e-09
42 [-0.000251007,0.000251007] [-2.9855e-13,2.9855e-13] 1.18941e-09
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Table 7: The Galerkin errors from the proof of a periodic orbit for ν = 0.127.
Computed for m = 14, M = 3m = 42. The tail is given in Table 6.

k En

1 [-2.69e-11, 2.69036e-11]
2 [-1.57744e-10, 1.5313e-10]
3 [-9.63186e-10, 9.63049e-10]
4 [-2.60273e-09, 2.71426e-09]
5 [-1.49885e-08, 1.49925e-08]
6 [-4.793e-08, 4.63349e-08]
7 [-1.86867e-07, 1.86826e-07]
8 [-6.74122e-07, 6.92668e-07]
9 [-1.75323e-06, 1.75239e-06]
10 [-7.48998e-06, 7.41082e-06]
11 [-1.77666e-05, 1.77637e-05]
12 [-4.47796e-05, 4.37507e-05]
13 [-7.86937e-05, 7.8697e-05]
14 [-3.9583e-05, 4.62362e-05]

5.3 Part 3 - Basic Differential Inclusion and the construc-
tion of N

Consider the Basic Differential Inclusion (17) for (23). Let us remind the reader
that by G we denote a Poincaré map between sections θ1 and Rθ1. Our goal is
to construct a set N ⊂ θ1 ∩W , such that

N ⊂ dom (G) (43)

RG(N) ⊂ intN (44)

Observe that (see condition (18) in Def. 9) condition (43) requires that any
solution of (17) starting from x ∈ N stays in W for positive t, which is less than
or equal to the first return time to Rθ1. In Section 6 we present an algorithm,
which allows us to compute a rigorous enclosure for G(N) for any N ⊂ θ1.

We constructed N as a result of the following simple algorithm. We would
like to stress that in its description we use the section coordinates (introduced
in Subsection 5.1).
Algorithm

1. Initialization. We set the parameters for the computation of G: the time
step h = 1

2|m2(1−νm2)| = 0.000106773 and the order r = 3 of the numerical

method.

We set δ = 2 · 10−5. We initialize N as follows

N = [−δ, δ]m−1. (45)
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2. Computation of a Poincaré map. We compute RGN = R ◦ G(N) without
checking condition (18), i.e., if the trajectory of N belongs to W . If the
computation was terminated successfully then we go to step 3, otherwise
the execution of the algorithm is interrupted and fail is returned.

3. If
N ⊂ RGN, (46)

then the execution of the algorithm is interrupted and fail is returned.

If
RGN ⊂ N, (47)

then we go to step 4.

If neither (46) nor (47) is satisfied then we set N = RGN ∩N and jump
back to step 2

4. Final check. We recompute RGN = R ◦G(N), but this time checking condi-
tion (18). If this is the case we either return success or if we want more
tight bounds we jump to step 5 , otherwise fail is returned.

5. Further improvement. We compute several times: N = R ◦ G(N) and return
success.

End of algorithm
With computer assistance we proved the following

Lemma 10 Let ν = 0.127. There exists N ⊂ W ∩ θ1, N is a product of
interval sets in the section coordinates, such that N ⊂ domG, tGθ1→Rθ1

(x) ≤ T
and R ◦ G(N) ⊂ intN . Moreover, for any x ∈ N In the printed version we
had this wrong statement given below

tGθ1→Rθ1
(x) ⊂ (2.44296, 2.4438)

the correct bounds are:

tGθ1→Rθ1
(x) ⊂ (1.12214, 1.12219)

About the proof: The main loop was executed three times. A Pentium III, 450
MHz computer was used. A computation of RG(N) took around 751 seconds.

Table 8 describes the set N , as follows: N = Πm−1
i=1 Ni, the interval Ni is

given by the i-th row as Ni = x + r. For example N1 = −3.880465e − 07 +
[−1.838038e− 05, 1.838038e− 05].

After two iterates we had already an inclusion RG(N) ⊂ N (all ratios of
diameters in the second column in Table 10 are less than 1). Hence the third
iterate was used only to improve estimates (see ratios in the third column in
Table 10).

Table 9 contains RG(N). In Table 10 we illustrate how the set N was
changing during the execution of the algorithm. Instead of displaying the actual
coordinates we present the ratios between the size of the image and the set N
in each direction.
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Table 8: The input data from the third iterate of the algorithm from the proof
of Theorem 9. N = x + r, where r is an interval vector. Columns from left to
right are the coordinate index, c, x and r. The section coordinates are used for
x and r. Output data are in Table 9.

c x r
1 -3.880465e-07 [-1.838038e-05,1.838038e-05]
2 -2.115301e-09 [-5.817347e-07,5.817347e-07]
3 4.895745e-10 [-2.728741e-08,2.728741e-08]
4 -2.659308e-10 [-1.082108e-08,1.082108e-08]
5 -2.060927e-10 [-7.368567e-09,7.368567e-09]
6 4.658323e-11 [-6.102844e-09,6.102844e-09]
7 -2.881488e-11 [-5.661919e-09,5.661919e-09]
8 9.706697e-12 [-6.403534e-09,6.403534e-09]
9 4.434868e-10 [-3.128193e-08,3.128193e-08]
10 7.738122e-11 [-1.738133e-08,1.738133e-08]
11 -4.550985e-11 [-2.210128e-08,2.210128e-08]
12 -6.382979e-12 [-2.505782e-08,2.505782e-08]
13 -5.991690e-12 [-1.147062e-08,1.147062e-08]

Table 9: The output data from the third iterate of the algorithm from the proof
of Theorem 9. N = x + r, where r is an interval vector. Columns from left to
right are the coordinate index, c, RG(x+ r) and diam (RG(x+ r). The section
coordinates are used for RG(x + r). The input data i.e. x and r are given in
Table 8.

c RG(x+ r) diam (RG(x+ r))
1 [-1.283714e-05,1.167644e-05] 2.451359e-05
2 [-2.800816e-07,2.784039e-07] 5.584855e-07
3 [-2.350128e-08,2.397283e-08] 4.747412e-08
4 [-9.619064e-09,9.372982e-09] 1.899205e-08
5 [-6.762973e-09,6.567153e-09] 1.333013e-08
6 [-5.891352e-09,5.935270e-09] 1.182663e-08
7 [-5.384946e-09,5.358340e-09] 1.074329e-08
8 [-6.297353e-09,6.307526e-09] 1.260488e-08
9 [-2.359918e-08,2.494372e-08] 4.854291e-08
10 [-1.584270e-08,1.608458e-08] 3.192728e-08
11 [-2.133511e-08,2.120401e-08] 4.253913e-08
12 [-2.457033e-08,2.454699e-08] 4.911733e-08
13 [-1.121413e-08,1.120587e-08] 2.242001e-08
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Table 10: Ratios: diam (AcRG(x + r))/diam (Acr) from the proof. Columns
from left to right are the coordinate index, c, the ratios in the first, second and
third iteration, i, of the main loop in the algorithm.

c ratios i = 1 ratios i = 2 ratios i = 3
1 2.759255e+00 9.190188e-01 6.668413e-01
2 1.847428e-01 1.574446e-01 4.800173e-01
3 3.566016e-03 3.826037e-01 8.698905e-01
4 1.376623e-03 3.930301e-01 8.775484e-01
5 8.089586e-04 4.554355e-01 9.045263e-01
6 4.380839e-04 6.965385e-01 9.689436e-01
7 4.862820e-04 5.821643e-01 9.487318e-01
8 4.017088e-04 7.970368e-01 9.842128e-01
9 3.662924e-03 4.270078e-01 7.758937e-01
10 1.312009e-03 6.623943e-01 9.184358e-01
11 1.361729e-03 8.115161e-01 9.623678e-01
12 1.406283e-03 8.909244e-01 9.800796e-01
13 6.549903e-04 8.756328e-01 9.772798e-01

5.4 Conclusion of the proof.

From Lemma 10 and an obvious modification of Theorem 8 it follows that there
exists a solution, u∗ : [0, T/2]× (−π, π) → R of (23-24) for ν = 0.127 such that

RGθ1→Rθ1(u
∗(0, ·)) = R(u∗(T/2, ·)) = u∗(0, ·). (48)

The domain of definition of u∗ can now be extended to [0,∞) × (−π, π) using
the symmetry R. Observe that the decay rate of the tail of u∗ (see Table 6)
guarantees that u∗(t, ·) is at least a C10 function, hence it defines a classical
solution of (23).

6 A Lohner-type algorithm for an integration of
differential inclusions

In this section we present a Lohner-type algorithm for a rigorous integration of
ODEs with controlled perturbations. This part depends heavily on [ZLo], as
the proposed algorithm is just a modification running on top of the C0-Lohner
algorithm for ODEs described (after [Lo, Lo1]) there.

We study the following ODEs

x′(t) = f(x(t), y(t)) (49)

y′(t) = g(x(t), y(t))
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where x ∈ Rn1 and y(t) ∈ Rn2 (we allow for n2 = ∞). Assume that we have
some knowledge of y(t), for example, |y(t)| < ϵ for 0 ≤ t ≤ T . We would like to
find a rigorous enclosure for x(t).

In the context of the method self-consistent bounds, x in (49) represents a
point in Xm (m = n1) and y represents the tail and we know that as long as
x(t) ∈ W , then y(t) ∈ V .

6.1 Basic notation

We will use the same conventions as in [ZLo]. In the sequel, by arabic letters we
denote single valued objects like vectors, real numbers, matrices. Quite often
we will use square brackets, for example [r], to denote sets. Usually this will
be some set constructed in the algorithm. Sets will also be denoted by single
letters, for example S, when it is clear from the context that it represents a set.

For a set [S] by [S]I we denote the interval hull of [S], i.e. the smallest
product of intervals containing [S]. The symbol hull(x1, . . . , xk) will denote the
interval hull of intervals x1, . . . , xk. For any interval set [S] = [S]I by m([S]) we
will denote a center point of [S]I . For any interval [a, b] we define a diameter
by diam([a, b]) = b − a. For an interval vector or an interval matrix [S] = [S]I
by diam ([S]) we will denote the maximum of diameters of its components. For
an interval [x−, x+] we set right([x−, x+]) = x+ and left([x−, x+]) = x−.

For a set X ⊂ Rd by intX we denote an interior of X.
For v, w ∈ Rn and A,B ∈ Rn×n (n = 1, . . . ,∞) we say that

v ≤ w iff ∀i vi ≤ wi,

A ≤ B iff ∀ij Aij ≤ Bij .

6.2 A fundamental estimate

For a fixed yc ∈ Rn2 we compare the solutions of two ODEs

x′ = f(x, yc), x(t0) = x0 (50)

x′ = f(x, yc) + (f(x, y(t))− f(x, yc)), x(t0) = x0 (51)

where y(t) is a given function.
Let x1(t) be a solution of (50) and let x2(t) be a solution of (51). We assume

that a convex set [Wy] ⊂ Rn2 is an enclosure for y([t0, t0 + h]).
Let [W1] ⊂ [W2] ⊂ Rn1 be convex and compact. We assume that for s ∈

[t0, t0 + h] x1(s) ∈ [W1] ⊂ Rn1 and x2(s) ∈ [W2] ⊂ Rn1 for any continuous
function y : [t0, t0 + h] → [Wy].

The following lemma is a particular case of Theorem 1 in Section 13 in
[W](see subsection IV ’The Lipschitz condition’), a self-contained proof (with
precisely specified assumptions) can also be found in [ZPLo].

Lemma 11 The following inequality holds for t ∈ [t0, t0 + h] and for i =
1, . . . , n1

|x1,i(t)− x2,i(t)| ≤
(∫ t

t0

eJ(t−s)C ds

)
i

, (52)
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where

[δ] = {f(x, yc)− f(x, y) | x ∈ [W1], y ∈ [Wy]},
Ci ≥ sup |[δi]| , i = 1, . . . , n1

Jij ≥

sup ∂fi
∂xj

([W2], [Wy]) if i = j,

sup
∣∣∣ ∂fi∂xj

([W2], [Wy])
∣∣∣ if i ̸= j.

6.3 One step of the algorithm

Let φ(t, x0, y0) denote a solution of equations (49) with initial conditions x(0) =
x0 and y(0) = y0. Let φ(t, x0, y0) be a solution of the system

x′ = f(x, y), y′ = 0 (53)

with the same initial conditions x(0) = x0 and y(0) = y0. Observe that for
system (53) y = const.

Let πx : Rn1 × Rn2 → Rn1 be a projection onto Rn1 , i.e. πx(x, y) = x.
We are interested in finding rigorous bounds for πxϕ(t, x, y) for x ∈ [x0] and

y ∈ [y0]. To this end we propose a modification of the original Lohner algorithm
[Lo, Lo1]. Our presentation and notation follow a description of the C0-Lohner
algorithm presented in [ZLo].

In the description below the objects with an index k refer to the current
values and those with an index k + 1 are the values after the next time step.

One step of the Lohner algorithm is a shift along the trajectory of system
(49) with the following input and output data:
Input data:

• tk - a current time,

• hk - a time step,

• [xk] ⊂ Rn1 , such that πxφ(tk, [x0], [y0]) ⊂ [xk],

• [yk] - bounds for y(tk).

Output data:

• tk+1 = tk + hk - a new current time,

• [xk+1] ⊂ Rn1 , such that πxφ(tk+1, [x0], [y0]) ⊂ [xk+1],

• [yk+1] - bounds for y(tk+1).

We do not specify here a form (a representation) of sets [xk]. They can be
interval sets, balls, doubletons etc. (see [MZ, ZLo]). This issue is very important
in handling the wrapping effect and is discussed in detail in [Lo, Lo1] (see also
Section 3 in [ZLo]).

One step of the algorithm consists of the following parts:
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1. Generation of a priori bounds for φ. We find a convex and compact set
[W2] ⊂ Rn1 and a convex set [Wy] ⊂ Rn2 , such that

φ([0, hk], [xk], [yk]) ⊂ [W2]× [Wy]. (54)

2. We fix yc ∈ [Wy].

3. Computation of an unperturbed x-projection. We apply one step of the
C0-Lohner algorithm to (53) with a time step hk and an initial condition
given by [xk] × {yc}. Since y = const for φ, this is a computation of an
ODE in Rn1 .

As a result we obtain [xk+1] ⊂ Rn1 and a convex and compact set [W1] ⊂
Rn1 , such that

πxφ(hk, [xk], yc) ⊂ [xk+1]

πxφ([0, hk], [xk], yc) ⊂ [W1]

4. Computation of perturbation. Using Lemma 11 we find a set [∆] ⊂ Rn1 ,
such that

πxφ(tk+1, [x0], [y0]) ⊂ πxφ(hk, [xk], yc) + [∆]. (55)

Hence
πxφ(tk+1, [x0], [y0]) ⊂ [xk+1] = [xk+1] + [∆] (56)

5. Computation of [yk+1]. This part is not necessary if the bounds for y are
known and fixed in advance. (This is the case for self-consistent a priori
bounds.)

6.4 Part 1 - comments

In the context of a dissipative PDE and self-consistent a priori bounds W ⊕ V ,
we set

[Wy] = V, (57)

and we have to satisfy the following

[W2] ⊂ W. (58)

The last condition is a consistency condition required by the Basic Differential
Inclusion, namely E is computed under this assumption. In the proof of Theo-
rem 9 in the construction of set N (see Subsection 5.3) in Step 2 we ignore (58),
but in the final check (Step 4) we need to verify it.
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6.5 Part 4 - details

1. We set

[δ] = [{f(x, yc)− f(x, y) | x ∈ [W1], y ∈ [Wy]}]I
Ci = right (|[δi]|) , i = 1, . . . , n1

Jij =

right
(

∂fi
∂xi

([W2], [Wy])
)

if i = j,

right
(∣∣∣ ∂fi∂xj

([W2], [Wy])
∣∣∣) . if i ̸= j.

In the context of self-consistent a priori bounds [δ]i = Ei, where Ei is the
Galerkin projection error defined by (42).

2. D =
∫ h

0
eJ(h−s)C ds

3. [∆i] = [−Di, Di], for i = 1, . . . , n1

It remains to explain how we compute
∫ t

0
eA(t−s)C ds. First observe that∫ t

0

eA(t−s)C ds = t

( ∞∑
n=0

(At)n

(n+ 1)!

)
· C. (59)

We fix any norm ∥ · ∥, preferably the L∞-norm, i.e. ∥x∥∞ = maxi |xi|. Let us
set

Ã = At, An =
Ãn

(n+ 1)!
.

In this notation

∞∑
n=0

(At)n

(n+ 1)!
=

∞∑
n=0

An, A0 = Id, An+1 = An · Ã

n+ 2

For the remainder term we use the following estimate

∥AN+k∥ ≤ ∥AN∥ ·

∥∥∥∥∥ Ã

N + 2

∥∥∥∥∥
k

Hence if
∥∥∥ Ã
N+2

∥∥∥ < 1, then

∥∥∥∥∥∑
n>N

An

∥∥∥∥∥ ≤ ∥AN∥ ·

∥∥∥∥∥ Ã

N + 2

∥∥∥∥∥ ·
(
1−

∥∥∥∥∥ Ã

N + 2

∥∥∥∥∥
)−1

(60)
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6.6 Rearrangement

The rearrangement is an essential ingredient in the Lohner algorithm, designed
to reduce the wrapping effect [Lo, Lo1, Mo]. We will not discuss this issue here,
but we will only include the necessary formulas (see [ZLo] for more details and
motivation).
Evaluations 2 and 3. In this representation

[xk] = xk + [Bk][r̃k]. (61)

In the context of our algorithm in Part 3 we obtain

[xk+1] = xk+1 + [Bk+1][rk+1]. (62)

Now we have to take into account (56). We set

xk+1 = m(xk+1 + [∆]) (63)

[r̃k+1] = [rk+1] + [B−1
k+1] (xk+1 + [∆]− xk+1) . (64)

Evaluation 4. In this representation

[xk] = xk + Ck[r0] + [Bk][r̃k]. (65)

In the context of our algorithm in part 3 we obtain

[xk+1] = xk+1 + Ck+1[r0] + [Bk+1][rk+1]. (66)

Equation (56) is taken into account exactly in the same way as in previous
evaluations, i.e., we use (63) and (64).

The fourth evaluation was used in the proof of Theorem 9.

6.7 Computation of the Poincaré map

If as in [ZLo] we assume that the section is given by α(x) = 0, α′ > 0 then
an algorithm discussed in Section 5 in [ZLo] also applies in the present context
provided that we have a procedure which gives a rigorous estimate between time
steps for the x-variable in (49). This procedure is described below.

Input parameters:

• hk - a time step,

• [xk] ⊂ Rn1 , such that πxφ(tk, [x0], [y0]) ⊂ [xk],

• [xk+1] ⊂ Rn1 , such that πxφ(tk + hk, [x0], [y0]) ⊂ [xk+1],

• a convex and compact set [W2] ⊂ Rn1 and a convex set [Wy] ⊂ Rn2 , such
that

φ([tk, tk + hk], [x0], [y0]) ⊂ [W2]× [Wy], (67)
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• yc ∈ [Wy],

• [xk+1] ⊂ Rn1 , such that πxφ(hk, [xk], yc) ⊂ [xk+1],

• [W1] ⊂ Rn1 compact and convex, such that πxφ([0, hk], [xk], yc) ⊂ [W1].

Output:
We compute [Ek] ⊂ Rn1 such that

πxφ(tk + [0, hk], [x0], [y0]) ⊂ [Ek],

Algorithm:

• if 0 /∈ fi([W2], [Wy])i, then the i-th coordinate is strictly monotone on
[W2]× [Wy], hence we set

[Ek]i = hull([xk]i, [xk+1]i)

• if 0 ∈ fi([W2], [Wy]), then we compute [Ek] ⊂ Rn1 , such that

πxφ([0, hk], [xk], yc) ⊂ [Ek] (68)

using a procedure for an ODE described in [ZLo]. This procedure requires
as input data: hk, [xk], [xk+1] and [W1].

We have

πxφ(tk + [0, hk], [x0], [y0])i ⊂ [Ek]i = [Ek]i + [∆]i. (69)
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