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Abstract. We consider a question of finding a periodic solution for the planar
Newtonian N-body problem with equal masses, where each body is travelling
along the same closed path. We provide a computer assisted proof for the
following facts: the local uniqueness and the convexity of the Chenciner and
Montgomery Eight, the existence (and the local uniqueness) for the Gerver’s
SuperEight for 4-bodies and a doubly symmetric linear chain for 6-bodies.

1. Introduction

In this paper we consider the problem of finding periodic solution to the N -body
problem in which all N masses travel along a fixed curve in the plane. The N -
body problem with N equal unit masses is given by a differential equation ( the
gravitational constant is taken equal to 1)

(1.1) q̈i =
∑

j 6=i

qj − qi

r3
ij

where qi ∈ Rn, i = 1, ..., N , rij = ||qi − qj ||.
We consider the planar case (n = 2) only, we set qi = (xi, yi), q̇i = (vi, ui). Using

this we can express (1.1) by:

(1.2)





v̇i =
∑

j 6=i
xj−xi

r3
ij

u̇i =
∑

j 6=i
yj−yi

r3
ij

ẋi = vi

ẏi = ui

Recently, this problem received a lot attention in the literature; see [M, CM, CGMS,
S1, S2, S3, MR2] and papers cited there.

By a simple choreography [S1, S2] we mean a collision-free solution of the N-
body problem in which all masses move on the same curve with a constant phase
shift. This means that there exists q : R −→ R2 a T -periodic function of time,
such that the position of the k-th body (k = 0, . . . , N − 1) is given by qk(t) =
q(t+k T

N ) and (q0, q1, . . . , qN−1) is a solution of the N -body problem. The simplest
choreographies are the Langrange solutions in which the bodies are located at the
vertices of a regular N -gon and move with a constant angular velocity. Another
simple choreography, a figure eight curve (see Figure 1), was found numerically
by C.Moore [M]. A.Chenciner and R.Montgomery [CM] gave a rigorous existence
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proof of the Eight in 2000. In December 1999, J.Gerver found orbit for N = 4
called the ’Super-Eight’ (Figure 6). After that C.Simó found a many more simple
choreographies of different shape, and with the number of bodies ranging form 4 to
several hundreds (see [S, S1, CGMS] for pictures, animations and more details).

Up to now the only choreographies whose existence has been established rigor-
ously [MR2] are the Lagrange solutions and the Eight solution. While the Lagrange
solution is given analytically, the existence of the Eight was proven in [CM] using
variational arguments and still there are a lot of open questions about it [Ch, MR2].
For example the uniqueness (up to obvious symmetries and rescaling ) and the con-
vexity of the lobes in the Eight. In Section 3 we give a computer assisted proof of
the existence of the Eight, its local uniqueness and the convexity of the lobes.

In Sections 4, 5 and 6 we concentrate on choreographies called doubly symmetric
linear chains. They are symmetric with respect to both coordinate axes and all self-
intersection points of the curve are on the X axis. We describe a computer assisted
proof of the existence (and the local uniqueness) of doubly symmetric linear chains
for four (the Gerver SuperEight) and six bodies.

Proofs given in this paper are computer assisted. By this we mean that we use a
computer programm to provide rigorous bounds for solutions of (1.1). Our method
can be described as a variant of an interval shooting method. This approach has a
long history in the interval analysis literature, were it was used in the more general
context of the boundary value problem for ODEs (see for example [Ke, Lo, Lo1, Sc]).

In this paper the problem of proving the existence of a choreography is reduced
to finding a zero for a suitable function. For this purpose we use the interval
Newton method and the Krawczyk method [A, K, KB, Mo, N], (see Section 2). To
integrate equations (1.1) we use a C1-Lohner algorithm [ZLo]. All computations
were performed on AMD Athlon 1700XP with 256 MB DRAM memory, with the
Windows 98SE operating system. We used CAPD package [Capd] and Borland
C++ 5.02 compiler. The source code of our programm is available on the first
author web page[Ka]. The total computation time for 6-bodies was under 90 seconds
and was considerably smaller for the Eight and the SuperEight - see Section 7 for
more details.

Using an approach described in Section 4 we also proved the existence of doubly
symmetric linear chains for ten and twelve bodies. Numerical data from these
proofs are available on the first author web page [Ka]. Our approach failed for
doubly symmetric linear chain of sixteen bodies (see Section 8 for more details).

We would like to thank Carles Simó for supplying us with the initial conditions
for choreographies.

2. Two zero finding methods

The main technical tool used in this paper in order to establish the existence of
solutions of equations of the form f(x) = 0 is the interval Newton method[A, Mo, N]
and the Krawczyk method[A, K, N]. The interval Newton method was used to prove
the existence of the Eight (Figure 1) and the SuperEight orbit (Figure 6). The
Krawczyk method has been used for the SuperEight orbit (for comparison) and for
an orbit with 6 bodies in a linear chain (Figure 8).

2.1. Notation. In the application of interval arithmetics to the rigorous verifica-
tion of theorems single valued objects, like numbers, vectors, matrices etc are in
the formulas replaced by sets containing sure bounds for them. In the sequel, we
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will not use any special notation to distinguish between single valued objects and
sets. For a set S by [S] we denote the interval hull of S, i.e. the smallest product
of intervals containing S. For a set which is an interval set (i.e. can be represented
as a product of intervals) we may use sometimes the square brackets to stress its
interval nature. For any interval set [S] by mid([S]) we denote a center point of [S].
For any interval [a, b] we define a diameter by diam[a, b] := b − a. For an interval
vector (matrix) S = [S] by diamS we denote a vector (matrix) of diameters of each
components.

2.2. The interval Newton method.

Theorem 2.1. [A, N] Let F : Rn → Rn be a C1 function. Let [X] = Πn
i=1[ai, bi],

ai < bi. Assume that, the interval hull of DF ([X]), ( denoted by [DF ([X])]) is
invertible. Let x̄ ∈ X and we define

(2.1) N(x̄, [X]) = −[DF ([X])]−1F (x̄) + x̄

Then
0. if x1, x2 ∈ [X] and F (x1) = F (x2), then x1 = x2

1. if N(x̄, [X]) ⊂ [X], then ∃!x∗ ∈ [X] such that F (x∗) = 0
2. if x1 ∈ [X] and F (x1) = 0, then x1 ∈ N(x̄, [X])
3. if N(x̄, [X]) ∩ [X] = ∅, then F (x) 6= 0 for all x ∈ [X]

The main problem with an application of the interval Newton method is that
of the invertibility of

[
∂Φ
∂x ([X])

]
. One often can overcome this difficulty with the

Krawczyk method.

2.3. The Krawczyk method. We assume that:
• F : Rn −→ Rn is a C1 function,
• [X] ⊂ Rn is an interval set,
• x̄ ∈ [X]
• C ∈ Rn×n is a linear isomorphism.

The Krawczyk operator [A, K, N] is given by

(2.2) K(x̄, [X], F ) := x̄− CF (x̄) + (Id− C[DF ([X])])([X]− x̄).

Theorem 2.2. 1. If x∗ ∈ [X] and F (x∗) = 0, then x∗ ∈ K(x̄, [X], F ).
2. If K(x̄, [X], F ) ⊂ int[X], then there exists in [X] exactly one solution of

equation F (x) = 0.
3. If K(x̄, [X], F ) ∩ [X] = ∅, then F (x) 6= 0 for all x ∈ [X]

2.4. The zero-finding algorithm based on Newton or Krawczyk methods.
Theorems 2.1 and 2.2 can be used as a basis for an algorithm finding rigorous
bounds for a solution of equation F (x) = 0. Let T (x̄, [X]) = N(x̄, [X]) if we are
using the interval Newton method and T (x̄, [X]) = K(x̄, [X], F ) for the Krawczyk
method based algorithm.

First, we need to have a good guess for x∗ ∈ Rn. For this purpose we use
a nonrigorous Newton method to obtain x̄ = (x̄1, x̄2, . . . , x̄n). Then we choose
interval set [X] which contains x̄ and perform the following steps:
Step 1. Compute T (x̄, [X]).
Step 2. If T (x̄, [X]) ⊂ [X], then return success.
Step 3. If X ∩ T (x̄, [X]) = ∅, then return fail. There are no zeroes of F in [X].
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Step 4. If [X] ⊂ T (x̄, [X]), then modify computation parameters (for example: a
time step, the order of Taylor method, size of [X]). Go to Step 1.

Step 5. Define a new [X] by [X] := [X]∩ T (x̄, [X]) and a new x̄ by x̄ := mid([X]),
then go to Step 1.

In practical computation it is convenient to define the maximum number of
iterations allowed and return fail if the actual iteration count is larger.

Observe that the third assertion in both Theorems 2.1 and 2.2 can be used to
exclude the existence of zero of F . This has been used by Galias [G1, G2] to find
all periodic orbits up to a given period for Hénon map and Ikeda map.

3. The Eight - the existence, the local uniqueness and the convexity

The existence of the Eight has been shown in [CM] by using a mixture of symme-
try and variational arguments. Here we give another existence proof and in addition
we obtain the local uniqueness and the convexity of each lobe of the Eight. We fol-
low [CM] in the use of the symmetry, but other component of the proof is different
- we use the interval Newton method discussed in Section 2.

In notation we follow [CM].

x

y

1

2

3

Figure 1. The Eight - the initial position

Let T be any positive real number. We define the action of the Klein group
Z2 × Z2 on R/TZ and on R2 as follows: if σ and τ are generators, then we set

(3.1) σ(t) = t +
T

2
, τ(t) = −t +

T

2
, σ(x, y) = (−x, y), τ(x, y) = (x,−y).

x

y

1

2

3

Figure 2. The Eight - the final position
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For loop q : (R/TZ) −→ R2 and i = 1, 2, 3 we define the position for i-th body
by

(3.2) qi(t) = q

(
t + (3− i) · T

3

)
,

The following theorem without the uniqueness part was proved in [CM].

Theorem 3.1. There exists an ”eight”-shaped planar loop q : (R/TZ) −→ R2 with
the following properties:

(1) for each t,
q1(t) + q2(t) + q3(t) = 0;

(2) q is invariant with respect to the action of Z2 × Z2 on R/TZ and on R2:

q ◦ σ(t) = σ ◦ q(t) and q ◦ τ(t) = τ ◦ q(t);

(3) the loop x : R/TZ −→ R6 defined by

x(t) = (q1(t), q2(t), q3(t))

is a T -periodic solution of the planar three-body problem with equal masses.
Moreover, q is locally unique (up to obvious spatial symmetries and

rescaling).

As was mentioned in the introduction the proof of Theorem 3.1 is computer
assisted. The goal of next few lemmas is to transform it to the problem of solving
the equation F (x) = 0 for a suitable F .

Remark 3.2. If conditions (1),(2),(3) are satisfied, then
a. q̇1(t) + q̇2(t) + q̇3(t) = 0 for each t,
b. q̇ ◦ σ(t) = σ ◦ q̇(t) and q̇ ◦ τ(t) = σ ◦ q̇(t) for each t,
c. q3(0) = (0, 0) and q̇3(0) = −2q̇1(0)
d. q1(0) = −q2(0) and q̇1(0) = q̇2(0),
e. q1(T/12) is on the X axis and q̇1(T/12) is orthogonal to the X axis,
f. q3(T/12) = τ ◦ q2(T/12) and q̇3(T/12) = σ ◦ q̇2(T/12),

The following lemma describes the symmetry reduction for the Eight.

Lemma 3.3. Assume that q̃ : [0, T̃ ] −→ R6 is a solution of the three body problem,
such that q̃ = (q̃1, q̃2, q̃3) satisfies conditions (c),(d),(e),(f) in Remark 3.2, then
exists q : (R/TZ) −→ R2 satisfying conditions (1),(2),(3) in Theorem 3.1 with
T = 12T̃ .

Proof: We define

(3.3) q̂(t) =





q̃3(t) for t ∈ [0, T̃ ]
τ ◦ q̃2(2T̃ − t) for t ∈ [T̃ , 2T̃ ]
σ ◦ q̃1(t− 2T̃ ) for t ∈ [2T̃ , 3T̃ ]

and

(3.4) q(t) =





q̂(t) for t ∈ [0, 3T̃ ]
τ ◦ q̂(τ−1(t)) for t ∈ [3T̃ , 6T̃ ]
σ ◦ q̂(σ−1(t)) for t ∈ [6T̃ , 9T̃ ]
σ ◦ τ ◦ q̂(τ−1 ◦ σ−1(t)) for t ∈ [9T̃ , 12T̃ ]

Let f1 and f2 be two solutions of (1.1) on intervals [t1, t2] and [t2, t3], respectively.
If f1(t2) = f2(t2) and ḟ−1 (t2) = ḟ+

2 (t2) then f = {f1, f2} is a solution on interval
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[t1, t2]. To show that q(t) is a solution it is enough to show that ”pieces fit together
smoothly”.
For example for t = T̃ from 3.2.f we have

q̃3(T̃ ) = q̃3(
T

12
) = τ ◦ q̃2(

T

12
) = τ ◦ q̃2(T̃ ) = τ ◦ q̃2(2T̃ − T̃ )(3.5)

˙̃q−3 (T̃ ) = σ ◦ ˙̃q+
2 (T̃ )(3.6)

Other cases are left to reader.

Condition (2) in Theorem 3.1 follows easily from the definition of q̂(t) and the
properties of σ and τ (for T-periodic orbit σ−1(t) = σ(t) and τ−1(t) = τ(t)). For
example, for t ∈ [0, 3T̃ ] we have

q(σ(t)) = σ ◦ q̂(σ−1 ◦ σ(t)) = σ ◦ q̂(t) = σ ◦ q(t)(3.7)
q(τ(t)) = τ ◦ q̂(τ−1 ◦ τ(t)) = τ ◦ q̂(t) = τ ◦ q(t)(3.8)

We omit other cases, because the proof is very similar.
To prove condition (1) observe that, from 3.2.c and 3.2.d we obtain that q1(0) +

q2(0) + q3(0) = 0 and q̇1(0) + q̇2(0) + q̇3(0) = 0. This and the conservation of linear
momentum implies condition (1). ¤

x

y

12 3

Figure 3. The rotated Eight - the initial position

x

y

1

2

3

Figure 4. The rotated Eight - the final position

Hence to prove Theorem 3.1 it is enough to show that there exists a locally
unique (up to obvious degeneracies) function satisfying assumptions of Lemma 3.3.
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For this end we rewrite these assumptions as a zero finding problem to which we
apply the interval Newton method in the reduced space.

Our original phase space is 12 dimensional, the state of bodies is given by
(q1, q2, q3, q̇1, q̇2, q̇3). The center of mass is fixed at the origin. Hence one body’s
position and velocity is determined by other two bodies. We start from a collinear
position with the third body at the origin and with equal velocities of the first and
the second body (see 3). Hence it is enough to know the position and the velocity
of the first body to reconstruct initial condition of other bodies. Moreover, if we
have one solution we could get another solution by a suitable rotation (both have
the same shape). To remove this degeneracy we place the first body on the X axis
(see Figure 3). In addition we fix the size of trajectory by setting q1(0) = (1, 0).
This also fixes the period of the solution, but from the Kepler third law we can
obtain a solution of any period just by rescaling. Hence the initial conditions are
defined by the velocity of one body.

The reduced space for the Eight is two dimensional and is parameterized by the
velocity of the first body. We define a map from the reduced space to the full phase
space E : R2 −→ R12, which expands velocity of the first body, given by (v, u), to
the initial conditions for the 3-body problem (x1, y1, x2, y2, x3, y3, v1, u1, v2, u2, v3, u3)
for equation (1.1)

E(v, u) = (1, 0,−1, 0, 0, 0, v, u, v, u,−2v,−2u).

For each such initial condition there exists a solution of the 3-body problem
defined on some interval. To each initial configuration, following that solution, we
associate, if it exists, a configuration in which for the first time the position vector
of the first body is orthogonal to its velocity vector. This defines the Poincaré map
P : R12 ⊃ Ω −→ R12.

Now, we define map R : R12 −→ R2, by

R(q1, q2, q3, q̇1, q̇2, q̇3) = (‖q2 − q1‖2 − ‖q3 − q1‖2, (q̇2 − q̇3)× q1),

where by × we denote vector product, and map Φ : R2 −→ R2 by

Φ = R ◦ P ◦ E.

Remark 3.4. If R(q1, q2, q3, q̇1, q̇2, q̇3) = 0, then ‖q2 − q1‖ = ‖q3 − q1‖ and if in
addition y1 = 0 but x1 6= 0, then ẏ2 = ẏ3. The bodies are then located as in Fig. 4
and conditions (e) and (f) in Rem. 3.2 are satisfied in a suitably rotated coordinate
frame.

The following lemma, which is crucial for the proof of Theorem 3.1 was proved
with a computer assistance.

Lemma 3.5. There exists a locally unique point (v, u) ∈ R2, such that Φ(v, u) =
(0, 0).

Proof: We use the interval Newton method (Theorem 2.1). First we come close to
zero of Φ, starting with some rough initial condition (for example from [S1]) using
the non-rigorous Newton method. Once we have a good candidate x0 = (v0, u0),
we set [X] = [v0 − δ, v0 + δ] × [u0 − δ, u0 + δ] and compute rigorously Φ(x0) and
∂Φ([X])

∂x . For this purpose we use C1-Lohner algorithm described in [ZLo]. In this
computation we used the following settings: the time step h = 0.01 and the order
r = 7.
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Result

Φ(x0) ([-2.107029e-06, -2.106467e-06],[2.974991e-06, 2.976034e-06])

diam Φ(x0) (5.625889e-10, 1.042962e-09)

∂Φ([X])
∂x

[
[17.622624, 17.643043] [1.809772, 1.827325]

[−24.868548,−24.848432] [−10.056629,−10.039221]

]

N(x0, [X]) ([0.347116886243943, 0.347116889993313],
[0.532724941587373, 0.532724949187495])

diam N(x0, [X]) (3.749369e-09,7.600121e-09)

Table 1. Data from the proof of Lemma 3.5.

It turns out that the assumption of assertion 1 in Theorem 2.1 holds for
x0 = (0.347116768716, 0.532724944657) and δ = 10−6. Numerical data from this
computation are listed in Table 1.

Moreover, from Theorem 2.1 we know that this zero is unique in the set X. ¤
Proof of Theorem 3.1: From Lemma 3.5 it follows that there exists (v, u) ∈ R2

such that Φ(v, u) = (0, 0). Hence there exists solution q̄(t) of the three body
problem defined on interval [0, T̃ ], such that for t = 0 all bodies are in the collinear
configuration with the third body at the origin and for t = T̃ the bodies form an
isosceles triangle (because r12 = r13). By a suitable rotation of the coordinate
frame we obtain a solution q̃(t), such that for t = T̃ the first body is on X axis.
From Remark 3.4 it follows that q̃(t) satisfies all conditions in Lemma 3.3 and hence
there exists q(t) satisfying conditions (1),(2),(3).

The local uniqueness follows from the local uniqueness in Lemma 3.5. ¤

3.1. Convexity of the Eight.

Theorem 3.6. Each lobe of the Eight is convex.

Proof: For the proof it is enough to show that the only inflection point on the
curve q(t) is the origin.

From Lemma 3.5 we obtain the set [X] which includes the initial condition for
the Eight in the reduced space. To expand [X] to the full space we set X̄ = E([X]).
In the coordinate frame in which the Eight looks as in Fig. 1 and symmetries σ and
τ are the reflections with respect to coordinate axes (see 3.1) we see immediately
that the symmetry properties of the Eight imply that at the origin ∂2yi

∂x2
i

= 0 and
∂2xi

∂y2
i

= 0. To prove the convexity of the Eight we follow rigorously the trajectory

of set X̄ and show that the only point in which ∂2yi

∂x2
i

= 0 and ∂2xi

∂y2
i

= 0 is the origin.
The same is true if we rotate the Eight, as in Figure 3, to the coordinate system
in which we performed the actual computations and in which we will work for the
remainder of this proof.
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Let qi(t) = (xi(t), yi(t)) be the position of i-th body. If 0 /∈ ∂xi

∂t [tk−1, tk] then
we can write yi as a function of xi on interval [xi(tk−1), xi(tk)]. Otherwise we
try to represent xi as a function of yi. For small enough time steps at least one of
these representations is always possible for the Eight (this is verified during rigorous
computations). Below we list formulas for the derivatives of yi(t(xi)) with respect
to xi in terms of derivatives of xi and yi with respect to the time variable.

∂yi(t(xi))
∂xi

=
∂yi

∂t

(
∂xi

∂t

)−1

∂2yi(t(xi))
∂x2

i

=
(

∂2yi

∂t2
− ∂2xi

∂t2
∂yi

∂xi

)(
∂xi

∂t

)−2

∂3yi(t(xi))
∂x3

i

=
∂3yi

∂t3
∂xi

∂t − ∂3xi

∂t3
∂yi

∂t + 2
(

∂2xi

∂t2

)2
∂yi

∂xi
− 2∂2xi

∂t2
∂2yi

∂t2

(
∂xi

∂t

)4 −

(
∂2xi

∂t2
∂2yi

∂x2
i

)

(
∂xi

∂t

)2

To obtain derivatives of xi with respect to yi it is enough to exchange xi and yi

variables in above formulas.
The time derivatives of xi and yi for each time step are computed during the

execution of the C1-Lohner algorithm.
Before we state explicitly the conditions we check we need to introduce some

notation. Let x0 ∈ R12 represent initial conditions (for t = 0) for (1.2) then by
ϕ(t, x0) we denote the state of bodies (positions and velocities) at time t. Let hk

be length of k-th time step, tk = h1 + · · · + hk - the total time elapsed after k
steps, [qk] ⊂ R12 be an interval set, such that ϕ(tk, X̄) ⊂ [qk] and [Qk] ⊂ R12 be
an interval set, such that ϕ([tk−1, tk], X̄) ⊂ [Qk]. Let us stress here, that both [qk]
and [Qk] are computed during k-th step of C1-Lohner algorithm.

For k-th step and i-th body (except the first step and the third body (i = 3),
which starts at the origin) we check if at least one of the following conditions is
true

0 /∈ ∂yi

∂t
[Xk

i ] and 0 /∈ ∂2xi

∂y2
i

[Xk
i ](3.9)

0 /∈ ∂xi

∂t
[Y k

i ] and 0 /∈ ∂2yi

∂x2
i

[Y k
i ].(3.10)

For first step and the third body we check if one of following conditions is satisfied

0 /∈ ∂y3

∂t
[X1

3 ] and 0 ∈ ∂2x3

∂y2
3

[X1
3 ] and 0 /∈ ∂3x3

∂y3
3

[X1
3 ](3.11)

0 /∈ ∂x3

∂t
[Y 1

3 ] and 0 ∈ ∂2y3

∂x2
3

[Y 1
3 ] and 0 /∈ ∂3y3

∂x3
3

[Y 1
3 ].(3.12)

To verify above conditions we follow the trajectory of set X̄ using the C1-Lohner
algorithm until reaching the section described in proof of Lemma 3.5 and for each
time step and each body we verify a suitable condition. This finishes the proof. ¤

3.2. Some numerical data from the proof of the convexity of the Eight.
Parameter settings for the C1-Lohner algorithm: the time step h = 0.01, the order
r = 7, 53 time steps were needed to cross the section.
Step 1. We start in the collinear position with the third body at the origin ( at
the inflection point). Numerical data for this case are given in Table 2. We see that
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i ∂xi

∂t [X1
i ] ∂2xi

∂y2
i

[X1
i ] ∂3xi

∂y3
i

[X1
i ]

1 [0.334402,0.347118] [15.3592,17.9897] [136.616,219.114]
2 [0.347116,0.360049] [-16.5013,-14.111] [119.951,192.562]
3 [-0.695034,-0.69385] [-0.0682713,0.269952] [-30.969,-26.3718]

Table 2. Data from the proof of Theorem 3.6, for step 1, neigh-
borhood of deflection point.

i ∂xi

∂t [X2
i ] ∂2xi

∂y2
i

[X2
i ] ∂3xi

∂y3
i

[X2
i ]

1 [0.32222,0.334722] [16.7085,19.6225] [155.007,250.021]
2 [0.35972,0.372882] [-15.2203,-13.0177] [105.778,171.191]
3 [-0.695669,-0.69444] [0.126359,0.472046] [-30.9533,-26.1203]

Table 3. Data from the proof of Theorem 3.6, for step 2.

i ∂xi

∂t [X2
i ] ∂2xi

∂y2
i

[X2
i ] ∂3xi

∂y3
i

[X2
i ]

1 [-0.00287209,0.00468403] - -
2 [0.904939,0.922079] [-2.55715,-2.16831] [4.35197,10.6201]
3 [-0.919428,-0.909617] [2.56371,3.03259] [-3.51203,3.48564]
i ∂yi

∂t [Y 2
i ] ∂2yi

∂x2
i
[Y 2

i ] ∂3yi

∂x3
i
[Y 2

i ]
1 [0.480975,0.48288] [-3.24824,-3.11737] [-2.98453,-0.860616]

Table 4. Data from the proof of Theorem 3.6, for step 37.

for the third body (i = 3) we have 0 ∈ ∂2xi

∂y2
i

[X1
i ], but this derivative is monotonic (

because ∂3xi

∂y3
i

[X1
i ] < 0), hence there can be only one zero of it in interval [X1

3 ]. But
from the symmetry we know that this zero is at x3 = 0 ∈ [X1

3 ].
Steps 2-36 and 38-53 In this case all second derivatives do not contain 0. In
Table 3 we list as an example data obtained in the second step.
Step 37. The first body is in the rightmost position. In this case we cannot
represent y1 as a function of x1, hence we represent x1 as a function of y1 and we
check condition 3.10 instead of 3.9. Table 4 contains the derivatives for this case.

4. Doubly symmetric choreographies with even number of bodies

4.1. Symmetries. Many of the choreographies found by Simo [S1] have at least
one symmetry. In this section we introduce a notation for symmetries which will
be used till the end of this paper. By Sx, Sy we denote the reflection with respect
symmetry with respect to the x axis and the y axis, respectively. By S0 we denote
the reflection against the origin. These spatial symmetries act also on time variable
parameterizing curves as follows.
Let T be any positive real number. We define actions of Sx, Sy and S0 on R/TZ
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x

y

2
345

6

7 0 1

Figure 5. Linear chain with 8 bodies.

and on R2 by
Sx(t) = −t + T

2 , Sx(x, y) = (−x, y),
Sy(t) = −t, Sy(x, y) = (x,−y),
S0(t) = t + T

2 , S0(x, y) = (−x,−y).
It follows from these definitions that S0 = Sx ◦ Sy = Sy ◦ Sx.

Let q(t) : R/TZ −→ R2 be a C2 function. We say that q(t) is invariant (equivari-
ant) with respect to the action of S if S(q(t)) = q(S(t)) for all t. If q(t) is invariant
with respect to Sx (resp. Sy) then q̇(Sx(t)) = Sy(q̇(t)) (resp. q̇(Sy(t)) = Sx(q̇(t))).
Hence the S0-invariance implies that q̇(S0(t)) = S0(q̇(t)).

From now on we will enumerate bodies starting from 0. We set qi(t) = q
(
t + T

N · i)
for i = 0, . . . , N − 1.

4.2. Doubly symmetric choreographies with even number of bodies. We
will consider only cases with even number of bodies. Let T = N · T̄ > 0. We search
for a function q(t) : R/TZ −→ R2 which has following properties:

P1. for each t the origin is center of mass,

(4.1)
N−1∑

i=0

q
(
t + T̄ · i) = 0,

P2. q(t) is invariant with respect to
(a) Sx i.e. q(Sx(t)) = Sx(q(t)),
(b) S0 i.e. q(S0(t)) = S0(q(t)),

P3. the function x = (q0(t), q2(t), . . . , qN−1), where qi(t) = q
(
t + T̄ · i) for i =

0, . . . , N − 1, is a T-periodic solution of the N-body problem (1.1).
The following Lemma, which is analogous to Lemma 3.3, gives necessary and

sufficient conditions for the existence of a choreography satisfying P1,P2 and P3.

Lemma 4.1. Let N = 2n be the number of bodies. There exists a function q(t)
with properties P1, P2, P3 if and only if there are functions qi : [0, T̄ /2] −→ R2 for
i = 0, 1, . . . , N − 1 such as:

(1) q0(0) = (0, y0) for some y0 6= 0 (q0(0) is on Y axis),
(2) At time t0 = 0 for i = 0, 1, . . . , N/2− 1 we have

(a) qi(t0) = Sx(qN
2 −i(t0))

(b) q̇i(t0) = Sy(q̇N
2 −i(t0))

(c) qi(t0) = S0(qN
2 +i(t0))

(d) q̇i(t0) = S0(q̇N
2 +i(t0))

(3) At time t1 = T̄ /2 for i = 0, 1, . . . , N/2− 1 we have
(a) qi(t1) = Sx(qN

2 −i−1(t1))
(b) q̇i(t1) = Sy(q̇N

2 −i−1(t1))
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(c) qi(t1) = S0(qN
2 +i(t1))

(d) q̇i(t1) = S0(q̇N
2 +i(t1))

(4) x(t) = (q0(t), q1(t), . . . , qN−1(t)) is a solution of the Newton N-body problem
for t ∈ [0, T̄ /2].

From Lemma 4.1 it follows that the proof of the existence of a doubly symmetric
choreography is equivalent to some boundary value problem for the N-body prob-
lem. We will now formulate this problem as a zero finding problem for a suitable
map.

The original phase space for the planar N-body problem has 4N dimensions. It
turns out that, if initial conditions satisfy all conditions in point 2 of Lemma 4.1
then it is enough to know values of only N variables to recover the rest of them.
We still may obtain solutions of any period and to determine it, hence wean fix the
size of curve by fixing one variable. Hence our reduced space is (N−1)-dimensional.
In the next paragraph we will be more specific.

We define map E : RN−1 −→ R4N , which expands, using symmetries from (2),
initial conditions from the reduced space to the full phase space:
(x0, y0, ẋ0, ẏ0, x1, y1, ẋ1, ẏ1, . . . , xN−1, yN−1, ẋN−1, ẏN−1). We consider two cases:
N = 4k and N = 4k + 2.
For N = 4k we set

E(ẋ0 ×
k−1∏

i=1

(xi, yi, ẋi, ẏi)× (xk, ẏk)) = (0, a, ẋ0, 0)×
k−1∏

i=1

(xi, yi, ẋi, ẏi)

×(xk, 0, 0, ẏk)×
k−1∏

i=1

(xk−i,−yk−i,−ẋk−i, ẏk−i)

×(0,−a,−ẋ0, 0)×
k−1∏

i=1

(−xi,−yi,−ẋi,−ẏi)

×(−xk, 0, 0,−ẏk)×
k−1∏

i=1

(−xk−i, yk−i, ẋk−i,−ẏk−i)

For N = 4k + 2 we set

E(ẋ0 ×
k∏

i=1

(xi, yi, ẋi, ẏi)) = (0, a, ẋ0, 0)×
k∏

i=1

(xi, yi, ẋi, ẏi)

×
k−1∏

i=0

(xk−i,−yk−i,−ẋk−i, ẏk−i)× (0,−a,−ẋ0, 0)

×
k∏

i=1

(−xi,−yi,−ẋi,−ẏi)×
k−1∏

i=0

(−xk−i, yk−i, ẋk−i,−ẏk−i)

In both cases a is a parameter fixing the size of the orbit.
We define the Poincaré map by requiring that
• for N = 4k: bodies k and k − 1 have equal x coordinate (xk = xk−1),
• for N = 4k + 2: k-th body is on the X axis (yk = 0).

This defines the Poincaré map P : R4N ⊃ Ω −→ R4N .
We define the reduction map R : R4N −→ RN−1 in such way that R has zeroes

in points satisfying conditions (3a) and (3b) in Lemma 4.1 and only in such points.
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Observe that we don’t have to worry about conditions (3c) and (3d) in Lemma 4.1,
because from the properties of (1.1) if follows that if (2c) and (2d) holds, then (3c)
and (3d) are satisfied for any t1.
For N = 4k we set

R

(
N−1∏

i=0

(xi, yi, ẋi, ẏi)

)
= (yk + yk−1, ẋk + ẋk−1, ẏk − ẏk−1)

×
k−2∏

i=0

(xi − x2k−i−1, yi + y2k−i−1, ẋi + ẋ2k−i−1, ẏi − ẏ2k−i−1)

For N = 4k + 2 we set

R

(
N−1∏

i=0

(xi, yi, ẋi, ẏi)

)
= {ẋk} ×

k−1∏

i=0

(xi − x2k−i, yi + y2k−i, ẋi + ẋ2k−i, ẏi − ẏ2k−i)

We define the map Φ : RN−1 ⊃ E−1(Ω) −→ RN−1 by

Φ = R ◦ P ◦ E.

We have the following easy theorem.

Theorem 4.2. If for some x ∈ RN−1 Φ(x) = 0, then there exists a trajectory with
properties P1, P2, P3.

5. Existence of the SuperEight - the Gerver orbit

The Gerver orbit (Figure 6, 7) is a choreography with 4 bodies forming a linear
chain. It’s the simplest trajectory after the Eight.

x

y

1

03

2

Figure 6. The Gerver orbit - the initial position

With a computer assistance we proved the following

Theorem 5.1. The Gerver SuperEight exists and is locally unique (up to obvious
symmetries and rescaling).

We show the existence of SuperEight using an approach described in Section 4,
i.e. we verify assumptions of Theorem 4.2. Below we give some details.

We set

(5.1) E(x1, ẋ0, ẏ1) = (0, a, ẋ0, 0, x1, 0, 0, ẏ1, 0,−a,−ẋ0, 0,−x1, 0, 0,−ẏ1),

where a is a parameter fixing the size of the orbit.
(5.2)
R(x0, y0, ẋ0, ẏ0, x1, y1, ẋ1, ẏ1, x2, y2, ẋ2, ẏ2, x3, y3, ẋ3, ẏ3) = (y1 +y0, ẋ1 + ẋ0, ẏ1− ẏ0),
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x

y

1

03

2

Figure 7. The Gerver orbit - the final position

Initial values

x̄ (1.382857, 1.87193510824,0.584872579881)
a 0.157029944461

[X] x̄ + [−10−7, 10−7]3

Table 5. Data from the proof of the existence of Gerver Su-
perEight. Initial values.

The Poincáre section S is defined by

(5.3) S(x0, y0, ẋ0, ẏ0, x1, y1, ẋ1, ẏ1, x2, y2, ẋ2, ẏ2, x3, y3, ẋ3, ẏ3) = x1 − x0 = 0.

At first we have proved the existence of a zero of Φ(x) using the interval Newton
method, but here we present data from the proof based on the Krawczyk method.
In case of the Gerver orbit the choice of the method was’nt important, because if
we take a time step small enough or smaller set [X], then the computed matrix[

∂Φ
∂x ([X])

]
becomes invertible and the proof based on the interval Newton method

goes through.
We used the C1-Lohner algorithm with the order r = 6 and the time step was

set to h = 0.002. As matrix C we used the value of ∂Φ(x̄)
∂x

−1
computed using a

non-rigorous algorithm.
Tables 5 and 6 contain numerical data from this proof.

6. Existence of the ’Linear chain’ orbit for the 6 bodies

Figure 8 displays a linear chain choreography with 6 bodies.

y

x

0

12

3
4 5

Figure 8. ’Linear chain’ orbit for the 6 bodies - the initial position
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Computed values

C



−2.15400 0.257911 0.786925
−0.08163 0.293713 0.043565
0.939059 −0.10027 0.158399




Φ(x̄)




[−2.87020e− 09,−2.26613e− 09]
[−1.21155e− 08,−1.06812e− 08]
[−5.45542e− 08,−5.10016e− 08]




diam Φ(x̄)




6.04064e− 10
1.43432e− 09
3.55268e− 09




∂Φ
∂x ([X])




[−0.1664,−0.1657] [0.39070, 0.39119] [0.71771, 0.71790]
[−0.1764,−0.1750] [3.52548, 3.52654] [−0.0968,−0.0964]
[0.87189, 0.87534] [−0.0867,−0.0842] [1.99599, 1.99697]




K(x̄, [X],Φ)




[1.382857036247056692, 1.382857041633411832]
[1.871935113301492981, 1.871935114053588922]

[0.5848725887384301769, 0.5848725902808686872]




diam K(x̄, [X],Φ)




5.386355139691545446e− 09
7.520959410811656198e− 10
1.54243851024915557e− 09




Table 6. Data from the proof of the existence of the Gerver Su-
perEight. Matrix C and results of computation.

y

x

01
2

3 4
5

Figure 9. ’Linear chain’ orbit for the 6 bodies - the final position

In this section we report about the computer assisted proof of the following

Theorem 6.1. The linear chain for 6 bodies exists and is locally unique (up to
obvious symmetries and rescaling).

We prove the theorem above using an approach described in Section 4 with
some minor changes. To speed up the calculation and to increase the accuracy
we take into account that for all time q3(t) = −q0(t), q4(t) = −q1(t) and q5(t) =
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Initial value

x̄




−0.635277524319
0.140342838651
0.797833002006
0.100637737317
−2.03152227864




a 1.887041548253914

[X]




[−0.635277525319,−0.635277523319]
[0.140342837651, 0.140342839651]
[0.797833001006, 0.797833003006]
[0.100637736317, 0.100637738317]
[−2.03152227964,−2.03152227764]




diam [X]




2.0e− 09
2.0e− 09
2.0e− 09
2.0e− 09
2.0e− 09




Table 7. Data from the proof of the existence of linear chain for
6 bodies. Initial values.

−q2(t). Hence, our phase space become 12-dimensional. We use also a different
time parameterization (we use a time shift of 1

4 of the period). After this time shift
in order to use the approach described in Section 4 we need also to interchange
axes (see Fig. 8 and 9). From Lemma 4.1 we obtain, in this coordinates frame, a
doubly symmetric periodic solution q(t). Then it is easy to see that q̄ = q(t− T

4 ) is
a solution with required symmetries in the original coordinate frame.

We set

(6.1) E(ẋ0, x1, y1, ẋ1, ẏ1) = (0, a, ẋ0, 0, x1, y1, ẋ1, ẏ1, x1,−y1,−ẋ1, ẏ1),

where a is a parameter fixing the size of the orbit.
(6.2)
R(x0, y0, ẋ0, ẏ0, x1, y1, ẋ1, ẏ1, x2, y2, ẋ2, ẏ2) = (ẋ1, x0 − x2, y0 + y2, ẋ0 + ẋ2, ẏ0 − ẏ2).

The Poincáre section S is defined by

(6.3) S(x0, y0, ẋ0, ẏ0, x1, y1, ẋ1, ẏ1, x2, y2, ẋ2, ẏ2) = y1 = 0.

To find a zero of Φ(x) we use the Krawczyk method. To compute the Poincaré
map we use the C1-Lohner algorithm [ZLo] of the order r = 9 and the time step
h = 0.0025 for the computation in point x̄ and h = 0.001 for the computation on
the set [X]. As matrix C we used a nonrigorusly computed point matrix ∂Φ(x̄)

∂x

−1
.

In Tables 7 and 8 we give data from these computations.
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Computed value

Φ(x̄)




[−3.1311957909658e− 11, 3.156277062700585e− 11]
[−4.528821762050939e− 12, 4.574757239694804e− 12]
[−1.063704679893362e− 11, 1.051470022161993e− 11]
[−3.084105193451592e− 11, 3.117495150917193e− 11]
[−1.203726007759087e− 11, 1.193112275643671e− 11]




diamΦ(x̄)




6.287472853666386e− 11
9.103579001745743e− 12
2.115174702055356e− 11
6.201600344368785e− 11
2.396838283402758e− 11




K(x̄, [X], Φ)




[−0.6352775243616679557,−0.6352775242763283314]
[0.1403428386430521646, 0.1403428386590999943]
[0.797833001999263769, 0.797833002012834469]

[0.10063773728817425324, 0.1006377373457752189]
[−2.031522278710178764,−2.031522278575771612]




diam K(x̄, [X], Φ)




8.53396242561643703e− 11
1.604782973174678773e− 11
1.357070011920313846e− 11
5.760096566387318262e− 11
1.344071520748002513e− 10




Table 8. Data from the proof of the existence of linear chain for 6 bodies.

7. Some technical data

All computations were performed on AMD Athlon 1700XP with 256 MB DRAM
memory, with Windows 98SE or Linux Red Hat 8.0 operating system. We used
CAPD package[Capd] and Borland C++ 5.02 compiler (under Linux we used g++
3.02). Our interval arithmetics (part of CAPD package) was based on the double
precision reals. The source code of our programm is available at the first author
web page [Ka].

In the listing below r is an order and h is a time step used in the C1-Lohner
algorithm [ZLo].

Computation times for The Eight, h = 0.01, r = 7

• in point x̄ : 1.417 sec
• for set [X] : 2.66 sec
• convexity : 1.15501 sec

For the proof of the existence of the Gerver solution with four bodies problem
we used r = 6, h = 0.002. The computation times for both x̄ and set [X] were
approximately equal to 30.5 seconds.

In the proof of the linear chain of 6-bodies
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• the computation of the Poincaré map for set [X] took 57.5 seconds with
h = 0.001 and r = 9

• the computation for x̄ took 23.8 seconds with h = 0.0025 and r = 9

8. Conclusions and future directions

In principle there is no theoretical limit for the number of bodies in the doubly
linear chain to which our method applies. By this we mean the following if the
choreography is isolated in the reduced space, then the computer assisted proof of
its existence is possible based on the approach and algorithms used in this paper.
This may obviously require small time steps and/or higher order Taylor method
and higher precision arithmetics.

We tried to see how far we can go with the number of bodies with , double
precision interval arithmetics and our code. Using the approach described in Section
4 we proved the existence of doubly symmetric linear chains for ten and twelve
bodies. Data from these proofs are available on the first author web page [Ka]. Our
approach failed for doubly symmetric linear chain of sixteen bodies. We skipped
the fourteen bodies case, as we did not have good initial conditions. We believe
that the reason for the failure for sixteen bodies was the wrapping effect [Mo, Lo]
for intervals sets arising from the round-off error of the double precision arithmetic

We think that to obtain the proof for the existence of doubly symmetric linear
chains with more bodies using our approach it should be enough to do one of the
following modifications

• use higher precision arithmetics
• instead of the simple shooting use the multiple shooting [Lo, Lo1, Sc]. This

technique corresponds to the intermediate section method used very effec-
tively in the computer assisted proofs of chaotic behavior in the Lorenz
system [GZ, MM, T]

One may also think of more radical changes (like the change of the algorithm for
rigorous integration of ODEs or totaly different approach), which may eventually
result in improvements over the proposed method/algorithms. Below we list some
possibilities

• the Taylor model method for an integration of ODEs advocated by Berz
and his coworkers (see [BMH] and references given there). This method
is very slow compared to the Lohner algorithm, but it still works in cases
were the Lohner algorithm fails to produce reasonable bounds.

• the shadowing technique of Stoffer-Kichgraber [SK], which is can be seen
very as an efficient mixture of hyperbolic shadowing and the intermediate
section method. In [SK] in the context of the planar restricted three body
problem this approach has been shown much more efficient than the one
based on the C1-Lohner algorithm,

• rigorous numerics for variational methods. We believe that it is an interest-
ing problem in itself to ’construct’ the rigorous numerics for the variational
approach to the N-body problem, which will turn the numerical-variational
work of Simó [S2] and Nauenberg [Na] into computer assisted proofs.

Regarding the Eight: we believe that by combining the methods presented in
this paper with some analytical estimates, which will make the reduced space to
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be searched for for the choreography compact, one should be able to answer the
following open questions [Ch]

• the global uniqueness of the Eight in the class of doubly symmetric chore-
ographies,

• the global uniqueness of the Eight in the class of choreographies with less
symmetry (see [Ch, FT] for an explanation).

We hope to treat above problems in the near future.
On the other side the question of the (local) uniqueness of the Eight (up to

obvious isometries and rescaling) in the class of choreographies with zero angular
momentum appears to be more difficult. The problem is related to the geometric
phase in the N-body problem(see [MR1] and the literature given there), which in
our context can be represented as follows:
Assume that we have three bodies in the collinear configuration (with zero total
linear and angular momenta). Let α0 be a line containing all the bodies, whose
velocities and positions are given by q′i(0) and qi(0) for i = 1, 2, 3.

Assume now that after time T the bodies are again in the collinear configuration
(represented by the line α(T )) and such that q̇i(T ) = q̇σ(i)(0), where σ is a cyclic
permutation. Can we then claim that α0 = αT and qi(T ) = qσ(i)(0)?

It turns out that a similar problem appears, when one tries to use our approach
to the case of the choreographies without any symmetry.

Another interesting question about the Eight is its stability. Numerical exper-
iments of Simó [S3] show that the Eight is KAM-stable. Rigorous verification of
this statement requires checking that the Eight is linearly stable (which is possible
in principle using our algorithm) and that a twist condition is satisfied [SM]. The
twist condition requires rigorous computations of higher derivatives of a Poincaré
map, hence a development of the robust and efficient Ck-Lohner algorithm for k > 1
is desirable. We believe that a suitable generalization of the C1-Lohner algorithm
will do the work.
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[ZLo] P. Zgliczyński, C1-Lohner algorithm, Foundations of Computational Mathematics,
(2002) 2:429–465

Tomasz Kapela, Pedagogical University, Institute of Mathematics, Podchorażych 2,
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