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Abstract

We present a result about the shadowing nontransversal chain of het-
eroclinic connections based on the idea of dropping dimensions. As an
application we discuss this mechanism in a simplification of a toy model
system derived by Colliander and all in the context of cubic defocusing
nonlinear Schrödinger equation.

1 Introduction

In the present paper we discuss the question of shadowing a nontransversal chain
of heteroclinic connections between invariant sets (fixed points, periodic orbits,
etc). The motivation for us is the work [CKS+] (see also [GK]) on the transfer of
energy to high frequencies in the nonlinear Schrodinger equation. From the dy-
namical systems perspective there is one remarkable feature of the construction
in [CKS+], namely the authors were able to shadow a non-transversal highly
degenerated chain of heteroclinic connections between some periodic orbits of
arbitrary, but finite, length. Neither in [CKS+] or [GK] we were able to find a
clear geometric picture showing how this is achieved, so it could be easily appli-
cable to other systems. In this work we present a mechanism, which we believe
that gives a geometric explanation of what is happening and we strive to estab-
lish an abstract framework, which will make it easier to apply this technique to
other systems, both PDEs and ODEs, in questions related to the existence of
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diffusing orbits. The term a diffusing orbit relates to the Arnold’s diffusion [Ar]
for the perturbation of integrable Hamiltonian systems. Throughout the paper
we will often call diffusing orbit an orbit shadowing a chain of heteroclinic con-
nections, and occasionally the existence of such an orbit will be referred to as
the diffusion.

In our picture we think of evolving a disk of dimension k along a heteroclinic
transitions chain and when a given transition is not transversal, then we ‘drop’
one or more dimensions of our disk, i.e., we select a subdisk of lower dimension
“parallel to expanding directions in the future”. After at most k transitions,
our disk is a single point and we cannot continue further. We will refer to this
phenomenon as the dropping dimensions mechanism. While thinking about
disks has some geometric appeal, we consider instead in our construction a
thickened disk called h-set in the terminology of [ZGi] and our approach is
purely topological (just as the one presented in [CKS+]).

The main technical tool used in our work is the notion of covering relations
as introduced in [ZGi], which differs from the notion used under the same name
in [CKS+]. The ideas about the dropping exit dimensions implicitly appear also
in works [BM+, WBS], which also used the covering relations from [ZGi].

In the present work we present an abstract topological theorem about shad-
owing chains of covering relations with dropping dimensions, and we show how
such chains of coverings can be obtained in the presence of chains of hetero-
clinic connections in simple examples, like a linear model, a triangular system
and a more simplified Toy Model that the one in [CKS+]. We intend to treat
more complicated examples, in particular NLS from [CKS+, GK] in subsequent
papers.

The content of this paper can be described as follows. In Section 2 we de-
scribe the model problem with a non-transversal heteroclinic chain and state our
conjecture about the possibility of shadowing arbitrarily close such chain. We
also introduce an example formed by a triangular system, where the existence
of the diffusion is quite obvious. In Section 3 we explain the basic geometric
idea of our dropping dimensions mechanism. In Section 4 we recall from [ZGi]
the notions of h-sets and the covering relation. In Section 5 we prove the main
topological result on shadowing of chains of covering relations with dropping
dimensions. Using the new mechanism, in the next two sections we rigorously
analyze two simple models, a linear model in Section 6 and a simplified Toy
Model in Section 7.

1.1 Notation

By N, Z, Q, R, C we denote the set of natural, integer, rational, real and complex
numbers, respectively. We assume that 0 ∈ N. Z− and Z+ are nonpositive and
nonnegative integers, respectively. By S1 we will denote the unit circle on the
complex plane.

In Rn by ei for i = 1, . . . , n we will denote the i-th vector from the canonical
basis in Rn, i.e. the j-th coordinate of ei is equal to 1, when j = i and 0
otherwise.
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For Rn we will denote the norm of x by ‖x‖ and when in some context the
formula for the norm is not specified, then it means that any norm can be used.
Let x0 ∈ Rs, then Bs(x0, r) = {z ∈ Rs | ‖x0 − z‖ < r} and Bs = Bs(0, 1).

Sometimes, if V is a vector space with a norm, then BV (a, r) will denote an
open ball in V centered at a with radius r.

For z ∈ Ru×Rs we will call usually the first coordinate, x, and the second one
y. Hence z = (x, y), where x ∈ Ru and y ∈ Rs. We will use the projection maps
πx(z) = x(z) = x and πy(z) = y(z) = y. For functions f : Ru × Rs → Ru × Rs
we will use the shortcuts fx = πxf and fy = πyf .

Let z ∈ Rn and U ⊂ Rn be a compact set and f : U → Rn be continuous
map, such that z /∈ f(∂U). Then the local Brouwer degree [S] of f on U at z
is defined and will be denoted by deg(f, U, z), see for example Appendix [ZGi]
and references given there for the properties deg(f, U, z).

If V,W are two vector spaces, then by Lin(V,W ) we will denote the set of
all linear maps from V to W . When V = Rk and W = Rm, we will identify
Lin(Rk,Rm) with the set of matrices with m columns and k rows, denoted by
Rk×m.

If x ∈ R, then int(x) is the integer part of x, i.e., the largest integer not
greater than x.

2 Non-transverse diffusion, the statement of the
problem, some examples

In this section we would like to state the geometric assumptions under which we
expect to construct the orbits shadowing a non-transversal heteroclinic chain.
Our approach is motivated by the work [CKS+] on the nonlinear Schrödinger
equation.

The main problem in [CKS+] consists on finding an orbit which visits the
neighborhoods of N invariant 1-dimensional objects in a N -dimensional complex
system. Each object is connected with the previous and the following one with
heteroclinic connections, so the authors look for a solution that concatenates
these connections. This kind of scheme seems similar to Arnold diffusion[Ar],
but we plan to explain that it is another kind of phenomenon since we do not
have a transverse intersection between the invariant manifolds. In addition,
the proposed mechanism could be applied to integrable systems in contrast to
Arnold diffusion, which is a phenomenon that only takes place in non integrable
systems.

2.1 Transverse versus Non-Transverse

In this subsection we will explain the difference between the transverse and the
non-transverse situation. The hint about the idea of dropping dimensions will
be given.
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To do so, we are going to consider a two dimensional map with four fixed
points, located at the points:

p0 = (0, 0) p1 = (1, 0) p2 = (1, 1) p3 = (2, 1).

We are going to assume also that each point, pi, has a one dimensional
stable manifold, T s(pi), and a one dimensional unstable manifold, T u(pi) both
tangent to some linear subspaces. That is

• T s(p0) is tangent to the subspace generated by ~e2 at p0 and T u(p0) is
tangent to the subspace generated by ~e1 at p0.

• T s(p1) is tangent to the subspace generated by ~e1 at p1 and T u(p1) is
tangent to the subspace generated by ~e2 at p1.

• T s(p2) is tangent to the subspace generated by ~e2 at p2 and T u(p2) is
tangent to the subspace generated by ~e1 at p2.

• T s(p3) is tangent to the subspace generated by ~e1 at p3 and T u(p3) is
tangent to the subspace generated by ~e2 at p3.

Now we are going to consider two different scenarios. The first one consists
on assuming that the unstable manifold of a point pi intersects transversally
with the stable manifold of the following point pi+1, that is:

T u(pi) ∩ T s(pi+1) 6= ∅
∀q ∈ T u(pi) ∩ T s(pi+1)⇒ TqT u(pi) + TqT s(pi+1) = R2.

The second will be given by a non-transverse intersection of the manifolds
and, since we are dealing with a low dimensional system, that will mean that
those manifolds coincide in a branch:

T u(pi) ∩ T s(pi+1) 6= ∅
∀q ∈ T u(pi) ∩ T s(pi+1)⇒ TqT u(pi) + TqT s(pi+1) = R.

The schematic situation is the following (unstable manifolds are in red and
stable manifolds are in blue):

We wonder if it is possible to connect p0 with p3 through the map, in both
situations. To do so, we consider a ball containing the first fixed point p0:
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If we compute iterates of the ball through the maps we can expect that it is
expanded in the unstable direction and contracted in the stable direction:

Notice that in both cases the domain intersects the stable manifold of the
following fixed point, p1. So, in the transverse case the domain contains a
heteroclinic point. In the non-transverse situation this is obvious because the
manifolds are coincident. We can now restrict our domain precisely around that
intersection point for the transverse case and at some place in the right-hand
side of the fixed point p0 for the non-transverse case.

If we compute forward iterates of the restricted domain we are going to
approach the fixed point p2 since, in both cases, our domains contain heteroclinic
points. The domains will not only approach p1 but also, after some iterates,
will spread to the unstable manifold of p1:
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Here we find the first big difference between the transverse and the non-
transverse case. In the transverse case, since everything tends to the unstable
manifold of p1, it is clear that our domain will intersect the stable manifold
of p2. In the non-transverse situation, our domain will never cross the stable
manifold of p2 since it corresponds to an invariant curve. Then, we restrict our
domain in the intersection for the transverse case and in the upper part of p1
since we want to reach p3:

Using, in the transverse case, the same argument as before, since our domain
contains a heteroclinic point in the transverse situation, forward iterates will
spread our domain on the unstable manifold of p2. For the non transverse case
we will reach the proximity of p2 after some iterates, but our domain will be
trapped and could not visit the following fixed point, p3:

In the transverse case, we could continue and see that the domain will visit
p3.
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After this schematic approach, we can see that, on the one hand, in the
transverse situation there are no geometric obstructions in shadowing the hete-
roclinic chain. On the other hand, in the non-transverse case, we can see that,
in general, we cannot visit as many invariant objects as we want. So, now, we
wonder why the authors of [CKS+] can connect N periodic orbits in the Toy
Model System. The main reason is the large dimension of the system and the
fact that each connection takes place in a direction that has not been used in
the past.

Notice that, if in the non-transverse example the last fixed point p3 is located
in a new dimension (that means that the system is three dimensional) we could
continue with the argument and visit p3.

In the next subsection we are going to generate examples for which it is clear
that one can shadow a non-transverse heteroclinic chain.

2.2 Examples with diffusion in a non-transverse situation
- the triangular system

In this subsection we present a simple system, the triangular system, which is
an ODE defined by a polynomial of degree two.

The triangular system is
ẋ = F (x)

with {
F1(x) = λ1x1 − λ1x21
Fi(x) = (λi − µi)xi − λix2i + µixixi−1 for 1 < i ≤ n (1)

with λi > 0 for 1 ≤ i ≤ n and µi ∈ R for 1 < i < n.
Note that this is a triangular system and we can integrate each equation,

since

ẋi = fi(t)xi + βx2i ⇒ xi(t) =
e
∫ t
0
fi(s)ds

1
xi(0)

− βi
∫ t
0

e
∫ s
0
fi(r)drds

,

with fi(t) = λi − µi + µixi−1(t) and βi = −λi.
We can check now the linear behavior around the equilibrium points com-

puting the derivative of the vector field:

DF (p0) =



λ1
λ2 − µ2

. . .

λi − µi
. . .

λn − µn



7



DF (pi) =



−λ1
µ2 −λi

. . .
. . .

µi −λi
λi+1

λi+2 − µi+2

. . .

λn − µn


so we have different possibilities of choosing the parameters.

• If µi > λi for all i = 1 . . . N , each point, pj , has only one unstable direction
defined by ~ej+1, while the rest of the directions are stable.

• If µi = λi for all i = 1 . . . N , each point, pj , has only one unstable direc-
tion, defined by ~ej+1. All the “past” directions, defined by {~e1, . . . , ~ej}
are stable while all the “future” directions, defined by {~ej+2, . . . , ~en}, are
linearly neutral.

• If µi < λi for all i = 1 . . . N , at each point, pj , all the “past” directions,
defined by {~e1, . . . , ~ej}, are stable while all the “future” directions, defined
by {~ej+2, . . . , ~en)}, are linearly unstable.

Let us show the numerical integration of the system for these three possibilities.
For the sake of concreteness we are going to assume λ = λi and µ = µi for all
i = 1, . . . , n in a four dimensional system. In the three cases, we are going to
take the same initial condition:

x1(0) = x2(0) = x3(0) = x4(0) =
1

10
.

Figure 1: Solution of system (1) for λ = 1 and µ = 2.
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Figure 2: Solution of system (1) for λ = 1 and µ = 1.

Figure 3: Solution of system (1) for λ = 2 and µ = 1.

We can see that in the three cases we achieved our goal: to visit p4 =
(1, 1, 1, 1) starting close to p0 = (0, 0, 0, 0). However it is clear that we only visit
all the intermediate points p1 = (1, 0, 0, 0), p2 = (1, 1, 0, 0) and p3 = (1, 1, 1, 0)
in the first situation, when µ > λ. In this case, all the directions are stable
in each point, and are only activated at its turn. In the other cases, all the
future directions are unstable at each point so they are activated at the very
beginning although the characteristic exponent, λ − µ, is lower than the one
in the heteroclinic, λ, in the considered cases. So, if we want to visit all the
intermediate points in the two last situations, we have to decrease the initial
condition for the future directions. Indeed, if we take:

x1(0) =
1

10
, x2(0) = x3(0) = x4(0) =

1

100
,
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in the case when µ = λ = 1, we obtain:

Figure 4: Solution of system (1) for λ = 1 and µ = 1.

Notice that it is enough to distinguish only the first component. The weak
coupling activates the component in order, since the first equation that notices
the growth of x1 is the one for x2.

For the third case, when λ > µ, we recall that all the future coordinates
are unstable in p0 and the linear part almost dominates in front of the coupling
that would have made increase the coordinates in order. So, considering the
following decreasing sequence of initial condition:

x1(0) = 10−1, x2(0) = 10−2 x3(0) = 10−3 x4(0) = 10−4,

we obtain:

Figure 5: Solution of system (1) for λ = 2 and µ = 1.
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Although there are numerical evidences that the system behaves in the de-
sired way, we could expect that just looking at the equations. It is clear that

lim
t→∞

x1(t) = 1.

By induction, assuming
li−1 = lim

t→∞
xi−1(t)

and looking for equilibria of xi(t) for t→∞, it has to satisfy

lim
t→∞

ẋi(t) = 0,

i.e.
0 = λili(1− li)− µili(1− li−1).

So, we get li = 0 or li = 1 but since ẋi(t) > 0 for t large enough we can conclude
li = 1. This reasoning with some effort can be turned into the rigorous proof.

The main conclusion of this part is that we have obtained an easy example
for which we can ensure the transition chain even if the intersection between
the invariant manifolds is not transverse, regarding the high dimension and the
disposition of the equilibrium points and the heteroclinic connections: each one
in a new direction not used before. In addition the system is integrable by
quadratures which goes against the notion of Arnold’s diffusion. However, we
have detected the reason why the connection could be possible. The geometric
mechanism relies on the fact that we are dealing with a high dimensional system
and that each new connection is defined by a direction that has not been used
before.

2.3 The Model example

We are now in condition to present a conjecture, which probably can be proved
by our method under some additional assumptions.

Let ni > 0 for i = 1, . . . , L and let n1 +n2 + · · ·+nL = n, di = n1 + · · ·+ni.
For i = 1, . . . , L the subspaces Vi which are spanned by {eki−1+j}j=1,...,ni

.

In this notation Rn =
⊕L

i=1 Vi.
We will use the following notation: for l ∈ N, 0l, 1l will denote the sequences

of length l consisting of l 0’s or l 1’s, respectively.
Assume that we have a diffeomorphism on f : Rn × Rwu × Rws → Rn ×

Rwu × Rws , w = wu + ws with the following properties:
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• there exists a sequence of fixed points

p1 = (0n, 0w),

p2 = (1, 0n1−1, 0, . . . , 0w),

p3 = (1, 0n1−11, 0n2−1, 0 . . . , 0w),

. . .

pk = (1, 0n1−1, 1, 0n2−1, . . . , 1, 0nk−1, 0nk+···+nL , 0w),

. . .

pL+1 = (1, 0n1−1, 1, 0n2−1, . . . , 1, 0nL−1, 0w)

• for any i = 1, . . . , L, the interval connecting pi and pi+1 denoted by Ci

Ci = {z = (1, 0n1−1, 1, 0n2−1, . . . , 1, 0ni−1−1, t, 0−1+ni+···+nL , 0w), t ∈ [0, 1]}

is invariant under f and for any z ∈ Ci

lim
k→∞

fk(z) = pi, lim
k→−∞

fk(z) = pi−1 (2)

• at pi the coordinate directions in Vi are exit directions and are ’dominating’
for the scattering when passing by pi. This statement is vague, because
the scenario we are going to present most likely can be realized under
various sets of assumptions.

Only the first n-directions really count, the others will be treated as the
entry directions (in the sense of covering relations, see Section 4).

Our conjecture is

Conjecture 1 Under the above assumptions for any ε > 0 there exists a point
z1 and a sequence of integers k1 < k2 < · · · < kL, such that

‖z1 − p1‖ < ε,

‖fki(z1)− pi+1‖ < ε, i = 1, . . . , L

Our idea of the proof of this conjecture requires a construction of covering
relations (see (23), and then Conjecture 1 follows directly from Theorem 8.

We will show how a construction of suitable h-sets and coverings can be done
for a linear model in Section 6 and for the simplified version of the toy model
from [CKS+] in Section 7.

3 The geometric idea of dropping dimensions

In this section we will explain our idea of dropping dimensions along a non-
transversal heteroclinic chain.

Let us start with a simplified version of the example from Section 2.3. Let
f : Rn → Rn be a diffeomorphism with the following properties:
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1. The points pi = (1, i. . ., 1, 0, n−i. . . , 0) are fixed under f for i = 0 . . . n.

2. The segments Ci that connect the points pi−1 and pi,

Ci = {(1, i−1. . ., 1, t, 0, n−i. . . , 0), 0 ≤ t ≤ 1}

for 1 ≤ i ≤ n are invariant under f and, for all x ∈ Ci:

lim
k→∞

fk(x) = pi lim
k→−∞

fk(x) = pi−1.

3. At each point pi the i-th direction is stable and the (i+ 1)-th is unstable.
This means:

Df(pi)ei = µiei, |µi| < 1

Df(pi)ei+1 = λiei+1, |λi| > 1

4. The past directions, defined by ~e1, . . . , ~ei−1, are contracting directions
around the fixed point pi but with a lower rate than µi. The future
directions, defined by ~ei+2, . . . , ~en, are expanding directions around the
fixed point pi but with a lower rate than λi.

Conjecture 2 Under the previous assumptions, for all ε > 0 there exists a
point x0 and a sequence of integers 0 = k0 < k1 < · · · < kn such that:

||fki(x0)− pi|| < ε i = 0, . . . , n.

Remark 3 Notice that we connect n+ 1 points in a n dimensional space. We
cannot guarantee that the result is valid for more points.

Remark 4 Observe that we are assuming that there are only two dominant
coordinates around each fixed point. That means that this could not be applied
to the Toy Model System in NLS [CKS+, GK], where we have four dominant
directions. In Section 7 we treat such system.

3.0.1 Sketch of the proof: dropping dimensions

Here we sketch a proof of Conjecture 2 with some pictures. We are going to
consider only a two dimensional map. So, consider f : R2 → R2 with three fixed
points:

p0 = (0, 0) p1 = (1, 0) p2 = (1, 1),

with invariant segments C1 and C2 defined as

C1 = {(x1, x2) : 0 ≤ x1 ≤ 1, x2 = 0} C2 = {(x1, x2) : x1 = 0, 0 ≤ x2 ≤ 1}
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Assume also that the derivatives of the map around the fixed points have
the following structure:

Df(p0) =

(
λ0,1 0

0 λ0,2

)
Df(p1) =

(
µ1,1 0

0 λ1,2

)
Df(p2) =

(
µ2,1 0

0 µ2,2

)
(3)

where λ0,1, λ0,2, λ12 > 1 and 0 < µ1,1, µ2,1, µ2,2 < 1.
We start by considering a domain (ball) D0 of full dimension centered around

p0.

Given the linear stability from (3), we can assume that after one iteration
of the map, our initial ball D0 will be expanded in both directions:
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It is now time to make a decision: from all the possible directions, we are
only interested in the one defined by the outgoing heteroclinic connection, that
is, the segment C1. Then we consider a section S0 = {x1 = σ} where σ is some
small parameter:

Since we are only interested in the points of our ball close to the heteroclinic
connection, we intersect the domain with the section S0. We say that we have
dropped the x1 direction. We will not use this direction in future steps. Our
domain, D̄0, has one dimension less than D0, that is, it has dimension one.
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Then we continue with this domain. After several iterations of the map since
the domain is close to the heteroclinic connection, we can ensure that D̄0 will
approach p1 and we obtain a domain D1:

We can use, again, the linear prediction of the map, (3), to be sure that our
domain is expanded in the x2 direction.
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We use now the same argument. From all the possible directions that f(D1)
covers, we want to escape through the one defined by the heteroclinic connection
to p2. So we put a section defined in the same spirit as before: S1 = {x2 = σ}.

We restrict now our domain in its intersection with the section S1. The
resulting domain D̄1 will have, then, one dimension less than D1, which means
that it will have dimension zero.
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We have no more dimensions to drop, our initial domain become a single
point. This point is close to the heteroclinic defined in C2, so then, we are sure
that after some iterates, it will approach the final fixed point p2:

4 h-sets, covering relations

The goal of this section is to recall from [ZGi] the notions of h-sets and covering
relations, and to state the theorem about the existence of point realizing the
chain of covering relations. This will be the main technical tool in proving the
existence of the orbits shadowing the heteroclinic chain in the next sections.
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4.1 h-sets and covering relations

Definition 1 [ZGi, Definition 1] An h-set N is a quadruple
(|N |, u(N), s(N), cN ) such that

• |N | is a compact subset of Rn

• u(N), s(N) ∈ {0, 1, 2, . . . , n} are such that u(N) + s(N) = n

• cN : Rn → Rn = Ru(N) × Rs(N) is a homeomorphism such that

cN (|N |) = Bu(N) ×Bs(N).

We set

dim(N) := n,

Nc := Bu(N) ×Bs(N),

N−c := ∂Bu(N) ×Bs(N),

N+
c := Bu(N) × ∂Bs(N),

N− := c−1N (N−c ), N+ = c−1N (N+
c ).

Hence a h-set N is a product of two closed balls in some coordinate sys-
tem. The numbers u(N) and s(N) are called the exit and entry dimensions,
respectively. The subscript c refers to the new coordinates given by the home-
omorphism cN . Observe that if u(N) = 0, then N− = ∅ and if s(N) = 0, then
N+ = ∅. In the sequel to make notation less cumbersome we will often drop
the bars in the symbol |N | and we will use N to denote both the h-sets and its
support.

We will call N− the exit set of N and N+ the entry set of N . These names
are motivated by the Conley index theory [C, MM] and the role that these sets
will play in the context of covering relations.

Definition 2 [ZGi, Definition 6] Assume that N,M are h-sets, such that u(N) =
u(M) = u and s(N) = s(M) = s. Let f : N → Rn be a continuous map. Let
fc = cM ◦ f ◦ c−1N : Nc → Ru × Rs. Let w be a nonzero integer. We say that

N
f,w
=⇒M

(N f -covers M with degree w) iff the following conditions are satisfied

1. There exists a continuous homotopy h : [0, 1]×Nc → Ru ×Rs, such that the
following conditions hold true

h0 = fc, (4)

h([0, 1], N−c ) ∩Mc = ∅, (5)

h([0, 1], Nc) ∩M+
c = ∅. (6)
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2. If u > 0, then there exists a map A : Ru → Ru, such that

h1(p, q) = (A(p), 0), for p ∈ Bu(0, 1) and q ∈ Bs(0, 1), (7)

A(∂Bu(0, 1)) ⊂ Ru \Bu(0, 1). (8)

Moreover, we require that

deg(A,Bu(0, 1), 0) = w, (9)

We will call condition (5) the exit condition and condition (6) will be called
the entry condition.

Note that in the case u = 0, if N
f,w
=⇒M , then f(N) ⊂ intM and w = 1.

In fact in the above definition s(N) and s(M) can be different, see [W2, Def.
2.2].

Remark 5 If the map A in condition 2 of Def. 2 is a linear map, then condition
(8) implies that

deg(A,Bu(0, 1), 0) = ±1.

Hence condition (9) is fulfilled with w = ±1.
In fact, this is the most common situation in the applications of covering

relations.

Most of the time we will not be interested in the value of w in the symbol

N
f,w
=⇒M and we will often drop it and write N

f
=⇒M , instead. Sometimes we

may even drop the symbol f , if known from the context, and write N =⇒M .

Definition 3 [ZGi, Definition 7] Assume N,M are h-sets, such that u(N) =
u(M) = u and s(N) = s(M) = s. Let g : Rn ⊃ Ω → Rn. Assume that

g−1 : |M | → Rn is well defined and continuous. We say that N
g⇐= M (N

g-backcovers M ) iff MT g−1

=⇒ NT .

4.2 Main theorem about chains of covering relations

Theorem 6 (Thm. 9) [ZGi] Assume Ni, i = 0, . . . , k, Nk = N0 are h-sets
and for each i = 1, . . . , k we have either

Ni−1
fi,wi
=⇒ Ni (10)

or

Ni ⊂ dom (f−1i ) and Ni−1
fi,wi⇐= Ni. (11)

Then there exists a point x ∈ intN0, such that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ intNi, i = 1, . . . , k (12)

fk ◦ fk−1 ◦ · · · ◦ f1(x) = x (13)
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We point the reader to [ZGi] for the proof. The basic idea of the proof of this
theorem is the homotopy and the local Brouwer degree.

The following corollary is an immediate consequence of Theorem 6.

Collorary 7 Let Ni, i ∈ Z+ be h-sets. Assume that for each i ∈ Z+ we have
either

Ni−1
fi,wi
=⇒ Ni (14)

or

Ni ⊂ dom (f−1i ) and Ni−1
fi,wi⇐= Ni. (15)

Then there exists a point x ∈ intN0, such that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ intNi, i ∈ Z+. (16)

Moreover, if Ni+k = Ni for some k > 0 and all i, then the point x can be chosen
so that

fk ◦ fk−1 ◦ · · · ◦ f1(x) = x. (17)

4.3 Natural structure of a h-set

Observe that all the conditions appearing in the definition of the covering rela-
tion are expressed in ’internal’ coordinates cN and cM . Also the homotopy is
defined in terms of these coordinates. Sometimes this makes the matter and the
notation to look a bit cumbersome. With this in mind we introduce the notion
of a natural structure on a h-set.

Definition 4 We will say that N = {(x0, y0)}+Bu(0, r1)×Bs(0, r1) ⊂ Ru×Rs
is an h-set with a natural structure if:

u(N) = u, s(N) = s, cN (x, y) =
(
x−x0

r1
, y−y0r2

)
.

4.4 The operation of dropping exit dimensions

Definition 5 Assume that we have a decomposition Rn = Ru1⊕Rt⊕Rs1 and the
norm for (x1, x2, x3) ∈ Ru1⊕Rt⊕Rs1 is ‖(x1, x2, x3)‖ = max(‖x1‖, ‖x2‖, ‖x3‖).

Assume that N is an h-set, with u(N) = u1 + t and s(N) = s1. In view of
the norm on Rn we have

c|N | =
(
Bu1 ⊕Bt

)
⊕Bs1 (18)

where the parentheses enclose the exit directions.
Let us denote by V the subspace {0} × Rt × {0}. We define a new h-set

RV (N) by setting

• |RV (N)| = |N |

• u(RV (N)) = u1, s(RV (N)) = s1 + t

• cRV (N) = cN

Roughly speaking RV (N) is obtained from N by relabeling some exit coordi-
nates in N as entry directions.
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5 The mechanism of dropping dimensions - the
main topological theorem

5.1 h-sets Mi and M̃i

Our setting is motivated by Conjecture 1. For the sake of completeness we recall
here from Section 2 some assumptions.

Let ni > 0 for i = 1, . . . , L and let n1 +n2 + · · ·+nL = n and w = wu +ws,
where wu, ws ∈ N.

For i = 1, . . . , L the subspaces Vi, dimVi = ni. Let Wu and Ws be two
subspaces of dimensions wu and ws, respectively.

In Rn×Rwu×Rws we will represent points as (z1, . . . , zL, zL+1, zL+2), where
zi ∈ Vi for i = 1, . . . , L, zL+1 ∈ Wu and zL+2 ∈ Ws. In each of the spaces Vi,
Wj we have some fixed basis and an isomorphism with some Rd equipped with
the metric, so we can define balls in this subspace.

First, we put sections (hyperplanes of codimension ni) in the vicinity of each
point pi (not to be confused with the Poincaré sections for ODEs):
the exit section Si is given by conditions

zi = δi = (∆i, 0
ni−1) ∈ Vi, i = 1, . . . , L, (19)

where ∆i > 0.
We also define

δL+1 = 0. (20)

For 1 ≤ i ≤ L + 1 we define set Mi ( centered on the section Si for i ≤ L
and on pL+1 for ML+1 )

Mi = pi + δi +
(
ΠL
j=1Bnj

(0, ti,j)
)
×Bwu

(0, ti,L+1)×Bws
(0, ti,L+2), (21)

where ti,j are positive real numbers.
We equip the set Mi with two different h-set structures. To define the first

one, denoted by Mi for i = 1, . . . , L, L + 1, we declare as the exit directions
Vi ⊕ Vi+1 ⊕ · · · ⊕ VL ⊕Wu and V1 ⊕ V2 ⊕ · · ·Vi−1 ⊕Ws as the entry directions.
For the second one, we set

M̃i = RVi(Mi), i = 1, . . . , L. (22)

This means that (see Def. 5) we declare as the exit directions Vi+1⊕· · ·⊕VL⊕Wu

(i.e. when compared to Mi we drop the subspace Vi of exit directions). We will

not need M̃L+1.

Observe that M̃L and ML+1 have Wu as the exit directions and ML has
VL ⊕Wu as the exit directions.

Now we assume that

M̃i
f li

=⇒Mi+1 i = 1, . . . , L. (23)
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The above covering relations are expected by combining the transition where
we drop the connecting direction (plus others we decide to treat from that point
on as the entry ones) with the local hyperbolic behavior near pi+1, while in
other directions for both covering relations where the dynamics might not help
us we just adjust the sizes to obtain the correct inequalities. For this purpose
we need to increase the sizes during the transition if these are treated as the
entry directions or to decrease the sizes if they are treated as the exit ones.

5.2 The main topological shadowing theorem

About the same time as this work was under development the theorem about
shadowing a chain covering relations with decreasing number of exit directions
appeared in works [BM+, WBS], where a slightly different technique of proof
has been used, but it still is based on the same covering relations we are using.

Theorem 8 Assume that the following covering relations are satisfied

M̃i = RVi
(Mi)

f li

=⇒ Mi+1 i = 1, . . . , L. (24)

Let ki =
∑i
j=1 lj.

Then there exists q, such that

q ∈ M1,

fki(q) ∈ Mi+1 i = 1, . . . , L.

Proof: Equation (21) allows us to introduce the coordinates on Mi through the
map

Ci : Mi → ΠL
i=1BVi

(0, 1)×BWu
(0, 1)×BWs

(0, 1), (25)

Ci(z1, . . . , zL, zL+1, zL+2) =

(
z1 − pi,1 − δi,1

ti,1
, . . . ,

zL+2 − pi,L+2 − δi,L+2

ti,L+2

)
.

Observe that the above coordinates Ci, up to a permutation required to put the
exit direction first, are the ones from the natural structure of h-set.

From now on we will use these coordinates. Without any loss of generality
we will assume that Mi = Mi,c = ΠL

i=1BVi(0, 1)×BWu(0, 1)×BWs(0, 1).
We will prove the following statement, which implies the assertion of our

theorem.
For any ȳ ∈ BWs

(0, 1), x̄ ∈ BWu
(0, 1), ηi ∈ BVi

(0, 1), i = 1, . . . , L, there
exists q, such that

q ∈ M1, πWs
(q) = ȳ, πV1

(q) = η1, (26)

fki(q) ∈ Mi+1, πVi+1
fki(q) = ηi+1 i = 1, . . . , L, (27)

πWu(fkL+1(q)) = x̄. (28)

In the sequel we will denote f li by fi.
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To obtain q1 ∈M1 satisfying (26–28) it is enough to find a sequence {qi}L+1
i=1

satisfying the following conditions

y(q1)− ȳ = 0, (29)

zi(qi)− ηi = 0, i = 1, . . . , L (30)

fi(qi)− qi+1 = 0, i = 1, . . . , L, (31)

zL+1(qL+1)− x̄ = 0. (32)

which we will consider in the set

D = ΠL+1
i=1 Mi.

Let us remind the reader that the supports of Mi and M̃i coincide, but M±i and

M̃±i differ.
Observe that the number of equations in system (29–32) coincides with the

number of variables in D. Indeed the equation count goes as follows:

• (29) gives ws equations

• (30) consists of n1 + n2 + · · ·+ nL = n equations

• (31) consists of L · (n+ wu + ws) equations

• (32) gives wu equations,

which gives (L+ 1)(n+wu +ws) equations in the system, which coincides with
the dimension of set D.

If wu = 0, then x̄ = 0 and equation (32) is dropped from further considera-
tions when defining maps F , Ht. Analogously, when ws = 0 then ȳ = 0 and we
drop equation (29).

Let us denote by F the map given by the left hand side of system (29–32).
We have for q = (q1, . . . , qL+1) ∈ D

F (q) =


y(q1)− ȳ
zi(qi)− ηi i = 1, . . . , L
fi(qi)− qi+1 i = 1, . . . , L,

zL+1(qL+1)− x̄

 (33)

We will prove that system (29–32) has a solution inD, by using the homotopy
argument to show that the local Brouwer degree deg(F, intD, 0) is nonzero.

Let hi for i = 1, 2, . . . , L be homotopies from the covering relations (24).
We imbed F into a one-parameter family of maps (a homotopy) Ht, as

follows

Ht(q) =


y(q1)− (1− t)ȳ
zi(qi)− (1− t)ηi i = 1, . . . , L
ht,i(qi)− qi+1 i = 1, . . . , L,

zL+1(qL+1)− (1− t)x̄

 (34)

It is easy to see that H0(q) = F (q).
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We show that if q ∈ ∂D then for all t ∈ [0, 1] Ht(q) 6= 0 holds. This will
imply that deg(Ht, D, 0) is defined for all t ∈ [0, 1] and does not depend on t.

Let q ∈ ∂D. Then for some i = 1, . . . , L + 1 qi ∈ ∂Mi. We will use the
following decomposition of ∂Mi for i = 1, . . . , L: ∂Mi = M+

i ∪(M̃+
i ∩M

−
i )∪M̃−i ,

while for i = L+1, since M̃L+1 is not defined, ∂Mi = M+
i ∪M

−
i . It may happen

that M−L+1 = ∅.

• the case qi ∈M+
i .

If i > 1, then we consider M̃i−1
fi−1
=⇒ Mi and we see from (6) that qi /∈

ht,i(qi−1)(Mi−1). Therefore in this case ht,i(qi−1)− qi 6= 0.

If i = 1, then y(q1) 6= (1 − t)ȳ, because in this case y(q1) ∈ ∂Bws
(0, 1),

hence ‖y(q1)‖ = 1 > ‖ȳ‖.

• the case i ≤ L and qi ∈ M̃+
i ∩M

−
i . Then qi ∈ ∂BVi

(0, 1), hence ‖zi(qi)‖ =
1 > ‖ηi‖.

• the case i ≤ L and qi ∈ M̃−i .

From the exit condition (5) in covering relation M̃i
fi

=⇒ Mi+1 it follows
ht,i(qi) /∈Mi+1, therefore ht,i(qi)− qi+1 6= 0.

• the case i = L+ 1 and qL+1 ∈M−L+1.

We have ‖zL+1(qL+1)‖ = 1 > ‖x̄‖.

We have proved that deg(Ht, intD, 0) is defined. By the homotopy invari-
ance we have

deg(F, intD, 0) = deg(H1, intD, 0). (35)

In the sequel the points inMi (and M̃i) will be denoted by (zi,1, . . . , zi,L, zi,L+1, yi),
where zi,k ∈ Vk for k = 1, . . . , L, zi,L+1 ∈Wu and yi ∈Ws.

Observe that H1(q) = 0 is the following system of linear equations

y1 = 0,

z1,1 = 0,

(0, A1(z1,2, . . . , z1,L+1), 0)− (z2,1, z2,2, . . . , z2,L+1, y2) = 0,

z2,2 = 0,

(0, 0, A2(z2,3, . . . , z2,L+1), 0)− (z3,1, z3,2, . . . , z3,L+1, y3) = 0,

. . .

(0, . . . , AL(zL,L+1), 0)− (zL+1,1, zL+1,2, . . . , zL+1,L+1, yL+1) = 0,

zL+1,L+1 = 0,

where Ai is a linear map which appears at the end of the homotopy hi.
It is not hard to see that q = 0 is the only solution of this system. For the

proof observe that yi = 0 for i = 1, 2, . . . because the first term in each equation
involving Ai has zero on the last (y) coordinate. To prove that zi,j = 0 for
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i, j = 1, . . . , L, L + 1, we should start from the two bottom equations to infer
that zL+1,i = 0 for i = 1, . . . , L + 1, and since AL is an isomorphism then also
zL,L+1 = 0. Now we consider zL,i from the next two equations from the bottom
and so on.

Therefore deg(H1, intD, 0) = ±1.
This and (35) implies that

deg(F, intD, 0) = ±1 (36)

hence there exists a solution of equation F (q) = 0 in D. This finishes the proof.

5.3 Generalization

In the theorem below we allow chains of coverings relations combined with
dropping some directions.

Theorem 9 Assume that we have h-sets Ni and Mj (and M̃j when some exit
dimensions have been dropped) and the following covering relations are satisfied

N0,0
f0,0
=⇒ N0,1

f0,1
=⇒ · · ·

f0,i0=⇒ N0,i0+1 = M0,

M̃0 = N1,0
f1,0
=⇒ N1,1

f1,1
=⇒ · · ·

f1,i1=⇒ N1,i1+1 = M1,

M̃1 = N2,0
f2,0
=⇒ N2,1

f2,1
=⇒ · · ·

f2,i1=⇒ N2,i2+1 = M2,

. . .

M̃L = NL,0
fL,0
=⇒ NL,1

fL,1
=⇒ · · ·

fL,i1=⇒ NL,iL+1 = ML.

Then there exists q0, . . . , ql, such that

qk ∈ Nk,0, fk,j ◦ · · · ◦ fk,1 ◦ fk,0(qk) ∈ Nk,ij+1, j = 0, . . . , ik, k = 0, . . . , L

qk+1 = fk,ik ◦ · · · ◦ fk,1 ◦ fk,0(qk), k = 0, . . . , L− 1.

Proof: Conceptually the same as the proof of Theorem 8.

6 Diffusion in the linear model

We would like to prove now Conjecture 2 for f being a linear model. To formu-
late the precise assumptions about our linear model we need first to introduce
some notations.

Let z = (x1, . . . , xn). Define for i = 0, . . . , n, zi = (zi,p, zi,inc, zi,out, zi,f )
where

• zi,p = (x1, . . . , xi−1) are the past coordinates

• zi,inc = xi is the incoming coordinate
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• zi,out = xi+1 is the outgoing coordinate

• zi,f = (xi+2, . . . , xn) are the future coordinates.

These are the local coordinates around each fixe point pi.
We assume that we have a sequence of linear maps: fi for i = 0, . . . , n and

affine maps fi−1,i for i = 1, . . . , n.
The maps fi will correspond to the map close to the fixed point pi and we

will call them local maps. The maps fi−1,i will correspond to the maps that
connect two consecutive fixed points, that we will call them transition maps.

We assume that the map f is equal to the linear map fi around the fixed
point pi and defined as fi−1,i close to the heteroclinic connections.

6.1 Local maps

Let fi(zi) = (fi,p(zi), fi,inc(zi), fi,out(zi), ff,i(zi)) the decomposition of the map
fi in terms of the previous splitting of the coordinates zi. We assume that:

fi,p(zi) = Ai,pzi,p

fi,inc(zi) = µizi,inc

fi,out(zi) = λizi,out

ff,i(zi) = Ai,fzi,f ,

where Ai,p and Ai,f are matrices that satisfy

|Ai,pzi,p| ≤ µi,p|zi,p| |Ai,fzi,f | ≥ λi,f |zi,f |,

with µi ≤ µi,p < 1 and 1 < λi,f ≤ λi. The last relations are not needed in our
argument, but we include them to point out that the dominant directions are
the ones defined by zi,inc and zi,out. The norm that we are using here and for
the rest of the proof is the maximum norm, |.| = ||.||∞.

For each i = 0, . . . , n, we want to define h-sets that will be centered in the
following points qi,inc and qi,out:

• qi,inc = (0, σ, 0, 0)

• qi,out = (0, 0, σ, 0),

where σ > 0 is some small parameter that does not depend on the fixed point
we are dealing with. Notice that qi,inc is located close to the fixed point pi
in the direction of the incoming heteroclinic, defined by the segment Ci. The
point qi,out is also located close to the fixed point pi but in the direction of the
outgoing heteroclinic, defined by the segment Ci+1. Let δ > 0 satisfying δ ≤ σ.
Define the sets:

N inc
i = {zi ∈ Rn, : |zi − qi,inc| ≤ δ} (37)

Nout
i = {zi ∈ Rn, : |zi − qi,out| ≤ δ}. (38)
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Notice that they are boxes of size δ. We equip these sets with an h-set structure.
We declare the directions (zi,p, zi,inc) as entry directions and (zi,out, zi,f ) as exit
directions in both cases.

It is time to relate the the h-sets (37) and (38) after some iterates of the
map fi.

Lemma 10 There exists an integer ki such that the following covering relation
hold:

N inc
i

f
ki
i=⇒ Nout

i ,

for all i = 0, . . . , n− 1.

Proof: Since the map is linear we only have to prove that the entry (stable)
components of N inc

i are mapped inside Nout
i and that the exit (unstable) direc-

tions of N inc
i cover the exit components of Nout

i . This is, the boundary of the
exit directions of N inc

i is mapped outside Nout
i .

Let us start with the past components. We have to show that
∣∣∣fkii,p(zi)∣∣∣ ≤ δ

for zi ∈ N inc
i . But ∣∣∣fkii,p(zi)∣∣∣ =

∣∣∣Akii,pzi,p∣∣∣ ≤ µkii,p |zi,p| ≤ µkii,pδ,
and the requested inequality holds since 0 < µi,p ≤ 1.

Consider the incoming component, zi,inc. We want ki such that fkii,inc(zi) ≤ δ
for zi ∈ N inc

i . But ∣∣∣fkii,inc(zi)∣∣∣ = µkii |zi,inc| ≤ µ
ki
i (σ + δ) .

If we take

ki ≥
ln σ+δ

δ

lnµ−1i
,

we obtain the desired inequality.
Now we want to study the exit components. Take zi ∈ N inc

i such that its
outgoing component zi,out satisfies |zi,out| = δ. We want to see that∣∣∣fkii,out(zi)∣∣∣ ≥ σ + δ.

Notice that we have: ∣∣∣fkii,out(zi)∣∣∣ = λkii |zi,out| = λkii δ.

If we take ki such that

ki ≥
ln σ+δ

δ

lnλi
,

we obtain the desired inequality.
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Finally, for the future components we proceed in the same way. Take zi ∈
N inc
i such that its future component zi,f satisfies |zi,f | = δ. We want to see that∣∣∣fkii,f (zi)

∣∣∣ ≥ δ.
But ∣∣∣fkii,f (zi)

∣∣∣ =
∣∣∣Akii,fzi,f ∣∣∣ ≥ λkii,f |zi,f | = λkii,fδ,

and the requested inequality holds since λi,f > 1.
To finish the proof we take

ki = max

{
ln σ+δ

δ

lnµ−1i
,

ln σ+δ
δ

lnλi

}
.

6.2 Dropping of one direction

Now we are going to equip Nout
i with another h-set structure, Ñout

i . We are
going to put the outgoing coordinate zi,out in the set of entry directions. Notice

that Ñout
i is the same as Nout

i as sets. We are only changing the declaration of
entry and exit coordinates, that is, the h-set structure.

Notice that it is precisely at this moment where we have lost the outgoing
direction. This argument is equivalent to the one in Section 3.0.1 where we
intersect some domain with a section of co-dimension one located in the desired
outgoing direction. Notice that Ñout

i have the same number of entry (and exit)
components than N inc

i+1.

6.3 Transition along the heteroclinic connection

We define the map close to the heteroclinic segment just as a translation, fi,i+1.

For points in Ñout
i , that is for points of the form qi,out + zi with |zi| ≤ δ the

map fi,i+1 is defined as:

fi,i+1(qi,out + zi) = qi+1,inc + zi.

Notice that, with the transition written in this way we do not have to perform
a change of variables that would locate the fixed point pi+1 at the origin. The
change is included in the transition.

Our goal is to prove that Ñout
i covers N inc

i+1. If we write the transition map
in terms of zi and zi+1 we have:

(zi,p, zi,inc) = zi+1,p

zi,out = zi+1,inc

zi,f = (zi+1,out, zi+1,f ).

With this relation and the fact that we are using the maximum norm we can
conclude that:

29



Lemma 11 The following covering relation hold:

Ñout
i

fi,i+1
=⇒ N inc

i+1,

for all i = 0, . . . , n− 1.

6.4 The conclusion

By combining Lemmas 10,11 with Theorem 9 we obtain the following

Theorem 12 Under the previous assumptions, for all ε > 0 there exists a point
x0 and a sequence of integers 0 = k0 < k1 < · · · < kn such that:

||fki(x0)− pi|| < ε i = 0, . . . , n.

7 Diffusion in a simplified Toy Model from [CKS+]

7.1 Our model

Our model is a simplification of the toy model system from [CKS+, GK]. It can
be defined as the composition of the following systems parameterized by j ∈ Z.

Our phase space is defined by a sequence of coordinate charts indexed by
j ∈ Z. Each of these maps is has at its center a fixed point Tj (which corresponds
to the j-th torus in the toy model system). These coordinate charts are global,
the dynamics is defined in each chart (this is again forced by the symplectic
reduction in the toy model from [CKS+, GK]).

The j-th node chart uses the following coordinates

• ck ∈ C, k ≤ j − 2 or k ≥ j + 2

• y−, x−, y+, x+ ∈ R.

7.1.1 Transition map between two adjacent nodes

Let

ω = ei2π/3 =

(
−1

2
,

√
3

2

)
. (39)

For c ∈ C we set
c = ωc− + ω2c+, (40)

where c−, c+ ∈ R.
The above decomposition means that we represent a complex number c in

the basis {ω, ω2} over the field R. For the future use we define two functions
g1 : R2 → C and g2 : C→ R2 by

g1(c−, c+) = ωc− + ω2c+, g2(c) = g−11 (c). (41)
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The transition between the charts the j-th and the (j+ 1)-th acts as follows
(the variables without tildes are the ones referring to the j-th node chart, while
those with tildes denote the variables with respect to the (j + 1)-th chart)

c̃k≤j−2 = ck≤j−2

c̃j−1 = g1(x−, y−)

x̃− = y+

ỹ− = x+

(x̃+, ỹ+) = g2(cj+2)

c̃k≥j+3 = ck≥j+3.

Observe that from the above we can also read what is the transition in the
other direction.

7.1.2 Local evolution close to the fixed point

Let σ > 0 be fixed.
The evolution in the j-th node chart is given by the following ODE

ẏ− = −y− +O(x−(y+)2), (42)

ẋ− = x− +O(y−(x+)2), (43)

ẏ+ = −y+ +O(x+(y−)2), (44)

ẋ+ = x+ +O(y+(x−)2), (45)

ċk = ick, k ≤ j − 2 or k ≥ j + 2, (46)

where we assume that all O() terms satisfy

|O(z)| ≤ K|z|. (47)

Let us stress each O(. . . ) function may depend on all variables.

7.2 Fixed points and heteroclinic connections

Observe that in our system we have fixed points Tj parameterized by j ∈ Z
given in the j-th node centered coordinates by

ck≤j−2 = 0, ck≥j+2 = 0, x− = y− = x+ = y+ = 0. (48)

For the fixed point Tj the directions ck≤j−2, ck≥j+2 are the center directions,
x−, x+ are unstable directions and y−, y+ are stable directions.

Consecutive fixed points Tj and Tj+1 are connected by a heteroclinic connec-
tion escaping the neighborhood of Tj along the solution ck(t) = 0 for k ≤ j − 2
or k ≥ j + 2, x−(t) = y−(t) = y+(t) = 0, x+(t) = σet for t ≤ 0 and continued
later in the coordinates centered on Tj+1 as cj(t) = 0 for k ≤ j−1 or k ≥ j+ 3,
x−(t) = x+(t) = y+(t) = 0, y−(t) = σet for t ≥ 0.
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Figure 6: The heteroclinic connections in the toy model

7.3 Scattering estimates

We consider the system (42–45).
Let us set

σ′ = 1.01σ. (49)

We look for the solution such that

y−(0) = η, x−(0) = e−2Ta0, y+(0) = e−T b0, x+(0) = e−T d0 (50)

where η ∈ (0, σ′) and a0 ∈ a, b0 ∈ b, d0 ∈ d and a, b, d are intervals such that

a, b, d ⊂ [−T k, T k], k ≥ 1. (51)

We will try to use the iteration.
In the sequel we will use the following notation

α = [−1, 1].

7.3.1 The 0-th order approximation

y−(t) = ηe−t

x−(t) = a0e
−2T et

y+(t) = b0e
−T e−t

x+(t) = d0e
−T et.

The estimates for the nonlinear terms (we skip the absolute value sign for
a, b, d in the estimates for the nonlinear terms) are

K|x−(t)(y+(t))2| ≤ K(e−2Taet)(e−T be−t)2 ≤ e−4T e−t
(
Kab2

)
≤ e−3T e−t

for T large enough to satisfy
eT > Kab2. (52)

K|y−(t)(x+(t))2| ≤ K(ηe−t)(e−T det)2 ≤ e−2T et
(
Kσ′d2

)
,

K|x+(t)(y−(t))2| ≤ K
(
e−T det

) (
ηe−t

)2 ≤ e−T e−t (Kdσ′2) ,
K|y+(t)(x−(t))2| ≤ K

(
e−T be−t

) (
e−2Taet

)2
= e−5T et

(
Kba2

)
≤ e−4T et
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for T large enough to satisfy
eT > Kba2. (53)

We obtain the following estimates in 1-st approximation

y−(t) ∈ ηe−t + αe−tte−3T

x−(t) ∈ e−2Ta0e
t + αte−2T et

(
Kσ′d2

)
y+(t) ∈ e−T b0e

−t + αte−T e−t
(
Kdσ′2

)
x+(t) ∈ e−T d0e

t + αte−4T et.

7.3.2 Next iterate

K|x−(t)(y+(t))2| ≤ K(e−2T et)(a+ tKσ′d2)(e−T e−t)2
(
b+ tKdσ′2

)2
=

e−4T e−t
(
K(a+ tKσ′d2)

) (
b+ tKdσ′2

)2 ≤ e−3T e−t
K|y−(t)(x+(t))2| ≤ Ke−t

(
σ′ + te−3T

)
(e−T et)2

(
d+ te−3T

)2
=

e−2T et
(
K
(
σ′ + te−3T

) (
d+ te−3T

)2) ≤ e−2T et (2Kσ′ (d+ σ′)
2
)

K|x+(t)(y−(t))2| ≤ K
(
e−T et

) (
d+ te−3T

)
e−2t

(
σ′ + te−3T

)2
=

e−te−T
(
K
(
d+ te−3T

) (
σ′ + te−3T

)2) ≤ e−te−T (4Kσ′2(d+ σ′)
)

K|y+(t)(x−(t))2| ≤ K
(
e−T e−t

) (
b+ tKdσ′2

) (
e−2T et

)2 (
a+ tKσ′2d

)2
=

e−5T et
(
K
(
b+ tKdσ′2

) (
a+ tKσ′2d

)2) ≤ e−4T et
provided T is large enough for the following conditions to hold for t ∈ [0, T ]

eT >
(
K(a+ tKσ′d2)

) (
b+ tKdσ′2

)2
,

te−3T < σ′,

eT >
(
K
(
b+ tKdσ′2

) (
a+ tKσ′2d

)2)
.

These bounds give us the following estimates in 2-nd approximation

y−(t) ∈ ηe−t + αe−tte−3T

x−(t) ∈ e−2Ta0e
t + αte−2T et

(
2Kσ′ (d+ σ′)

2
)

y+(t) ∈ e−T b0e
−t + αte−T e−t

(
4Kσ′2(d+ σ′)

)
x+(t) ∈ e−T d0e

t + αte−4T et.

Observe that we have obtained the same formula for y−(t) and x+(t) in the
second approximation as in the first approximation.
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7.3.3 Next iterate

Therefore the bounds for terms y−(x+)2 and x+(y−)2 will be the same, so we
just compute bounds for x−(y+)2 and y+(x−)2.

We have

K|x−(t)(y+(t))2| ≤ K(e−2T et)(a+ t2Kσ′ (d+ σ′)
2
)(e−T e−t)2

(
b+ t4Kσ′2(d+ σ′)

)2
=

e−4T e−t
(
K(a+ t2Kσ′ (d+ σ′)

2
)
(
b+ t4Kσ′2(d+ σ′)

)2) ≤ e−3T e−t
K|y+(t)(x−(t))2| ≤ K

(
e−T e−t

) (
b+ t4Kσ′2(d+ σ′)

) (
e−2T et

)2
(a+ t2Kσ′ (d+ σ′)

2
)2 =

e−5T et
(
K
(
b+ t4Kσ′2(d+ σ′)

)
(a+ t2Kσ′ (d+ σ′)

2
)2
)
≤ e−4T et

provided T is large enough for the following conditions to hold for t ∈ [0, T ]

eT ≥ (K(a+ t2Kσ′ (d+ σ′)
2
)
(
b+ t4Kσ′2(d+ σ′)

)2
eT ≥ K

(
b+ t4Kσ′2(d+ σ′)

)
(a+ t2Kσ′ (d+ σ′)

2
)2

Therefore we have established the following theorem

Theorem 13 Consider (42–46) satisfying (47) with initial conditions (50) sat-
isfying (51).

Assume that T ≥ T0 > 1 is large enough, so that the following inequalities
are satisfied

eT ≥ (K(T k + T2Kσ′
(
T k + σ′

)2
)
(
T k + T4Kσ′2(T k + σ′)

)2
(54)

eT ≥ K
(
T k + T4Kσ′2(T k + σ′)

)
(T k + T2Kσ′

(
T k + σ′

)2
)2 (55)

Te−3T < σ′. (56)

Then for t ∈ [0, T ]

y−(t) ∈ ηe−t + αe−tte−3T

x−(t) ∈ e−2Ta0e
t + αte−2T et

(
2Kσ′ (|d|+ σ′)

2
)

y+(t) ∈ e−T b0e
−t + αte−T e−t

(
4Kσ′2(|d|+ σ′)

)
x+(t) ∈ e−T d0e

t + αte−4T et.

In the variables cp and cf the scattering by Tj acts as the rotation map.
Hence in the context of Theorem 13 the following formulas hold

c≤j−2(T ) = c≤j−2(0)eiT , c≥j+2(T ) = c≥j+2(0)eiT . (57)

7.4 Construction of the covering relations

The goal of this section is to construct a sequence of coverings for our model
using the estimates obtained in Theorem 13.
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We will have two types of h-sets in the j-th chart around Tj , N j
in and N j

out,
such that the following covering relations are satisfied

N j
in

ϕT
=⇒ N j

out, (58)

R<x+,y+>N
j
out = Ñ j

out
Id

=⇒ N j+1
in . (59)

In relation (58) the map is the shift along the trajectory by the time T . The
map in relation (59) is formally an identity map, but since N j

out and N j+1
in are

defined in terms of different coordinate charts its representation will no longer
be the identity.

In the derivation we will use

• γ - will be used for the sizes in the entry directions

• r - will be used for the sizes in the exit directions

Observe that when we are dropping some directions the sizes in these direc-
tions become very close to zero (to set them to zero will not change anything,
but it will require slight changes in Theorem 9).

By cp (past modes) we will denote the collection {ck}k≤j−2 and by cf (future
modes) we will denote the collection {ck}k≥j+2. On cp and cf we use the sup
norm, i.e. ‖cp‖ = supk≤j−2 |ck|.

The structure of h-sets N j
in and N j

out is defined as follows (we are using the
j-th chart):

• the entry variables: cp, x−, y−

• the exit variables: x+, y+, cf

• parameters of N j
in:

For the entry directions:

|cp| ≤ γjin(cp)e
−T ,

y− ∈ σ + αγjin(y−)e−T , γjin(y−) ≈ 0,

|x−| ≤ γjin(x−)e−2T , γjin(x−) ≈ 0.

For the exit directions:

|x+| ≤ rjin(x+)e−T , rjin(x+) = 2.1σ,

|y+| ≤ rjin(y+)e−T ,

|cf | ≤ rjin(cf )e−T .

• parameters of N j
out:

For the entry directions:

|y−| ≤ γjout(y−)e−T ,

|x−| ≤ γjout(x−)e−T ,

|cp| ≤ γjout(cp)e
−T .
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For the exit directions:

x+ ∈ σ + αrjout(x+)e−T , rjout(x+) ≈ 0,

|y+| ≤ rjout(y+)e−2T , rjout(y+) ≈ 0

|cf | ≤ rjout(cf )e−T .

7.4.1 Covering N j
in

ϕT
=⇒ N j

out

We use Theorem 13 for the shift along the trajectory by time T with

η = σ + αγjin(y−)e−T , a = αγjin(x−),

b = αriin(y+), d = αriin(x+) = 2.1σ. (60)

In order to make Theorem 13 applicable we require that

γjin(y−)e−T < σ′ − σ = 0.01σ. (61)

The conditions for N j
in

ϕT
=⇒ N j

out are

• entry conditions:

– for cp variables:

γjin(cp) < γjout(cp). (62)

– for x− from Theorem 13 and (60) we have the following condition

γjin(x−)e−T + Te−T (2Kσ′(3.1σ′)2) < γjout(x−)e−T

therefore it is enough to have

T (2.1Kσ′(3.1σ′)2) ≤ γjout(x−), (63)

if γjin(x−) ≈ 0, which will turn out to be compatible with other
conditions. In fact we had replaced 2 by 2.1 and σ by σ′ (σ appears
in d) in order to make an explicit margin for γjin(x−) given by

γjin(x−) < T (0.1Kσ′(3.1σ′)2). (64)

– for y− it is enough to have

σ′e−T + Te−4T < γjout(y−)e−T .

We see that from (56) it is enough to have the following

2σ′ ≤ γjout(y−). (65)

• exit conditions:
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– x+

rjin(x+)− Te−3T > σ + rjout(x+)e−T ,

which in view of assumption (56),(49) and (60) is satisfied , if

rjout(x+)e−T < 0.09σ. (66)

Obviously (66) is perfectly compatible with rjout(x+) ≈ 0, which is
to be expected as this is the direction which will be dropped in the
next covering relation.

– y+, from Theorem 13 and (60) it follows that the following estimate
is enough

rjin(y+)e−2T − Te−2T
(

4Kσ′2(rjin(x+) + σ′)
)
> rjout(y+)e−2T . (67)

Observe that this is the direction which is dropped, hence any rjout(y+) >
0, rjout(y+) ≈ 0 is good for our construction. Therefore we can de-
mand (we entered the known value of rjin(x+) )

rjin(y+) ≥ T
(
4.1Kσ′2(3.1σ′)

)
, (68)

which leaves the margin for rjout(y+) given by

rjout(y+) < T
(
0.1Kσ′2(3.1σ′)

)
. (69)

– cf
rjin(cf ) > rjout(cf ). (70)

7.4.2 Covering relation (59)

Let L ≥ 1 be the Lipschitz constant which holds for both functions g1 and g2,
where on R2 the max-norm is used, while in C we use the euclidian norm.

The conditions are as follows.
In the entry directions

L(γjout(y−) + γjout(x−)) ≤ γi+1
in (cp), (71)

γjout(cp) < γj+1
in (cp), (72)

rjout(x+) < γj+1
in (y−), (73)

rjout(y+) < γj+1
in (x−). (74)

In the exit directions

rjout(cf ) ≥ Lrj+1
in (x+), (75)

rjout(cf ) ≥ Lrj+1
in (y+), (76)

rjout(cf ) > rj+1
in (cf ). (77)
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7.4.3 Solving the inequalities for coverings

We have to find the following set of parameters γjin,out(cp, x−, y−) and

rjin,out(x+, y+, cf ), such that the equations derived above are satisfied.
We split these parameters in two groups: the ones related to dropped direc-

tions γjin(y−), γjin(x−), rjout(x+), rj(y+) and the remaining ones.
In the first group we effectively should obtain

γjin(y−) = 0, γjin(x−) = 0, rjout(x+) = 0, rj(y+) = 0.

The conditions involving these parameters are (64), (66), (69), (73) and (74).
It is clear that these can be easily satisfied with all these parameters being very
close to zero.

Now we deal with the other directions. We already have set the value for
rjin(x+) and also set the following following parameters (compare (63),(65), (68))

rjin(x+) = 2.1σ, (78)

γjout(x−) = TQ1, Q1 = (2.1Kσ′(3.1σ′)2), (79)

γjout(y−) = 2σ, (80)

rjin(y+) = TQ2, Q2 =
(
4.1Kσ′2(3.1σ′)

)
, (81)

The remaining inequalities involve only the sizes for variables cp and cf .
These are as follows:

• for the entry directions (see (62), (71), (72))

γjin(cp) < γjout(cp)

L(2σ′ + TQ1) ≤ γj+1
in (cp),

γiout(cp) < γj+1
in (cp),

• for the exit directions (see (70), (75), (76) and (77)

rjin(cf ) > rjout(cf ),

rjout(cf ) ≥ 2.1Lσ,

rjout(cf ) ≥ TLQ2,

rjout(cf ) > rj+1
in (cf ).

It is clear that there exist γjin(cp), γ
j
out(cp) satisfying

Q3T < γjin(cp) < γjout(cp) < γj+1
in (cp) < 2Q3T, (82)

where Q3 = L
(

2σ′

T +Q1

)
. With such sequence we have solved the inequalities

for the entry directions.
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In the exit direction the situation is similar. We just take any sequence
satisfying

max(TLQ2, 2.1Lσ) ≤ rjout(cf ) < rjin(cf ) < rjout(cf ) < 2 max(TLQ2, 2.1Lσ).
(83)

In (82) and (83) we introduced also an upper bound which is O(T ), so
now all sizes are O(T ) times a suitable weight function (e−T or e−2T ). Ob-
serve that this bound allows us to use Theorem 13 with k = 2, for T ≥
max(2LQ2, 2Q3, Q2, Q1, 1)

7.5 The conclusion

From the chain of coverings constructed above we obtain

Theorem 14 For the system discussed in this section, for all ε > 0 there ex-
ists a point x0 close to T0 whose trajectory is ε close to the infinite chain of
heteroclinic connections T0 → T1 → . . .
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