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Abstract

We present a new ODE-type method of passing to the limit with the
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method to trapping regions derived by Mattingly and Sinai to give a
new proof of the existence and uniqueness of solutions to Navier-Stokes
equations with periodic boundary conditions on the plane.

2000 MSC numbers: 35Q30, 76D03, 34G20

Keywords: Navier-Stokes equations, Galerkin projections

Warning: This is a corrected version. The published version contains mis-
takes in the statement and the proof of Theorem 6. Also Lemma 1 contained
several typos.

1 Introduction.

The goal of this paper is to present self-contained account of the ODE-type
proofs from [ES, MS, S] of the existence and uniqueness of the Navier-Stokes
systems with periodic boundary conditions on the plane. Mattingly and Sinai
called their proof elementary (see title of [MS]), but their proof was ODE-
type (elementary in their sense) only up to the moment of getting the trapping
regions for all Galerkin projections, but to pass to the limit with the dimensions
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of Galerkin projections they invoked the now standard results from [CF, DG, T]
(which are not elementary - i.e. ODE-type). Here we fill in this gap by giving
ODE-type arguments, which enable us to pass to the limit. Using ODE-type
estimates based on the logarithmic norms we also obtained the uniqueness and
an estimate for the Lipschitz constant of evolution induced by the Navier-Stokes
equations . In fact we have proved that we have a continuous semidynamical
system on the trapping region. The results we prove here are well known for
Navier-Stokes system in 2D (see for example [FT, ES, K, DT]), but the method
of getting estimates for Galerkin projections and the Lipschitz constant of the
induced flow presented in section 5 is are new.

Another goal of this paper is to prepare the ground for the rigorous study of
the dynamics of the Navier-Stokes equations with periodic boundary conditions.
The fact that we have here a semidynamical system on a compact set, and this
system is approximated in a controlled way by finite-dimensional semidynamical
systems is in our opinion of great importance, because it opens the possibility of
applying finite-dimensional tools developed for the study of dynamics of ODEs.

The trapping regions described here for the Navier-Stokes equations are par-
ticular examples of the self-consistent a priori bounds introduced in [ZM] for
the rigorous study of the dynamics of the dissipative PDEs, where Conley index
type arguments where used to obtain the existence of multiple steady states
for Kuramoto-Sivashinsky PDE (KS-equations). The tools developed in the
present paper extend the ones given in [ZM]. For example they enable the Lip-
schitz constant of the flow induced by KS-equations to be computed effectively.
This was already used to obtain proof of asymptotic stability of some steady
states for the KS-equation in [Z], the result which was previously known only
on the numerical level.

A few words about a general construction of the paper: In sections 2 and 3
we recall the results from [ES, MS, S] about the existence of trapping regions
for Navier-Stokes equations on the plane with periodic boundary conditions.
Sections 4 and 5 contain ODE-type proofs of the convergence of the Galerkin
scheme on trapping regions. The remaining sections contain the existence results
for the Navier-Stokes equations on the plane and the Sannikov and Kaloshin [S]
result in the dimension three.

2 Navier-Stokes equations

We will use the following notation. For z ∈ C, by z we denote the conjugate of
z. For any two vectors u = (u1, . . . , un) and v = (v1, . . . , vn) from Cn or C∞ we
set (if it makes sense)

(u|v) =
∑
i

uivi

(u · v) =
∑
i

uivi.

The general d-dimensional Navier-Stokes system (NSS) is written for d un-
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known functions u(t, x) = (u1(t, x), . . . , ud(t, x)) of d variables x = (x1, . . . , xd)
and time t, and the pressure p(t, x).

∂ui

∂t
+

d∑
k=1

uk
∂ui

∂xk
= ν△ui −

∂p

∂xi
+ f (i) (1)

div u =
d∑

i=1

∂ui

∂xi
= 0 (2)

The functions f (i) are the components of the external forcing, ν > 0 is the
viscosity.

We consider (1),(2) on the torus Td = (R/2π)d. This enables us to use
Fourier series. We write

u(t, x) =
∑
k∈Zd

uk(t)e
i(k,x), p(t, x) =

∑
k∈Zd

pk(t)e
i(k,x) (3)

Observe that uk(t) ∈ Cd, i.e. they are d-dimensional vectors and pk(t) ∈ C. We
will always assume that f0 = 0 and u0 = 0.

Observe that (2) is reduced to the requirement uk⊥k. Namely

div u =
∑
k∈Zd

i(uk(t), k)e
i(k,x) = 0

(uk, k) = 0 k ∈ Zd

To derive the evolution equation for uk(t) we will now compute the nonlinear
term in (1). We will use the following notation uk = (uk,1, . . . , uk,d)

∑
l

ul
∂u

∂xl
=

∑
k1,l

uk1,le
i(k1,x)

(∑
k2

ik2,luk2e
i(k2,x)

)
=

= i
∑

l,k1,k2

ei(k1+k2,x)k2,l · uk1,l · uk2 = i
∑
k1,k2

ei(k1+k2,x)(uk1 |k2)uk2 =

i
∑
k∈Zd

(∑
k1

(uk1 |k − k1)uk−k1

)
ei(k,x) = i

∑
k∈Zd

(∑
k1

(uk1 |k)uk−k1

)
ei(k,x)

We obtain the following infinite ladder of differential equations for uk

duk

dt
= −i

∑
k1

(uk1 |k)uk−k1 − νk2uk − ipkk + fk (4)

Here fk are components of the external forcing. Let ⊓k denote the operator
of orthogonal projection onto the (d − 1)-dimensional plane orthogonal to k.
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Observe that since (uk, k) = 0, we have ⊓kuk = uk. We apply the projection
⊓k to (4). The term pkk disappears and we obtain

duk

dt
= −i

∑
k1

(uk1 |k) ⊓k uk−k1 − νk2uk + ⊓kfk (5)

The pressure is given by the following formula

−i
∑
k1

(uk1 |k)(I − ⊓k)uk−k1 − ipkk + (I − ⊓k)fk = 0 (6)

Observe that solutions of (5) satisfy incompressibility condition (uk, k) = 0.
The subspace of real functions which can be defined by u−k = uk for all k ∈ Zd is
invariant under (5). In the sequel, we will investigate the equation (5) restricted
to this subspace.

Definition 1 Energy of {uk, k ∈ Zd} is

E({uk, k ∈ Zd}) =
∑
k∈Zd

|uk|2

Definition 2 Enstrophy of {uk, k ∈ Zd} is

V ({uk, k ∈ Zd}) =
∑
k∈Zd

|k|2|uk|2

3 Construction of trapping regions from [ES,
MS]

The idea in [ES, MS] is to construct a trapping region for each Galerkin projec-
tion and this trapping region give uniform bounds enabling passing to the limit.
The trapping region for an ODE (here the Galerkin projection of Navier-Stokes
equations) is a set such that the vector field on its boundary is pointing inside,
hence no trajectory can leave it in forward time. In the sequel we consider
only the Galerkin projection onto the set of modes O, such that if k ∈ O then
−k ∈ O. We will call such projections symmetric. This restriction comes from
the observation made in Section 2 that for Galerkin projection on such O, the
space of real function is invariant under (5).

Lemma 1 d = 2. For any solution of (5) (such that all necessary Fourier series
converge) or the symmetric Galerkin projection of (5) we have

dV {uk(t)}
dt

≤ −2νV ({uk(t)}) + 2
√
V (F )

√
V ({uk(t)}), (7)

where V (F ) =
∑

|k|2f2
k .
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The proof can be found in many text-books, see also [Si].
Inequality (7) shows that

dV {uk(t)}
dt

< 0, when V > V ∗ =
V (F )

ν2
(8)

Lemma 2 Assume that {uk, k ∈ Zd} is such that for some D < ∞, γ > 1 + d
2

|uk| ≤
D

|k|γ
, and V ({uk}) ≤ V0. (9)

Then for d ≥ 3

|
∑
k1

(uk1 |k) ⊓k uk−k1 | ≤
C
√
V0D

|k|γ− d
2

, (10)

where the constant C depends only on γ and dimension d,
for d = 2 for any ϵ > 0

|
∑
k1

(uk1 |k) ⊓k uk−k1 | ≤
C(ϵ, γ)

√
V0D

|k|γ− d
2−ϵ

, (11)

Proof:
In order to estimate the sum |

∑
k1
(uk1 |k)⊓k uk−k1 | we will use the following

inequality

|(uk1 |k) ⊓k uk−k1 | = |(uk1 |k − k1) ⊓k uk−k1 | ≤ |uk1 | |k − k1| |uk−k1 | (12)

We consider three cases.
Case I. |k1| ≤ 1

2 |k|.
Here |k − k1| ≥ 1

2 |k| and therefore |uk−k1 | |k − k1| ≤ D
|k−k1|γ−1 ≤ 2γ−1D

|k|γ−1 .

Now observe that

∑
|k1|≤ 1

2 |k|

|uk1 | =
∑

|k1|≤ 1
2 |k|

|k1| |uk1 |
1

|k1|
≤
√∑

|k1|2|uk1 |2 ·
√√√√ ∑

|k1|< 1
2 |k|

1

|k1|2
(13)

The sum
∑

|k1|< 1
2 |k|

1
|k1|2 can be estimated from above by a constant times

an integral of 1
r2 over the ball of radius 1

2 |k| with the ball around the origin
removed. Hence for d = 2 we have∑

|k1|≤ 1
2 |k|

1

|k1|2
≤ C

∫ |k|/2

1

rdr

r2
≤ C ln |k|. (14)

For d ≥ 3 there is

∑
|k1|≤ 1

2 |k|

1

|k1|2
≤ C

∫ |k|/2

1

rd−1dr

r2
≤ C|k|d−2. (15)
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From all the above computations it follows that for d ≥ 3 holds

|
∑

|k1|≤ |k|
2

(uk1 |k) ⊓k uk−k1 | ≤
2γ−1D

|k|γ−1

√
V0

√
C|k| d2−1 =

2γ−1D
√
V0

√
C

|k|γ− d
2

. (16)

For d = 2 there is

|
∑

|k1|≤ |k|
2

(uk1 |k) ⊓k uk−k1 | ≤
2γ−1D

|k|γ−1

√
V0

√
C
√
ln |k| < C

√
V0D

|k|γ−1−ϵ
. (17)

Case II. 1
2 |k| < |k1| ≤ 2|k|.

|uk1 | <
D

|kγ1 |
<

D(
|k|
2

)γ =
2γD

|k|γ
. (18)

Hence∑
1
2 |k|<|k1|≤2|k|

|uk1 | · |uk−k1 | · |k − k1| ≤
2γD

|k|γ
∑

1
2 |k|<|k1|≤2|k|

|uk−k1 | · |k − k1|. (19)

We interpret
∑

1
2 |k|<|k1|≤2|k| |uk−k1

|·|k−k1| as a scalar product of |uk−k1
|·|k−k1|

and 1, hence, by the Schwarz inequality,∑
1
2 |k|<|k1|≤2|k|

|uk−k1 | · |k − k1| ≤
√ ∑

|k1|≤3|k|

|uk1 |2|k1|2 ·
√

C(3|k|)d, (20)

where C is such that C(3|k|)d is greater than or equal to the number of such
vectors in Zd which are contained in the ball of radius 3|k| around the origin.

Finally we obtain

∑
1
2 |k|<|k1|≤2|k|

|uk1 | · |uk−k1 | · |k − k1| ≤
2γDC̃

√
V0

|k|γ− d
2

. (21)

Case III. |k1| > 2|k|. Here |k − k1| > |k|.∑
|uk1 ||k − k1||uk−k1 | ≤

1

|k|
∑

|uk1 ||k1||k − k1||uk−k1 | ≤

1

|k|

√∑
|uk1 |2|k1|2

√∑
|uk−k1 |2|k − k1|2 ≤

√
V0

|k|

√√√√ ∑
|k1|>2|k|

D2

|k1|2γ−2
=

√
V0D

|k|

√√√√ ∑
|k1|>2|k|

1

|k1|2γ−2
.
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To estimate
∑

|k1|>2|k|
1

|k1|2γ−2 observe that there is (we denote all constant

factors depending on γ by C)∑
|k1|>2|k|

1

|k1|2γ−2
≤ C

∫
|k1|>2|k|

1

|k1|2γ−2
ddk1 = C

∫ ∞

2|k|

1

r2γ−2
rd−1dr =

C

∫ ∞

2|k|
r−(2γ−2−d+1) = C|k|−(2γ−2−d).

Observe that we used here the assumption γ > 1 + d
2 , which guarantees that

2γ − 2− d+ 1 > 1, thus the integral converges.
Hence for the case III we obtain

|
∑

|k1|>2|k|

(uk1 |k) ⊓k uk−k1 | ≤
√
V0DC

|k|γ− d
2

. (22)

Adding cases I,II,III we obtain for d ≥ 3

|
∑
k1

(uk1 |k) ⊓k uk−k1 | ≤
C
√
V0D

|k|γ− d
2

. (23)

For d = 2 we obtain

|
∑
k1

(uk1 |k) ⊓k uk−k1 | ≤
C
√
V0D

|k|γ− d
2−ϵ

. (24)

Lemma 3 Assume that γ > d. Then∑
k1∈Zd\{0,k}

1

|k1|γ |k − k1|γ
≤ CQ(d, γ)

|k|γ
. (25)

Proof: We consider three cases.
Case I. |k1| < |k|

2 , hence |k − k1| ≥ |k|
2 .

There is ∑
|k1|< |k|

2

≤
∑

|k1|< |k|
2

1

|k1|γ
2γ

|k|γ
<

2γ

|k|γ
C

∫ ∞

1

rd−1

rγ
dr.

The improper integral
∫∞
1

rd−1

rγ dr converges, because γ > d. Hence

∑
|k1|< |k|

2

<
CI(d, γ)

|k|γ

7



Case II. |k|
2 < |k1| ≤ 2|k|.∑

|k|
2 <|k1|≤2|k|

≤ 2γ

|k|γ
∑

|k|
2 <|k1|≤2|k|

1

|k − k1|γ
<

2γ

|k|γ
∑

|k1|≤3|k|

1

|k1|γ
<

2γ

|k|γ
C

∫ ∞

1

rd−1

rγ
dr.

Hence ∑
|k|
2 <|k1|≤2|k|

<
CII(d, γ)

|k|γ
.

Case III. 2|k| < |k1|, hence |k − k1| > |k|.∑
2|k|<|k1|

<
1

|k|γ
∑ 1

|k1|γ
<

CIII(d, γ)

|k|γ
.

3.1 The construction of the trapping region I.

We take V0 > V ∗, γ ≥ 2.5 and K such that fk = 0 for |k| > K. We set

N(V0,K, γ,D) =

{
{uk} | V ({uk}) ≤ V0, |uk| ≤

D

|k|γ
, |k| > K

}
(26)

We prove the following theorem.

Theorem 4 Let d = 2 and C = C(ϵ = 1
2 , γ) be a constant from Lemma 2. If

K > C2V0

ν2 and D >
√
V0K

γ−1, then N = N(V0,K, γ,D) is a trapping region
for each Galerkin projection.

Proof: Observe that for D ≥
√
V0K

γ−1 for all {uk} ∈ N there holds

|uk| ≤
D

|k|γ
. (27)

To prove this observe that (27) holds for |k| > K by the definition of N . For
|k| ≤ K we proceed as follows: since V ({uk}) ≤ V0 then |k|2|uk|2 ≤ V0. So we
have

|uk| ≤
√
V0

|k|
≤ D

|k|γ
, |k| ≤ K (28)

for D such that
√
V0|k|γ−1 ≤ D for all |k| ≤ K.

We will now show that on the boundary of N (we are considering the
Galerkin projection) the vector field is pointing inside. For points V ({uk}) = V0
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it follows from (8). For points such that uk = D
|k|γ for some |k| > K from Lemma

2 (with ϵ = 1/2) we have

d|uk|
dt

≤ C
√
V0D

|k|γ− 3
2

− ν|k|2 D

|k|γ
< 0, (29)

which is satisfied when
C
√
V0 < ν|k|1/2. (30)

Observe that (30) holds for |k| ≥ K if K > C2V0

ν2 .

Remark 1 Observe that it was of crucial importance in the proof that the con-
stant D entered linearly in the estimate in Lemma 2 and, due to this fact, it did
not appear in (30). For example assume that the estimate of the nonlinear part

will be of the form D2C

|k|γ− 3
2
; then instead of (30) there would be

CD < ν|k|1/2

which will require that K > C2D2

ν2 which might be incompatible with D >√
V0K

γ−1.
This shows how important it was to use the enstrophy in these estimates.

3.2 The construction of the trapping region II - exponen-
tial decay

Theorem 5 Assume that γ ≥ 2.5, d = 2. Then the set

Ne = N(V0,K, γ,D) ∩
{
{uk} | |uk| ≤

D2

|k|γ
e−a|k| for |k| > Ke

}
, (31)

where N(V0,K, γ,D) is a trapping region from Theorem 4, D2 > D, Ke >
CQ(d,γ)D2

ν (CQ was obtained in Lemma 3) and 0 < a < 1
Ke

ln D2

D is a trapping
region for each symmetric Galerkin projection.

Proof: The set Ne constructed so that for all |k| ≤ Ke the trapping (the vector
field is pointing toward the interior of Ne on the boundary) is obtained from
N(V0,K, γ,D) and for |k| > Ke it results from the new exponential estimates.

Observe that a is such that D2

|k|γ e
−a|k| > D

|k|γ for all |k| ≤ Ke. This solves

the trapping for |k| ≤ Ke.
Hence to prove the trapping it is enough to consider the boundary points

such that |uk| = D2

|k|γ e
−a|k| for some k > Ke. For such a point and |k| there is

d|uk|
dt

≤
∣∣∣∑(uk1 |k) ⊓k uk−k1

∣∣∣− ν|k|2|uk| ≤∑
|uk−1||k||u|k−k1|| − ν|k|2|uk| ≤ D2

2|k|
∑ e−a|k1|e−a|k−k1|

|k1|γ |k − k1|γ
− ν|k|2|uk|.
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Observe that e−a|k1|e−a|k−k1| ≤ e−a|k|. From this and Lemma 3 we obtain

d|uk|
dt

<
D2

2CQ(γ, d)

|k|γ−1
e−a|k| − ν|k|2|uk|.

Hence d|uk|
dt < 0, when

|uk| =
D2

|k|γ
e−a|k| >

CQD
2
2

ν|k|γ+1
e−a|k|,

which is equivalent to

|k| > Ke =
CQD2

ν
.

3.3 Trapping region III - exponential decay in time

Theorem 6 Let t0 > 0. Assume that γ ≥ 2.5, d = 2. Then the set

Ne = N(V0,K, γ,D) ∩
{
{uk} | |uk| ≤

D3

|k|γ
e−a3|k|t for |k| > Ke

}
, (32)

where N(V0,K, γ,D) is a trapping region from Theorem 4, D3 > D, Ke >
D3CQ(d,γ)

ν (CQ was obtained in Lemma 3) and

0 < a3 < min

(
1

Ket0
ln

D3

D
, ν − D3CQ(d, γ)

Ke

)
is a trapping region for each symmetric Galerkin projection for 0 ≤ t ≤ t0.

Proof: The set Ne is constructed so that for all |k| ≤ Ke the trapping prop-
erty is obtained from N(V0,K, γ,D) and for |k| > Ke it results from the new
exponential estimates.

To be sure that the boundary of Ne for |k| < Ke is obtained from
N(V0,K, γ,D), we require that

D

|k|γ
<

D3

|k|γ
e−a3|k|t, for 0 ≤ t ≤ t0 and |k| ≤ Ke. (33)

Easy computations show that (33) holds iff a3 < 1
Ket0

ln D3

D .
To obtain the trapping property for |k| > Ke we need to show that if |uk| =

D3

|k|γ e
−a3t, for some 0 ≤ t ≤ t0 and |k| > Ke), then

d|uk|
dt

< −a3|k||uk|. (34)
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d|uk|
dt

≤
∑

|uk1 ||k||uk−k1 | − ν|k|2|uk| ≤

|k|D2
3

∑ e−a3|k1|te−a3|k−k1|t

|k1|γ |k − k1|γ
− ν|k|2|uk| ≤

|k|e−a3|k|tD2
3

∑ 1

|k1|γ |k − k1|γ
− ν|k|2|uk| ≤

e−a3|k|tD2
3CQ(d, γ)

|k|γ−1
− ν|k|2|uk|

Hence d|uk|
dt < −a3|k||uk| if

D2
3CQ(d, γ)

|k|γ−1
e−a3|k|t < (ν|k|2 − a3|k|)

D3

|k|γ
e−a3t. (35)

We have
ν|k|2 − a3 ≥ ν|k|2 − a3|k|2 = (ν − a3)|k|2. (36)

It is now easy to see that the following inequality implies (35)

D3CQ(d, γ) < (ν − a3)|k|. (37)

We want to have (37) for |k| > Ke. An easy computation show that (37) holds
if

a3 ≤ ν − D3CQ(d, γ)

Ke
. (38)

4 Passing to the limit for Galerkin projections
via the Ascoli-Arzela Lemma

The goal of this section is to present a relatively simple argument for the passing
to the limit with Galerkin projections. The argument given in this section
does not give any control of how the Galerkin projections converge and we
cannot obtain the uniqueness using it. In section 5 we will introduce some new
assumptions (which are easily satisfied for NS in 2D) which will give us much
better control of the limit process.

All what follows in this section was essentially proved in [ZM]. We will also
use some conventions used there.

Let H be a Hilbert space. Let e1, e2, . . . be an orthonormal basis in H.
Let An : H → H denote the projection onto 1-dimensional subspace ⟨en⟩,

i.e., x =
∑

An(x)en for all x ∈ H. By Vn we will denote the space spanned by
{e1, . . . , en}. Let Pn denote the projection onto Vn and Qn = I − Pn.
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Definition 3 Let W ⊂ H, F : dom(F ) → H and W be closed. We say that W
and F satisfy conditions C1,C2,C3 if

C1 There exists M ≥ 0 such that Pn(W ) ⊂ W for n ≥ M

C2 Let ûk = maxx∈W |Akx|. Then û =
∑

ûkek ∈ H. In particular, |û| < ∞.

C3 The function x 7→ F (x) is continuous on W and f =
∑

k fkek, given by
fk = maxx∈W |AkF (x)| is in H. In particular, |f | < ∞.

Observe that condition C2 implies that the set W is compact. Conditions
C2 and C3 guarantee good behavior of F with respect to passing to the limit.
For example, F ◦ Pn converges uniformly to F on W . We here have a contin-
uous function on the compact set, which is a perfect setting for a study of the
dynamics of x′ = F (x) (see [ZM] for more details).

Lemma 7 Assume that W ⊂ H and F satisfy C1,C2,C3. Let x : [0, T ] → W
be such that for each n

dAnx

dt
= An(F (x)). (39)

Then
x′ = F (x). (40)

Proof: Let us set xk = Akx. Let us fix ϵ > 0 and t ∈ [0, T ]. For any n there is∣∣∣∣x(t+ h)− x(t)

h
− F (x)

∣∣∣∣ ≤ ∣∣∣∣Pnx(t+ h)− Pnx(t)

h
− PnF (x)

∣∣∣∣+∣∣∣∣∣ 1h
∞∑

k=n+1

(xk(t+ h)− xk(t))ek

∣∣∣∣∣+ |QnF (x)|

We will estimate the three terms on the right hand side separately. From C3
for a given ϵ > 0 it follows that there exists n0 such that n > n0 implies

|Qn(F (x))| < ϵ/3.

From now on we fix n > n0. Condition C3 and the mean value theorem imply∣∣∣∣∣
∞∑

k=n+1

1

h
(xk(t+ h)− xk(t))ek

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

dxk

dt
(t+ θkh)ek

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

k=n+1

fkek

∣∣∣∣∣ < ϵ/3.

Finally, for h sufficiently small,∣∣∣∣ 1h (Pnx(t+ h)− Pnx(t))− PnF (x)

∣∣∣∣ < ϵ/3

and hence the desired limit is obtained.
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Lemma 8 Assume that W ⊂ H and the function F satisfy C1,C2,C3. Let
x0 ∈ W . Assume that for each n a function xn : [0, T ] → Pn(W ) is a solution
of the problem (Galerkin projection of x′ = F (x))

x′
n = Pn(F (x)), xn(0) = Pn(x0). (41)

Assume also that xn converges uniformly to x∗ : [0, T ] → W .
Then x∗ solves the following initial value problem

x′ = F (x), x(0) = x0 (42)

Proof: We first show that for all n and t ∈ [0, T ] holds

Pnx
∗(t) = Pnx0 +

∫ t

0

PnF (x∗(s))ds. (43)

Let us fix n. Observe that for each m ≥ n the following equality holds

Pnxm(t) = Pnx0 +

∫ t

0

PnF (xm(s))ds (44)

Since the series xm converges uniformly to x∗, then also Pnxm converges uni-
formly to Pnx

∗. Observe that also the functions PnF (xm) converge uniformly to
PnF (x∗) as the composition of the uniformly continuous function PnF (because
F is a continuous function on the compact set W ) with a uniformly convergent
sequence, hence also the integral in (44) converges (uniformly in t ∈ [0, T ]) to∫ t

0
PnF (x∗(s)). This proves (43). Differentiation of (43) gives

dPnx
∗

dt
= PnF (x∗). (45)

The assertion follows from Lemma 7.

Theorem 9 Assume that W ⊂ H and the function F satisfy C1,C2,C3. Let
x0 ∈ W . Assume that for each n a function xn : [0, T ] → Pn(W ) is a solution
of the problem (Galerkin projection of x′ = F (x))

x′
n = Pn(F (x)), xn(0) = Pn(x0). (46)

Then there exists x∗ : [0, T ] → W , such that x∗ solves the following initial
value problem

x′ = F (x), x(0) = x0 (47)

Proof: The idea goes as follows. First we try to pick up a convergent subse-
quence from {xn} using the Ascoli-Arzela compactness Lemma. Then we show
that the limit function x∗ solves (47).

Observe first that, due to the compactness of W and since xn(t) ∈ W for
t ∈ [0, T ], the sequence {xn} is contained in a compact set. Observe that
the derivatives x′

n(t) are uniformly bounded by |F (W )|, hence the sequence of

13



functions xn is equicontinuous. From the Ascoli-Arzela Lemma it follows that
there exists a subsequence converging uniformly to x∗ : [0, T ] → W . Without
loss of generality we can assume that the whole sequence xn converges uniformly
to x∗. It is obvious that x∗(0) = x0. The assertion of the theorem follows from
Lemma 8.

5 Passing to the limit, an analytic argument

The goal of this section is to present another argument for the existence of the
limit of Galerkin projections. Compared with Section 4, we assume more about
the function F and we add a new condition D on the trapping regions; these new
conditions are satisfied for the Navier-Stokes system and the trapping regions
constructed in section 3. We obtain better results on the convergence plus the
uniqueness and the Lipschitz constant for the induced flow.

We will here use the notations introduced in Section 4. We investigate the
Galerkin projections of the following problem

x′ = F (x) = L(x) +N(x), (48)

where L is a linear operator and N is a nonlinear part of F. We assume that
the basis e1, e2, . . . of H is built of eigenvectors of L. We assume that the
corresponding eigenvalues λk (i.e. Lek = λkek) can be ordered in such a way
that

λ1 ≥ λ2 ≥ . . . , and lim
k→∞

λk = −∞.

Hence we can have only a finite number of positive eigenvalues.

5.1 Estimates based on logarithmic norms

The goal of this subsection is to recall some results about one-sided Lipschitz
constants of the flows induced by ODEs.

Definition 4 [HNW, Def. I.10.4] Let Q be a square matrix; we call

µ(Q) = lim
h>0,h→0

∥I + hQ∥ − 1

h

the logarithmic norm of Q.

Theorem 10 [HNW, Th. I.10.5] The logarithmic norm is obtained by the fol-
lowing formulas

• for Euclidean norm

µ(Q) = the largest eigenvalue of 1/2(Q+QT ).
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• for max norm ∥x∥∞ = maxk |xk|

µ(Q) = max
k

qkk +
∑
i ̸=k

|qki|


• for norm ∥x∥1 =

∑
k |xk|

µ(Q) = max
i

qii +
∑
k ̸=i

|qki|


Consider now the differential equation

x′ = f(x), f ∈ C1. (49)

Let φ(t, x0) denote the solution of equation (49) with the initial condition x(0) =
x0. By ∥x∥ we denote a fixed arbitrary norm in Rn.

The following theorem was proved in [HNW, Th. I.10.6] (for a non-autonoumous
ODE, here we restrict ourselves to the autonomous case only and we use a dif-
ferent notation).

Theorem 11 Let y : [0, T ] → Rn be a piecewise C1 function and φ(·, x0) be
defined for t ∈ [0, T ]. Suppose that the following estimates hold:

µ

(
∂f

∂x
(η)

)
≤ l(t), for η ∈ [y(t), φ(t, x0)]∥∥∥∥dydt (t)− f(y(t))

∥∥∥∥ ≤ δ(t).

Then for 0 ≤ t ≤ T there is

∥φ(t, x0)− y(t)∥ ≤ eL(t)

(
∥y(0)− x0∥+

∫ t

0

e−L(s)δ(s)ds

)
,

where L(t) =
∫ t

0
l(s)ds.

From the above theorem one easily derives the following.

Lemma 12 Let y : [0, T ] → Rn be a piecewise C1 function and φ(·, x0) be
defined for t ∈ [0, T ]. Suppose that Z is a convex set such that the following
estimates hold:

y([0, T ]), φ([0, T ], x0) ∈ Z

µ

(
∂f

∂x
(η)

)
≤ l, for η ∈ Z∥∥∥∥dydt (t)− f(y(t))

∥∥∥∥ ≤ δ.
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Then for 0 ≤ t ≤ T there is

∥φ(t, x0)− y(t)∥ ≤ elt∥y(0)− x0∥+ δ
elt − 1

l
, if l ̸= 0.

For l = 0, there is

∥φ(t, x0)− y(t)∥ ≤ ∥y(0)− x0∥+ δt.

5.2 Application to Galerkin projections - uniqueness and
another proof of convergence

Definition 5 We say that W ⊂ H and F = N + L satisfy condition D if the
following condition holds

D There exists l ∈ R such that for all k = 1, 2, . . .

1/2
∞∑
i=1

∣∣∣∣∂Nk

∂xi

∣∣∣∣(W ) + 1/2
∞∑
i=1

∣∣∣∣∂Ni

∂xk

∣∣∣∣(W ) + λk ≤ l (50)

The main idea behind condition D is to ensure that the logarithmic norms
for all Galerkin projections are uniformly bounded.

Theorem 13 Assume that W ⊂ H and F satisfy conditions C1,C2,C3,D and
W is convex. Assume that Pn(W ) is a trapping region for the n-dimensional
Galerkin projection of (48) for all n > M1. Then

1. Uniform convergence and existence For a fixed x0 ∈ W , let xn :
[0,∞] → Pn(W ) be a solution of x′ = Pn(F (x)), x(0) = Pnx0. Then xn

converges uniformly on compact intervals to a function x∗ : [0,∞] → W ,
which is a solution of (48) and x∗(0) = x0. The convergence of xn on
compact time intervals is uniform with respect to x0 ∈ W .

2. Uniqueness within W . There exists only one solution of the initial value
problem (48), x(0) = x0 for any x0 ∈ W such that x(t) ∈ W for t > 0.

3. Lipschitz constant. Let x : [0,∞] → W and y : [0,∞] → W be solutions
of (48), then

|y(t)− x(t)| ≤ elt|x(0)− y(0)|

4. Semidynamical system. The map φ : R+ × W → W , where φ(·, x0) is
the unique solution of equation (48) such that φ(0, x0) = x0 defines a
semidynamical system on W , namely

• φ is continuous

• φ(0, x) = x

• φ(t, φ(s, x)) = φ(t+ s, x)
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Proof: By |x|n we will denote |Pn(x)|, i.e. Euclidean norm in Rn.
Let

δn = max
x∈W

|Pn(F (x))− Pn(F (Pnx))|.

Obviously δn → 0 for n → ∞, because F ◦ Pn converges uniformly to F on W .
Let us consider the logarithmic norm of the vector field for the n-dimensional

Galerkin projection. We will estimate it using the Euclidean norm on PnH =
Rn(which coincides with the norm inherited from H). Since[

∂Pn(L+N)

∂(x1 . . . xn)

]
ij

=
∂Ni

∂xj
+ δijλj , (51)

we need to estimate the largest eigenvalue of the following matrix Qn(x) for
x ∈ Pn(W ),

Qn,ij(x) =
1

2

∂Ni

∂xj
(x) +

1

2

∂Nj

∂xi
(x) + δijλj , for i, j = 1, . . . , n (52)

where δij is the Kronecker symbol, i.e., δij = 1, if i = j and δij = 0 otherwise.
To estimate the largest eigenvalue of Qn, we will use the Gershgorin theorem

(see [QSS, Property 5.2]), which states that all eigenvalues of a square n × n-
matrix A, σ(A), satisfy

σ(A) ⊂ ∪n
j=1{z ∈ C : |z −Ajj | < Σi,i̸=j |Aij |}. (53)

From the above equation and condition D it follows immediately that eigenval-
ues of Qn are less than or equal to ln, where

ln = max
k=1,...,n

max
x∈PnW

n∑
i=1

(
1/2

∣∣∣∣∂Nk

∂xi
(x)

∣∣∣∣+ 1/2

∣∣∣∣∂Ni

∂xk
(x)

∣∣∣∣)+ λk. (54)

From assumption D, it follows that ln are uniformly bounded, namely

ln ≤ l, for all n. (55)

Let us take m ≥ n. Let xn : [0, T ] → PnW and xm : [0, T ] → PmW be
the solutions of n- and m-dimensional projections of (48). From Lemma 12 it
follows immediately that (we treat here Pnxm as a perturbed ’solution’ y)

|xn(t)− Pn(xm(t))|n ≤ elt|xn(0)− Pnxm(0)|+ δn
elt − 1

l
(56)

To prove the uniform convergence of {xn} starting from the same initial
condition, observe that

|xn(t)− xm(t)| ≤ |xn(t)− Pn(xm(t))|n + |(I − Pn)xm(t)| ≤

δn
elt − 1

l
+ |(I − Pn)xm(t)| ≤ δn

elT − 1

l
+ |(I − Pn)W |.
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This shows that {xn} is a Cauchy sequence in C([0, T ],H), hence it converges
uniformly to x∗ : [0, T ] → W . From Lemma 8 it follows that dx∗

dt = F (x).
Uniqueness. Let x : [0, T ] → W be a solution of (48) with the initial

condition x(0) = x0. We will show that xn converge to x. We apply Lemma 12
to n-dimensional projection and the function Pnx(t). We obtain

|xn(t)− Pn(x(t))|n ≤ δn
elt − 1

l
. (57)

Since the tail (I − Pn)x(t) is uniformly converging to zero as n → ∞, we see
that xn → x uniformly.

Lipschitz constant on W . From Lemma 12 applied to n-dimensional
Galerkin projection for different initial conditions (we denote the functions by
xn and yn and the initial conditions x0 and y0), we obtain

|xn(t)− yn(t)| ≤ elt|Pnx0 − Pny0|. (58)

Let xn → x and yn → y. Then passing to the limit in (58) gives

|x(t)− y(t)| ≤ elt|x0 − y0|. (59)

Assertion 4 follows easily from the previous ones.

6 Existence theorems for Navier-Stokes system
in 2D

6.1 Some easy lemmas about Fourier series

The following three lemmas are easy exercises in elementary Fourier series theory
[CH].

Lemma 14 Let u ∈ Cn(Td,C) and let uk for k ∈ Zd be the Fourier coefficient
of u. Then there exists M , such that

|uk| ≤
M

|k|n
.

Lemma 15 Assume that |uk| ≤ M
|k|γ for k ∈ Zd. If n ∈ N is such that γ−n > d,

then the function u(x) =
∑

k∈Zd uke
ikx belongs to Cn(Td,C). The series

∂su

∂xi1 . . . xis

=
∑
k∈Zd

uk
∂s

∂xi1 . . . xis

eikx

converges uniformly for 0 ≤ s ≤ n.

Lemma 16 Assume that for some γ > 0, a > 0 and D > 0 there is |uk| ≤
De−a|k|

|k|γ for k ∈ Zd \ {0}.
Then the function u(x) =

∑
k∈Zd uke

ikx is analytic.
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Let H =
{
{uk} |

∑
k∈Zd |uk|2 < ∞

}
. Obviously H is a Hilbert space. Let

F be the right-hand side of (5)

F (u)k = −i
∑
k1

(uk1 |k) ⊓k uk−k1 − νk2uk + ⊓kfk (60)

For a general u ∈ H, we cannot claim that F (u) ∈ H. But when |uk| decreases
fast enough, the following holds

Lemma 17 Let W (D, γ) =
{
u ∈ H | |uk| ≤ D

|k|γ

}
. Then

1. if γ > d
2 , then W (D, γ) satisfies condition C2.

2. if γ − 2 > d
2 and γ > d, then the function F : W (D, γ) → H is continuous

and condition C3 is satisfied on W (D, γ).

3. if γ > d+ 1, then condition D is satisfied on W (D, γ).

Proof: To prove Assertion 1, it is enough to show that W (d, γ) is bounded,
closed (obvious) and is component-wise bounded by some v = {vk}, such that
v ∈ H. We set vk = D

|k|γ . Observe that v ∈ H, because

∑
k∈Zd

|vk|2 ≤ CD2
∞∑

n=1

nd−1

n2γ
(61)

and the series converges when 2γ − (d − 1) > 1. This concludes the proof of
Assertion 1.

To prove Assertion 2, we may assume that f = 0 (it is just a constant vector
in H). From Lemma 3 if follows immediately that for u ∈ W there is

|F (u)k| ≤
C

|k|γ−1
+

νD

|k|γ−2
≤ B

|k|γ−2
.

Hence F (u) ∈ W (B, γ − 2) ⊂ H, when γ − 2 > d
2 . Hence F (W (D, γ)) ⊂

W (B, γ− 2). Since the convergence in W (B, γ− 2) is equivalent to component-
wise convergence, the same holds for the continuity. It is obvious that F (u)k
is continuous on W (d, γ), because the series defining it is uniformly convergent,
hence F is continuous on W (d, γ).

We now prove Assertion 3. Observe that

∂Nk

∂uk1

= (·|k) ⊓k uk−k1 + (uk−k1 |k)⊓k (62)

We will here treat uk as one dimensional object, but the argument is generally
correct, i.e., treating uk as a vector would introduce only an additional constant
and not affect the proof. We estimate∣∣∣∣ ∂Nk

∂uk1

∣∣∣∣ (W ) ≤ 2D|k|
|k − k1|γ

. (63)
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Hence the sum, S(k), appearing in condition D can be estimated as follows

S(k) = 1/2
∑

k1∈Zd\{0,k}

∣∣∣∣ ∂Nk

∂uk1

∣∣∣∣(W ) + 1/2
∑

k1∈Zd\{0,k}

∣∣∣∣∂Nk1

∂uk

∣∣∣∣(W ) ≤

D|k|
∑

k1∈Zd\{0,k}

1

|k − k1|γ
+D

∑
k1∈Zd\{0,k}

|k1|
|k − k1|γ

.

Now observe that∑
k1∈Zd\{0,k}

1

|k − k1|γ
<

∑
k1∈Zd

,k1 ̸=0

1

|k|γ
= C(d, γ) < ∞, for γ > d. (64)

To estimate the sum
∑

k1∈Zd\{0,k}
|k1|

|k−k1|γ , we show that there exists a con-

stant A such that

|k1|
|k − k1|

< A|k|, for k, k1 ∈ Zd \ {0}, k ̸= k1. (65)

Observe that, for |k1| ≤ 2|k|, k1 ̸= 0, k1 ̸= k, we can estimate the denominator
by 1, hence we obtain

|k1|
|k − k1|

≤ 2|k|. (66)

For |k1| > 2|k|, there is

|k1|
|k − k1|

=
1∣∣∣ k1

|k1| −
k

|k1|

∣∣∣ ≤ 1

1− |k|
|k1|

≤ 2. (67)

So we may take A = 2.
Now we estimate as follows∑

k1∈Zd\{0,k}

|k1|
|k − k1|γ

≤ A|k|
∑

k1∈Zd\{0,k}

1

|k − k1|γ−1
< AC(d, γ − 1)|k|, (68)

provided γ − 1 > d.
So there is S(k) < (DC(d, γ) +ADC(d, γ − 1)) |k| and since λk = −ν|k|2,

we see that there exists l satisfying condition D.

6.2 Existence theorems

We set the dimension d = 2. We again assume that the force f is such that
fk = 0 for |k| > K (in [MS] a more general force is treated).

Observe that from Lemma 17 it follows that we need γ > 3 for conditions
C1, C2, C3, D on the trapping regions constructed in Section 3 to be satisfied.
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Theorem 18 If for some D and γ > 3

|uk(0)| ≤
D

|k|γ
(69)

then the solution of (5) is defined for all t > 0 and there exists a constant D′,
such that

|uk(t)| ≤
D′

|k|γ
, t > 0. (70)

The following theorem tells that if we start with analytic initial conditions,
the solution will remain analytic (in space variables).

Theorem 19 If for some D, γ > 3 and a > 0

|uk(0)| ≤
D

|k|γ
e−a|k|, (71)

then the solution of (5) is defined for all t > 0 and there exist constants D′ and
a′ > 0 such that

|uk(t)| ≤
D′

|k|γ
e−a′|k|, t > 0. (72)

The next theorem states that the solution starting from regular initial con-
ditions becomes analytic immediately.

Theorem 20 Assume that for some D, γ > 3 and a > 0 the initial conditions
satisfy

|uk(0)| ≤
D

|k|γ
. (73)

Then the solution of (5) is defined for all t > 0 and for any t0 > 0 one can find
constants D′ and a′ > 0 such that

|uk(t0)| ≤
D′

|k|γ
e−a′|k| (74)

Proof of Theorem 18: Observe first that the enstrophy of {uk(0)} is finite.
Let us take V0 > max(V ({uk}), V ∗). From Theorem 4 it follows that there exist
K and D′ such that {uk(0)} belongs to the trapping set N = N(V0,K, γ,D′).
Observe that N ⊂ W (D′, γ), hence we can pass to the limit with solutions
obtained from Galerkin projections (see Theorem 13).

Proof of Theorem 19: The proof is essentially the same as for Theorem 18,
with the only difference being that we now use Theorem 5 instead of Theorem
4.

Proof of Theorem 20: The global existence was proved in Theorem 18. To
prove the estimate for |uk(t0)|, we use Theorem 6 to obtain

|uk(t0)| ≤
D′

|k|γ
e−a|k|t0 , (75)

which finishes the proof.
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Theorem 21 d = 2. If u0 ∈ C5, then the classical solution of the NS equations
such that u(0, x) = u0(x) exists for all t > 0 and is analytic in space variables
for t > 0.

Proof: From Lemma 14 it follows that the Fourier coefficients of u0, {u0,k},
satisfy assumptions of Theorem 18 with γ = 5. Hence there exists a solution,
{uk(t)} of (5) in H such that uk(0) = u0,k.

Let us set u(t, x) =
∑

k∈Z2\{0} uk(t)e
ikx. It is easy to see that u(t, x) is a

classical solution of the Navier-Stokes system, because the Fourier series for all
terms in the NS equations converges fast enough (compare proof of Lemma 7).

From Theorem 20 and Lemma 16 it follows that the function u(t0, ·) is
analytic in space variables for any t0 > 0.

The following theorem is an easy consequence of Theorem 13.

Theorem 22 Assume d = 2 and γ > 3. If W is any of the trapping regions
defined in Theorems 4 and 5, then the Navier-Stokes system induces a semidy-
namical system on W .

7 Trapping regions in 3D for small initial data

In this section we recall the method by Sannikov and Kaloshin [S] for construct-
ing a trapping region for small initial data in dimension 3.

Let us state a result which is not contained in [S] but can be easily obtained
using the technique presented there.

We set the dimension d = 3. We assume the force f is zero.

Theorem 23 For any γ > 3.5, there exists D0 = D0(γ, ν) such that for all
D < D0, if

|uk(0)| ≤
D

|k|γ
(76)

then the solution of (5) is defined for all t > 0 and

|uk(t)| ≤
D

|k|γ
, t > 0 (77)

Proof: Let

W =

{
{uk} | |uk| ≤

D

|k|γ

}
. (78)

From Lemma 3 it follows that for {uk} ∈ W there is

d|uk|
dt

≤
∣∣∣∑(uk1 |k) ⊓k uk−k1

∣∣∣− ν|k|2|uk| ≤
D2CQ(3, γ)

|k|γ−1
− ν|k|2|uk|. (79)

Hence W is a trapping region if for every k there is

D2CQ(3, γ)

|k|γ−1
− νD

|k|γ−2
< 0. (80)
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We obtain
DCQ(3, γ)

ν
< |k|, k ∈ Z3 \ {0}. (81)

Hence if
D < D0 =

ν

CQ(3, γ)
, (82)

then W is a trapping region for all projections of the Navier Stokes equations.
From Lemma 17 it follows that conditions C1,C2,C3 are satisfied (it is easy to
see that condition D holds if γ > 4.) Hence we can pass to the limit with the
dimension of Galerkin projection to obtain a desired solution.

One can easily state a similar theorem for analytic initial condition.
Let us comment on the Sannikov and Kaloshin result presented in [S]. They

constructed the trapping region of the form |uk| ≤ D
|k|2 e

−v|k|t, t ≥ 0, where

v > 0. The methods developed in this paper require more compactness at t = 0
to be directly applicable to this trapping region.

8 Conclusions and outlook

As already discussed in the introduction, the tools developed here and in [ZM]
enable the topological finite-dimensional tools developed to study the dynamics
of ODEs to be applied to dissipative PDEs.

To be able to apply other dynamical-system tools, such as the hyperbolicity
concept, one needs C1-information about the induced flow. We believe one can
get such information for the Navier-Stokes equations with periodic boundary
conditions on the plane using the framework presented here. For example, the
Lipschitz constant, which we have obtained in this paper represents this kind of
data. But we may definitively expect much more. The natural question to ask
here is the following.

Suppose that all assumptions of Theorem 13 are satisfied. Let φn be a
semidynamical system induced by the n-th Galerkin projection. Let us consider
the variational matrix for φn given by

V n
ij (t, x) =

∂φn
i

∂xj
(t, x). (83)

Question: Do V n
ij (t, Pnx) converge ? And if they converge, then what use we

can make of this fact in the context of the method of self-consistent a priori
bounds developed in [ZM]? We hope to answer this question in a subsequent
paper.

To see why we expect convergence here, let us remark, that V n satisfies the
following differential equation

dV n
ij

dt
= λiV

n
ij +

∑
k

∂Ni

∂xk
V n
kj . (84)
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Hence we can see that there is here the same strong damping as for the original
equation (48). Observe that the bound for Lipschitz constant for (48) and its
Galerkin projections is also a uniform bound for the norms of matrices V n on
any finite time interval. Once we have a strong damping and a priori bounds
for V n, we expect that we can use logarithmic norms to control the convergence
of V n’s [Z2].
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