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Abstract. We describe a Lohner-type algorithm for the computation of rig-
orous upper bounds for reachable set for control systems, solutions of ordinary
differential inclusions and perturbations of ODEs.

1. Introduction. Our goal is to present a Lohner-type algorithm for a rigorous
integration of perturbations of ODEs, which can be seen also as an algorithm for an
integration of control systems or ordinary differential inclusions. By rigorous inte-
gration we mean that we provide verified bounds, taking care of all errors appearing
during numerical integration. This paper depends heavily on [25], as the proposed
algorithm is a modification running on top of the C0-Lohner algorithm for ODEs
described (after [11, 12]) there.

We study the following nonautonomous ODE

x′(t) = f(x(t), y(t)), x(0) = x0 (1)

where x ∈ R
n, f : R

n × R
m → R

n is C1 and y : R ⊃ D → R
m. Assume that we

have some knowledge about y(t), for example |y(t)| < ǫ for 0 ≤ t ≤ T . We would
like to find a rigorous enclosure for x(t).

The problem of this type arises, for example, in the context of the control theory
(see [5, 9, 20]) and in the rigorous integration of dissipative PDEs (see [24, 26, 28] for
more details). In this last setting x represents the dominating modes and y is a tail
of the Fourier expansion, so that (1) is complemented by the equation for y of the
form y′(t) = g(x(t), y(t)) for which we are able to produce some a priori bounds.
The proposed algorithm works. Using it we were able to prove the existence of
multiple periodic orbits for Kuramoto-Sivashinsky PDE [26, 28].

The proposed algorithm can also be used to find rigorous bounds for solutions of
differential inclusions

x′ ∈ h(x) + [ǫ(t)], (2)

where h : R
n → R

n is a C1-vector field and [ǫ(t)] ⊂ R
n. We can cast (2) in the

form (1) by setting f(x, y) = h(x) + y and requiring that y(t) ∈ [ǫ(t)] for all t. The
equation (2) is know as an “inflation” (see [6, 8]).
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Non-autonomous ODEs represent another important class of applications. While
one can easily modify the Lohner algorithm to handle a non-autonomous ODE
directly, it makes sense to apply the proposed Lohner-type algorithm for perturbed
ODEs for (1), because only in this way we can estimate rigorously the Poincaré map
on a section α(x) = 0 (defined in terms of x only) for any initial conditions (x, t0).
This kind of algorithm shall allow to attack the question of symbolic dynamics for
non-autonomous ODEs (see [2]) and ODEs with small delays (see [23]).

Another new element in this paper, besides the proposed algorithm, is a new
inequality concerning bounds for perturbations of ODEs. It is contained in Theo-
rem 4.2 and links together the component-wise estimates based on one-sided Lips-
chitz conditions (see [21]) and the logarithmic norms (see [3, 13]).

The content of the present paper can be described as follows: in Section 2 we
define a notion of weak solution of (1) and state some facts from the theory of
Lebesgue integration. In Section 3 we recall the notion of the logarithmic norm
and state its basic properties. In Sections 4 and 5 we derive basic estimates for
comparison of perturbed and unperturbed ODEs. In Section 6 we give a description
of one step of the proposed Lohner-type algorithm. In Section 7 we describe how
to estimate the trajectory of (1) between time steps which allows to compute the
Poincaré map. In the following section we discuss some tests.

The algorithm presented in this paper was implemented as a part of CAPD
library (see [1]). This library contains many tools for rigorous computations and
computer assisted proofs in the contexts of dynamical systems. All the tests in
Section 8 was performed using CAPD library.

1.1. Basic notation. We will use the same conventions as in [25]. In the sequel, by
arabic letters we denote single valued objects like vectors, real numbers, matrices.
Quite often in this paper we will use square brackets, for example [r], to denote sets.
Usually this will be some set constructed in the algorithm. Sets will also be denoted
by single letters, for example S, when it is clear from the context that it represents
a set. In situations when we want to stress (for example in the detailed description
of algorithm) that we have a set in a formula involving both single-valued objects
and sets we will rather use the square bracket, hence we prefer to write [S] instead
of S to represent a set. From this point of view [S] and S are different symbols
in the alphabet used to name variables and formally speaking there is no relation
between the set represented by [S] and the object represented by S. Quite often in
the description of the algorithm we will have a situation that both variables [S] and
S are used simultaneously, then usually S ∈ [S], but this is always stated explicitly.

For a set [S] by [S]I we denote the interval hull of [S], i.e. the smallest product of
intervals containing [S]. The symbol hull(x1, . . . , xk) will denote the interval hull of
intervals x1, . . . , xk. For any interval set [S] = [S]I by m([S]) we will denote a center
point of [S]I . For any interval [a, b] we define a diameter by diam([a, b]) = b − a.
For an interval vector or an interval matrix [S] = [S]I by diam([S]) we will denote
the maximum of diameters of its components. For an interval [x−, x+] we set
right([x−, x+]) = x+ and left([x−, x+]) = x−.

For a function f(x1, x2, . . . , xk) and sets X1, X2, . . . , Xk we define

f(X1, . . . , Xk) = {f(z1, . . . , zk) | where zi ∈ Xi for i = 1, . . . , j}

For a set X ⊂ R
d by intX we denote an interior of X . For R

n we will denote
the norm of x by ‖x‖ and if the formula for the norm is not specified in some
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context, then it means that it is ok to use any norm there. Let x0 ∈ R
s, then

B(x0, r) = {z ∈ R
s | ‖x0 − z‖ < r}.

For v, w ∈ R
n and A, B ∈ R

n×n (n = 1, . . . ,∞) we say that

v ≤ w iff ∀i vi ≤ wi,

A ≤ B iff ∀ij Aij ≤ Bij .

1.2. Warning. At the first encounter with the question of an rigorous integration
of (1) one may hope that the direct application of any algorithm for rigorous in-
tegration of ODEs should be enough for (2). To this end consider a differential
inclusion

x′ ∈ f(x) + [ǫ], [ǫ] = Πn
i=1[−ǫi, ǫi]. (3)

and a related ODE

x′ = f(x) + ǫ, ǫ ∈ [ǫ]. (4)

One may naively hope that, for example, the Lohner algorithm applied to (4)
with [ǫ] as an interval parameter in the definition of a constant term in f(x) will
give an enclosure not only for (4), but also for (3). For this to be true we need the
following

Conjecture 1. Assume x(t) satisfies (3) for t ∈ [0, T ].
Then for any t ∈ [0, T ] there exists ǫ ∈ [ǫ] such that xǫ(t) = x(t) and xǫ(0) = x(0),

where xǫis a solution of (4).

The above conjecture is false as shown by the following example [18].
Consider a differential inclusion given by

x′ ∈ y + [−ǫ, ǫ], (5)

y′ ∈ −x + [−ǫ, ǫ].

For fixed δ ∈ [−ǫ, ǫ]2 we have the following system of ODEs

x′ = y + δ1, (6)

y′ = −x + δ2,

all solutions with an initial condition in a compact set have a uniform bound inde-
pendent of δ for t > 0, which is given by the energy integral for (6)

(x − δ2)
2 + (y + δ1)

2. (7)

This is not the case for the solutions of (5) as it is clearly seen for ǫ(t) given as a
resonant forcing

x′ = y, (8)

y′ = −x + ǫ sin t.

The main reason for the difference between equations (3) and (4) lies in the fact
that differential inclusion (3) corresponds to the ODE with time varying perturbation
ǫ(t) i.e.

x′ = f(x) + ǫ(t).

2. Control systems, the notion of the solution. In this section we define a
notion of (weak) solution of (1).

We use some standard notions from the measure theory, see for example [17] for
precise definitions. The integral will always mean the Lebesgue integral and the
measure of the set is always Lebesgue measure.
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2.1. Some facts from the theory of Lebesgue integral. We will denote by
m(E) the Lebesgue measure of E.

Let D be a measurable subset of R
k. By L1(D) we will denote a set of measurable

functions f : D → R such that
∫

D
|f |dm < ∞. If f : D → R

n is measurable, then

we say that f ∈ L1(D) if function ‖f‖ ∈ L1(D).

Definition 2.1. Let D ⊂ R be an interval. The function f : D → R
k is absolutely

continuous , if for every ǫ > 0 there exists δ > 0, such that for any family of disjoint
intervals (α1, β1), . . . , (αN , βN ) with

N
∑

i=1

(βi − αi) < δ

the following inequality is satisfied

N
∑

i=1

(f(βi) − f(αi)) < ǫ

The following statement follows directly from results about the differentiability
of measures and functions of bounded variation (see [17, Chapter 8]).

Theorem 2.2. Let D = [a, b], x : D → R
n.

There exists a measurable function g : D → R
n such that equation

x(t) − x(a) =

∫ t

a

g(s)ds (9)

holds for all t ∈ [a, b] iff x is absolutely continuous. In this situation x′(t) exists
almost everywhere in [a, b] and x′(t) = g(t).

From [17, Thm. 8.8] it follows that

Lemma 2.3. Let f : [a, b] → R
k be a measurable function. Then for almost all

points x ∈ [a, b) holds

lim
h→0+

1

h

∫ x+h

x

‖f(s) − f(x)‖ds = 0 (10)

2.2. Weak solutions of ODEs. Control System is given by equation

x′(t) = f(x(t), y(t)) x(t0) = x0 (11)

where x ∈ R
n, f : R

n × R
m → R

n is C1 and y : R ⊃ D → R
m is a measurable

function from a given class U .
Because the right hand side of (11) can be non-continuous we need to define what

we mean by solution of (11).

Definition 2.4. Let D ⊂ R be an interval (a connected subset of R) containing t0.
An absolutely continuous function x : D → R

n is a weak solution of (11) if for
all t ∈ D holds

x(t) = x0 +

∫ t

t0

f(x(s), y(s))ds. (12)

We say that a continuous function x : D → R
n is a (classical) solution of (11)

if x′(t) exists for all t ∈ intD, x(t0) = x0 and

x′(t) = f(x(t), y(t)), ∀t ∈ intD. (13)
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From Theorem 2.2 it follows that x is a weak solution of (11) iff

x′(t) = f(x(t), y(t)), allmost everywhere in D (14)

and the function t 7→ f(x(t), y(t)) is in L1(D). Hence the weak solution in the sense
of Def. 2.4 is a solution of (11) in the sense of Caratheodory [21].

In the remainder of this paper we will always consider the function f on the
right hand side of (11) to be of class Ck (for k ≥ 1) and y to be bounded on
compact intervals and measurable. In such situation the integral equation (12) has
a unique solution defined for some h > 0 on [t0, t + h]. The proof of this fact is a
straightforward application of the Banach contraction principle [21].

3. Basic facts on logarithmic norms. Let ‖ · ‖ denote a vector norm on R
n as

well as its subordinate matrix (operator) norm on R
n×n. The classical definition of

the logarithmic norm of matrix A,

µ(A) = lim
h→0+

‖I + hA‖ − 1

h
(15)

was introduced in 1958 independently by Dahlquist [3] and Lozinskii [13].
In this section we will briefly recall some basic facts, with proofs, about the log-

arithmic norms. A survey regarding the modern developments stemming from this
notion the reader is referred to [19] and the literature given there. Our presentation
is based on [4, Ch. 1.5 ], which was based on [3].

Lemma 3.1. For any matrix A ∈ R
n×n the limit in (15) exists and

‖I + h1A‖ − 1

h1
≤ ‖I + h2A‖ − 1

h2
, for 0 < h1 < h2 (16)

−‖A‖ ≤ µ(A) ≤ ‖A‖. (17)

Proof: Let us fix h > 0 and let 0 < θ < 1, then

‖I + θhA‖ = ‖θ(I + hA) + (1 − θ)I‖ ≤ θ‖I + hA‖ + (1 − θ)‖I‖.
From this immediately obtain

‖I + θhA‖ − 1

θh
≤ ‖I + hA‖ − 1

h
, (18)

which proves (16).
From the triangle inequality one gets

− h‖A‖ ≤ ‖I + hA‖ − ‖I‖ ≤ h‖A‖, (19)

therefore

− ‖A‖ ≤ ‖I + hA‖ − 1

h
≤ ‖A‖. (20)

The monotonicity (16) and the existence of the lower bound imply the existence of
µ(A). �

Theorem 3.2. The function µ : R
n×n → R, which assigns to A its logarithmic

norm is continuous and convex. Moreover, functions µ(h, A) = ‖I+hA‖−1
h

converge
locally uniformly and monotonically to µ(A) for h → 0+.

To be more precise, for any compact set K ⊂ R
n×n and any ǫ > 0 there exists

h0 > 0, such that for all 0 < h < h0 and any A ∈ K holds

ǫ > µ(h, A) − µ(A) ≥ 0. (21)
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Proof: Let h > 0. An easy computation show that, for any 0 ≤ λ ≤ 1 and
A1, A2 ∈ R

n×n holds

µ(h, λA1 + (1 − λ)A2) ≤ λµ(h, A1) + (1 − λ)µ(h, A2).

Therefore, for any h > 0 function µ(h, ·) : R
n×n → R is convex.

By taking the limit h → 0+ from Lemma 3.1 it follows that µ(A) is a con-
vex function. Observe that on any bounded set U ⊂ R

n×n µ(A) is bounded by
supA∈U ‖A‖ < +∞, therefore from the theory of convex functions (see for example
[10, Chap. 6]) it follows that µ is continuous. The uniform convergence of µ(h, ·) to
µ on compact sets follows from Dini’s Theorem on monotone sequences of pointwise
converging continuous functions to continuous limit and Lemma 3.1. �

The following lemma follows directly from the convexity of µ(A)

Lemma 3.3. Let A : [0, 1] → R
n×n be a bounded measurable function. Then

µ

(∫ 1

0

A(s)ds

)

≤
∫ 1

0

µ(A(s))ds ≤ sup
s∈[0,1]

µ(A(s)). (22)

4. Bounds for perturbations of ODEs. In this section we state the basic the-
orem comparing a solution of an ODE and an approximate solution. Our approach
unifies the approach based on logarithmic norms and one-sided Lipschitz condition
leading to component-wise bounds from [21, Ch. II.13].

4.1. Estimates for non-autonomous linear equations. Consider a linear equa-
tion

x′(t) = A(t) · x(t) + b(t), (23)

where x(t) ∈ R
k, A(t) ∈ R

k×k, b(t) ∈ R
k, A and b are bounded and measurable.

We would like to give some bounds on solutions of (23). We consider that a
decomposition of the phase space R

k of the form R
k = ⊕n

i=1R
ki . Therefore, we

have a decomposition of z ∈ R
k into (z1, . . . , zn) such that zi ∈ R

ki . In this section
we will carefully distinguish between the symbol ‖ · ‖ and | · |. The symbol ‖ · ‖ will
always denote a norm, but the symbol |z| for z ∈ R

k will usually denote a vector
of norms of zi, but this will be always clearly indicated in the text. Observe that,
when we have such decomposition, then equation (23) can be written as follows

z′i(t) =
∑

j

Aij(t)zj(t) + bi(t), i = 1, . . . , n (24)

where zi, bi ∈ R
ki and Aij(t) ∈ L(Rki , Rkj ) is a linear map (a matrix). In this way

the matrix A is decomposed into blocks Aij . To each block we will assign a number
Jij and collect them in a matrix J . Roughly speaking Jij will estimate the influence
of zj on z′i.

The fundamental lemma in this section is:

Lemma 4.1. Assume that z : [0, T ] → R
k = ⊕n

i=1R
ki is an absolutely continuous

map, which is a weak solution of the equation

z′(t) = A(t) · z(t) + δ(t), (25)

where δ : [0, T ] → R
k and A : [0, T ] → R

k×k are bounded and measurable.
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Assume that a measurable matrix function J : [0, T ] → R
n×n satisfies the fol-

lowing inequalities for all t ∈ [0, T ]

Jij(t) ≥
{

‖Aij(t)‖ for i 6= j,

µ(Aii(t)) for i = j.
(26)

Let Ci(t) = ‖δi(t)‖ and |z|(t) = (‖z1(t)‖, ‖z2(t)‖, . . . , ‖zn(t)‖).
Then

|z|(t) ≤ y(t) (27)

where y : [0, T ] → R
n is a weak solution of the problem

y′(t) = J(t)y(t) + C(t), y(0) = |z|(0). (28)

Proof: Observe that for all i the function t 7→ ‖zi(t)‖ is absolutely continuous.
Therefore from Theorem 2.2 it follows that for almost every t ∈ [0, T ] the derivative
of ‖zi‖ exists. We will estimate this derivative for such t.

We have

z(t + h)

=z(t) +

∫ t+h

t

A(s)z(s)ds +

∫ t+h

t

δ(s)ds

=z(t) + h (A(t)z(t)) + hδ(t)) +

∫ t+h

t

(A(s)z(s) − A(t)z(t)) + (δ(s) − δ(t))ds

Let us fix i and t ∈ [0, T ). We consider the projection onto the i-th subspace.
We have

‖zi(t + h)‖ ≤‖I + hAii(t)‖ · ‖zi‖(t) + h
∑

j 6=i

‖Aij(t)‖ · ‖zj(t)‖ + h‖δi(t)‖

+

∫ t+h

t

‖A(s)z(s) − A(t)z(t)‖ ds +

∫ t+h

t

‖δ(s) − δ(t)‖ ds

and then we obtain for h > 0

‖zi(t + h)‖ − ‖zi(t)‖
h

≤‖I + hAii(t)‖ − 1

h
· ‖zi‖(t)

+
∑

j 6=i

‖Aij(t)‖ · ‖zj(t)‖ + Ci +
1

h

∫ t+h

t

‖A(s)z(s) − A(t)z(t)‖ ds

+
1

h

∫ t+h

t

‖δ(s) − δ(t)‖ ds

Observe that from Lemma 2.3 it follows that the last two terms in the above in-
equality tend to 0 as h → 0 for almost all points in [0, T ). From now on we assume
that t is such point.

By passing to the limit with h → 0+ we obtain for almost all points in t ∈ [0, T ]

d‖zi‖
dt

(t) ≤ µ(Aii(t))‖zi‖(t) +
∑

j 6=i

‖Aij(t)‖ · ‖zj(t)‖ + Ci(t)

≤
∑

j

Jij(t)‖zj‖(t) + Ci(t) (29)
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Let us define

x(t) = (x1(t), x2(t), . . . , xn(t)) = (‖z1(t)‖, ‖z2(t)‖, . . . , ‖zn(t)‖),
Inequality (29) can be rewritten in vector form as follows

x′(t) ≤ J(t) · x(t) + C(t), for almost all t ∈ [0, T ]. (30)

Let y : [0, T ] → R
n be a weak solution of

y′(t) = J(t) · y(t) + C(t), (31)

such that y(0) > |z|(0) = x(0).
We want to show that

x(t) < y(t), t ∈ [0, T ]. (32)

Let us take the diagonal matrix Λ ∈ R
n×n, such that Λii + Jii(t) ≥ 0 for all

i = 1, . . . , n and t ∈ [0, T ]. Let us define a matrix-valued function B : [0, T ] → R
n×n

by
B(t) = Λ + J(t). (33)

Obviously Bij(t) ≥ 0 for all t ∈ [0, T ].
For any i = 1, . . . , n from (30) we obtain for almost all t ∈ [0, T ]

x′
i(t) + Λiixi(t) ≤

∑

j

Bij(t)xj(t) + Ci(t), (34)

hence

d

dt

(

eΛiitxi(t)
)

≤ eΛiit





∑

j

Bijxj(t) + Ci(t)



 .

The last inequality has the following vector form

d

dt

(

eΛtx(t)
)

≤ eΛtB(t)x(t) + eΛtC(t). (35)

From the above inequality and from Theorem 2.2 it follows that

eΛtx(t) =eΛ·0x(0) +

∫ t

0

d

dt

(

eΛtx(t)
)

(s)ds ≤ x(0)

+

∫ t

0

eΛsB(s)x(s) + eΛsC(s)ds.

Hence we obtain

x(t) ≤ e−Λtx(0) +

∫ t

0

e−Λ(t−s) (B(s)x(s) + C(s)) ds for t ∈ [0, T ] (36)

An analogous computation applied to (31) shows that y satisfies the following
integral equation

y(t) = e−Λty(0) +

∫ t

0

e−Λ(t−s) (B(s)y(s) + C(s)) ds. (37)

Now we are ready to prove (32). Let

t0 = sup{t ∈ [0, T ] | y(s) > x(s), s ∈ [0, t)}. (38)

Obviously from the continuity of y(t) − x(t) it follows that t0 > 0. From (37) and
(36) we obtain

y(t0) − x(t0) ≥ e−Λt0(y(0) − x(0)) +

∫ t0

0

e−Λ(t0−s)B(s)(y(s) − x(s)) ds > 0.
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By the continuity inequality y(t) > x(t) will hold for t ∈ [t0, t0 + ǫ) for some ǫ > 0.
Therefore t0 = T .

Hence condition (32) holds. By passing to the limit y(0) → x(0) we obtain our
assertion. �

Theorem 4.2. Let h > 0. Assume that f : R
n × R

m → R
n be C1 and y :

[t0, t0 + h] → R
m is bounded and measurable.

Let [Wy] ⊂ R
m be convex and such that, y([t0, t0 + h]) ⊂ [Wy].

Let yc ∈ [Wy]. Assume that x1, x2 : [t0, t0 +h] → R
n, both absolutely continuous,

are weak solutions of the following problems, respectively

x′
1 = f(x1, yc), x1(t0) = x0, (39)

x′
2 = f(x2, y(t)), x2(t0) = x̄0. (40)

Let [W1] ⊂ [W2] ⊂ R
n be convex and compact and such that

x1(t) ∈ [W1], x2(t) ∈ [W2], for t ∈ [t0, t0 + h].

Then the following inequality holds for t ∈ [t0, t0 + h] and i = 1, . . . , n

|x1,i(t) − x2,i(t)| ≤
(

eJ(t−t0) · (x0 − x̄0)
)

i
+

(∫ t

t0

eJ(t−s)C ds

)

i

, (41)

where

[δ] = {f(x, yc) − f(x, y) | x ∈ [W1], y ∈ [Wy ]},
Ci ≥ sup |[δi]| , i = 1, . . . , n

Jij ≥







sup µ( ∂fi

∂xj
([W2], [Wy])) if i = j,

sup
∥

∥

∥

∂fi

∂xj
([W2], [Wy])

∥

∥

∥ if i 6= j.

Proof: Let z(t) = x1(t) − x2(t). We have for t ∈ [t0, t0 + h]

z(t) =

(

x1(t0) +

∫ t

t0

f(x1(s), yc)ds

)

−
(

x2(t0) +

∫ t

t0

f(x2(s), y(s))ds

)

= z(t0) +

∫ t

t0

(f(x1(s), yc) − f(x2(s), y(s))) ds.

Now observe that

f(x1(t), yc) − f(x2(t), y(t)) = f(x1(t), yc) − f(x1(t), y(t)) +

f(x1(t), y(t)) − f(x2(t), y(t)) = δ(t) + A(t) · (x1(t) − x2(t)),

where δ(t) ∈ [δ] is bounded and measurable and

Aij(t) =

∫ 1

0

∂fi

∂xj

(x2(t) + s(x1(t) − x2(t)), y(t)) ds

is bounded and measurable matrix.
We obtain

z(t) = z(t0) +

∫ t

t0

(A(s)z(s) + δ(s)) ds (42)

To apply Lemma 4.1 to the function z = x1 − x2 to obtain (49) we need to show
that

Jij ≥
{

supt∈[t0,t0+h] ‖Aij(t)‖ for i 6= j,

supt∈[t0,t0+h] µ(Aii(t)) for i = j.
(43)
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For the off-diagonal terms we have

‖Aij(t)‖ ≤
∫ 1

0

∥

∥

∥

∥

∂fi

∂xj

(x2(t) + s(x1(t) − x2(t)), y(t))

∥

∥

∥

∥

ds

≤ sup
x∈[W2],y∈[Wy]

∥

∥

∥

∥

∂fi

∂xj

(x, y)

∥

∥

∥

∥

≤ Jij .

For the diagonal case we use Lemma 3.3.
The result now follows from Lemma 4.1. �

It is possible to organize the error estimates slightly differently, namely estimate
[δ] on [W2] × [Wy ] instead of on [W1] × [Wy], which will produce larger [δ], but in
the same time estimate J on [W2]×{yc} instead of [W2]× [Wy], which should result
in better J , to obtain the following variant of the above theorem.

Theorem 4.3. The same assumptions and notations as in Theorem 4.2.
Then the following inequality holds for t ∈ [t0, t0 + h] and i = 1, . . . , n

|x1,i(t) − x2,i(t)| ≤
(

eJ(t−t0) · (x0 − x̄0)
)

i
+

(∫ t

t0

eJ(t−s)C ds

)

i

, (44)

where

[δ] = {f(x, yc) − f(x, y) | x ∈ [W2], y ∈ [Wy ]},
Ci ≥ sup |[δi]| , i = 1, . . . , n

Jij ≥







sup µ( ∂fi

∂xj
([W2], yc)) if i = j,

sup
∥

∥

∥

∂fi

∂xj
([W2], yc)

∥

∥

∥ if i 6= j.

Proof: We proceed as in the proof of Theorem 4.2. But the difference between
f(x1(t), yc) and f(x2(t), y(t)) is computed differently. Namely,

f(x1(t), yc) − f(x2(t), y(t)) = f(x1(t), yc) − f(x2(t), yc) +

f(x2(t), yc) − f(x2(t), y(t)) = A(t) · (x1(t) − x2(t)) + δ(t),

where δ(t) ∈ [δ] and

Aij(t) =

∫ 1

0

∂fi

∂xj

(x2(t) + s(x1(t) − x2(t)), yc) ds.

We continue as in the proof of Theorem 4.2. �

5. Formulas for various cases. In this section we rewrite Theorems 4.2 and 4.3 in
the form, which will be later used in our algorithm for the integration of differential
inclusions.

5.1. The estimation of perturbations of ODEs based on logarithmic norms.

From Theorem 4.3 using the trivial decomposition consisting of the whole space we
obtain the following lemma.

Lemma 5.1. Let h > 0. Assume that f : R
n×R

m → R
n be C1 and y : [t0, t0+h] →

R
m be bounded and measurable.
Let [Wy] ⊂ R

m be convex and such that, y([t0, t0 + h]) ⊂ [Wy ].
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Let yc ∈ [Wy]. Assume that x1, x2 : [t0, t0 +h] → R
n both absolutely continuous,

are weak solutions of the following problems, respectively

x′
1 = f(x1, yc), x1(t0) = x0, (45)

x′
2 = f(x2, y(t)), x2(t0) = x̄0. (46)

Let [W1] ⊂ [W2] ⊂ R
n be convex and compact and such that

x1(t) ∈ [W1], x2(t) ∈ [W2], for s ∈ [t0, t0 + h].

Then for any t ∈ [0, h] holds

‖x2(t0 + t) − x1(t0 + t)‖

≤ exp(lt)‖x1(t0) − x2(t0)‖ + exp(lt)

∫ t0+t

t0

exp(−ls)‖[δ]‖ds

= exp(lt)‖x1(t0) − x2(t0)‖ +
‖[δ]‖

l
(exp(lt) − 1)

where l = sup
(

µ(∂f
∂x

([W2], yc))
)

, and µ is the logarithmic norm of the matrix (see

[7] for the definition) and

[δ] = {f(x, yc) − f(x, y) | x ∈ [W2], y ∈ [Wy]}.

5.2. A component-wise estimate. From Theorem 4.2 using the trivial decom-
position R

m =
⊕m

i=1 R we obtain the following lemma.

Lemma 5.2. Let h > 0. Assume that f : R
n×R

m → R
n be C1 and y : [t0, t0+h] →

R
m is bounded and measurable.
Let [Wy] ⊂ R

m be convex and such that, y([t0, t0 + h]) ⊂ [Wy ].
Let yc ∈ [Wy]. Assume that x1, x2 : [t0, t0+h] → R

n, both absolutely continuous,
are weak solutions of the following problems, respectively

x′
1 = f(x1, yc), x1(t0) = x0, (47)

x′
2 = f(x2, y(t)), x2(t0) = x̄0. (48)

Let [W1] ⊂ [W2] ⊂ R
n be convex and compact and such that

x1(t) ∈ [W1], x2(t) ∈ [W2], for s ∈ [t0, t0 + h].

Then the following inequality holds for t ∈ [t0, t0 + h] and i = 1, . . . , n

|x1,i(t) − x2,i(t)| ≤
(

eJt · (x0 − x̄0)
)

i
+

(∫ t

t0

eJ(t−s)C ds

)

i

, (49)

where

[δ] = {f(x, yc) − f(x, y) | x ∈ [W1], y ∈ [Wy ]},
Ci ≥ sup |[δi]| , i = 1, . . . , n

Jij ≥







sup ∂fi

∂xj
([W2], [Wy]) if i = j,

sup
∣

∣

∣

∂fi

∂xj
([W2], [Wy ])

∣

∣

∣
if i 6= j.
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6. The Lohner-type algorithm for perturbations of ODEs. For a given
measurable function y : [0,∞) → R

m which is bounded on compact intervals let
ϕ(t, x0, y) denotes a weak solution of equation (1) with initial condition x(0) = x0.
For a given y0 ∈ R

m let ϕ(t, x0, y0) be a solution of the following Cauchy problem

x′ = f(x, y0), x(0) = x0 (50)

with the same initial condition x(0) = x0. Observe that system (50) is a particular
case of (1) with y(t) = y0.

Let U be a some family of functions y : [0,∞) → R
m which are measurable and

are uniformly bounded on any compact interval, i.e. for any T > 0 there exists
M(T ), such that for every y ∈ U and every t ∈ [0, T ] holds ‖y(t)‖ ≤ M(T ).

We are interested in finding rigorous bounds for φ(t, [x0], [y0]), where [x0] ⊂ R
n

and [y0] ⊂ U . The set [y0] might be defined as some dynamical process, in this case
we may need to compute something for each time step, or it can be just given by the
specifying the bounds, for example y ∈ [y0] iff y(t) ∈ [−ǫ, ǫ]m and y is measurable.

Below we propose a modification of the original Lohner algorithm [11, 12] to treat
problem (1). Our presentation follows the description of the C0-Lohner algorithm
presented in [25].

6.1. One step of the algorithm. In the description below the objects with an
index k refer to the current values and those with an index k + 1 are the values
after the next time step.

We define

[yk] = {y ∈ U | y(t) = z(tk + t) for some z ∈ [y0]}.
For given [y] ⊂ U we will also use the following notation

[y]([t1, t2]) = {z(t) | z ∈ [y], t ∈ [t1, t2]}.
One step of the Lohner algorithm is a shift along the trajectory of system (1)

with following input and output data:
Input data:

• tk is a current time
• hk is a time step
• [xk] ⊂ R

n, such that ϕ(tk, [x0], [y0]) ⊂ [xk]
• possibly some bounds for [yk]

Output data:

• tk+1 = tk + hk is a new current time
• [xk+1] ⊂ R

n, such that ϕ(tk+1, [x0], [y0]) ⊂ [xk+1]
• possibly some bounds for [y0][0, tk+1).

We do not specify here a form (a representation) of sets [xk]. They can be interval
sets, balls, doubletons etc. (see [15, 25]). This issue is very important in handling
of the wrapping effect and is discussed in detail in [11, 12] (see also Section 3 in
[25]).

One step of the algorithm consists from the following parts:

1.: Generation of a priori bounds for ϕ and [y0]([tk, tk+1]).
We find a convex and compact set [W2] ⊂ R

n and a convex set [Wy ] ⊂ R
m,

such that

ϕ([0, hk], [xk], [yk]) ⊂ [W2] (51)

[yk]([0, hk]) ⊂ [Wy ] (52)
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2.: We fix yc ∈ [Wy].
3.: Computation of an unperturbed x-projection. We apply one step of

the C0-Lohner algorithm to (50) with a time step hk and an initial condition
given by [xk] and y0 = yc. As a result we obtain [xk+1] ⊂ R

n and a convex
and compact set [W1] ⊂ R

n, such that

ϕ(hk, [xk], yc) ⊂ [xk+1]

ϕ([0, hk], [xk], yc) ⊂ [W1]

4.: Computation of the influence of the perturbation. Using formulas
from Lemmas 5.2 or 5.1 we find a set [∆] ⊂ R

n, such that

ϕ(tk+1, [x0], [y0]) ⊂ ϕ(hk, [xk], yc) + [∆]. (53)

Hence

ϕ(tk+1, [x0], [y0]) ⊂ [xk+1] = [xk+1] + [∆] (54)

5.: If needed we do some computation to obtain [yk+1]

6.2. Part 1 - comments. In the context of an nonautonomous ODE with small
and uniformly bounded [δ] we can set [Wy] = R. To obtain [W2] any rough enclosure
procedure devised for ODEs should work. In the context of a dissipative PDE the
whole story is more complicated and we refer the interested reader to [26].

6.3. Part 4 - details. In Lemmas 5.1 and 5.2 we have presented two ways to
compute [∆] = [∆](h) for 0 ≤ h ≤ hk.
An approach based on component-wise estimates

1. We set

[δ] = [{f(x, yc) − f(x, y) | x ∈ [W1], y ∈ [Wy]}]I
Ci = right(|[δi]|), i = 1, . . . , n

Jij =







right
(

∂fi

∂xi
([W2], [Wy])

)

if i = j,

right
(∣

∣

∣

∂fi

∂xj
([W2], [Wy ])

∣

∣

∣

)

. if i 6= j.

2. D =
∫ h

0
eJ(h−s)C ds

3. [∆i] = [−Di, Di], for i = 1, . . . , n

It remains to explain how we compute
∫ t

0
eA(t−s)C ds. First observe that

∫ t

0

eA(t−s)C ds = t

(

∞
∑

n=0

(At)n

(n + 1)!

)

· C. (55)

We fix any norm ‖ · ‖, such that for any matrix A = (aij) we have |aij | ≤ ‖A‖.
It is not true for a general norm, for example if we take vector norm on R

2 de-
fined by ‖(x1, x2)‖ = max{ 1

100x1, x2} then the associated matrix norm of a matrix
(

0 100
0 0

)

is equal to 1. We may take for example L∞-norm, i.e. ‖x‖∞ = maxi |xi|
(although we should chose a norm for which ‖At‖ becomes as small as possible). Let
us set

Ã = At, Am =
Ãm

(m + 1)!
.
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In this notation
∞
∑

m=0

(At)m

(m + 1)!
=

∞
∑

m=0

Am

A0 = Id, Am+1 = Am · Ã

m + 2

For the remainder term we will use the following estimate

‖AN+k‖ ≤ ‖AN‖ ·
∥

∥

∥

∥

∥

Ã

N + 2

∥

∥

∥

∥

∥

k

Hence if
∥

∥

∥

Ã
N+2

∥

∥

∥ < 1, then

∥

∥

∥

∥

∥

∑

m>N

Am

∥

∥

∥

∥

∥

≤ ‖AN‖ ·
∥

∥

∥

∥

∥

Ã

N + 2

∥

∥

∥

∥

∥

·
(

1 −
∥

∥

∥

∥

∥

Ã

N + 2

∥

∥

∥

∥

∥

)−1

= ‖AN‖ · ‖Ã‖
N + 2 − ‖Ã‖

= r

And finally,
∞
∑

m=0

Am =

N
∑

m=0

Am + [−r, r]n (56)

An approach based on logarithmic norms:(compare Lemma 5.1) We fix
any norm ‖ · ‖, for example the L∞-norm: ‖x‖∞ = maxi |xi| (one should chose the
norm which gives the smallest l in 3., below )

1. [δ] = [{f(x, yc) − f(x, y) | x ∈ [W1], y ∈ [Wy ]}]I .
2. C = ‖[δ]‖
3. l = right

(

µ(∂f
∂x

([W2], yc))
)

4. If l 6= 0, then D = C(elh−1)
l

.
If l = 0, then D = Ch

5. [∆] = [−D, D]n

Remark. In both cases we compute

[δ] = [{f(x, yc) − f(x, y) | x ∈ [W1], y ∈ [Wy]}]I . (57)

One need to be very careful in the computation of [δ] using (57), because direct inter-
val evaluation of [{f(x, yc)−f(x, y)|x ∈ [W1], y ∈ [Wy]}]I yields big overestimation.
Namely, when there is no perturbations at all, i.e. [Wy] = {yc}, then [δ] = 0. On the
other hand if f([W1]) = [{f(x, yc) | x ∈ [W1]}]I = [a−, a+] then the naive interval
computation give [δ] = [a− − a+, a+ − a−], so diam [δ] = 2 diam f([W1]) and this
can be big because [W1] is an enclosure of a solution during the whole time step.

6.4. Rearrangement. It is well known that a direct interval evaluation of (54)
leads to huge overestimates, which are mainly due to the wrapping effect [14, 11],
hence an essential part of the Lohner algorithm is designed to reduce it. Sets
[xk] are not stored as interval sets (i.e. products of intervals), but using various
representations. For instance we can represent set [X ] ⊂ R

n as

[X ] = x + [B][R] where x ∈ R
n, [B] ⊂ R

n×n, [R] ⊂ R
n.
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Each representation treats (54) differently. Below we include all necessary formulas
for representations from [11] (see [25] for more details and the motivation).
Evaluations 2 and 3. In this representation

[xk] = xk + [Bk][r̃k]. (58)

In the context of our algorithm in part 3 we obtain

[xk+1] = xk+1 + [Bk+1][rk+1]. (59)

Now we have to take into account equation (54). We set

xk+1 = m(xk+1 + [∆]) (60)

[r̃k+1] = [rk+1] + [B−1
k+1] (xk+1 + [∆] − xk+1) . (61)

Evaluation 4. In this representation

[xk] = xk + Ck[r0] + [Bk][r̃k]. (62)

In the context of our algorithm in part 3 we obtain

[xk+1] = xk+1 + Ck+1[r0] + [Bk+1][rk+1]. (63)

Equation (54) is taken into account exactly in the same way as in previous evalua-
tions, i.e., we use (60) and (61).

7. Rigorous estimates between time steps. Let S ⊂ R
n be a manifold (we

call it a section). Let the differential inclusion be defined by (2) with [ǫ(t)] ⊂ R
n

for t ∈ D. We define [y] = {y : D → R
n|y(t) ∈ ǫ(t)}. For a fixed ǫ(t) = y ∈ [y]

differential inclusion (2) becomes an ODE. For this ODE we define Py : S ⊃ S0 → S
to be a Poincaré map (fist return map to section S). For each point x0 ∈ S such
that Py(x0) exists for all y ∈ [y] the Poincaré map of differential inclusion (2) is
defined by

P (x0) = {x ∈ S|x = Py(x0) for some y ∈ [y]} (64)

In order to compute the Poincaré map for differential inclusion it not enough to
know xk before section and xk+1 after section but we also need estimates for x(t)
during whole time step (i.e for all times t ∈ [tk, tk + hk]) to be able to estimate the
intersection of the trajectory with the section (see [25] for more details). Below we
present an algorithm which deals with this task.

Input parameters:

• hk is a time step
• [xk] ⊂ R

n, such that ϕ(tk, [x0], [y0]) ⊂ [xk]
• [xk+1] ⊂ R

n, such that ϕ(tk + hk, [x0], [y0]) ⊂ [xk+1]
• convex and compact set [W2] ⊂ R

n and convex set [Wy] ⊂ R
m, such that

ϕ([tk, tk + hk], [x0], [y0]) ⊂ [W2] (65)

[y0]([tk, tk+1]) ⊂ [Wy]. (66)

• yc ∈ [Wy ]
• [xk+1] ⊂ R

n, such that ϕ(hk, [xk], yc) ⊂ [xk+1]
• [W1] ⊂ R

n compact and convex, such that ϕ([0, hk], [xk], yc) ⊂ [W1]
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Output:

We compute [Ek] ⊂ R
n such that

ϕ(tk + [0, hk], [x0], [y0]) ⊂ [Ek],

Algorithm:

• We compute [Ek] ⊂ R
n, such that

ϕ([0, hk], [xk], yc) ⊂ [Ek] (67)

using a procedure for an ODE described in [25]. This procedure requires as
input data: hk, [xk], [xk+1] and [W1].

• we compute a set [∆] ⊂ R
n, such that

ϕ(tk + h, [x0], [y0]) ⊂ ϕ(h, [xk], yc) + [∆], for 0 ≤ h ≤ hk. (68)

Observe that this requires yc, [W1], [W2] and [Wy].
• finally we obtain

ϕ(tk + [0, hk], [x0], [y0])i ⊂ [Ek]i = [Ek]i + [∆]i. (69)

Slightly better algorithm:

• if 0 /∈ fi([W2], [Wy])i, then the i-th coordinate is strictly monotone on [W2]×
[Wy ], hence we set

[Ek]i = hull([xk]i, [xk+1]i)

• if 0 ∈ fi([W2], [Wy]), then we compute [Ek] ⊂ R
n, such that

ϕ([0, hk], [xk], yc) ⊂ [Ek] (70)

using a procedure for an ODE described in [25]. This procedure requires as
input data: hk, [xk], [xk+1]and [W1].

We have

ϕ(tk + [0, hk], [x0], [y0])i ⊂ [Ek]i = [Ek]i + [∆]i. (71)

A drawback of this approach:

if we have to perform several time steps during which the computed enclosure for
the trajectory has a nonempty intersection with the section, then ∆ is added twice.

7.1. Computation of the Poincaré map. If as in [25] we assume that the section
is given by α(x) = 0 then an algorithm discussed in Section 5 in [25] also applies in
the present context.

8. Some tests, discussion. In Section 6 we presented two variants of an algo-
rithm for rigorous integration of differential inclusions: first based on the logarith-
mic norms and the second one that uses component-wise estimates. To shorten the
notation in this section we call them the LN method and the CW method corre-
spondingly. Observe that Theorem 4.2 offers also the possibility of mixed approach,
treating some groups of coordinates componentwise and other groups by using log-
arithmic norms. We expect that for generic systems the CW method will be by far
better that then the LN method or the mixture of two. Tests performed for Rössler
equation or Kuramoto-Sivashinsky PDE confirm this. On the other hand for sys-
tems having some special properties one can expect that with a suitably chosen
norm the LN method might be better than the CW method. We tested this on the
harmonic oscillator example, which preserves the distance between points. It turns
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initial set [X ] (0.0,−10.3, 0.03)+ {0} × [−10−4, 10−4]2

perturbations [ǫ] [−10−4, 10−4]3

CW method

P ([X ])





[−0.2115046, 0.2088673]
[−3.6978105,−3.4735188]

[0.0311734, 0.0332674]





T

diam P ([X ]) (0.4203719,0.2242916,0.0020940)
LN method

P ([X ])





[−0.3889325, 0.3773784]
[−3.7822709,−3.3744466]

[0.0303242, 0.0341994]





T

diam P ([X ]) (0.7663109 ,0.4078243 ,0.0038752)
Table 1. Perturbed Rössler equation: Value of a Poincaré map
on section Θ = {x = 0, x′ > 0}

out that even in this case the CW method works better in most of tests, loosing
only marginally in some cases.

8.1. Rössler equations. Rössler equations [16] are given by

x′ = −(y + z)

y′ = x + 0.2y (72)

z′ = 0.2 + z(x − a),

where a is a real parameter. In our tests we set a = 5.7 - the ’classical’ parameter
value for which numerical simulation display a strange attractor [16].

In our test we focus on computation of a Poincaré map, P , on section Θ = {x =
0, x′ > 0} around a point x0 = (0.0,−10.3, 0.03). This is a point from the attractor
(or close to the attractor, which we have found numerically difficult in [27]).

In Table 1 we list the results of a computation of Poincaré map on section Θ
for a differential inclusion x′ ∈ f(x) + [ǫ], where f(x) is the vector field in Rössler
equations (72) and [ǫ] = [−10−4, 10−4]3. The initial condition was x0 + {0} ×
[−10−4, 10−4]2. In computations the method based on the component-wise esti-
mates and the Lohner algorithm - 4th evaluation was used.

We see that our algorithm can provide good estimates even for perturbed system
and for set of initial data containing numerically difficult points from attractor.

8.2. Kuramoto-Sivashinsky PDE. Assuming odd and periodic boundary con-
ditions the Kuramoto-Sivashinsky equation can be reduced [24] to the following
infinite system of ordinary differential equations

ȧk = k2(1 − νk2)ak − k

k−1
∑

n=1

anak−n + 2k

∞
∑

n=1

anan+k k = 1, 2, 3, . . . (73)

where ν > 0. In [26, 28] using the algorithm based on component-wise esti-
mates described in this paper to handle the dominant modes and the method
of self-consistent bounds developed in [24] to deal with the tail (the remaining
modes) the existence of multiple periodic orbits has been proved for a range for
ν ∈ [0.032, 0.127]. Some of these orbits were attracting, while others were unstable
with one unstable direction.
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For example, for ν = 0.1212 the computation of the Poincaré map using the
LN method based on the maximum norm yielded results with the largest diameter
around 50 times as large as the one based on the CW method.

8.3. Perturbed harmonic oscillator. We use the harmonic oscillator to compare
the LN method and the CW method. Although in general we expect CW method
to perform better, in the case of harmonic oscillator (where appropriate logarithmic
norm is equal to 0) we expect LN method to give better estimates.

Both methods first find the solution of the unperturbed system and then they add
the influence of perturbation denoted (following Section 6) by ∆. In LN method ∆
is “measured” by one number, i.e ∆ = [−D, D]2. It is not the case for CW method,
here estimates can differ for coordinates, so we have ∆ = [−D1, D1] × [−D2, D2].
Therefore in comparison of this two methods the result can be ambiguous, it can
occur that estimates on some coordinates are better in LN method but on the other
are worse.

The equations of the perturbed harmonic oscillator are given by

x′ = y + ǫ1 (74)

y′ = −x + ǫ2

and we will always use the initial condition (1, 0) + [−δ, δ]2.
For this simple system we are able to compute ∆ for both methods by hand. Let

h denote time step used.
For LN method we used the euclidean logarithmic norm µe because it is optimal
for this case. Namely, we have

l = µe

(

∂f

∂x
([W2], yc

)

= µe

([

0 1
−1 0

])

= 0. (75)

Therefore, we obtain ∆ = [−D, D]2 where

D = h
√

ǫ21 + ǫ22.

For CW method we obtain ∆ = ([−D1, D1], [−D2, D2]), where

D1 = ǫ1 sinhh + ǫ2(coshh − 1),

D2 = ǫ1(coshh − 1) + ǫ2 sinhh.

Suppose that ǫ1 = ǫ2 := ǫ, then the LN method is better than the CW method
if √

2hǫ < ǫ(sinhh + coshh − 1) = ǫ(exp(h) − 1) (76)

Inequality (76) holds for h > 0.657275. As it can be seen in Table 2 results of
computations agree with this theoretical estimate and the LN method is better for
h > 0.657275. We were not able to use time steps h > 0.8 because for such a big
time steps our rough enclosure procedure (the first part of the algorithm) fails.

The situation is quite different, when we perturb on one coordinate, only. Sup-
pose that ǫ1 = 0 and ǫ2 = ǫ. Now, for LN method we have

D = hǫ,

and for CW method

D1 = ǫ(coshh − 1) = ǫ(
h2

2!
+

h4

4!
+ . . . ),

D2 = ǫ sinhh = ǫ(h +
h3

3!
+

h5

5!
+ . . . ).
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time step LN method CW method
h D D1, D2

0.799 0.112996 0.122332
0.7 0.0989949 0.101375
0.66 0.0933381 0.0934792
0.658 0.0930553 0.0930927
0.657 0.0929138 0.0928997
0.65 0.0919239 0.0915541
0.5 0.0707107 0.0648721
0.25 0.0353553 0.0284025
0.1 0.0141421 0.0105171
0.01 0.00141421 0.00100502
0.001 0.000141421 0.00010005

Table 2. Perturbed harmonic oscillator ǫ1 = ǫ2 = 0.1: Estimates
of perturbations for various time steps - comparison between LN
and CW method

time step LN method CW method
h D D1 D2

0.8 0.08 0.0337435 0.0888106
0.5 0.05 0.0127626 0.0521095
0.25 0.025 0.0031413 0.0252612
0.1 0.01 0.0005004 0.0100167
0.01 0.001 5.0e-06 0.0010001
0.001 0.0001 5.002e-08 0.0001

Table 3. Perturbed harmonic oscillator ǫ1 = 0, ǫ2 = 0.1: Esti-
mates of perturbations for various time steps - comparison between
LN and CW method

From the above formulas it follows that for time steps up to 1.616137 value of D1

is smaller than D, but D2 is always bigger than D. In Table 3 we list values of
perturbations for LN an CW method for various time steps. Again for time steps
bigger than 0.8 our implementation could not find a rough enclosure. For small
time steps the ratio D

D1
is quite big, while the ratio D

D2
is slightly less than one. So

overall it is better to use the CW method.
In Table 4 we compare diameters of computed rigorous estimates of solutions of

(74) after time T = 2π for these two methods using various values of h, ǫ and δ.
Again we perturb only second coordinate i.e. ǫ1 = 0, ǫ2 = ǫ. As expected, we see
that decreasing time steps results in the increase of the accuracy of the estimates,
but at the price of an increased computational cost. In the second part of the table
we were changing set sizes and in the third one we were changing the size of the
perturbation. It can be seen that our algorithm is capable to provide estimates
even for perturbations much bigger than values of the vector field. Observe that
with the time steps used in these experiments the CW method is better than the
LN method. The biggest time step h used was approximately equal to 0.785.
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number size of the set after time T = 2π
ǫ δ of steps LN method CW method

0.1 0.01 9 1.615936 1.178825
0.1 0.01 100 1.619474 0.8453958
0.1 0.01 1000 1.619995 0.8225159
0.1 0.01 10000 1.62 0.8202514
0.1 0.01 100000 1.62 0.8200251
0.1 0 100 1.599474 0.8253958
0.1 0.01 100 1.619474 0.8453958
0.1 0.1 100 1.799474 1.025396

0.01 0.01 100 0.1799474 0.1025396
0.1 0.01 100 1.619474 0.8453958

1 0.01 100 16.01474 8.273958
10 0.01 100 159.9674 82.55958

Table 4. Perturbed harmonic oscillator ǫ1 = 0, ǫ2 = ǫ: Estimates
of perturbations for various values of the parameters - comparison
between LN and CW method
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[16] O. E. Rössler, An equation for continous chaos, Phys. Lett., 57A (1976), 397–398.

http://capd.wsb-nlu.edu.pl.
http://www.ams.org/mathscinet-getitem?mr=2169233&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0102921&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0774402&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1850315&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1768417&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0467080&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1387154&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1808998&return=pdf


A LOHNER-TYPE ALGORITHM FOR CONTROL SYSTEMS AND ... 385

[17] W. Rudin, “Real and Complex Analysis,” Mc Graw-Hill, 1974.
[18] S. Sedziwy, private communication.
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