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1. Introduction

Topological methods are frequently used in proving results on qualitative proper-
ties of differential equations, especially in problems of the existence of solutions sat-
isfying some boundary value data. They are usually based on fixed point theorems
or on properties of the Brouwer and Leray-Schauder degrees. The most common
approach applies those tools to integral operators corresponding to the consid-
ered equations in infinite-dimensional spaces of functions satisfying the prescribed
boundary data. Another approach, which is restricted to equations representing
some evolution in time, applies them to translation operators along solutions. In
the case of ordinary differential equations those operators are finite-dimensional;
they are infinite-dimensional if one considers parabolic partial differential equations
or delay differential equations. Frequently, the existence of a required solution is
a consequence of the fact that the translation operator preserves some compact
convex subset of the phase space of the equation, hence the Brouwer or Schauder
fixed point theorem applies. In particular, such an approach applies to dissipa-
tive equations. Using the Lefschetz fixed point theorem, the same idea can be
applied to compact subsets being absolute neighborhood retracts. However, for
non-dissipative equations usually there are no reasonable compact subsets which
are invariant with respect to the translation operator. The aim of this note is to
describe a method which sometimes can be applied in that context. It is based on
the concept of isolating segment and applies the Lefschetz fixed point theorem, the
fixed point index, and the retract method of Ważewski. It provides results on the
existence of periodic solutions, and, after suitable arrangements, also on the ex-
istence of solutions of some other two-point boundary value problems, homoclinic
and multibump solutions, and chaotic dynamics of various kinds. Our aim is to
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present those results and illustrate them using some concrete equations. Finally, we
make some comments on a numerical algorithm leading to construction of isolating
segments.

We use a standard notation concerning fixed points; in particular, Fix(f) denotes
the set of fixed points of a map f : U → X, where U ⊂ X. If U is open and Fix(f)
is compact then ind(f) denotes the fixed point index (compare [3]). The singular
homology functor with coefficients in the field of rational numbers Q is denoted by
H. The n-th iterate f ◦ · · · ◦ of f is denoted by fn.

2. Local semi-flows and the retract method of Ważewski

In 1947, Tadeusz Ważewski published the paper [17] in which he presented a new
topological method of proving the existence of solutions remaining in a given set
for positive values of time. Below we briefly describe some basic notions concerning
the method. Actually, our presentation will use a contemporary approach to the
method which slightly differs from the original one.

Let X be a topological space and let D be an open subset of X × [0,∞). A
continuous map φ : D → X is called a local semi-flow on X if for every x ∈ X
the set {t ∈ [0,∞) : (x, t) ∈ D} is equal to an interval [0, ωx) for some ωx > 0 or
ωx = ∞,

(1) φ(x, 0) = x,

and if (x, t) ∈ D, (φ(x, t), s) ∈ D then (x, t + s) ∈ D and

(2) φ(x, s + t) = φ(φ(x, t), s).

We write also φt(x) instead of φ(x, t), hence φ0 = id and φs+t = φt ◦φs. Obviously,
φ is called a semi-flow if D = X × [0,∞). In a natural way a more restrictive
notion notions of local flow and flow are defined – one should extend the above
definition symmetrically to negative values of t. In this case one assumes that the
set {t ∈ R : (x, t) ∈ D} is equal to an open interval (αx, ωx) with some αx and ωx,

−∞ ≤ αx < 0 < ωx ≤ ∞,

and the equations (1) and (2) hold. Ordinary differential equations deliver the most
natural examples of local flows: a smooth vector-field v : M → TM on a manifold
M determines a local flow φ such that the orbit t 7→ φt(x0) of x0 ∈ M is the unique
solution of the initial value problem

ẋ = v(x), x(0) = x0.

Let φ be a local semi-flow on X; in this case X is called the phase space of φ.
Usually, the t parameter is interpreted as the time.

Let x ∈ X. The map t 7→ φt(x) is called an orbit of x and its image

φ+(x) := {φt(x) : t ∈ [0, ωx)}
is called the positive semi-trajectory of x. In the case of a local flow, one defines
the trajectory as

φ(x) := {φt(x) : t ∈ (αx, ωx)}.
If the orbit of x constant then it is called stationary and x is called a stationary
point ; if it is a periodic map then it is called a periodic orbit and x is a periodic
point. In the case of a local flow generated by a vector-field v a point x0 is stationary
if and only if v(x0) = 0.

It is a natural question to ask for the existence of periodic or stationary points of
a given local semi-flow. That question is closely connected to problems in the fixed
point theory: a periodic point of period T > 0 is a fixed point of the map φT and
a stationary point is a fixed point of φt with each t ≥ 0. In order to apply results
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of the topological fixed point theory one usually assumes that the whole phase
space is compact or the points of interest are located in some its compact subset.
We distinguish a class of subsets (not invariant, in general) which are particularly
convenient to deal with the problem. To this aim we recall some facts related to
the Ważewski retract method.

Let W ⊂ X. Define the exit set of W as

W− := {x ∈ W : φ(x, [0, t]) 6⊂ W ∀t ∈ (0, ωx)}.
We call W a Ważewski set for φ if it is closed and its exit set W− is closed as well.
(That notion was introduced by Charles Conley, compare [1]. Actually, the original
Conley’s definition is more general.). A compact Ważewski set is called here a
block ; an example of a block for a local flow generated by some planar vector-field
is drawn in Figure 1. In the case φ is a local flow we say that a block W is isolating
if the boundary of W is equal to the union of W− and the entry set W+ defined
as the exit set of W with respect to the local flow obtained from φ by the reversal
of time t → −t. Obviously, the block in Figure 1 is isolating.

Figure 1. A block for a planar vector-field. The exit set consists
of three thickened sides of the hexagon.

Let another subset of W (called the asymptotic part of W ) be defined as

W ∗ := {x ∈ W : ∃t ∈ (0, ωx) : φt /∈ W},
The main property of the notion of Ważewski set is given in the following lemma.

Lemma 2.1. If W is a Ważewski set then the mapping

σ : W ∗ 3 x → sup{t ∈ [0, ωx) : φ(x, [0, t]) ⊂ W} ∈ [0,∞)

is continuous.

The mapping σ in the lemma is called the escape-time map. As a consequence
of the continuity of σ one instantly gets the following

Corollary 2.1. If W is a Ważewski set then W− is a strong deformation retract
of W ∗.

That corollary can be reformulated into a version of the Ważewski retract theo-
rem:

Theorem 2.1. If W− is not a strong deformation retract of a Ważewski set W
then there exists an x ∈ W such that φ+(x) ⊂ W .

Actually, if φ is a local flow and W is a block then x can be chosen such that
the whole trajectory φ(x) is contained in W . As we see below, in some cases one
can get a stationary trajectory x; the block in Figure 1 represents such a case.

The Ważewski retract method consists in applications of Lemma 2.1 and its
consequences to problems in differential equations. In particular, simple results
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on asymptotic behavior of solutions can be derived from Theorem 2.1. Other ap-
plications, like results on the existence of solutions of two-point boundary value
problems, require more advanced theorems.

3. Stationary points in blocks

Results on the existence of periodic or stationary points in Ważewski sets which
we present here are based on the Lefschetz fixed point theorem. We consider com-
pact Ważewski sets (i.e. blocks) only.

Theorem 3.1 (compare [11]). Let W be a block and let T > 0. Then the set

U := {x ∈ W : φt(x) ∈ W \W− ∀t ∈ [0, T ]}

is an open subset of W and the set of fixed points Fix(φT |U ) of the restriction

φT |U : U → W

is compact. Moreover, if W and W− are ANRs then

(3) ind(φT |U ) = χ(W )− χ(W−).

In particular, if

(4) χ(W )− χ(W−) 6= 0

then φT has a fixed point in W .

We do not provide a proof of the above result here since it is a corollary of a
more general Theorem 5.1. It follows by Theorem 3.1 that the fixed point index
does not distinguish the essential periodic orbits in W from the stationary ones:

Corollary 3.1. If W is a block, W and W− are ANRs, and (4) holds then there
exists a stationary point in W .

Let a local flow on an n-dimensional manifold M be generated by a smooth
vector-field v. In this case Corollary 3.1 states that v has a zero in W provided (4)
holds. Moreover, using Theorem 3.1 one can prove that that if M = Rn and v has
no zeros on the boundary of W then the Brouwer degree of v in the interior of W
is given by

(5) deg(0, v, intW ) = (−1)n(χ(W )− χ(W−))

(compare [10]). If the block W is a smooth n-dimensional submanifold of M with
boundary and W− is an n−1 dimensional submanifold of ∂W with boundary, then
the formulas (3) and (5) are particular cases of the generalized Poincaré-Bendixson
formula (see [5] for the history and references related it). For extension of that
formula to the non-smooth case we refer to [4].

Example 3.1. Let a planar local flow φ has a block W represented in Figure 1.
By above results, there exists a stationary point of φ inside the block, since

χ(W ) = 1, χ(W−) = 3.

An example of equation which generates such a local flow is given by

ż = z̄2 + f(z)

(written in the complex-number notation) where f : C → C is a smooth such that
f(z)/|z|2 → 0 if |z| → ∞ (compare [11]; see also Example 5.1 below).
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4. Local processes and segments

By a local semi-process on a topological space X we mean a continuous map
Φ: D → X, where D is an open subset of R×X × [0,∞), such that the map

φ : D 3 ((σ, x), t) → (σ + t, Φ(σ, x, t)) ∈ R×X

is a local semi-flow on R×X. (In that case φ is called a local semi-flow generated
by Φ.) In a similar way we define a local process Φ if the corresponding map φ is a
local flow. In particular, for a local semi-process (or a local process) Φ one has

Φ(σ, x, 0) = x,

Φ(σ, x, s + t) = Φ(σ + s,Φ(σ, x, s), t)

whenever it is defined (compare [7]). In the sequel we write Φ(σ,t)(x) instead of
Φ(σ, x, t); in that notation

Φ(σ,0) = id, Φ(σ,s+t) = Φ(σ+s,t) ◦ Φ(σ,s).

The space R×X is called the extended phase space of Φ. The notion of local process
is motivated by properties of solutions of non-autonomous differential equations: if
v : R × M → TM is a smooth time-dependent vector-field on a manifold M then
the system of equations

ẋ = v(t, x), ṫ = 1
generates a local flow on R×M , hence a local process Φ on M such that for t0 ∈ R
and x0 ∈ M the map

τ 7→ Φ(t0,τ−t0)(x0)
is the solution of the initial value problem

ẋ = v(t, x), x(t0) = x0.

Let T > 0. A local semi-process Φ is called T -periodic if

Φ(σ,t) = Φ(σ+T,t+T )

for each σ and t. In that case the map Φ(0,T ), called the Poincaré map, satisfies

Φ(0,nT ) = Φn
(0,T ).

Observe that if v is a smooth time-dependent vector-field which is T -periodic with
respect to t then the local process Φ is generated by v is T -periodic. Moreover, in
this case fixed points of the Poincaré map correspond to initial points of T -periodic
solutions of the equation ẋ = v(x, t).

In order to establish results on fixed points which refer to local semi-processes
(hence also to non-autonomous equations) we introduce a special class of blocks,
called segments in the extended phase space. At first we introduce the following
notation: we denote by π1 and π2 the projections of R×X onto R and, respectively,
X, and if Z is a subset of R×X and t ∈ R, [t1, t2] ⊂ R then we put

Zt := {z ∈ X : (t, z) ∈ Z}, Z[t1,t2] = Z ∩ ([t1, t2]×X).

Let Φ be a local semi-process on X and let φ be the corresponding local semi-flow
on R×X. Assume that a < b. A set W ⊂ [a, b]×X is called a segment over [a, b]
if it is a block with respect φ such that the following conditions hold:

(a) there exists a compact subset W−− of W− (called the essential exit set)
such that

W− = W−− ∪ ({b} ×Wb), W− ∩ ([a, b)×X) ⊂ W−−,

(b) there exists a homeomorphism h : [a, b] × Wa → W such that π1 ◦ h = π1

and
h([a, b]×W−−

a ) = W−−.
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If Φ is a local process then a segment is called isolating if it is an isolating block
for φ.

The notion of segment is explained in a simple case in Figure 2. Intuitively, W

0

W

X

W
¡¡

T

h
R

Figure 2. A segment W over [0, T ] and a monodromy homeomor-
phism h.

consists of the left-hand side {a}×Wa, the right-hand side {b}×Wb, and the main
part located over the open interval (a, b). The condition (b) means that (W,W−−)
is a pair of trivial bundles over [a, b] with the fibre (Wa,W−−

a ). Because of the
specific behavior of φ (it moves along the time-axis with speed 1), it is clear that
that the right-hand side must belong to the exit set.

Let a homeomorphism h satisfies (b). We define the corresponding monodromy
map

m : (Wa,W−−
a ) → (Wb,W

−−
b )

by
m(x) = π2h(b, π2h

−1(a, x)).
The monodromy map is actually a homoeomorphism. It can be proved that a
different choice of the homeomorphism satisfying (b) provides the monodromy map
homotopic to m. It follows, in particular, that the isomorphism in homologies

µW := H(m) : H(Wa,W−−
a ) → H(Wb,W

−−
b )

is an invariant of the segment W .
Segments can be glued in a natural way: if W is a segment over [a, b], Z is a

segment over [b, c] and

(6) (Wb,W
−−
b ) = (Zb, Z

−−
b )

then their union W ∪ Z is a segment over [a, c] and its monodromy map is a
composition of monodromy maps of W and Z.

Remark 4.1. Even if the condition (6) is not satisfied, the union of W and Z is a
useful object (with respect to problems considered in this note) provided W ∪Z is
a block with respect to the local semi-process generated by Φ. In this case W and
Z are called contiguous and W ∪ Z is called a chain. More generally, a chain is a
union of a finite number of segments U(1), . . . , U(r) such that U(i) is contiguous
to U(i + 1) for i = 1, . . . , r − 1 (see [15].

5. Detection of periodic solutions

Let W be a segment over [a, b]. The segment W is called periodic if

(Wa,W−−
a ) = (Wb,W

−−
b ).

In that case, if H(Wa,W−−
a ) is of finite type then the Lefschetz number Λ(µW )

is correctly defined. It is called the Lefschetz number of the periodic segment W .
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Our results on the existence of periodic solutions of non-autonomous differential
equations are based on the following theorem:

Theorem 5.1 (compare [11]). Let W be a periodic segment over [a, b]. Then the
set

U =: UW := {x ∈ Wa : Φ(a,t−a)(x) ∈ Wt \W−−
t ∀t ∈ [a, b]}

is open in Wa and the set of fixed points of the restriction

Φ(a,b−a)|U : U → Wa

is compact. Moreover, if W and W−− are ANRs then

ind(Φ(a,b−a)|U ) = Λ(µW ).

In particular, if

(7) Λ(µW ) 6= 0

then Φ(a,b−a) has a fixed point in Wa.

If Φ is the local process generated by a time-dependent vector-field v then x0 is
a fixed point of Φ(a,b−a) if and only if τ 7→ Φ(a,τ−a)(x0) is a solution of the periodic
problem

(8) ẋ = v(t, x), x(a) = x(b),

hence Theorem 5.1 immediately implies:

Corollary 5.1. Let W be a periodic segment and let W and W−− be ANRs. If
(7) holds then the periodic problem (8) has a solution which passes through Wa at
time a. In particular, if W is a segment over [0, T ], (7) holds, and the vector-field
v is T -periodic in t then the equation ẋ = v(t, x) has a T -periodic solution passing
through W0 at time 0. �

Remark 5.1. Using the notion of chain (see Remark 4.1), a direct generalization
of Theorem 5.1 is presented in [15].

Proof of Theorem 5.1. By the definition of segment, W is an ANR if and only if Wa

is an ANR and the same holds for W−− and W−−
a . We define maps ms : Ws → Wa

(s ∈ [a, b]), by
ms(x) = π2h(b, π2h

−1(s, x)).
In particular ma = m and mb = id. Let σ be the escape-time map for W (see
Lemma 2.1; here obviously W = W ∗). Consider a homotopy H : Wa× [0, 1] → Wa,
Ht := H(·, t), given by

Ht(x) :=

{
ma+σ(a,x)(Φ(a,σ(a,x))(x)), if σ(a, x) ≤ (1− t)(b− a),
ma+(1−t)(b−a)(Φ(a,(1−t)(b−a))(x)), if σ(a, x) ≥ (1− t)(b− a).

In particular, H1 = m. Moreover, it is easy to check that

Ht(x) = m(x), if t ∈ [0, 1] and x ∈ W−−
a ,

hence
Ht(W−−

a ) = W−−
a , if t ∈ [0, 1].

By the homotopy property of the Lefschetz number we get

(9) Λ(m) = Λ(H1) = Λ(H0).

Since

(10) H0(x) = ma+σ(a,x)(Φ(a,σ(a,x))(x)),

for every x ∈ Wa, one has H0(x) = Φ(a,b−a)(x) if σ(a, x) = b− a, hence

(11) H0|U = Φ(a,b−a)|U .
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Let us observe that

(12) U = {x ∈ Wa : σ(a, x) = b− a, Φ(a,b−a)(x) ∈ Wa \W−−
a },

so by (10),
U = (H0)−1(Wa \W−−

a )
and consequently U is open in Wa. If x ∈ Wa\W−−

a and H0(x) = x then necessarily
σ(a, x) = b − a (since in the other case H0(x) ∈ W−−

a ), hence x ∈ U by (12), and
thus

Fix(Φ(a,b−a)|U ) = Fix(H0) ∩ {x ∈ Wa : σ(a, x) = b− a}.
In particular Fix(Φ(a,b−a)|U ) is compact. Put

V := {x ∈ Wa : σ(a, x) < b− a}.
It follows that V is open in Wa, W−−

a ⊂ V , and H0(V ) = W−−
a . One can easy

check that

Fix(H0) = Fix(H0|U ) ∪ Fix(H0|V ) = Fix(Φ(a,b−a)|U ) ∪ Fix(m|W−−
a

).

Since both the sets Fix(Φ(a,b−a)|U ) and Fix(m|W−−
a

) are compact and disjoint, by
the Lefschetz fixed point theorem and the additivity of the fixed point index we get

(13) Λ(H0) = ind(H0|U ) + ind(H0|V ),

By the commutativity of the fixed point index and the Lefschetz fixed point theorem
we obtain

ind(H0|V ) = ind(H0|W−−
a

) = Λ(H0|W−−
a

) = Λ(m|W−−
a

).

Combining (9), (11), and (13) we get

ind(Φ(a,b−a)|U ) = Λ(m)− Λ(m|W−−
a

) = Λ(µW ),

so the proof is complete. �
As it was already pointed out, Theorem 3.1 is a particular case of Theorem 5.1.

Indeed, a local flow φ on X generates a local process Φ given by

Φ(a,t) := φt

for each a ∈ R. If B is a block for φ then [a, b]×B is a segment for Φ and its proper
exit set is equal to [a, b]×B−; since the identity is a monodromy, one has

Λ(µW ) = χ(B)− χ(B−).

In the following examples (taken from [11]) we provide some natural applications
of the obtained results.

Example 5.1. Consider a planar non-autonomous equation

(14) ż = z̄n + f(t, z),

where n is an integer, n ≥ 1, z ∈ C and f : R × C → C is a smooth function
T -periodic with respect to t for some T > 0. Assume that

(15)
f(t, z)
|z|n

→ 0, as |z| → ∞ uniformly in t.

Then the equation (14) has a T -periodic solution.
Indeed, by (15) the term z̄n becomes dominating as |z| → ∞, hence the behavior

of solutions of (14) near infinity resembles the phase portrait of the autonomous
equation

(16) ż = z̄n.

For the local flow generated by the latter equation there exists a family of isolating
blocks {Br}r>0, where Br is an equilateral 2(n + 1)-gon centered at zero with the
diameter equal to 2r and the exit set B−

r consists of n + 1 disjoint sides of Br, one
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of which intersects perpendicularly the positive real semi-axis (compare Figure 1 in
the case n = 2). It follows that for r sufficiently large the prism [0, T ] × Br is an
isolating segment for (14). It is depicted in Figure 3 for n = 2. Its essential exit

Figure 3. An isolating segment over [0, T ] for the equation (14)
with n = 2.

set [0, T ]×B−
r consists of n + 1 faces of the prism (in the picture they are marked

in gray). Since the identity is a monodromy map for the segment, one concludes
that its Lefschetz number is equal −n, hence there exists a T -periodic solution of
the equation (14) by Corollary 5.1.

Example 5.2. Let us modify the previous example by multiplying the leading
term of the right-hand side of the equation by eit:

(17) ż = eitz̄n + f(t, z).

Here we assume that n ≥ 2 and f : R× C → C is smooth and 2π-periodic in t. As
before we assume that (15) holds. It follows by results in [11] that for r sufficiently
large the set

W := {(t, z) ∈ [0, 2π]× C : e−it/(n+1)z ∈ Br}
is an isolating segment over [0, 2π] for (17) with the essential exit set

W−− = {(t, z) ∈ [0, 2π]× C : e−it/(n+1)z ∈ B−
r },

where Br and B−
r are defined in Example 5.1. It means that W is a twisted prism

with a 2(n+1)-gon base centered at the origin and its time sections Wt are obtained
by rotating the base with the angular velocity 1

n+1 over the time interval [0, 2π].
The set W−− consists of n + 1 disjoint ribbons winding around the prism, as is
shown in Figure 4 in the case n = 2. One can choose the rotation by the angle 2π/3

Figure 4. An isolating segment over [0, 2π] for the equation (17)
with n = 2.

as a monodromy map of the segment, hence the Lefschetz number of the segment
W is equal to 1. It follows by Corollary 5.1 that (17) has a 2π-periodic solution.
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Example 5.3. Now we consider a special case of (17) (recall that n ≥ 2):

(18) ż = eitz̄n + z̄.

The zero solution is 2π-periodic, hence one should look for a nontrivial one. By the
previous example, there is a large segment W for the equation such that

Λ(µW ) = 1.

Since the term z̄ on the right-hand side of (18) dominates as |z| → 0, it can be
proved that there is another segment Z for that equation: it is a prism having a
sufficiently small square centered at the origin as a base (see Figure 5). Moreover,

Figure 5. The isolating segment Z for the equation (18).

Z ⊂ W and

Λ(µZ) = −1

If there is no 2π-periodic solution of (18) then 0 is the only fixed point of the
Poincaré map Φ(0,2π) for the equation, hence by Theorem 5.1,

Λ(µW ) = ind(Φ(0,2π)|int W0) = ind(Φ(0,2π)|int Z0) = Λ(µZ)

which is a contradiction. Thus (18) has a nonzero 2π-periodic solution.

Example 5.4. Finally, we consider another special case of (17):

(19) z̄ = eitz̄n + z.

As before, we have a large segment W over [0, 2π] which is a twisted prism having an
equilateral (2n + 1)-polygon as a base. There exist also a smaller segment Y ⊂ W
being a cylinder over a disc centered at 0 such that Y −− is equal to the whole
boundary, hence its Lefschetz number is also equal to 1 and the argument used in
Example 5.3 fails here. However, if we glue three copies of W along the interval
[0, 6π] we obtain a new segment W̃ such that its monodromy map comes from the
full 2π-rotation, hence it is equal to the identity and thus

Λ(µ
W̃

) = −n.

A similar gluing of three copies of Y provides the segment Ỹ for which again

Λ(µỸ ) = 1.

Thus, by the argument in the previous example we conclude that there exists a
nonzero 6π-periodic solution of the equation (19).

Results on the existence of periodic solutions of planar non-autonomous equa-
tions extending those presented in the above examples can be found in [12].
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6. Detection of chaotic dynamics

In order to formulate results on chaotic dynamics we use the notion of shift on r
symbols, where r is some positive integer. It is a pair (Σr, σ), where Σr, called the
shift space, is defined as

Σr := {0, . . . , r − 1}Z,

i.e. the set of bi-infinite sequences of r symbols, and the shift map σ is given by

σ : Σr 3 (. . . s−1.s0s1 . . .) → (. . . s0.s1s2 . . .) ∈ Σr.

In the above notation the dot . marks the 0th term of a sequence, hence σ moves
the sequence by one position to the left. The shift on r symbols is a model example
of complicated dynamics; in particular it satisfies all three conditions from the
classic definition of chaos: sensitive dependence on initial conditions, topological
transitivity, and the density of periodic orbits (compare [2]). The term chaotic
dynamics for a non-autonomous T -periodic equation (and, more generally, for a T -
periodic local process Φ) is used by us if the following two conditions are satisfied.
The first condition is the existence of a semi-conjugacy between the Poincaré map
Φ(0,T ) restricted to some compact subset I of the phase space of the equation and
the shift map, i.e. there exists a continuous surjective map g : I → Σr such that

(20) σ ◦ g = g ◦ Φ(0,T )

holds (that condition is often called symbolic dynamics). The second condition
asserts that for infinitely many of periodic sequences c ∈ Σr the counter-image
g−1(c) contains an initial point of a periodic solution of the equation.

Below we present results on the existence of chaotic dynamics based on a proper
configuration of segments. We consider a local process Φ on a topological space X
and we assume that it is T -periodic for some T > 0. Our first result is a simple
consequence of Theorem 5.1.

Theorem 6.1 (compare [13]). Let W (0), . . . ,W (r) be periodic segments over [0, T ].
Assume that W (0)0 and W (0)−−0 are ANRs and

(A1) (W (0)0,W (0)−−0 ) = · · · = (W (r)0,W (r)−−0 ),
(A2) there exists s ∈ (0, T ) such that W (i)s∩W (j)s = ∅ for every i, j = 0, . . . , r,
(A3) there exists n ∈ N such that

Hn(W (0)0,W (0)−−0 ) = Q, Hk(W (0)0,W (0)−−0 ) = 0 ∀k 6= n.

Then there are a compact set I ⊂ X, invariant for the Poincaré map Φ(0,T ), and
a continuous surjective map g : I → Σr+1 such that (20) holds and for every
k-periodic sequence c ∈ Σr+1 there exists x ∈ g−1(c) such that

Φk
(0,T )(x) = x.

An example of segments satisfying the assumptions of the above theorem for
r = 1 and n = 1 is shown in Figure 6. Before we give a proof the above theorem
we define an operation of gluing of periodic segments. If W and Z are periodic
segments over [0, T ] having the same cross-sections at 0, i.e.

(W0,W
−−
0 ) = (Z0, Z

−−
0 )

holds, put

WZ := {(t, x) ∈ [0, 2T ]×X : x ∈ Wt if t ∈ [0, T ], x ∈ Zt−T if t ∈ [T, 2T ]}.
(see Figure 7). It is a periodic segment over [0, 2T ]. If Z(1), . . . , Z(r) are periodic
segments over [0, T ] having the same cross-sections at 0 then we define recurrently
another periodic segment

Z(1) . . . Z(r) := (Z(1) . . . Z(r − 1))Z(r).
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Figure 6. Two periodic segments satisfying (A1), (A2), and (A3).

2T

W

0

0

0T

T

T

Z

Figure 7. Periodic segments W and Z satisfying (A2), and the
segment WZ.

If Z(i) = W for each i = 1, . . . , r then w put

W r := Z(1) . . . Z(r).

Proof of Theorem 6.1. The required set I is defined as

I := {x ∈ W (0)0 : ∀k ∈ Z∃i = 0, . . . , r : Φ(0,kT+t) ∈ W (i)t ∀t ∈ [0, T ]}.

By (A2), the map g given by

g(x) = c if and only if Φ(0,kT+s) ∈ W (ck)s ∀k ∈ Z

is continuous and provides the required semi-conjugacy (20) because the considered
local process is T -periodic. Since the set of periodic sequences in Σr+1 is dense, in
order to prove the surjectivity of g (and also the remaining claim of the theorem)
it suffices to prove that for each periodic sequence c ∈ Σr+1 there exists a corre-
sponding periodic point of the Poincaré map. Let c be such a k-periodic sequence;
it is uniquely determined by a sequence (c0, . . . , ck−1) in the set {0, . . . , r}{0,...,k−1}.
Define a periodic segment

W := W (c0) . . .W (ck−1)
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over [0, kT ]. Since the homologies of (W0,W
−
0 ) are one-dimensional by (A3),

and µW is an automorphism (since each monodromy map is a homeomorphism),
Λ(µW ) 6= 0. Thus, by Theorem 5.1, there exists an x ∈ W0 such that

Φk
(0,T )(x) = Φ(0,kT )(x) = x.

It follows by the T -periodicity of Φ that x ∈ I and g(x) = c, hence the result
follows. �

Example 6.1. One can verify the existence of two isolating segments satisfying
the assumptions of Theorem 6.1 for the planar equation

ż =
1
2
e−iκtz

(
1
2
iκ(z + 1) + eiκt(z + 1)

) (
1
2
iκ(z − 1) + eiκt(z − 1)

)
provided κ > 0 is small enough. They are similar to those in Figure 6; for an
explanation we refer to [13].

The other results stated in this note assert the existence of chaotic dynamics in
presence of two periodic segments, one of which contains the other.

Theorem 6.2 (compare [16, 18]). Let Z and W be periodic segments over [0, T ]
which satisfy

(21) Z ⊂ W, (Z0, Z
−−
0 ) = (W0,W

−−
0 ).

Assume that Z0 and Z−−
0 are ANRs. Assume moreover that there exists an n0 ∈

N \ {1} such that
(B1) µZ = µn0

W = idH(Z0,Z−−0 ),
(B2) Λ(µW ) = Λ(µi

W ) for i ∈ {1, . . . , n0 − 1},
(B3) Λ(µW ) 6= χ(W0,W

−−
0 ) and χ(W0,W

−−
0 ) 6= 0,

Then there are a compact set I ⊂ X, invariant for the Poincaré map Φ(0,T ), and a
continuous surjective map g : I → Σ2 such that the equation (20) holds and

(∗) if n0 is even then for each n-periodic sequence c ∈ Σ2 there exists x ∈ g−1(c)
such that Φn

(0,T )(x) = x,
(∗∗) if n0 is odd then for each n-periodic sequence c ∈ Σ2 such that the symbol

1 appears k times in (c0, . . . , cn−1) and k is not an odd multiplicity of n0,
there exists x ∈ g−1(c) such that Φn

(0,T )(x) = x.

The theorem appeared first in [16] in the case n0 = 2 and then in [18] in a
full generality. In order to present a sketch of its proof we introduce the following
convenient notation for the segments W and Z: For a finite sequence

c = (c0, . . . , cn−1) ∈ {0, 1}{0,...,n−1}

we write Wn(c) for the segment W (0) . . .W (n− 1), where W (i) = W if ci = 1 and
W (i) = Z if ci = 0 (see Figure 8). In particular, if ci = 1 for all i = 0, . . . , n − 1
then Wn(c) = Wn.
Sketch of a proof of Theorem 6.2. The following idea of the proof comes from [18]
(compare also [16]). Let

I :=
∞⋂

n=−∞
{x ∈ W0 : Φ(0,t+nT )(x) ∈ Wt ∀t ∈ [0, T ]}

be the set of all points in W0 whose full trajectories are contained in the bigger
segment W . It follows that I is compact. Let σZ be the escape-time map for the
smaller segment Z (see Lemma 2.1). It follows by (21) that σ(0, x) is defined for
every x ∈ W0 and if x ∈ I then either

(22) σZ(0, x) < T,
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W Z

0

0

0T

T

T

2T 3T

Figure 8. Periodic segments W and Z satisfying (21), and the
segment W 3((1, 1, 0)).

or

(23) σZ(0, x) = T and Φ(0,T )(x) ∈ W0 \W−−
0 .

For x ∈ I we define g(x) ∈ Σ2 by the following rule:

0

011 1

T 2T

Figure 9. Coding of the trajectory of an x ∈ I .

• if on the time interval [iT, (i + 1)T ] the trajectory of x is contained in Z,
then g(x)i = 0,

• if Φi
(0,T )(x) leaves Z in time less then T , then g(x)i = 1.

It follows by (22) and (23) that the map g : I → Σ2 is continuous and satisfies (20).
By compactness of I and density of the set of periodic sequences in the shift space
Σ2 it is sufficient to show that (∗) and (∗∗) hold.

Let c = (c0, . . . , cn−1) ∈ {0, 1}{0,...,n−1}. According to the notation in the state-
ment of Theorem 5.1, we have

UW n(c) := {x ∈ W0 : Φ(0,t)(x) ∈ Wn(c)t \Wn(c)−−t ∀t ∈ [0, nT ]}.
We define UW n(c),c ⊂ UW n(c) as follows: x ∈ UW n(c) belongs to the set UW n(c),c if
and only if for each i ∈ {0, . . . , n− 1} such that ci = 1 there exists t ∈ (0, T ) such
that

Φ(0,tiT+t)(x) ∈ Wt \ Zt,

i.e. Φ(0,tiT )(x) ∈ Z0 leaves Z in less time then T . It is easy to check that UW n(c),c is
open in W0 and the sets UW n(c),c over all n-element sequences c from {0, 1}{0,...,n−1}

form open and disjoint covering of UW n . We define

Fc := {x ∈ g−1(c) : Φn
(0,T )(x) = x} ⊂ I.
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The set Fc consists of all fixed points of the nth iterate of the Poincaré map Φn
(0,T )

whose trajectories are coded by the sequence c. It is easy to check that Fc is
compact and it is equal to Fix(Φn

(0,T )|UW n(c),c
), so ind(Φn

(0,T )|UW n(c),c
) is defined. It

can be proved that

(24) ind(Φn
(0,T )|UW n(c),c

) ={(∑
s : n0|s(−1)k−s

(
k
s

))
(χ(Z0, Z

−−
0 )− Λ(µW )), if k ≥ 1,

χ(Z0, Z
−−
0 ), if k = 0,

where the symbol 1 appears exactly k-times in the sequence c. The equation (24)
is a consequence of Theorem 5.1, elementary properties of the fixed point index,
and some combinatorial calculations. We skip its proof here referring the reader to
[18]. One can check that ∑

s : n0|s

(−1)k−s

(
k

s

)
= 0

if and only if n0 is odd and k is an odd multiplicity of n0, hence the proof of
Theorem 6.2 is finished. �

Example 6.2. Consider the following planar non-autonomous equation

(25) ż = (1 + eiκt|z|2)z̄n,

where κ > 0 is a real parameter and n ≥ 1 is an integer. The right-hand side of
the equation (25) is 2π/κ periodic. It was proved in [18] (and in [16] in the case
n = 1; see also [23]) that for sufficiently small κ there are two periodic segments
Z(n) and W (n) over [0, 2π/κ] which satisfy all assumptions of Theorem 6.2 with
n0 = n + 1. We describe briefly how the segments look like. For a small |z| the
dynamics generated by (25) is close to the one of the autonomous equation (16),
hence by a similar argument then the one in Example 5.1 (but now we are near the
origin, not infinity) we conclude the existence of a periodic isolating segment

Y (n) :=
[
0,

2π

κ

]
×Br.

for (25), independent of the choice of κ > 0, with r > 0 sufficiently small. Recall
that Br is an equilateral 2(n+1)-gon centered at the origin with the diameter equal
to 2r. The essential exit set is given by

Y (n)−− =
[
0,

2π

κ

]
×B−

r ,

where B−
r consists of n+1 disjoint sides of Br. If |z| is large then the term eiκt|z|2z̄n

dominates in (25) and it follows by results in [11] that for R sufficiently large and
each κ > 0 the set

W (n) :=
{

(t, z) ∈
[
0,

2π

κ

]
× C : e−

itκ
n+1 z ∈ BR

}
is an isolating segment over [0, 2π] for (25) with the essential exit set

W (n)−− =
{

(t, z) ∈
[
0,

2π

κ

]
× C : e−

itκ
n+1 z ∈ B−

R

}
.

It is obvious that if R >
√

2r then Y (n) ⊂ W (n) for every n ∈ N and κ > 0, but
in this case the zero-sections Y (n)0 and W (n)0 are not equal each to the other,
hence the condition (21) is not satisfied. In order to get (21) we modify the smaller
segment Y (n). It can be done for 0 < κ < κ0, where κ0 is sufficiently small and as
result we obtain a new segment, which we denote by Z(n). Its construction can be
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described as follows. Like for Y (n), the time t-section Z(n)t is a regular 2(n + 1)-
gon based prism centered at the origin and the essential exit set Z(n)−− consists
of n+1 disjoint parts. However, contrary to Y (n), the diameter of Z(n)t decreases
linearly from 2R to 2r as t passes through the interval [0,∆] to some ∆ < π/κ,
then stays constant in [∆, 2π/κ−∆], and then increases linearly from 2r to 2R in
[2π/κ−∆, 2π/κ].

In particular, the segments Z(2) and W (2) are similar to the ones shown in
Figure 10. It follows that

x

Figure 10. Isolating segments Z(2) ⊂ W (2) for the equation (25)
with n = 2. The shaded faces are the exit sets Z−− and W−−.

Λ(µW (2)) = Λ(µ2
W (2)) = 1, χ(Z(2)0, Z(2)−−0 ) = −2

and
µ3

W (2) = idH(Z(2)0,Z(2)−−0 ).

By generalizing those equations to the case of arbitrary n one can get the following
conclusion:

Theorem 6.3 (compare [18]). For every n ∈ N there exists κ0 > 0 such that
for each 0 < κ < κ0 the local process generated by the equation (25) satisfies the
assumptions of Theorem 6.2 with n0 = n + 1.

Assume that Φ is a T -periodic local process on Rn generated by a time-dependent
vector-field f such that

f(t,−x) = −f(t, x).
In this case we present a modified version of the previous theorem.

Theorem 6.4 (compare [19]). Let W and Z be two periodic segments over [0, T ]
such that the condition (21) holds. Assume that Z0 and Z−−

0 are ANRs and
(C1) (Z0, Z

−−
0 ) = (−Z0,−Z−−

0 ) i.e. the pair (Z0, Z
−−
0 ) is symmetric with re-

spect to the origin,
(C2) µW = H(−id(Z0,Z−−0 )) : H(Z0, Z

−−
0 ) → H(Z0, Z

−−
0 ),

(C3) µZ = idH(Z0,Z−−0 ),
(C4) Λ(µW ) 6= χ(Z0, Z

−−
0 ), χ(Z0, Z

−−
0 ) 6= 0.

Then there are a compact set I invariant with respect to the Poincaré map Φ(0,T )

and a continuous surjective map g : I → Σ2 such that the equation (20) holds and
(∗) for each k-periodic sequence c ∈ Σ2 there exists a fixed point x ∈ g−1(c) of

Φk
(0,T ),

(∗∗) for each k-periodic sequence c ∈ Σ2 there exists a fixed point x ∈ g−1(c) of
Φ2k

(0,T ) such that Φk
(0,T )(x) = −x.

An idea of a proof. By (C2) and (C3), we get

µW ◦ µW = µZ = idH(Z0,Z−−0 ),

hence the existence of g and (∗) follow by Theorem 6.2 with n0 = 2. The proof of
(∗∗) is based on the version of Theorem 5.1 concerning the existence of antiperiodic
solutions inside of a periodic segment given in [14]. We skip it here referring to
[19]. �
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Example 6.3. As an example of applications of Theorem 6.4 we consider the
equation (25) with n = 1, i.e. the equation

(26) ż = (1 + eiκt|z|2)z̄.

In this case we present a more detailed description of the periodic isolating segments
Z and W over [0, 2π/κ] which appear Example 6.2. They are shown in Figure 11.
The larger segment and its essential exit set are of the form

Figure 11. Isolating segments for (26): Z at the top and W at the bottom.

W = {(t, z) ∈ [0, 2π/κ]× C : |<(e−itκ/2z)| ≤ R, |=(e−itκ/2z)| ≤ R},

W−− = {(t, z) ∈ W : |<(e−itκ/2z)| = R}.
In order to construct the smaller segment, we set

(27) ω =
R− r

∆
Let s : R → R be a 2π/κ-periodic function such that

s(t) :=


R− ωt, if t ∈ [0,∆],
r, if t ∈ [∆, 2π

κ −∆],
R− ω( 2π

κ − t), if t ∈ [ 2π
κ −∆, 2π

κ ].

Then smaller segment and its essential exit set are given by

Z = {(t, z) ∈ [0, 2π/κ]× C : |<z| ≤ s(t), |=z| ≤ s(t)},
Z−− = {(t, z) ∈ Z : |<z| = s(t)}.

For the proof of the following result we refer the reader to Lemma 19 in [21] (some
more restrictive estimates were given earlier in [16]).

Lemma 6.1 (compare [21]). Assume κ ∈ (0, 0.495], then for R = 1.15, r = 0.5946,
and ∆ = 0.935, the above sets W and Z are periodic isolating segments over
[0, 2π/κ] for (26) which satisfy the assumptions of Theorem 6.4.

As an conclusion we get the following precise information on the range of values
of the parameter κ for which a chaotic dynamics occur:

Corollary 6.1 (compare [16, 21]). The local process generated by the equation (26)
satisfies the conclusion of Theorem 6.4 if 0 < κ ≤ 0.495. �

Remark 6.1. Results on the existence of chaotic dynamics using isolating chains
(see Remark 4.1), similar to Theorem 6.2, are presented in [8]. Examples in that
paper are based on equations different from the ones considered above and to which
theorems given here cannot be directly applied.
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7. Detection of homoclinic and multibump solutions

Results on isolating segments can be applied in proofs of other properties of
time-periodic non-autonomous equations, like the existence of solutions asymptotic
to zero at ±∞ or approaching zero in some intervals, as we indicate using the previ-
ously considered equation (26). In the following result we gather several properties
of that equation, including the ones stated in Corollary 6.1.

Theorem 7.1 (compare [20]). Let Φ be the local process generated by (26). Put

(28) T :=
2π

κ
.

If 0 < κ < 0.495 then there exists a compact set I such that Φ(0,T )(I) = I and a
continuous map g : I → Σ2 with the following properties:

(D1) σ ◦ g = g ◦ Φ(0,T ),
(D2) g(I) = Σ2,
(D3) if c ∈ Σ2 is n-periodic sequence, then g−1(c) contains a point x such that

Φn
(0,T )(x) = x,

(D4) if c ∈ Σ2 is n-periodic sequence, then g−1(c) contains a point x such that
Φn

(0,T )(x) = −x and Φ2n
(0,T )(x) = x,

(D5) for each c ∈ Σ2 such that ci = 0 for i ≥ i0, g−1(c) contains a point x such
that limt→∞ Φ(0,t)(x) = 0,

(D6) for each c ∈ Σ2 such that c = 0 for i ≤ i0, g−1(c) contains a point x such
that limt→−∞ Φ(0,t)(x) = 0,

(D7) for each c ∈ Σ2 such that ci = 0 for |i| ≥ i0, g−1(c) contains a point x such
that limt→±∞ Φ(0,t)(x) = 0,

(D8) for each t1 < t2 and ε > 0 there is infinitely many geometrically distinct
subharmonic (i.e. kT -periodic for some k ∈ N) solutions z of (26) such
that |z(t)| < ε for t ∈ [t1, t2].

Solutions satisfying (D7) are called homoclinic to the zero solution, while solu-
tions satisfying (D8) belong to the class of multibump solutions.

As we pointed out above, the properties (D1)–(D4) are already proved. For a
proof of the other properties we extend a notation used in the proof of Theorem 6.2
in Section 6. For a moment we consider T arbitrary, i.e. (28) is not necessarily
satisfied. Assume that W and Z are periodic segments over [0, T ] satisfying (21).
Let V be a periodic isolating segment over [0, lT ] (where l ∈ N) for which there are
integers

0 ≤ k0 < k1 < . . . < kn−1 ≤ l − 1

such that
Vt+kiT = Wt, for i ∈ {0, . . . , n− 1}, t ∈ [0, T ],

hence V[kiT,(ki+1)T ] is equal to the segment W translated to the interval [kiT, (ki +
1)T ]. For a finite sequence c = (c0, . . . , cn−1) ∈ {0, 1}{0,...,n−1} we define V (c) as
the periodic segment over [0, lT ] obtained from V by replacing V[kiT,(ki+1)T ] by the
translated copy of Z for each i ∈ {0, . . . n− 1} such that ci = 0, i.e.

V (c)t :=

{
Zt mod T , if t ∈ [kiT, (ki + 1)T ] and ci = 0,
Vt, otherwise

(see Figure 12). In particular, if V = Wn then that notation coincides with the one
given in Section 6. Using the notation in the statement of Theorem 5.1, we put

UV (c) := {x ∈ V0 : Φ(0,t)(x) ∈ V (c)t \ V (c)−−t ∀t ∈ [0, lT ]}.
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0 T 2T 3T 4T 5T

Figure 12. A segment V (top) and V ((1, 1, 0)) (bottom) with
k0 = 1, k1 = 3, and k2 = 4.

Similarly like in the proof of Theorem 6.2, w define UV (c),c ⊂ UV (c) by the following
rule: x ∈ UV (c) belongs to the set UV (c),c if and only if for each i ∈ {0, . . . , n − 1}
such that ci = 1 there exists t ∈ (0, T ) such that

Φ(0,kiT+t)(x) ∈ Wt \ Zt.

Lemma 7.1. Let V be the segment given above. Assume that Z0 and Z−−
0 are

ANRs, and

(E1) µW ◦ µW = µZ = idH(Z0,Z−−0 ),
(E2) Λ(µW ) 6= χ(Z0, Z

−−
0 ) and χ(Z0, Z

−−
0 ) 6= 0.

(E3) for each c = (c0, . . . , cn−1) ∈ {0, 1}{0,...,n−1} such that 1 appears exactly k
times in c,

Λ(µV (c)) = Λ(µk
W ).

Then the set UV (c),c is open in V0, the set of fixed points of the restriction

Φ(0,lT )|UV (c),c
: UV (c),c 7→ V0

is compact, and

ind(Φ(0,lT )|UV (c),c
) =

{
(−2)k−1(Λ(µW )− χ(Z0, Z

−−
0 )), if k ≥ 1,

χ(Z0, Z
−−
0 ), if k = 0.

An idea of a proof. One can use a similar argument as the one in the proof of (24).
For details we refer the reader to the proof of Lemma 1 in [16]. �

Now we return to the local process generated by (26) and from now we assume
that κ, R, r, and ∆ are the numbers given in Lemma 6.1, and W and Z are the
corresponding isolating segments. We built some other segments related to the
equation. Let r1 > 0. Put

P (r1) := {(t, z) ∈ R× C : |<z| ≤ r1, |=z| ≤ r1}

By Lemma 3 in [16] we have

Lemma 7.2. Let κ > 0 be arbitrary and let r1 ≤ 1/3. For all a < b the set
P (r1)[a,b] is a periodic isolating segment for (26) and its essential exit set is given
by

P (r1)−−[a,b] = {(t, z) ∈ P (r1)[a,b] : |<z| = r1}.
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Through reminder of this section we assume (28), i.e. T = 2π/κ. For ω defined
by (27), γ > 0, and t ≥ 0 set

sV (t) :=


R− ωt, if t ∈ [0,∆],
r, if t ∈ [∆, T ],
re−γ(t−T ), if t ≥ T .

and extend the definition to the whole real line by

sV (t) := sV (−t) for t < 0.

Using sV we define a set

V := {(t, z) ∈ R× C : |<z| ≤ sV (t), |=z| ≤ sV (t)},

In particular, V[0,T ] ⊂ Z. The following result essentially appeared in [22] as
Lemma 9:

Lemma 7.3. Let γ = 0.25. Then for all a < b the set V[a,b] is an isolating segment
for (26) and

V −−
[a,b] = {(t, z) ∈ V[a,b] : |<z| = sV (t)}.

The next lemma is helpful in a proof of the property (D8).

Lemma 7.4. Let t1 < t2 and ε > 0 be fixed. Then there exists a periodic segment
N for (26) over the interval [µT, νT ] for some integers µ < ν such that

(F1) µT < t1 < t2 < νT ,
(F2) NµT = Z0, N−−

µT = Z−−
0 ,

(F3) |z| < ε for each t ∈ [t1, t2] and z ∈ Nt.

The required segment is schematically shown in Figure 13.

t
¹T ºT

t1 2

²

¡²

Figure 13. Segment N .

Proof. Without loss of generality we can assume that t1 = i1T and t2 = i2T for
some integers i1 < i2, and ε < 1/3. Let an integer p ≥ 2 be such that

r1 := re−γ(p−1)T < ε/4,

where γ is given in Lemma 7.3. For a real number s define the time-s translation
along the time axis in R× C as

(29) τs(t, z) := (t + s, z).

Then we can put µ := i1 − p, ν := i2 + p, and

N := τµT (V[0,pT ]) ∪ P (r1)[i1T,i2T ] ∪ τνT (V[−pT,0]),

where P (r1) is taken from Lemma 7.2. �
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Proof of Theorem 7.1. Recall that by Corollary 6.1 it suffices to prove (D5)–(D8).
In order to deal with solutions that are asymptotic to the trivial solution we will use
the set V defined above. We describe only the main idea of the proof of assertion
(D7). Proofs of (D5) and (D6) are similar. Let i0 be a positive integer and let c be
a sequence of symbols 0 and 1 such that ci = 0 if |i| ≥ i0. Denote by

d = (d0, . . . , d2i−1)

the shifted fragment of c given by di = ci−i0 . For k ∈ N define a periodic segment
Y (k) over [0, 2(i0 + k)T ] as

Y (k) := τkT (V[−kT,0]) ∪ τkT (W 2i0(d)) ∪ τ(2i0+k)T (V[0,kT ]),

where the translations τ are given by (29) and V satisfies Lemma 7.3. By an
application of Lemma 7.1 to the segment Y (k), for every k we get a point yk ∈ Y (k)0
such that

Φ2(k+i0)
(0,T ) (yk) = yk

and Φ(0,t)(yk) ∈ Y (k)t for t ∈ [0, 2(i0 + k)T ], and if k ≤ s ≤ k + 2i0 − 1 and
Y (k)[sT,(s+1)T ] = W then Φ(0,t)(yn) /∈ Zt for some time t ∈ (sT, (s + 1)T ). Put

xk := Φ(0,(k+i0)T )(yk).

An accumulation point x of the sequence {xk} has the required property (see Fig-
ure 14). The proof of (D8) is based on the same idea as the proof of (D5)–(D7).

Figure 14. A trajectory homoclinic to the trivial solution coded
by the sequence . . . 0001.1001000 . . ..

In order to deal with multibump solutions described in (D8), for fixed t1 < t2 and
ε > 0 we consider the auxiliary segment N like in Lemma 7.4. The result follows
by application of Lemma 7.1 to the segments being the union of N followed by the
translated copy of Wn(c), where c ∈ {0, 1}{0,...,n−1} is a finite sequence. �

8. Continuation Theorem

We assume that X is a metric space with a distance function ρ. By the same
letter ρ we denote also a corresponding distance on R×X. By B(D, δ) we denote
an open ball of the radius δ around the set D contained either in X or in R×X.

Let Φ be a local semi-process on X generating the local semi-flow φ on R×X.
Let T > 0 and W and Z be two subsets of R × X. We consider the following
conditions:

(G1) W and Z are T -periodic segments for Φ which satisfy (21), and Z0 and
Z−−

0 are ANRs,
(G2) there exists η > 0 such that for every w ∈ W−− and z ∈ Z−−) there

exists t > 0 such that for 0 < τ < t holds φτ (w) /∈ W , ρ(φt(w),W ) > η,
φτ (z) /∈ Z, and ρ(φt(z), Z) > η).
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Let K be a positive integer and let E(1), . . . , E(K) be disjoint closed subsets of the
essential exit set Z−− which are T -periodic, i.e. E(l)0 = E(l)T , and such that

Z−− =
K⋃

l=1

E(l).

(In applications we will use the decomposition of Z−− into connected components).
For n ∈ N and every finite sequence c = (c0, . . . , cn−1) ∈ {0, 1, . . . ,K}{0,...,n−1} and
D ⊂ W0, we define Dc as a set of points x satisfying the following conditions:

(H1) Φ(0,lT )(x) ∈ D for l ∈ {0, . . . , n},
(H2) Φ(0,t+lT )(x) ∈ Wt \W−−

t for t ∈ [0, T ] and l ∈ {0, . . . , n− 1},
(H3) for each l = 0, 1, . . . , n − 1, if cl = 0, then Φ(0,lT+t)(x) ∈ Zt \ Z−−

t for
t ∈ (0, T ),

(H4) for each l = 0, 1, . . . , n − 1, if cl > 0, then Φ(0,lT )(x) leaves Z in time less
than T through E(cl).

Now let
[0, 1]× R×X × [0,∞) 3 (λ, σ, x, t) → Φλ

(σ,t)(x) ∈ X

be a continuous family of T -periodic semi-processes on X. Let φλ denotes the local
semi-flow on R×X generated by the semi-process Φλ. We say that the conditions
(G1) and (G2) are satisfied uniformly (with respect to λ) if they are satisfied with
Φ replaced by Φλ and the same η in (G2) is valid for all λ ∈ [0, 1].

We write Dλ
c for the set defined by the conditions (H1)–(H4) for the semi-process

Φλ.

Lemma 8.1. If D is open in W0, then Dλ
c is also open in W0. �

The main result of this section is the following:

Theorem 8.1 (Continuation Theorem, compare [21]). Let Φλ be a continuous
family of T -periodic semi-processes such that (G1) and (G2) hold uniformly. Then
for every n > 0 and every finite sequence c = (c0, . . . , cn−1) ∈ {0, . . . ,K}{0,...,n−1}

the fixed point indices ind(Φλ
(0,nT )|(W0\W−−

0 )λ
c
) are correctly defined and equal each

to the other (i.e. do not depend on λ ∈ [0, 1]).

Sketch of a proof. We follow the argument in [21]. Let 0 < β < η be such that

β < ρ(E(l), E(j)) for l 6= j.

One can check that there exists a δ > 0 such that for each λ ∈ [0, 1] the following
condition hold: every point x from B(W−−

0 , δ) ∩W0 leaves W in time τ < T , i.e.

(30) σλ
W (0, x) < T for x ∈ B(W−−

0 , δ) ∩W0

(where σλ
W is the escape-time function for φλ). By decreasing δ we can assume that

β > 2δ.

We define two open subsets of W0 by

D := W0 \B(W−−
0 , δ), C := W0 \B(W−−

0 , δ/2).

It follows that

W0 ∩B(D, δ/2) ⊂ C, W0 ∩B(C, δ/2) ⊂ W0 \W−−
0 .

Let us fix λ0 ∈ [0, 1]. There exists a set Λ open in [0, 1], λ0 ∈ Λ, such that for every
λ1, λ2 ∈ Λ,

ρ(Φλ1
(0,t)(x),Φλ2

(0,t)(x)) ≤ δ

2
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for 0 ≤ t ≤ nT and x ∈ W0. One can check using (G2) that

(31) Dλ
c ⊂ Cλ0

c ⊂ (W0 \W−−
0 )λ

c , for λ ∈ Λ.

From the choice of δ, the definition of the set D, and (30) one can conclude that

(32) Φλ
(0,nT )(x) 6= x, for x ∈ (W0 \W−−

0 )λ
c \Dλ

c .

From (31) we deduce that for λ, λ0 ∈ Λ all sets ∂Dλ
c , ∂Cλ

c , and ∂Cλ0
c are contained

in (W0\W−−
0 )λ

c \Dλ
c , and, in consequence, by (32) the fixed point index for the map

Φλ
(0,nT ) relative to those sets is correctly defined. By (31), (32), and the excision

property of the fixed point index we obtain that for λ ∈ Λ,

(33) ind(Φλ
(0,nT )|Dλ

c
) = ind(Φλ

(0,nT )|Cλ0
c

) = ind(Φλ
(0,nT )|(W0\W−−

0 )λ
c
).

In particular, for λ = λ0 we can assert that

(34) ind(Φλ0
(0,nT )|Dλ0

c
) = ind(Φλ0

(0,nT )|Cλ0
c

).

Combining (31) with (32) we see that for λ ∈ Λ and x ∈ ∂Cλ0
c ,

Φλ
(0,nT )(x) 6= x,

hence by the homotopy property of the fixed point index we get

(35) ind(Φλ
(0,nT )|Cλ0

c
) = ind(Φλ0

(0,nT )|Cλ0
c

), λ ∈ Λ

and finally from (33), (34), and (35) we conclude

(36) ind(Φλ
(0,nT )|Dλ

c
) = ind(Φλ0

(0,nT )|Dλ0
c

), λ ∈ Λ.

By (36), the fixed point index ind(Φλ
(0,nT )|Dλ

c
) is locally constant with respect to λ,

and consequently
ind(Φ0

(0,nT )|D0
c
) = ind(Φ1

(0,nT )|D1
c
).

Therefore
ind(Φ0

(0,nT )|(W0\W−−
0 )0c

) = ind(Φ1
(0,nT )|(W0\W−−

0 )1c
)

by (33), and the proof is complete. �

9. Model semi-processes and applications of Continuation Theorem

In this section we show that a more complete description of the dynamics gen-
erated by the equations of the form (25) (where n = 1, 2) can be obtained by
adapting the continuation method to the context of previous sections. The use of
model semi-processes as the terminal objects of continuation for those equations
enables us to dig deeper into the structure of the set of periodic solutions than does
the method based on the Lefschetz Fixed Point Theorem alone. As in Section 7, in
the sequel we put T := 2π/κ.

Let Φ be the local process generated by (26) in R2. Let W and Z be the
T -periodic isolating segments for Φ described in Lemma 6.1. In particular, for
R = 1.15,

Z0 = W0 = [−R,R]× [−R,R].
For 0 < c < a < b < R we put

J−1 = [−b,−a], J0 = [−c, c], J1 = [a, b].

Consider a function
f : J−1 ∪ J0 ∪ J1 → [−R,R]

having the graph shown in Figure 15. We stress that f(−x) = −f(x) and R =
f(c) = f(a) = f(−b). Let Z+1, Z−1 be two connected components of Z−−, the
right one (x > 0) and the left one (x < 0), respectively. Let us observe that after a
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R

b

¡b

¡c¡a

ac R

Figure 15. Function f in the model for (26).

suitable modifications outside of some large ball we can assume that Φ is a (global)
process.

Lemma 9.1. There exists a semi-process ΦM on R2 such that
(I1) {J−1 ∪ J0 ∪ J1} × [−R,R] = {z ∈ W0 : ΦM

(0,t)(z) ∈ Wt ∀t ∈ [0, T ]},
(I2) J0 × [−R,R] = {z ∈ W0 : ΦM

(0,t)(z) ∈ Zt ∀t ∈ [0, T ]},
(I3) for l = +1,−1,

Jl × [−R,R] = {z ∈ W0 : z leaves Z through Zl in time ≤ T},
(I4) for z = (x, y) ∈ {J−1 ∪ J0 ∪ J1} × [−R,R] the Poincaré map is given by

ΦM
(0,T )(x, y) = (f(x), 0),

(I5) Z and W are periodic isolating segments over [0, T ] for a family of T -
periodic semi-processes Φλ such that (G1) and (G2) hold uniformly, and

Φ0 = Φ, Φ1 = ΦM ,

(I6) for every c ∈ {−1, 0, 1}{0,...,n−1},

ind(ΦM
(0,T )|(W0\W−−

0 )1c
) 6= 0.

ΦM is called a model semi-process. We do not provide its construction (actu-
ally, intuitive but complicated a little) here, referring the reader to the proof of
Theorem 20 in [21]. As a corollary we get the following improvement of a part of
Theorem 7.1, in which the shift on two symbols is replaced by the one on three
symbols:

Theorem 9.1 (compare [21]). Let Φ be a local process generated by the equation
(26) with 0 < κ ≤ 0.495. Then there are a compact set I ⊂ C, invariant with
respect to Φ(0,T ), and a continuous surjective map g : I → Σ3 such that

(J1) σ ◦ g = g ◦ Φ(0,T ),
(J2) if c ∈ Σ3 is n-periodic then g−1(c) contains an n-periodic point of Φ(0,T ).

Proof. For

I := {x ∈ W0 : Φ(0,t+kT )(x) ∈ Wt for t ∈ [0, T ], k ∈ Z},
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we define a semi-conjugacy g : I → Σ3 by

g(x)l :=


0, if Φ(0,t+lT )(x) ∈ Zt for all t ∈ (0, T ),
1, if Φ(0,lT )(x) leaves Z in time less than T through Z−1,
2, if Φ(0,lT )(x) leaves Z in time less than T through Z+1.

By Theorem 8.1 and Lemma 9.1, all fixed point indices for periodic sequences of
symbols are nontrivial, hence g(I) contains all periodic sequences from Σ3. But the
set of all periodic sequences is dense in Σ3, so g(I) = g(I) = Σ3. �

Now we study the dynamics generated by the equation (25) with n = 2, i.e.

(37) ż = (1 + eiκt|z|2)z̄2.

The segments Z := Z(2) i W := W (2) for (37) are shown in Figure 10. It follows
that Z0 = W0 is a hexagon centered at the origin and the exit set Z−− has three
components E1, E2 i E3. Let R be equal to the radius of the inscribed circle of Z0

and let
h : C 3 z → zei 2π

3 ∈ C
be the rotation. We define

S := [0, R] ∪ h([0, R]) ∪ h2([0, R]).

For 0 < a < b < c < R we put

J :=[0, a] ∪ h([0, a]) ∪ h2([0, a]),

Jk :=hk−1([b, c]), k ∈ {1, 2, 3}.
Let

f : J ∪ J1 ∪ J2 ∪ J3 → S

be a continuous function, symmetric with respect to h, with the graph shown in
Figure 16.

h R f c f h a f h b( )= ( )= ( ( ))= ( ( ))

h a( )

a

h b( )

b

h c( )

c R f a f b= ( )= ( )

Figure 16. Map f in the model for (37). The gray lines above
the segment [0, R] represents the image of [0, a] (the lower line) and
of [b, c] (the upper line). Actually, the latter image is contained in
[0, R]∪ [0, h(R)]. The arrows indicate the orientation of the image
of f when going from 0 to a on the lower line and from b to c on
the upper line.

Let us observe that
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(K1) f(0) = 0,
(K2) for k ∈ {0, 1, 2},

f(hk(a)) = f(hk(b)) = hk(R), f(hk(c)) = hk+1(R),

(K3) the restrictions of f

f : [0, hk−1(a)] → [0, hk−1(R)],

f : Jk → [hk−1(R), 0] ∪ [0, hk(R)]

are homeomorphisms.
Let r : W0 → S be the retraction schematically shown in Figure 17. We put

Figure 17. The retraction r : W0 → S.

K := r−1(J ∪ J1 ∪ J2 ∪ J3).

The following result was proved in [23].

Lemma 9.2. There exists a model semi-process ΦM for (37) such that
(L1) Z and W are periodic isolating segments for a family of T -periodic semi-

processes Φλ such that (G1) and (G2) hold uniformly and

Φ0 = Φ, Φ1 = ΦM ,

(L2) {z ∈ W0 : ΦM
(0,t)(z) ∈ Wt ∀t ∈ [0, T ]} = K,

(L3) {z ∈ W0 : ΦM
(0,t)(z) ∈ Zt ∀t ∈ [0, T ]} = r−1(J),

(L4) {z ∈ K : z leaves Z through Ek at time ≤ T} = r−1(Jk),
(L5) the Poincaré map for ΦM , denoted by PM , is of the form

PM (z) := ΦM
(0,T )(z) = f(r(z)), z ∈ K.

We want now to investigate the symbolic dynamics on sets J and Jk for the
model map. The symbol 0 will correspond to J and the symbols k for k = 1, 2, 3
will corresponds to Jk. To simplify the notation we set J4 := J1. Observe that for
k = 1, 2, 3, PM (Jk) covers Jk, Jk+1 and part of J . The image of PM (J) covers J
and all Jk’s. But if we want to see where we can go from Jk and J under P 2

M we
need to consider the parts of J , what they cover and which part is covered by Jk.

We define a set Π ⊂ Σ4 = {0, 1, 2, 3}Z as follows: a sequence c belongs to Π if
the following conditions hold:

(M1) if ci = k for some k ∈ {1, 2, 3}, then ci+1 = 0 or ci+1 = k or ci+1 = k
(mod 3) + 1,

(M2) if cp = 0 for p ≤ i, then ci+1 ∈ {0, 1, 2, 3},
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(M3) if ci = 0 and p < i is such that cp = k 6= 0 and for p < s ≤ i cs = 0, then
ci+1 = 0 or ci+1 = k or ci+1 = (k mod 3) + 1.

The condition (M1) says, for example, that the symbol 1 in the sequence c can be
followed by the symbols 0, 1, 2. It is a consequence of the fact that f(J1) covers
J , J1 i J2 in a proper way. Hence, if the trajectory coded by the sequence c ∈ Π
leaves the segment Z in the time interval [kT, (k + 1)T ] through the component
Z−−

1 , then, in the time interval [(k + 1)T, (k + 2)T ], it can stay in Z or leaves Z
through Z−−

1 or Z−−
2 . By the continuation theorem we get:

Theorem 9.2 (compare [23]). Let Φ be a local process generated by (37). There
exists a κ0 > 0 such that for 0 < κ ≤ κ0 there are a compact set I ⊂ C invariant
under the Poincaré map Φ(0,T ) and a continuous map g : I → Σ4 such that

(N1) σ ◦ g = g ◦ Φ(0,T ),
(N2) Π ⊂ g(I),
(N3) if c ∈ Π is n-periodic, then g−1(c) contains an n-periodic point for Φ(0,T ).

Proof. The set I is defined like in the proof of Theorem 9.1. We define a continuous
map g : I → Σ4 by

g(x)l :=

{
0, if Φ(0,t+lT )(x) ∈ Zt for all t ∈ (0, T ),
k, if Φ(0,lT )(x) leaves Z in time less than T through Ek.

It is easy to check that the condition (N1) is satisfied and (N2) follows by (N3),
hence it is enough to prove (N3). Let Πl denotes the projection of Π onto the
coordinates 0, . . . , l − 1. This means that if α = (α0, . . . , αl−1) ∈ {0, 1, 2, 3}l then
α ∈ Πl if and only if there exists c ∈ Π such that αi = ci for i = 0, . . . , l − 1. For
α ∈ Πl such that α0 6= 0 we define

s(α) := max{j : αj 6= 0}.

Let c ∈ Π be a l-periodic sequence. If ci = 0 for all i, then g(0) = c. Let us observe
that it is enough to consider c ∈ Π, such that c0 6= 0.

Let l be the principal period of c and let α = (c0, . . . , cn−1) ∈ Πl. One can easily
check that there exists a closed interval A ⊂ Jα0 , such that for the semi-process
ΦM we get

(W0 \W−−
0 )α = r−1(int A),

f l(A) = [0, hs(α)−1(R)] ∪ [0, hs(α) mod 3(R)],

and f l|A is a homeomorphism. Observe that

either c0 = s(α) or c0 = (s(α) mod 3) + 1.

It follows the set r−1(A) is topologically a product of a segment A and another
interval B, the map f l(r(x)) maps A × B onto [0, hs(α)−1(R)] ∪ [0, hs(α) mod 3(R)]
containing A in its interior, hence it is easy to see that

ind(P l
M |(W0\W−−

0 )α
) = ind(f l|int A) = ±1 6= 0.

By Theorem 8.1 we have

ind(Φl
(0,T )|(W0\W−−

0 )α
) 6= 0,

hence there exists an x ∈ (W0 \ W0))α, such that Φl
(0,T )(x) = x. Observe that

g(x) = c and the proof is finished. �

We will finish this section with the following example.
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Example 9.1. Consider a time-dependent Hamiltonian system

(38) ẋ = −∂H

∂y
, ẏ =

∂H

∂x

where
H(x, y, t) = x3y + xy3 + H1(x, y, t),

H1(x, y, t) = −1
2
y2 sin(κt)− xy cos(κt) +

1
2
x2 sin(κt).

One can prove that for 0 < κ < κ0 there are two periodic segments Z and W for
(38) that look like the ones shown in Figure 18. We see that when compared to the

Figure 18. Isolating segments for (38): Z at the top and W at the bottom.

previous examples we have a slightly different geometry here. Previously the bigger
segment was rotating, while here the smaller one rotates. Both these situation are
manifestly homeomorphic. An application of the continuation theorem give us, like
in the case of the equation (26), the following result:

Theorem 9.3 (compare [23]). Let Φ be a local process generated by (38). Then
there exists a κ > 0 such that for 0 < κ < κ0 there are a compact set I ⊂ R2,
invariant with respect to the Poincaré map Φ(0,T ), and a surjective continuous map
g : I → Σ3 such that Φ(0,T ) is semi-conjugated to the shift map on three symbols
by the map g. Moreover, for each n-periodic sequence c ∈ Σ3, g−1(c) contains an
n-periodic point of the Poincaré map.

10. Rigorous numerical shadowing using isolating segments

The aim of this section is to describe a potential application of isolating segments
to rigorous numerical shadowing for non-autonomous equations. A minor modifica-
tions of the presented argument can provide similar application in the autonomous
case. The question of reliability of numerical simulations of chaotic dynamical sys-
tems is usually addressed by shadowing algorithms, see for example [6, 9]. When
applied to ordinary differential equations, these algorithms require rigorous esti-
mates for Poincaré maps. Here we outline a possible shadowing algorithm based
on the concept of isolating segment, without such requirement.

Let us consider an non-autonomous equation

(39) ẋ = f(t, x)
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in Rd, where f is Lipschitz with respect to x. Our point of departure is a pseudoorbit
(an approximate numerical trajectory)

ω = {ω0, ω1, . . . , ωN}

for (39) obtained for t0 < t1 < · · · < tN (if our aim is to obtain the periodic orbit
then we have ω0 = ωN , t0 = 0, tN = kT , where k ∈ N, and f is T -periodic in t).
Our goal is to show that there is true orbit nearby ω. We construct the following
auxiliary objects:

(O1) local sections Π0,Π1, . . . ,ΠN for (39) defined by Πi = {t = ti}, such that
ωi ∈ Πi. For periodic orbit for T -periodic problem (39) we require that
tN = kT for some kN.

(O2) d linearly independent and approximately invariant vector fields X1, . . . , Xd

along the pseudoorbit ω. By this we understand that the following condi-
tions are satisfied for l = 1, . . . , d

Xl,i ∈ Rd

dPi→i+1Xl,i ≈ λl,i→i+1Xl,i+1

where Pi→j : Πi → Πj denote the Poincaré map between sections Πi and Πj

for i < j. To obtain the vectors Xl,i for a periodic trajectory we perform the
diagonalization of the return map and then we evolve forward the unstable
eigenvectors and backward the stable ones.

(An effective procedure of construction of Xl,i for a very long (not periodic) pseu-
doorbit is described in [9] for the case of planar periodically forced ODE.)

For any i < j we set

λl,i→j = λl,i→i+1 · λl,i+1→i+2 · . . . · λl,j−1→j

The l-th direction is called unstable if |λl,0→N | > 1 and is called stable if |λl,0→N | <
1. We assume that each direction is either stable or unstable. Let U be the set of
unstable directions. We would like to construct segment W =

⋃
W[ti,ti+1] isolating

a trajectory close to ω, so that Wti is a parallelogram

Wti
:= {x ∈ Πi : x = ωi + Σd

l=1[−1, 1]sl,iXl,i}
W[ti,ti+1] := {(t, x) : t = (1− α)ti + αti+1,

x = (1− α) (ωi + Σl=1clsl,iXl,i) + α (ωi+1 + Σl=1clsl,i+1Xl,i+1)

cl ∈ [−1, 1], α ∈ [0, 1]},

where sl,i are some positive numbers. We introduce the candidate for the mon-
odromy homeomorphism for W[ti,ti+1],

hi : [0, 1]× [−1, 1]d → W[ti,ti+1] ⊂ [ti, ti+1]× Rd

by

hi(α, c1, . . . , cd) := ((1− α)ti + αti+1,

(1− α)(ωi + Σl=1clsl,iXl,i) + α(ωi+1 + Σl=1clsl,i+1Xl,i+1)).

We expect hi to be a homeomorphism. This happens when a small time step
used in the construction of the pseudorbit ω. If this is the case, then also Xl,i and
Xl,i+1 are almost collinear and the set of vectors spanning hi([0, 1]× [−1, 1]d), given
approximately by (1, 0), (0, X1,i), . . . , (0, Xd,i), is linearly independent.
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Before we describe W−−
[ti,ti+1]

, we define the faces of W[ti,ti+1] and Wti
for l =

1, . . . , d by

W l+
ti

:= {x = h(0, c1, . . . , cl) : cl = 1, ci ∈ [−1, 1] for i 6= l}

W l−
ti

:= {x = h(0, c1, . . . , cl) : cl = −1, ci ∈ [−1, 1] for i 6= l}

W l+
[ti,ti+1]

:= {x = h(α, c1, . . . , cl) : cl = 1, ci ∈ [−1, 1] for i 6= l, α ∈ [0, 1]}

W l−
[ti,ti+1]

:= {x = h(α, c1, . . . , cl) : cl = −1, ci ∈ [−1, 1] for i 6= l, α ∈ [0, 1]}.

Now we put

W−−
ti

:=
⋃
l∈U

(
W l+

ti
∪W l−

ti

)
W−−

[ti,ti+1]
:=

⋃
l∈U

(
W l+

[ti,ti+1]
∪W l−

[ti,ti+1]

)
W++

ti
:=

⋃
l/∈U

(
W l+

ti
∪W l−

ti

)
W++

[ti,ti+1]
:=

⋃
l/∈U

(
W l+

[ti,ti+1]
∪W l−

[ti,ti+1]

)
.

An algorithm which successively builds the segment can be described as follows:
0. Input values sl,i, l = 1, . . . , d; Output values sl,i+1.
1. For each l we choose sl,i+1,

1.1. sl,i+1 < |λl,i→i+1|, for unstable directions,
1.2. sl,i+1 > |λl,i→i+1| for stable directions.
Intuitively, this means that in the face unstable face is tilted towards the
pseudoorbit and the stable face is tilted away from the pseudoorbit. This
should give is exit and entry points on W−− and W++, respectively.) To
assure that the size of Wti

not change to much and to make sure that in
the periodic case WtN

= Wt0 it is desirable to choose sl,i+1, such that

sl,1 · sl,2 · . . . · sl,i+1 ≈ 1.

2. Verification of the algorithm—the following conditions should be checked:
2.1. the map hi is a homeomorphism. For this purpose it is enough to

check that a certain set of d + 1 vectors is linearly independent,
2.2. for l = 1, . . . , d we check that for each x ∈ W−−

[ti,ti+1]
the vector (1, f(x))

is pointing inside W[ti,ti+1] and for each x ∈ W++
[ti,ti+1]

the vector
(1, f(x)) is pointing inside W[ti,ti+1]. For this purpose for each face
in W[ti,ti+1] we have to evaluate the product of (1, f(x)) and the nor-
mal vector to the face. In interval arithmetic this might be doable in
one step for the whole face at once.

We consider the construction successful if we are able to perform N steps (in
the case of periodic orbit we also want to have WtN

= Wt0). In view of the theory
developed in previous sections it is easy that if N steps of the algorithm has been
successfully completed, then there exists x0 ∈ W0 and a time T > 0, such that
φ([0, T ], (0, x0)) ∈

⋃
i W[ti,ti+1] and φ(T, (0, x0)) ∈ WtN

, where φ is the local flow
induced by (39). Moreover, if the starting pseudoorbit was periodic and Wt0 = WtN

,
then φ(T, (0, x0)) = (0, x0), which means that x0 is periodic.

The following converse statement is quite obvious: if the periodic pseudorbit ω is
in fact a periodic hyperbolic orbit (with all real eigenvalues) for (39) and if the time
step is small enough then the algorithm described above yields an isolating segment.

Of course to make the above statement into the theorem one needs to specify how
to choose sl,i, but it is quite obvious that it is enough to take sl,i+1 = (1±εl)λl,i→i+1
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for some small εl > 0, with the plus sign for unstable directions and minus sign for
stable ones.
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des équations différentielles ordinaires, Ann. Soc. Polon. Math. 20 (1947), 279–313.
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