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Abstract

We present a topological technique for analyzing dynamical systems
with complex behavior, based on the general notion of covering relations.
Our method can be used to study multidimensional dynamical systems
with an arbitrary number of ‘topologically’ expanding directions.
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1 Introduction

In the study of differentiable dynamical systems, Markov partitions represent a
fundamental construction. A Markov partition consists of diffeomorphic copies
of multidimensional rectangles that cross transversally one another under iter-
ation. Such a construction can be exploited to obtain a coding for the orbits of
the system, which is generally referred as symbolic dynamics.

It is however very difficult, in general, to rigorously establish the existence of
a Markov partition when dealing with an explicitly given map or with a Poincaré
map associated to an ordinary differential equation. Therefore, introducing a
topological analogue of a Markov partition is of great importance. In such
an attempt, one strives to subdivide a particular region of the phase space into
blocks which cross one another in a topologically consistent way under iteration.
What ‘consistent’ means really depends on context and objectives.
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In the one-dimensional case, one can give a detailed account for ‘consistency’
by the means of covering relations, which can be described in the following
straightforward fashion. Let f : R → R be a continuous map, and let I, J ⊂ R
be closed intervals. We say that I f -covers J , and write I

f→ J , iff J ⊂
f(I). Covering relations between intervals yield to valuable information on the
existence of points with prescribed trajectories, and of periodic orbits. The
following basic theorem illustrates this idea.

Theorem 1 Let Ii, i = 0, 1, . . . , k, be closed intervals, such that Ik = I0. Let
fi : Ii−1 → R be continuous maps such that for every i = 1, . . . , k, we have

Ii−1
fi→ Ii.

Then there exists a point x ∈ I0, such that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ Ii, i = 1, . . . , k

fk ◦ fk−1 ◦ · · · ◦ f1(x) = x.

The proof of the above theorem is very simple, following directly from the
Darboux property.

In this paper, we present a general notion of covering relations in multi-
dimensional dynamical systems, as a practical method to analyze complicated
dynamics. We develop the ideas from the papers [18, 19, 20], which allow us to
generalize the notion of one-dimensional covering relations to the several dimen-
sional case, in a way that an analogue of Theorem 1 holds true. These new tools
turn out to be quite effective, as they were already used to prove several new
results concerning certain phenomena reducible to low dimensional dynamics:

• stability (continuation) of Sharkovskii’s ordering [19, 22] and estimates
of topological entropy [13] for multidimensional perturbations of one-
dimensional maps,

• computer assisted proofs of the existence of symbolic dynamics for the
Hénon map [21], the Rössler equations [21], the Chua circuit [6], the Lorenz
equations [7], the Hénon-Heiles hamiltonian [2], the planar restricted three
body problem [1, 17].

In the above mentioned applications, the underlying dynamical systems exhibit
so-called topological horseshoes - natural generalizations of Smale’s horseshoe.
The presence of these horseshoes can be inferred from modelling the dynamics
by piecewise affine (linear) maps, which indicate hyperbolic-like expansions and
contractions. In this paper we extend the notion of covering relation in order
to include examples which cannot be modelled by hyperbolic maps.

We would like to make a few comments on the methods used in this paper.
First, note that the definition of covering relation and the proof of Theorem 1
in the one-dimensional situation are very simple, but they cannot be directly
transposed in several dimensions. Therefore, in the multidimensional situation,
the condition on an interval being cover by the image of a second interval is re-
placed by a requirement that the image of a cube N under the map f is stretched
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across another cube M in a topologically nontrivial manner (see Definition 6).
These cubes together with the corresponding choices of coordinate systems will
be referred as h-sets (the letter h suggesting the hyperbolic-like directions). The
correct crossing of the cubes under f will be referred as a covering relation. The
use of the Darboux property in the proof of Theorem 1 will be replaced by the
use of the local Brouwer degree.

We would like to make a few comments on connections with related work.
Our approach is similar in spirit to Easton’s method of windows [4], [5]. In
a simple setting, a window in a manifold is a diffeomorphic copy of a multi-
dimensional rectangle. A pair of windows are correctly aligned provided that
each horizontal of one is transverse to each vertical of the other at a point that
correspond to the interior of the rectangle. A key result in this direction says
that, given a bi-infinite sequence of windows and connecting diffeomorphisms,
such that the image of each window is correctly aligned with the next window
under the connecting diffeomorphism, there is an orbit that runs through the
windows in the prescribed order (see Corollary 12 for our version of this result).
Easton’s approach relies heavily on the differential structure and on transversal-
ity, so it usually requires tedious computations in applications. Our approach
captures the idea of correct alignment in a much more efficient, topological way.
We provide a criteria for alignment that requires only checking the behavior of
certain distinguished components of the boundaries of the ‘windows’, and the
existence of precisely one horizontal in the first ‘window’ whose image can be
homotopically deformed onto a horizontal in the second ‘window’ by a map with
nonzero local Brouwer degree (see Theorem 15).

There also exists a vast Conley index literature (see [15, 7, 11, 12] and the
references given there) devoted to topological methods for detecting periodic
orbits and chaos. Up to date, one of the strongest results in this direction has
been provided by Srzednicki in [15] (see also [10]), based on the Lefschetz Fixed
Point Theorem. Our results go beyond the ones in [15], since we additionally
consider coverings induced by inverse maps (backcovering relations). These new
type of relations turn out to be very useful in studying systems exhibiting time-
reversal symmetry (see [1, 17]). Even in the case of direct coverings, which is
considered in [15] (in a different, more abstract language), we have the advantage
of providing a quite elegant geometric approach, which allows one to obtain
deeper and stronger results (see [16]), when compared to the one based on the
Lefschetz Fixed Point Theorem.

The content of paper is described as follows. In Section 2 we set up the no-
tation that we use throughout the paper, we introduce a simple type of covering
relation, and we prove an analogue of Theorem 1 for these relations. In Section 3
we extend the results form Section 2 to the ‘multiple wrapped covering’ case.
In Section 4 we present some sufficient conditions that ensure the existence of
covering relations. In Section 5 we briefly analyze a class of examples, different
from topological horseshoes, to which our approach is applicable.

Finally, in the Appendix, for the convenience of the reader, we included basic
properties of the local degree and the degree of mappings of the sphere, which
makes our paper reasonably self-contained.
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2 Covering relations, the simple case

Notation: For a given norm in Rn, by Bn(c, r) we denote the open ball of
radius r centered at c ∈ Rn. When the dimension n is obvious from the context,
we will drop the subscript n. Let Sn(c, r) = ∂Bn+1(c, r), by the symbol Sn we
will denote Sn(0, 1). We set R0 = {0}, B0(0, r) = {0}, ∂B0(0, r) = ∅.

For a given set Z, by intZ, Z, ∂Z we denote the interior, the closure and the
boundary of Z, respectively. For a map h : [0, 1]× Z → Rn, we set ht = h(t, ·).
By Id we denote the identity map. For a map f , by dom(f) we will denote
the domain of f . If f : Ω ⊂ Rn → Rn is a continuous map, we say that
X ⊂ dom (f−1) iff the map f−1 : X → Rn is well defined and continuous.

Definition 1 An h-set is a quadruple consisting of

• a compact subset N of Rn,

• a pair of numbers u(N), s(N) ∈ {0, 1, 2, . . . }, with u(N) + s(N) = n,

• a homeomorphism cN : Rn → Rn = Ru(N) × Rs(N), such that

cN (N) = Bu(N)(0, 1)×Bs(N)(0, 1).

With an abuse of notation, we will denote such a quadruple by N . We denote

Nc = Bu(N)(0, 1)×Bs(N)(0, 1),

N−
c = ∂Bu(N)(0, 1)×Bs(N)(0, 1),

N+
c = Bu(N)(0, 1)× ∂Bs(N)(0, 1),

N− = c−1
N (N−

c ), N+ = c−1
N (N+

c ).

Hence an h-set N is a product of two closed balls with respect to some
coordinate system. The numbers u(N) and s(N) stand for the dimensions of
nominally unstable and stable directions, respectively. The subscript c refers
to the new coordinates given by homeomorphism cN . Notice that if u(N) = 0,
then N− = ∅ and if s(N) = 0, then N+ = ∅.
Definition 2 Assume N, M are h-sets, such that u(N) = u(M) = u and
s(N) = s(M) = s. Let f : N → Rn be a continuous map. Let fc = cM ◦f ◦c−1

N :
Nc → Ru × Rs. We say that

N
f

=⇒ M

(N f -covers M) iff the following conditions are satisfied

1. There exists a continuous homotopy h : [0, 1]×Nc → Ru ×Rs, such that the
following conditions hold true

h0 = fc,

h([0, 1], N−
c ) ∩Mc = ∅,

h([0, 1], Nc) ∩M+
c = ∅.
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2. There exists a linear map A : Ru → Ru, such that

h1(p, q) = (Ap, 0), for p ∈ Bu(0, 1) and q ∈ Bs(0, 1), (1)
A(∂Bu(0, 1)) ⊂ Ru \Bu(0, 1). (2)

In the context of the above definition we will call the map h1 a model map
for the relation N

f
=⇒ M .

Remark 2 When u > 0, then condition (2) is equivalent to each of the following
conditions

Bu(0, 1) ⊂ A(Bu(0, 1)),
‖Ap‖ > 1, for p ∈ ∂Bu(0, 1),
‖Ap‖ > ‖p‖, for p 6= 0.

Remark 3 When u = 0, then Ru = {0} and so A : Ru → Ru is given by
A(0) = 0. Taking into account that ∂Bu(0, 1) = ∅, we see that the second part
of (2) is vacuously satisfied, and so condition (2) is equivalent to h1(x) = 0 for

all x. It is easy to see that, in this case, N
f

=⇒ M iff f(N) ⊂ intM .

Definition 3 Let N be an h-set. We define the h-set NT as follows

• The compact subset of the quadruple NT is the compact subset of the
quadruple N , also denoted by N ,

• u(NT ) = s(N), s(NT ) = u(N)

• The homeomorphism cNT : Rn → Rn = Ru(NT ) × Rs(NT ) is defined by

cNT (x) = j(cN (x)),

where j : Ru(N) × Rs(N) → Rs(N) × Ru(N) is given by j(p, q) = (q, p).

Notice that NT,+ = N− and NT,− = N+. This operation is useful in the
context of inverse maps, as it was first pointed out in [1].

Definition 4 Assume N, M are h-sets, such that u(N) = u(M) = u and
s(N) = s(M) = s. Let g : Ω ⊂ Rn → Rn. Assume that g−1 : M → Rn is
well defined and continuous. We say that N

g⇐= M (N g-backcovers M) iff

MT g−1

=⇒ NT .

Following [1], let us point out that, although covering and backcovering occur
often simultaneously, they are not equivalent, for example it can happen that
the map f is not defined on N .

5



Theorem 4 Let Ni, i = 0, . . . , k be h-sets and Nk = N0. Assume that for each
i = 1, . . . , k we have either

Ni−1
fi=⇒ Ni, (3)

or
Ni ⊂ dom (f−1

i ) and Ni−1
fi⇐= Ni. (4)

Then there exists a point x ∈ intN0, such that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ intNi, i = 1, . . . , k, (5)
fk ◦ fk−1 ◦ · · · ◦ f1(x) = x. (6)

Proof: Without any loss generality we can assume that

cNi = Id, for i = 0, . . . , k − 1,

fi = fi,c, for i = 1, . . . , k,

Ni = Nc,i, N±
i = N±

i,c.

In order to simplify the exposition we set N−1 = Nk−1 and Nk = N0 and
accordingly f0 = fk. We also define gi = f−1

i , for those i for which we have the

back-covering relation Ni−1
fi⇐= Ni.

Notice that from the definition of covering relation, it follows immediately
that there exist u ≥ 0, s ≥ 0, such that u(Ni) = u and s(Ni) = s, for all
i = 0, . . . , k − 1.

The idea of the proof is to find a solution of the equation x− (fk ◦fk−1 ◦ · · · ◦
f1)(x) = 0 of nonzero local Brouwer degree. Each mapping fi corresponding
to a direct covering is homotopic to some linear map, and each mapping fi

corresponding to a backcovering has its inverse gi homotopic to some linear
map. We will prove that an appropriate composition of these linear maps has a
non-degenerate fixed point, and use the homotopy property of the local Brouwer
degree to conclude that fk ◦ fk−1 ◦ · · · ◦ f1 has a fixed point.

As a tool for keeping track of the occurrences of coverings and backcoverings,
we define the map δ : {0, . . . , k} → {0, 1} by δ (i) = 1 if Ni−1

fi=⇒ Ni and

δ (i) = 0 if Ni−1
fi⇐= Ni. Let hi be a homotopy map from the definition of

covering relation for Ni−1
fi=⇒ Ni or Ni−1

fi⇐= Ni. In the case of a direct
covering (i.e. δ (i) = 1), the homotopy hi satisfies

hi(0, x) = fi(x), where x ∈ Ru+s, (7)
hi(1, (p, q)) = (Aip, 0), where p ∈ Ru and q ∈ Rs, (8)

hi([0, 1], N−
i−1) ∩Ni = ∅, (9)

hi([0, 1], Ni−1) ∩N+
i = ∅. (10)
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In the case of a backcovering (i.e. δ (i) = 0), the homotopy hi satisfies

hi(0, x) = gi(x), where x ∈ Ru+s, (11)
hi(1, (p, q)) = (0, Aiq), where p ∈ Ru and q ∈ Rs, (12)

hi([0, 1], N+
i ) ∩Ni−1 = ∅, (13)

hi([0, 1], Ni) ∩N−
i−1 = ∅. (14)

It is enough to prove that there exists xi ∈ intNi for i = 0, . . . , k − 1 such
that

fi(xi−1) = xi, if δ (i) = 1,

gi(xi) = xi−1, if δ (i) = 0. (15)

We will treat (15) as a multidimensional system of equations to be solved.
To this end, let us define

Π = N0 ×N1 × · · · ×Nk−1.

A point x ∈ Π will be represented by x = (x0, x1, . . . , xk−1). We set x−1 = xk−1

and xk = x0.
We define a map F = (F0, F1, . . . , Fk−1) : Π → R(u+s)k by

Fi(x0, x1, . . . , xk−1) =

{
xi − fi(xi−1) if δ (i) = 1,

xi−1 − gi(xi) if δ (i) = 0.

With this notation, solving the system (15) is equivalent to solving the equation
F (x) = 0 in intΠ.

We define a homotopy H = (H0, . . . ,Hk−1) : [0, 1]×Π → R(u+s)k by

Hi(λ, x0, x1, . . . , xk−1) =

{
xi − hi(λ, xi−1) if δ (i) = 1,

xi−1 − hi(λ, xi) if δ (i) = 0.

Notice that H(0, x) = F (x). The assertion of the theorem is a consequence of
the following two lemmas, which will be proved after we complete the current
proof.

Lemma 5 For all λ ∈ [0, 1] the local Brouwer degree deg(Hλ, intΠ, 0) is well
defined and does not depend on λ. Namely, for all λ ∈ [0, 1] we have

deg(Hλ, intΠ, 0) = deg(H1, intΠ, 0).

Lemma 6
deg(H1, intΠ, 0) = ±1.

We continue the proof of Theorem 4. Since F = H0, from the above lemmas
it follows immediately that

deg(F, intΠ, 0) = deg(H0, intΠ, 0) = deg(H1, intΠ, 0) 6= 0.
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Hence there exists x ∈ Π such that F (x) = 0.

Proof of Lemma 5: From the homotopy property (see Appendix) it is enough
to prove that

Hλ(x) 6= 0, for all x ∈ ∂Π and λ ∈ [0, 1]. (16)

In order to prove (16), let us fix x = (x0, x1, . . . , xk−1) ∈ ∂Π. It is easy to
see that the exists i ∈ {0, 1, . . . k − 1}, such that xi ∈ ∂Ni = N+

i ∪N−
i . Hence

at least one of the following conditions hold true

xi ∈ N+
i , (17)

xi ∈ N−
i . (18)

For each of the two above cases, we have to consider the following four possibil-
ities

Ni−1
fi=⇒ Ni

fi+1=⇒ Ni+1, (19)

Ni−1
fi=⇒ Ni

fi+1⇐= Ni+1, (20)

Ni−1
fi⇐= Ni

fi+1=⇒ Ni+1, (21)

Ni−1
fi⇐= Ni

fi+1⇐= Ni+1. (22)

Assume first that xi ∈ N+
i . If (19) or (20) holds true, then from (10) we obtain

hi(t, xi−1) 6= xi,

for every t ∈ [0, 1] and every xi−1 ∈ Ni−1. If (21) or (22) is satisfied, then from
(13) it results that

hi(t, xi) 6= xi−1,

for every t ∈ [0, 1] and every xi−1 ∈ Ni−1. This proves if xi ∈ N+
i , then

Ht(x) 6= 0 for any t ∈ [0, 1].
Assume now that xi ∈ N−

i . If (19) or (21) holds true, then from (9) it follows
that for every t ∈ [0, 1] and every xi+1 ∈ Ni+1 we have

hi+1(t, xi) 6= xi+1.

If (20) or (22) is satisfied, then from (14) we obtain

hi+1(t, xi+1) 6= xi,

for every t ∈ [0, 1] and every xi+1 ∈ Ni+1. This proves that if xi ∈ N−
i , then

Ht(x) 6= 0 for any t ∈ [0, 1].

Proof of Lemma 6: Let us represent xi as a pair xi = (pi, qi), where pi ∈ Ru

and qi ∈ Rs. In this representation, the map H1(p0, q0, . . . , pk−1, qk−1) =
(p̃0, q̃0, . . . , p̃k−1, q̃k−1) has the following form

p̃i = pi −Aipi−1, if δ (i) = 1, (23)
q̃i = qi, if δ (i) = 1, (24)

p̃i = pi−1, if δ (i) = 0, (25)
q̃i = qi−1 −Aiqi, if δ (i) = 0. (26)
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The map H1 is linear. From (100) it follows that to prove that deg(H1, intΠ, 0) =
±1 it is enough to show that H1 is an isomorphism.

Assume that H1(p0, q0, . . . , pk−1, qk−1) = 0. We have to show that for all
i = 0, . . . , k − 1, pi = 0 and qi = 0. We will only show that pi = 0 for all i, the
proof for qi being similar.

If u = 0, then there is nothing to prove, as all pi equal to 0, by definition.
Let u > 0. If for all i = 0, . . . , k − 1, we have δ (i) = 1, then

p0 = (Ak ◦Ak−1 ◦ · · · ◦A1)p0

From Remark 2, it follows that ‖Ai(p)‖ > ‖p‖ for all p 6= 0. Hence p0 = 0 in
this case, and then pi = 0 for all i. If there exists j such that δ (j) = 0, then
pj−1 = 0 and an easy induction argument shows that pi = 0 for i = 0, . . . , k−1.

It is important to remark here that the proof of Lemma 5 does not use
property 2 from the definition of covering relations.

In the view of Theorem 4, it makes practical sense to make no distinction
between the covering relations N

f
=⇒ M and N

f⇐= M . Following [1], we
introduce

Definition 5 Let N and M be h-sets. We say that N generically f -covers M

( N1
f⇐⇒ N2) if N

f
=⇒ M or N

f⇐= M .

We emphasize that the relation N1
f⇐⇒ N2 is not symmetric in general.

Collorary 7 Assume that we have the following chain of covering relations

N0
f1⇐⇒ N1

f2⇐⇒ N2
f3⇐⇒ . . .

fk⇐⇒ Nk,

Then there exists a point x ∈ intN0, such that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ intNi, i = 1, . . . , k. (27)

Moreover if Nk = N0, then x can be chosen so that

fk ◦ fk−1 ◦ · · · ◦ f1(x) = x. (28)

Proof: The statement for a periodic loop (N0 = Nk) follows directly from
Theorem 4. The nonperiodic case will be reduced to the periodic one by adding
a new covering relation to close the loop as follows.

Notice that from the definition of covering relation it follows immediately
that u(Ni) = u and s(Ni) = s for some u, s and all i = 0, . . . , k − 1.

We can assume that for cNi = Id for i = 0, 1, . . . , k. It easy to find a map
fk+1, an affine map Ak+1 : Ru → Ru, and a homotopy hk+1 such that

Nk
fk+1=⇒ N0, (29)

where fk+1(p, q) = (Ak+1(p), 0) and hk+1(t, x) = fk+1(x).
Now we have a closed loop of covering relations to which we can apply

Theorem 4. This finishes the proof.
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3 Multiple wrapped covering relations

The goal of this section is to generalize the notion of covering relations intro-
duced in Section 2. We will change condition 2 in the definition of covering
relations in order to allow for more general maps at the end of homotopy h (this
means that we allow for different model maps).

Definition 6 Assume that N, M are h-sets, such that u(N) = u(M) = u and
s(N) = s(M) = s. Let f : N → Rn be a continuous map. Let fc = cM ◦f ◦c−1

N :
Nc → Ru × Rs. Let w be a nonzero integer. We say that

N
f,w
=⇒ M

(N f -covers M with degree w) iff the following conditions are satisfied

1. there exists a continuous homotopy h : [0, 1]×Nc → Ru × Rs, such that the
following conditions hold true

h0 = fc, (30)
h([0, 1], N−

c ) ∩Mc = ∅, (31)
h([0, 1], Nc) ∩M+

c = ∅. (32)

2. There exists a map A : Ru → Ru, such that

h1(p, q) = (A(p), 0), for p ∈ Bu(0, 1) and q ∈ Bs(0, 1), (33)
A(∂Bu(0, 1)) ⊂ Ru \Bu(0, 1). (34)

Moreover, we require that

deg(A,Bu(0, 1), 0) = w,

Note that in the case u = 0, an h-set N can cover an h-set M only with
degree w = 1.

The previous definition of covering relation (Definition 1) is a particular case
of the present one, with the degree w equal to sgn (det(A)) (for u > 0). See
Figure 1 for an example of a multiple wrapped covering relation. As in Section 2,
we will call the map h1 a model map for the relation N

f,w
=⇒ M .

Remark 8 In applications, we would like to decide whether two h-sets are cor-
rectly aligned based essentially on the information on their boundaries. Condi-
tion 1 from the above definition is stated in this spirit. In condition 2, we can ex-
press the local Brouwer degree of A as the winding number of A(∂Bu(0, 1)) about
the origin. More precisely, in the case u > 0, since the map A : Bn(0, 1) → Rn

satisfies
0 /∈ A(∂Bu(0, 1)), (35)
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M

f(N)

Figure 1: An illustration of a multiple wrapped covering relation in the plane.
The arrows on the side of f(N) merely suggest that a cross section disk in f(N)
wraps around twice the corresponding cross section disk in M

we can define a map sA : Su−1 → Su−1 by

sA(x) =
A(x)
‖A(x)‖ . (36)

The degree d(sA) of a mapping of a sphere is defined in Appendix 6.2. By
Lemma 23, we obtain deg(A, Bu(0, 1), 0) = d(sA). Thus, the degree of a covering

N
f,w
=⇒ M can be computed as w = d(sA).

We define the corresponding notion of backcovering for this new type of
covering relation.

Definition 7 Assume N, M are h-sets, such that u(N) = u(M) = u and
s(N) = s(M) = s. Let g : Ω ⊂ Rn → Rn. Assume that g−1 : |M | → Rn

is a well defined, continuous map. We say that N
g,w⇐= M (N g-backcovers M

with degree w) iff MT g−1,w
=⇒ NT .

Theorem 9 Let Ni, i = 0, . . . , k be h-sets and Nk = N0. Assume that for each
i = 1, . . . , k we have either

Ni−1
fi,wi=⇒ Ni, (37)

or
Ni ⊂ dom (f−1

i ) and Ni−1
fi,wi⇐= Ni. (38)

Then there exists a point x ∈ intN0, such that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ intNi, i = 1, . . . , k, (39)
fk ◦ fk−1 ◦ · · · ◦ f1(x) = x. (40)
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Proof: The proof of this theorem follows the same pattern as the proof of
Theorem 4. We define Π, δ (i), F and H as it was done there. Lemma 5 is
valid, with the same proof, because condition 2 in the definition of covering is
not used in its proof.

Instead of Lemma 6 we will have the following

Lemma 10
| deg(H1, intΠ, 0)| = |w1 · w2 · . . . wk|.

We finish the proof by the same argument as in Theorem 4.

3.1 Proof of Lemma 10.

Let us represent xi as a pair xi = (pi, qi), where pi ∈ Ru and qi ∈ Rs. As
usual we set (p−1, q−1) = (pk−1, qk−1), (pk, qk) = (p0, q0) and Ak = A0. In this
representation the map H1(p0, q0, . . . , pk−1, qk−1) = (p̃0, q̃0, . . . , p̃k−1, q̃k−1) has
the following form (for λ = 0)

p̃i = (1− λ)pi −Ai(pi−1), if δ (i) = 1, (41)
q̃i = qi, if δ (i) = 1, (42)

p̃i = pi−1, if δ (i) = 0, (43)
q̃i = (1− λ)qi−1 −Ai(qi), if δ (i) = 0. (44)

The above equations define a homotopy C : [0, 1] × Π → R(u+s)k. We will
show that deg(Cλ, intΠ, 0) is independent of λ and then we compute the degree
of C1.

Lemma 11 For any λ ∈ [0, 1]

deg(Cλ, intΠ, 0) = deg(C1, intΠ, 0).

Proof: From the homotopy property of the local degree (see Appendix), it
follows that it is enough to prove that

Cλ(x) 6= 0, for all x ∈ ∂Π and λ ∈ [0, 1]. (45)

Let us take x = (p0, q0, p1, q1, . . . , pk−1, qk−1) ∈ ∂Π. There exists i such that
one the following conditions holds true

pi ∈ Su, (46)
qi ∈ Ss. (47)

Assume that pi ∈ Su. If δ (i + 1) = 1, then p̃i+1 6= 0, because from condition
(34) it follows that

‖Ai+1(pi)‖ > 1 ≥ ‖(1− λ)pi+1‖, (48)

for any pi+1 ∈ Bu(0, 1).
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If δ (i + 1) = 0, then obviously p̃i+1 = pi 6= 0.
The argument for the case qi ∈ Ss is similar.

Now we turn to the computation of the degree of C1. Observe that C1 has
the following form

p̃i = −Ai(pi−1), if δ (i) = 1, (49)
q̃i = qi, if δ (i) = 1, (50)

p̃i = pi−1, if δ (i) = 0, (51)
q̃i = −Ai(qi), if δ (i) = 0. (52)

From the product property of the degree it follows that

| deg(C1,Π, 0)| =∣∣∣Πi∈δ −1(1)
deg(−Ai, Bu(0, 1), 0) ·Π

i∈δ −1(0)
deg(−Ai, Bs(0, 1), 0)

∣∣∣ .

In the formula above if δ −1(i) = ∅, then the corresponding product is set to be
equal to 1. In the situation when u = 0 or s = 0 the corresponding product is
also set equal to 1.

From (104) it follows that

deg(−A,U, 0) = (−1)u deg(A,U, 0), (53)

which completes the proof.

The following corollary is an immediate consequence of Theorem 9.

Collorary 12 Let Ni, i ∈ Z be h-sets. Assume that for each i ∈ Z we have
either

Ni−1
fi,wi=⇒ Ni (54)

or
Ni ⊂ dom (f−1

i ) and Ni−1
fi,wi⇐= Ni. (55)

Then there exists a point x ∈ intN0, such that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ intNi, i ∈ Z. (56)

Moreover, if Ni+k = Ni for some k > 0 and all i, then the point x can be chosen
so that

fk ◦ fk−1 ◦ · · · ◦ f1(x) = x. (57)

3.2 Stability of covering relations with respect to C0-per-
turbations

We will state and prove here a very simple theorem on the stability of covering
relations to C0-perturbations. This result is very important in applications,
especially in computer assisted proofs based on covering relations, as it shows
that sufficiently small errors in numerical approximations of the map f do not
affect the nature of a covering relation N

f
=⇒ M .

13



Theorem 13 Assume N,M are h-sets, such that u(N) = u(M) = u and
s(N) = s(M) = s. Let f, g : N → Rn be continuous. Assume that

N
f,w
=⇒ M.

Then there exists ε > 0, such that if |fc(x)− gc(x)| < ε for all x ∈ Nc, where

fc = cM ◦ f ◦ c−1
N : Nc → Ru × Rs

gc = cM ◦ g ◦ c−1
N : Nc → Ru × Rs,

then
N

g,w
=⇒ M.

Proof: The basic idea is to construct a good homotopy connecting fc and gc.
Namely, we construct a homotopy h̃ : [0, 1]×Nc → Ru × Rs, such that

h̃0 = gc, h̃1 = fc, (58)
h̃([0, 1], N−

c ) ∩Mc = ∅, (59)
h̃([0, 1], Nc) ∩M+

c = ∅, . (60)

We set
h̃(t, x) = (1− t)gc(x) + tfc(x). (61)

It is easy to see that for ε small enough, the conditions (59) and (60) are satisfied.

Let h be a homotopy from the relation N
f,w
=⇒ M . It is easy to see the

homotopy H : [0, 1]×Nc → Ru × Rs given by

H(t, x) =

{
h̃(2t, x) for t ∈ [0, 1

2 ],
h(2t− 1, x) for t ∈ [ 12 , 1].

(62)

satisfies all the conditions from Def. 6 for a covering relation N
g,w
=⇒ M

In the above theorem the size of the perturbation i.e. (|fc(x) − gc(x)| for
x ∈ Nc) was given in cN and cM coordinates. Now we state the result involving
the difference between f and g on N .

Theorem 14 Assume N,M are h-sets, such that u(N) = u(M) = u and
s(N) = s(M) = s. Let f, g : N → Rn be continuous. Assume that

N
f,w
=⇒ M,

and that the coordinate map cM satisfies a Lipschitz condition. Then there exists
ε > 0, such that if |f(x)− g(x)| < ε for all x ∈ N , then

N
g,w
=⇒ M.

Proof: Let L be a Lipschitz constant for cM . Let fc and gc be as in Theorem 13.
We have

max
x∈Nc

|fc(x)− gc(x)| = max
x∈N

|cM (f(x))− cM (g(x))| ≤ L max
x∈N

|f(x)− g(x)|.

The assertion follows from Theorem 13.

14



4 How to find a homotopy for the covering re-
lations

The goal of this section is to present sufficient conditions which ensure that
N

f
=⇒ M , solely based on the knowledge of f(N) and M .

Definition 8 Let N be a h-set. We set

S(N)−c = {(p, q) ∈ Ru × Rs | ‖p‖ > 1}. (63)

We define S(N)− = c−1
N (S(N)−c ).

Theorem 15 Let N , M be two h-sets in Rn, such that u(N) = u(M) = u and
s(N) = s(M) = s. Let f : N → Rn be continuous. Let fc = cM ◦ f ◦ c−1

N : Nc →
Ru × Rs.

Assume that there exists q0 ∈ Bs(0, 1), such that following conditions are
satisfied

1.

fc(Bu(0, 1)× {q0}) ⊂ int (S(M)−c ∪Mc), (64)
fc(N−

c ) ∩Mc = ∅, (65)
fc(Nc) ∩M+

c = ∅. (66)

2.1 Case u > 0. We define a map Aq0 : Ru → Ru by

Aq0(p) = πu(fc(p, q0)), (67)

where πu : Ru × Rs → Ru is the projection onto Ru, πu(p, q) = p. We
assume that

Aq0(∂Bu(0, 1)) ⊂ Ru \Bu(0, 1), (68)
deg(Aq0 , Bu(0, 1), 0) = w 6= 0. (69)

2.2 Case u = 0. We assume that

fc(Nc) ⊂ intMc,

and set w = 1.

Then
N

f,w
=⇒ M.

Proof: We have to prove that there exists a homotopy h : [0, 1] × Nc → Rn

satisfying conditions from Definition 6.
The case u = 0 is trivial (w = 1). Thus we focus on the case u > 0.

15



For any q1 ∈ Rs we define a deformation retraction onto Ru × {q1}, Rq1 :
[0, 1]× Ru × Rs → Ru × Rs, by

Rq1(λ, p, q) = (p, (1− λ)q + λq1). (70)

Notice that Rq1(0, p, q) = (p, q).
We define the homotopy h : [0, 1]×Nc → Rn by

h(λ, p, q) =

{
fc(Rq0(2λ, p, q)) λ ∈ [0, 0.5],
R0(2λ− 1, fc(p, q0)) λ ∈ [0.5, 1].

(71)

The homotopy h is a superposition of the retraction in the domain of fc onto
q = q0 with the retraction in the image onto the subspace q = 0.

Notice that

h0(x) = fc(x), h1/2(p, q) = fc(p, q0), h1(p, q) = (πufc(p, q0), 0). (72)

To prove (31), notice that Rq0(λ, N−
c ) ⊂ N−

c for λ ∈ [0, 1], hence from condition
(65) it follows that

fc(Rq0(λ,N−
c )) ∩Mc ⊂ fc(N−

c ) ∩Mc = ∅. (73)

This proves condition (31) for λ ∈ [0, 0.5]. For the proof for λ ∈ [0.5, 1] observe
that from condition (68) it follows that

fc(p, q0) ∈ S(M)−c , for (p, q0) ∈ N−
c . (74)

But R0 ([0, 1]× S(M)−c ) ⊂ S(M)−c and S(M)−c ∩Mc = ∅. Hence condition (31)
is satisfied.

It remains to show that condition (32) is true for h. As above, consider two
cases λ ≤ 1/2 and λ ≥ 1/2. For λ ≤ 1/2 from (66) it follows that

hλ(Nc) ∩M+
c ⊂ fc(Nc) ∩M+

c = ∅. (75)

For λ ≥ 1/2 observe that from (64) it follows that

hλ(Nc) ⊂ R0(2λ− 1, fc(Bu(0, 1)× {q})) ⊂
⊂ R0

(
2λ− 1, int (S(M)−c ∪Mc)

) ⊂ int (S(M)−c ∪Mc).

But (int (S(M)−c ∪Mc)) ∩M+ = ∅.
The above theorem allows to take its assumptions as a definition of covering

relation as it was done before by Zgliczyński in [2, 19] for maps with one topo-
logically expanding direction (u = 1), and in [20] for maps which are close to
products of one dimensional maps. Below we will discuss the case of u = 1.
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4.1 Case of one nominally expanding direction, u = 1

In this section we discuss the case of u = 1, hence we have only one nominally
expanding direction. The basic idea here is that each of the sets N−, S(N)−

consists of two disjoint components, allowing us to simplify the assumptions of
Theorem 15.

Definition 9 Let N be an h-set, such that u(N) = 1. We set

N le
c = {−1} ×Bs(0, 1),

Nre
c = {1} ×Bs(0, 1),

S(N)l
c = (−∞,−1)× Rs,

S(N)r
c = (1,∞)× Rs.

We define

N le = c−1
N (N le

c ), Nre = c−1
N (Nre

c ),
S(N)l = c−1

N (S(N)l), S(N)r = c−1
N (S(N)r).

We will call N le, Nre, S(N)l and S(N)r the left edge, the right edge, the left
side and right side of N , respectively.

It is easy to see that N− = N le ∪Nre and S(N)− = S(N)l ∪ S(N)r.
The triple (N, S(N)l, S(N)r) represents a t-set, as it was defined in [2].

Theorem 16 Let N , M be two h-sets in Rn, such that u(N) = u(M) = 1 and
s(N) = s(M) = s = n− 1. Let f : N → Rn be continuous.

Assume that there exists q0 ∈ Bs(0, 1), such that the following conditions
are satisfied

f(cN (Bu(0, 1)× {q0})) ⊂ int (S(M)l ∪M ∪ S(M)r), (76)
f(N) ∩M+ = ∅, (77)

and one of the following two conditions holds true

f(N le) ⊂ S(M)l and f(Nre) ⊂ S(M)r, (78)
f(N le) ⊂ S(M)r and f(Nre) ⊂ S(M)l. (79)

Then there exists w = ±1, such that

N
f,w
=⇒ M.

Proof: We will show that assumptions of Theorem 15 are satisfied.
From the alternative conditions (78) and (79), it follows that

fc(N le
c ∪Nre

c ) = f(N−
c ) ∩Mc = ∅.

We define a map Aq0 as in Theorem 15. It is easy to see that deg(Aq0 , Bu(0, 1), 0) =
1 provided that condition (78) is satisfied, and deg(Aq0 , Bu(0, 1), 0) = −1 pro-
vided that (79) holds.

17



5 Some examples, model maps

The goal of this section is to discuss what are all possible model maps and to give
nontrivial examples of chaotic behavior different from topological horseshoes.

Let us remind the reader that, in the context of Definition 6, the map h1

is called a model map for the relation N
f

=⇒ M , and that the degree w of a
covering can be computed as w = d(sA), where A is the u-component of h1.

We have to consider three cases u = 0, u = 1 and u ≥ 2. The case u = 0 is
trivial, because h1(x) = 0 by the definition.

For u = 1, from Theorem 16 it follows that we can have only w = ±1. It is
easy to show (see for example [18, 21]) that in this case we can always choose
h1 = m to be of the following form

m(p, q) = (λ · p, 0), (80)

where λ ∈ R, λ < −1 if w = −1 and λ > 1 if w = 1. Topological horseshoes are
present in virtually every paper devoted to detection of chaos through topolog-
ical methods (see, for example [18, 19, 15, 10, 8, 9]). A topological horseshoe
is defined as a map f : N = N0 ∪ N1 → Rn, satisfying the following covering
relations

Ni
f,±1
=⇒ Nj , i, j = 0, 1, (81)

where u(Ni) = 1 and N0 ∩N1 = ∅. Using Theorem 9, it is easy to show that f
has symbolic dynamics on two symbols (see also [21] and Section 5.2).

5.1 Case u > 1.

In order to give a description of all possible model maps (up to a homotopy),
we first consider maps of the sphere Su−1.

For simplicity, we will represent Ru as C×Ru−2, where C is a set of complex
numbers. For z ∈ C, by z̄ we denote the complex conjugate of z.

For k ∈ Z \ {0} we define a map mk : Ru → Ru by

mk(z, x3, . . . , xu) =

(
|z|

(
z

|z|
)k

, x3, . . . , xu

)
, for k > 0 (82)

mk(z, x3, . . . , xu) =

(
|z|

(
z̄

|z|
)|k|

, x3, . . . , xu

)
, for k < 0. (83)

It is easy to see that mk(Su−1) = Su−1. It is well known (see, for example, the
proof of Hopf Theorem in [3]) that

d(mk) = k. (84)

From Hopf Theorem and equation (84) it follows that the maps mk describe all
possible self-maps of the sphere, up to a homotopy. Hence all possible model
maps (up to a homotopy) for the covering relation N

f,w
=⇒ M are given by

Mw(p, q) = (λmw(p), 0), λ ∈ R, λ > 1. (85)
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5.2 An example of chaotic behavior based on multiple
wrapped coverings

In this section we describe a class of chaotic examples based on the model maps
of higher degree introduced in previous subsection.

Let u = 2 and s ≥ 0. We will represent Ru+s as C×Rs. We define an h-set
N0 by

N0 = B2(0, 1)×Bs(0, 1),
u(N0) = 2, s(N0) = s,

cN0(z, q) = (z, q), z ∈ C and q ∈ Rs

and an h-set N1

N1 = B2(a, 1)×Bs(0, 1),
u(N1) = 2, s(N1) = s,

cN1(z, q) = (z − a, q), z ∈ C and q ∈ Rs

where a ∈ C, |a| > 2.
Notice that N0 ∩ N1 = ∅. For any w1, w2 ∈ Z \ {0} we define a map f on

N0 ∪N1 by

f(z, x) =

{
λ(mw1(z), q) for (z, q) ∈ N0,

λ(mw2(z), q) for (z, q) ∈ N1.
(86)

It is easy to see that for all λ > |a|+ 1 we have

N0
f,w1=⇒ N0, N0

f,w1=⇒ N1,

N1
f,w2=⇒ N1, N1

f,w2=⇒ N0.

Let g : Ru+s → Ru+s be a perturbation of f given by

g(z, p) = f(z, q) + (εz(z, q), εq(z, q)), (87)

where εz : C× Rs → C and εq : C× Rs → Rs are continuous functions.

Lemma 17 Let f and g are given as above. Assume that the following condi-
tions are satisfied for (z, q) ∈ N0 ∪N1

|εz(z, q)| < λ− (|a|+ 1),
|εq(z, q)| < 1.

Then

N0
g,w1=⇒ N0, N0

g,w1=⇒ N1,

N1
g,w2=⇒ N1, N1

g,w2=⇒ N0.
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Proof: It is easy to see that for all covering relations, the common homotopy
h(t, (z, q)) = tf(z, q) + (1− t)g(z, q) satisfies all assumptions of Theorem 15.

Let N = N0 ∪N1. We define a forward invariant set of g by

Inv+(N, g) = {x ∈ N | gk(x) ∈ N, for k ∈ N }.
To proceed further we will recall some notions from symbolic dynamics. For

any k ≥ 2, we define Σ+
k = {0, 1, . . . , k − 1}N, where N denotes the set of all

nonnegative integers. On Σ+
k we define a shift map σ : Σ+

k → Σ+
k by

σ((a0, a1, a2, . . . )) = (a1, a2, . . . ).

We define a map π : Inv+(N, g) → Σ2 by

π(x)k = j, iff gk(x) ∈ Nj . (88)

From Theorem 9 we obtain the following

Theorem 18 Let g satisfy the assumptions of Lemma 17. Then the map π
defined above is onto. Moreover, for any periodic sequence α ∈ Σ2 there exists
x ∈ Inv+(N, g) such that π(x) = α and x is periodic point of g with the same
principal period as α.

Proof: For any finite sequence (α0, α1, . . . , αl−1) ∈ {0, 1}l consider a closed
loop of covering relation for g (we drop here the symbol of the function and the
degree)

Nα0 =⇒ Nα1 =⇒ . . . =⇒ Nl−1 =⇒ N0. (89)

From Theorem 9 we obtain the existence of a point x, such that gi(x) ∈ Nαi

for i = 0, . . . , l − 1 and gl(x) = x. This shows that for any periodic sequence
α ∈ Σ2, π−1(α) contains a periodic point with the same principal period as α.
The surjectivity of π is obtained via passing to the limit with points of large
period.

Observe that if one of the numbers |w1|, |w2| is greater than one, we can
expect a richer symbolic dynamics for f than just on two symbols. Also the
invariant set should look different from the Cantor set obtained from Smale’s
horseshoes, but we will not pursue this issue here.

6 Appendix

6.1 Local Brouwer degree

In this section we list the basic properties of the local Brouwer degree which are
relevant for us in this paper. The proofs can be found in [14, Ch. III].

For n = 0 we have Rn = {0}. We have only one self map for this space,
namely f(0) = 0. We formally define the local Brouwer degree of f at 0 in the
set {0} by

deg(f, {0}, 0) = 1
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Assume n > 0. Let D ⊂ Rn be an open set and f : S → Rn be continuous,
D ⊂ S and c ∈ Rn. Suppose that

the set f−1(c) ∩D is compact. (90)

Then the local Brouwer degree of f at c in the set D is defined. We denote it
by deg(f, D, c).

If D ⊂ dom(f) and D is compact, then (90) follows from the condition

c /∈ f(∂D). (91)

Let us summarize the properties of the local Brouwer degree

Degree is an integer.
deg(f, D, c) ∈ Z. (92)

Solution property.

If deg(f, D, c) 6= 0, then there exists x ∈ D with f(x) = c. (93)

Homotopy property. Let H : [0, 1]×D → Rn be continuous. Suppose that
⋃

λ∈[0,1]

H−1
λ (c) ∩D is compact. (94)

Then
∀λ ∈ [0, 1] deg(Hλ, D, c) = deg(H0, D, c). (95)

If [0, 1] × D ⊂ dom(H) and D is compact, then (94) follows from the
following condition

c /∈ H([0, 1], ∂D). (96)

Local degree is a locally constant function. Assume D is bounded and open.
If p and q belong to the same component of Rn \ f(∂D), then

deg(f, D, p) = deg(f,D, q). (97)

Excision property. Suppose that E ⊂ D, E is open and

f−1(c) ∩D ⊂ E. (98)

Then
deg(f,E, c) = deg(f, D, c). (99)

Local degree for affine maps. Suppose that f(x) = A(x− x0) + c, where A
is a linear map and x0 ∈ Rn. If the equation A(x) = 0 has no nontrivial
solutions (i.e. if Ax = 0, then x = 0) and x0 ∈ D, then

deg(f, D, c) = sgn(det A). (100)
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Product property Let Ui ⊂ Rni , ci ∈ Rni , fi : Ui → Rni , for i = 1, 2.
The map (f1, f2) : Rn1 × Rn2 → Rn1 × Rn2 is given by (f1, f2)(x1, x2) =
(f1(x1), f2(x2). We have

deg((f1, f2), U1 × U2, (c1, c2)) = deg(f1, U1, c1) · deg(f2, U2, c2), (101)

whenever the right hand side is defined.

Multiplication property Let D ⊂ Rn be bounded and open. Let f : D̄ ⊂
Rn → Rn, g : Rn → Rn are two continuous mappings and ∆i the bounded
components of Rn \ f(∂D). Then

deg(g ◦ f, D, p) =
∑

∆i

deg(g, ∆i, p) deg(f,D, ∆i), (102)

where deg(f, D, ∆i) = deg(f, D, qi) for some qi ∈ ∆i. From equation
(97) it follows that this definition of deg(f, D, ∆i) does not depend on the
choice of qi.

Addition property. If D =
⋃

i∈I Di, where each Di is open, the family {Di}
is disjoint and ∂Di ⊂ ∂D, then for every c /∈ f(∂D):

deg(f, D, c) =
∑

i∈I

deg(f,Di, c). (103)

From Multiplication property and formula (100) we obtain immediately

Collorary 19 Let D ⊂ Rn be open and bounded. Let A : D → Rn, be continu-
ous and 0 /∈ A(∂D),

deg(−A,U, 0) = (−1)n deg(A,U, 0). (104)

As the consequence of Addition and Excision property we obtain the follow-
ing

Collorary 20 Suppose that D is a finite union of open sets D =
⋃n

i=1 Di such
that the sets f−1

|Di
(c) are mutually disjoint and c /∈ f(∂Di). Then

deg(f, D, c) =
n∑

i=1

deg(f|Di
, Di, c). (105)

Here is another important consequence of above properties

Collorary 21 Assume V ⊂ Rn is bounded and open. Let f : V → Rn be a
C1-map. Assume that c ∈ Rn \ f(∂V ) is a regular value for f , i.e. for each
x ∈ f−1(c) the Jacobian matrix of f at x denoted by Df(x) is nonsingular, then

deg(f, V, c) =
∑

x∈f−1(c)

sgn (det Df(x)).
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6.2 The degree of maps Sn → Sn

In this section we recall some relevant facts on the degree of maps Sn → Sn see
for example [3, Ch. 7.5].

Definition 10 Let n ≥ 1. The degree of a continuous map f : Sn → Sn is a
unique integer d(f) such that f∗(u) = d(f) · u, for any generator u ∈ Hn(Sn),
where Hn(Sn) is n-th homology group of Sn and f∗ : Hn(Sn) → Hn(Sn) is the
induced homomorphism.

For n = 0 we define the degree, d(f), as follows, S0 = {−1, 1}. We set

d(f) =





1, if f(1) = 1 and f(−1) = −1,

−1, if f(1) = −1 and f(−1) = 1,

0, otherwise.
(106)

Theorem 22 (H. Hopf) Let n ≥ 1. Then f, g : Sn → Sn are homotopic if
and only if d(f) = d(g).

Lemma 23 Let u > 0, Assume that A : Bu(0, 1) → Ru is a continuous map,
such that

0 /∈ A(∂B(0, 1)).

Let the map sA : Su−1 → Su−1 be given by

sA(x) =
A(x)
‖A(x)‖ .

Then
deg(A, Bu(0, 1), 0) = d(sA). (107)
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