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Abstract. In this paper, we show that all periods of periodic points forced
by a pattern for interval maps are preserved for high-dimensional maps if
the multidimensional perturbation is small. We also show that if an interval
map has a fixed point associated with a homoclinic-like orbit then any small
multidimensional perturbation has periodic points of all periods.
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1. Introduction

For continuous interval maps, the S̆arkovskĭı Theorem [9, 10] is the complete
answer of the following question: Given a periodic orbit of a specified period, find
the other periods of periodic orbits that must exist. One can classify patterns of
orbits depending on the arithmetic ordering of the points on the real line (Definition
2.1), and consider the so-called forcing problem: Given a period-n orbit of a specified
pattern, find, for any positive integer m, the patterns of period-m orbits that must
exist. The forcing problem is far from being completely answered yet. So far,
there are some partial results by giving such forcing relations as: A periodic cycle
with a certain pattern force the existence of periodic cycles with other patterns.
In fact, considering patterns characterized by one parameter, a chain of forcing
relations established in [2, 3, 7, 11] provides a refinement of the S̆arkovskĭı theorem
(see also [8, Theorem 2]). A further generalization on patterns characterized by
two parameters was given in [8, Theorem 3]. For more discussions on the forcing
problem, refer to [1] and [3].

In this paper, we study the stability of forcing relations from a one-dimensional
map to high dimensional ones. More precisely, let Fλ be a one-parameter family of
continuous maps on R ⊕ Rn such that Fλ(z) is continuous as a function jointly of
λ and z, where λ ∈ R is a parameter, and at λ = 0, the map F0 is of one of the
following forms:

(i): F0(x, y) = (f(x), g(x)) ∈ R ⊕ Rn, where f : R → R and g : R → Rn are
continuous functions;
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(ii): F0(x, y) = (f(x), g(x, y)) ∈ R⊕ Rn, where f : R → R is continuous and
g : R ⊕ Rn → Rn is continuous and g(R ⊕ S) ⊂ int(S) for some compact
set S ⊂ Rn homeomorphic to the closed unit ball in Rn.

A natural question is which periods (or patterns) of periodic points for the map Fλ

can have, when f has a certain period (or pattern) of a periodic point and |λ| is
small.

For the case when g is the zero function, it was shown in [13] that if f has a
periodic point of period k, then for all sufficiently small |λ|, the map Fλ has a
periodic point of period less than k in the S̆arkovskĭı ordering.

In the present paper, we remove the constraint g = 0 and consider perturbations
of a larger class of maps, including the Hénon map Fb(x, y) = (a− x2 + by, x). We
show which periods of periodic points for Fλ are forced by a given pattern for f .
More precisely, first we show that if f has a periodic point of any given pattern
A, then for all sufficiently small |λ|, the map Fλ has periodic points of periods of
patterns forced by A (Theorem 2.2). Second, we show that if there are two points
α and β such that either f(α) ≤ α < β < f(β) < f2(β) and f3(β) ≤ α, or all
inequalities reversed, then for all sufficiently small |λ|, the map Fλ has periodic
points of all periods (Theorem 2.3 ). In particular, one can consider the case when
the map f has a fixed point associated with a homoclinic-like point (Example 6.1
). Theorem 2.2 extends the result in [13] because of the S̆arkovskĭı theorem. In
the sense of multidimensional perturbations, Theorem 2.3 extends the results in
[2, 7, 8] which concern a fixed point with homoclinic orbits of certain patterns, by
considering the particular case when λ = 0 and g is the zero function. The covering
relations approach is the main tool for the proof of our results.

The paper is organized as follows. In next section, we state precisely the main
results (Theorems 2.2 and 2.3) along with the definition of patterns. In Section 3,
we state the S̆arkovskĭı theorem and a stability result for multidimensional pertur-
bations. In Section 4, we recall the notion of covering relation and some related
results. In Sections 5 and 6, we give the proof of Theorems 2.2 and 2.3 along with
an example, respectively.

2. Definitions and Statement of Theorems

First of all, we set up some notations. For convenience, we will write V = R⊕Rn

and represent elements v ∈ V as pairs v = (x,w), where x ∈ R and w ∈ Rn. In the
sequel, for a map F : R× V → V, we will use the notation Fλ for the partial map
with fixed λ ∈ R, so Fλ(v) := F (λ, v) for v ∈ V . For a subset S of a metric space,
let S, int(S) and ∂S denote the closure, interior and boundary of S, respectively.
Let us fix any norm ‖ · ‖ on Rn. For r > 0, we denote by Bn(r) the open ball of
radius r centered at the origin in Rn, i.e. Bn(r) = {w ∈ Rn : ‖w‖ < r}, and by C(r)
the family of cylinders of the form [a, b]×Bn(r). When n = 0 the above notations
for V and C(r) does not make sense and we set in this case V = R and C(r) to be
the set of all closed proper intervals, independent of the value of r.

Next, we define forcing relations and some basic terminologies (refer to [1]).

Definition 2.1. We say that (P,ϕ) is a cycle if P ⊂ R is a finite nonempty set
and ϕ is a cyclic permutation of P . The number of elements of P will be denoted
by |P | and will be called the period of (P,ϕ). We also denote by 〈P 〉 the smallest
closed interval in R containing P . An interval is said to be proper if it contains
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more than one point. If f is a continuous map on R and (P, ϕ) is a cycle, we say
that f has a cycle P is ϕ = f |P , the restriction of f to P .

Let P be the set of all cycles in R. We define two equivalence relations in P as
follows. Let (P,ϕ), (Q,ψ) ∈ P. We say that (P, ϕ) ∼

pat
(Q,ψ) if and only if there

exists a homeomorphism h : 〈P 〉 → 〈Q〉 such that h(P ) = Q and ψ ◦ h|P = h ◦ϕ|Q.
If additionally h can be chosen in such a way that it preserves orientation, then
we write (P, ϕ) ∼

opat
(Q,ψ). The elements of the set of all equivalence classes of the

relation ∼
pat

(resp. ∼
opat

) in P will be called patterns (resp. oriented patterns).

If A is a pattern (resp. oriented pattern) and (P, ϕ) ∈ A we say that the cycle P
has pattern A (resp. oriented pattern A) and the period of A is defined to be equal
to |P | and will be denoted by |A|. An oriented pattern B is called a component of
a pattern A if there exists a cycle which has both oriented pattern B and pattern
A.

The forcing relations between patterns and oriented patterns are defined as fol-
lows. Let A and B be two patterns (resp. oriented patterns). We say that A forces
B and write (A =⇒

pat
B) (resp. write A =⇒

opat
B) if and only if every continuous map

on R which has a cycle with pattern A (resp. oriented pattern A) has a cycle with
pattern B (resp. oriented pattern B).

For a pattern A, let Per(A) = {|B| : B 6= A is a pattern such thatA =⇒
pat

B}.

Now, we state main results. The first one is that all periods of periodic points
forced by a pattern for interval maps are preserved for high-dimensional maps if
the multidimensional perturbation is small.

Theorem 2.2. Let F : R × V → V be a continuous function such that for all
(x, y) ∈ V , either (i) F0(x, y) = (f(x), g(x)), where f is continuous on R and g is
a continuous function from R to Rn, or (ii) F0(x, y) = (f(x), g(x, y)), where f is
continuous on R and g is continuous on R × S and g(R ⊕ S) ⊂ int(S), for some
compact set S ⊂ Rn homeomorphic to the closed unit ball in Rn. If f exhibits a
pattern A, than there exists a positive constant λ0 such that if |λ| < λ0 then Fλ has
periodic points of all periods in Per(A).

The second result shows that any small multidimensional perturbation of an
interval map with f(α) ≤ α < β < f(β) < f2(β) and f3(β) ≤ α has periodic
points of all periods.

Theorem 2.3. Let F : R × V → V be a continuous function such that for all
(x, y) ∈ V , either (i) F0(x, y) = (f(x), g(x)), where f is continuous on R and g is
a continuous function from R to Rn, or (ii) F0(x, y) = (f(x), g(x, y)), where f is
continuous on R and g is continuous on R × S and g(R ⊕ S) ⊂ int(S), for some
compact set S ⊂ Rn homeomorphic to the closed unit ball in Rn. If there are two
points α and β in R such that either f(α) ≤ α < β < f(β) < f2(β) and f3(β) ≤ α,
or all inequalities reversed, then there exists a positive constant λ0 such that if |λ| <
λ0 then Fλ has periodic points of all periods.

3. S̆arkovskĭı order

The S̆arkovskĭı theorem [9, 10] shows the forcing relations on periods for interval
maps.



4 MING-CHIA LI AND PIOTR ZGLICZYŃSKI

Theorem 3.1. Let f : I → R be a continuous map. If n B k and f has a periodic
point of period n then f also has a periodic point of period k, where B is called the
S̆arkovskĭı ordering of positive integers defined as follows:

3 B 5 B 7 B · · ·B 2 · 3 B 2 · 5 B 2 · 7 B · · · B 22 · 3 B 22 · 5 B 22 · 7 B
· · ·B 2i · 3 B 2i · 5 B 2i · 7 B · · ·B 2j B 2j−1 B · · ·B 22 B 2 B 1.

In [13] it was shown that the forcing relations on periods is stable with respect
to multidimensional perturbations of 1-dim maps. The precise statement is

Theorem 3.2. Let f : R→ R be continuous and F : [0, 1]× V → V be continuous
with F0(x,w) = (f(x), 0). If f has a periodic point of period k, then for any r > 0,
there exists λ0 > 0 such that for all 0 ≤ λ ≤ λ0 and m 6= k with k B m, the map
Fλ has a periodic point of period m in the set R⊕Bn(r).

The proof of the above theorem uses the notion of covering relation in multi-
dimensional situation and the continuation of 1-dimensional orbits with non-zero
fixed point index for multidimensional perturbations of 1-dimensional maps. This
technique is recalled in Section 4.

4. Covering relations and continuation

In this section, we define the notion of covering relation and introduce some
related results which will be used in the proof of the main results. In our presenta-
tion, we follow the one in [15], where the results from [13] have been restated in a
more readable form.

For a cylinder N = [a, b]×Bn(r) ∈ C(r), we set

L(N) = {a} ×Bn(r), the left lid of N,

R(N) = {b} ×Bn(r), the right lid of N,

H(N) = [a, b]× ∂Bn(r), the horizontal boundary of N,

SL(N) = (−∞, a)×Bn(r), the left side of N,

SR(N) = (b,∞)×Bn(r), the right side of N.

Definition 4.1. Let N0, N1 ∈ C(r) and G : V → V be continuous. We say that
N0 G-covers N1 ( horizontally) and write N0

G=⇒ N1 if

(4.1) G(N0) ⊂ (−∞,∞)×Bn(r)

and one of the following two conditions hold

G(L(N0)) ⊂ SL(N1) and G(R(N0)) ⊂ SR(N1)(4.2)

G(L(N0)) ⊂ SR(N1) and G(R(N0)) ⊂ SL(N1)(4.3)

Condition (4.1) means that the image of N0 under G is contained in the ‘hori-
zontal’ strip defined by N1. Conditions (4.2) and (4.3) mean that the left and right
lids of N0 are mapped to different sides of N1.

We would like to adapt the above defined notion of the relation of horizontal
covering also for one-dimensional maps.

Definition 4.2. Let N0, N1 be closed intervals and G : N0 → R. We say that
N0 G-covers N1 ( horizontally) and write N0

G=⇒ N1 if one of the following two
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conditions hold

G(L(N0)) ⊂ SL(N1) and G(R(N0)) ⊂ SR(N1)(4.4)

G(L(N0)) ⊂ SR(N1) and G(R(N0)) ⊂ SL(N1),(4.5)

where L([a, b]) = {a}, R([a, b]) = {b}, SL([a, b]) = (−∞, a), SR([a, b]) = (b,∞).

The following result is the main tool based on covering relations, which will be
used in the sequel to obtain periodic orbits.

Theorem 4.3. [13, Theorem 4] Let Ni ∈ C(r) for 0 ≤ i ≤ l and Gi : V → V for
0 ≤ i ≤ l. Suppose that

N0
G0=⇒ N1

G1=⇒ N2
G2=⇒ · · · Gl−1=⇒ Nl

Gl=⇒ N0.

Then there exists x ∈ int(N0) such that

Gi ◦Gi−1 ◦ . . . G0(x) ∈ int(Ni+1) for 0 ≤ i ≤ l − 1

and
Gl ◦Gl−1 ◦ . . . G0(x) = x.

4.1. Nested sequences of topological horseshoes.

Definition 4.4. If n > 0, then we assume that G : (−∞,∞)×Bn(r) → (−∞,∞)×
Bn(r) is continuous. If n = 0 we assume G : (−∞,∞) → (−∞,∞) is continuous.

Let l ∈ N and k ∈ N ∪ {∞} be such that 0 < l < k. Let {Ns
i ∈ C(r) : i ∈ {0, 1}

and l ≤ s ≤ k, s ∈ N} be a family of cylinders such that int(N l
0) ∩ int(N l

1) = ∅
and Ns

i ⊃ Ns+1
i for i ∈ {0, 1} and l ≤ s ≤ k . We say that G has a (l, k)-nested

sequence of topological horseshoes if for all integers i and s, such that i ∈ {0, 1} and
l ≤ s ≤ k one has Ns

i horizontally Gs-covers both the cylinders N l
0 and N l

1.

Theorem 4.5. [13] Let G : (−∞,∞)×Bn(r) → (−∞,∞)×Bn(r) be a continuous
map and p ≥ 2 be an integer. If G has a (p, 2p − 1)-nested sequence of topological
horseshoes, then there exists an integer m(p) such that G has periodic points of all
periods greater than m(p).

For example m(2) = 6 and m(5) = 30. The proof of this theorem is based on
Theorem 4.3 and several arithmetical lemmas, see [13].

4.2. 1-dim coverings. Let us fix a 1-dimensional continuous map f . We define a
one-dimensional f -covering relation between segments.

Definition 4.6. Let I = [a, b] and J be two intervals. We denote by I
f,+1−→ J

if f(a) < f(b) and J ⊂ [f(a), f(b)], and denote by I
f,−1−→ J if f(b) < f(a) and

J ⊂ [f(b), f(a)]. We say that I f -covers J and write I
f→ J either if I

f,+1−→ J or

I
f,−1−→ J .

The above definition of covering relation for interval maps differs from the stan-
dard one presented in [6] in two ways: here we require that the end-points of I are
mapped to different sides of J and we introduce a sign. Both those features will be
exploited in Sec. 4.3 devoted to the continuation of individual periodic orbits.

Let us remark that the relation of horizontal covering is stronger than the 1-dim
covering : we have

if I
f

=⇒ J then I
f→ J,
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but there is no implication in the reverse direction (as an example, consider the
identity map). We need some condition which will guarantee the implication in the
other direction. The following trivial lemma presents such a condition.

Lemma 4.7. Let I and J be closed intervals with I
f→ J . Then I

f
=⇒ K for any

closed interval K with K ⊂ int(J).

The following lemma is contained implicitly in the proof of Theorem 2.8.1 in
[1]; in fact, it is an immediate consequence of Lemmas 2.6.9, 2.6.10, and 2.6.12
therein. It demonstrates that a forcing relation for interval maps implies existence
of a closed loop of covering relations (in the sense of Definition 4.6).

Lemma 4.8. Let f : R → R be a continuous map having a cycle with oriented
pattern A and assume that B 6= A is an oriented pattern and A =⇒

opat
B. Then the

map f has a cycle Q with the oriented pattern B. Moreover, there exists z ∈ Q̃ and
closed proper intervals J0, J1, . . . , J|Q| such that the following loop of 1-dim covering
relations holds:

J0
f→ J1

f→ · · · f→ J|Q|−1
f→ J|Q|

and

J0 ⊂ J|Q|,

Ji ∩ Jj = ∅, for all 0 ≤ i, j ≤ |Q| − 1 with i 6= j,

f i(z) ∈ Ji, for all 0 ≤ i ≤ |Q|,
f |Q|(t) 6= t, for all t ∈ J0 ∩ ∂(J|Q|).

We also need the following lemma for the proof of our main results

Lemma 4.9. Let f : R→ R be a continuous map such that f has no periodic point
of period different from a power of 2 and f exhibits a pattern A of period 2k for
some integer k ≥ 0. If B is a pattern forced by A, then the period of B is 2i for
some integer 0 ≤ i ≤ k.

Proof. Let f exhibits the oriented pattern Ã for one of the components Ã of A. By
Corollary 2.7.1 of [1], Ã =⇒

opat
B̃ for one of the components B̃ of B. Since f has no

periodic point of period different from a power of 2, by Corollary 2.12.5 of [1], Ã is
primary. By Theorem 2.11.1 of [1], Ã is simple. Since |Ã| = 2k, by Lemma 2.11.5
of [1], |B̃| = 2i for some i ≤ k. ¤

4.3. Continuation. Let f, g, Fλ be given as in Theorems 2.2 or 3.2 with case (i)
F0(x, y) = (f(x), g(x)) or case (ii) F0(x, y) = (f(x), g(x, y)).

Lemma 4.10. Let p be a positive integer. Suppose that there exist intervals
I0, I1, . . . , Ip−1 such that the following covering relations for f hold:

(4.6) I0
f,ε1−→ I1

f,ε2−→ I2
f,ε3−→ · · · f,εp−1−→ Ip−1

f,εp−→ I0 with ε1ε2 . . . εp = −1,

where εi ∈ {−1, 1} for all 1 ≤ i ≤ p. Let I = ∪p−1
i=0 Ii and r be a positive number

greater than the maximum of ‖g‖ on I for case (i) and on I⊕S for case (ii). Then
there exists λ0 > 0 such that for |λ| < λ0, the map Fλ has a periodic point zλ such
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that

F i
λ(zλ) ∈ int(Ii)×Bn(r) for all 0 ≤ i ≤ p− 1,

F p
λ (zλ) = zλ.

The above lemma is adapted from [13, Theorem 14] in which the function g is
assumed to be the zero function and the number r is set to be any positive number;
the proof given there applies also here if we take r as above.

In the one-dimensional situation this lemma expresses the method of obtaining
periodic points in the standard proof of S̆arkovskĭı theorem (see for example [9],
[11]). In this case the assumption concerning the product of εi’s in (4.6) can be
dropped.

5. The proof of Theorem 2.2 and an example

First, let us observe that Theorem 3.2 is also valid for Fλ satisfying the assump-
tions from Theorem 2.2. Namely, we have the following

Theorem 5.1. Let F : R × V → V be a continuous function such that for all
(x, y) ∈ V , either (i) F0(x, y) = (f(x), g(x)), where f is continuous on R and g is
a continuous function from R to Rn, or (ii) F0(x, y) = (f(x), g(x, y)), where f is
continuous on R and g is continuous on R × S and g(R ⊕ S) ⊂ int(S), for some
compact set S ⊂ Rn homeomorphic to the closed unit ball in Rn. If f has a periodic
orbit of period k in a compact interval I, then for any number r greater then the
maximum of ‖g‖ on I for case (i) and on I ⊕ S for case (ii), there exists λ0 > 0
such that for all |λ| ≤ λ0 and m 6= k with k B m, the map Fλ has a periodic point
of period m in the set R⊕Bn(r).

With this choice of r as above, the proof of Theorem 3.2 from [13] is also valid
in the above situation.

We are in position to prove the first main result.

Proof of Theorem 2.2. Let B be A or a pattern forced by A such that the period
of B, denoted by m, is maximal in the sense of S̆arkovskĭı order in Per(A) ∪ {|A|},
i.e. for all l ∈ Per(A) ∪ {|A|} satisfying l 6= m, m B l holds. From the S̆arkovskĭı
theorem it follows that Per(A) ∪ {|A|} = {m} ∪ {l ∈ N : m B l}. Such a maximal
period must exist due to Lemma 4.9.

From Theorem 5.1, it follows that for r sufficiently large, there exists λ1 > 0 such
that for all |λ| < λ1 the map Fλ has periodic points of all periods in {l ∈ N : mBl} =
Per(A)∪{|A|}\{m} in the set I×Bn(r), where I is the closed interval containing the
orbit realizing pattern A. If m = |A|, then we already have all periods from Per(A)
for Fλ with sufficiently small |λ|. Therefore we can assume that m 6= |A| and hence,
B 6= A and A =⇒

pat
B. From the above we have all periods from Per (A) \ {|B|}

for Fλ with sufficiently small |λ| and we have to prove that the pattern B can be
continued to a periodic orbit for Fλ of period |B|.

Since f exhibits a pattern A, f exhibits the oriented pattern Ã for one of the
components of A. Since A =⇒

pat
B, by Corollary 2.7.1 of [1], Ã =⇒

opat
B̃ for one of the

components of B. By Lemma 4.8 applied to Ã =⇒
opat

B̃ and f , there exists closed

proper intervals J0, J1, . . . , Jm, where m = |B|, such that the following loop of
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1-dim covering relations holds:

J0
f→ J1

f→ · · · f→ Jm−1
f→ Jm

such that

J0 ⊂ Jm,

Ji ∩ Jj = ∅, for all 0 ≤ i, j ≤ m− 1 with i 6= j,

fm(t) 6= t, for all t ∈ J0 ∩ ∂(Jm).

Hence fm(J0) ⊃ Jm. Thus there exist a, b ∈ J0 such that fm(a) = min(Jm) and
fm(b) = max(Jm). Since there is no t ∈ J0∩∂(Jm) such that fm(t) = t, fm(a) < a
and fm(b) > b.

We have two cases: a < b and a > b. Let us assume first that a < b. Observe
that [a, b] ⊂ int(Jm). By using Lemma 4.7, it is easy to find intervals Ki ⊂ Ji for
i = 0, . . . , m− 1 such that

K0
f

=⇒ K1
f

=⇒ · · · f
=⇒ Km−1

f
=⇒ K0.

We set Ni = Ki×Bn(r) and by the continuity of Fλ as a function of λ, there exists
0 < λ2 ≤ λ1 such that for all |λ| < λ2,

N0
Fλ=⇒ N1

Fλ=⇒ · · · Fλ=⇒ Nm−1
Fλ=⇒ N0.

From Theorem 4.3, we obtain a periodic point of period m for Fλ with |λ| < λ2.
Consider now the case a > b. It is easy to see that now we can apply Lemma 4.10

to obtain a periodic point of period m for Fλ with sufficiently small |λ|. ¤

Next, we give an example.

Example 5.2. Consider the case when f has a period-(m + k) point x0. Assume
that the points of the orbit satisfy either

xm+k−1 < · · · < xk+1 < xk < x0 < x1 < x2 < · · · < xk−1

or all inequalities reversed, where xi = f i(x0) for i ≥ 0. By Theorems 2 and 3 of
[8] together, the set of all periods of patterns which are forced by the above pattern
is N. By Theorem 2.2, for all sufficient small |λ|, the high-dimensional map Fλ has
periodic points of all periods.

6. Proof of Theorem 2.3 and an example

Proof of Theorem 2.3. We will only prove the theorem in the case when f(α) ≤
α < β < f(β) < f2(β) and f3(β) ≤ α; the proof for the case with all inequalities
reversed will be similar. We set I = [α, f2(β)], I0 = [α, f(β)] and I1 = [f(β), f2(β)].
We have

I0
f,+1−→ Ij , j = 0, 1,

I1
f,−1−→ Ij , j = 0, 1,

I ⊂ f(I).

We will show now that the map F0 has a (2,∞)-nested sequence of topological
horseshoes such that Ns

0 ⊂ Is
0 ×Bn(r) and Ns

1 ⊂ Is
1 ×Bn(r), where r is a positive

number greater than the maximum of ‖g‖ on I for case (i) and on I⊕S for case (ii).
Indeed, two preimages of f(β) exist: one in I0 (this could be β), denoted by γ0,
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and the other one in I1, denoted by γ1. We set I2
0 = [γ0, f(β)] and I2

1 = [f(β), γ1].
Observe that I2

i ⊂ intI and I ⊂ f2(I2
i ) for i = 0, 1. Using this and I ⊂ f(I) we

can easily construct two nested sequences of intervals Is+1
i ⊂ Is

i for s = 2, 3, . . .
and i ∈ {0, 1}, such that fs(Is

i ) = I. It is immediate to verify that we have a
(2,∞)-nested sequence of topological horseshoes for F0, where Ns

i = Is
i ×Bn(r).

For any k > 2 there exists λk > 0 such that for any |λ| < λ(k), the map Fλ

has a (2, k)-nested sequence of horseshoes. It is enough to take k = 3 and apply
Theorem 4.5 with p = 2. Thus, there exists an integer M(p) such that the map Fλ

with |λ| < λ3 has periodic points of all periods greater than M(p). There is a finite
number of periods left and we need to continue them one by one using Lemma 4.10,
which can be done by considering the following loops of covering relations for f :
I1

f,−1−→ I1 for period one and I1
f,−1−→ I0

f,+1−→ I0
f,+1−→ I0

f,+1−→ · · · f,+1−→ I0
f,+1−→ I1 for

other periods. From Lemma 4.10 we obtain for λ sufficiently small a periodic orbit
z0, z1, . . . , zp−1, z0 = F p

λ (z0), where p is the length of the loop, such that

z0 ∈ int I1 ×Bn(r),

zi = F i
λ(z0) ∈ int I0 ×Bn(r), for all 1 ≤ i ≤ p− 1.

Since intI0 ∩ intI1 = ∅ we see that the principal period of z0 is equal to p. ¤
The following example shows that if an interval map has a fixed point associ-

ated with a homoclinic-like orbit then any small multidimensional perturbation has
periodic points of all periods.

Example 6.1. Consider the case when f has a fixed point α associated with an
orbit {βi}∞i=−∞ satisfying f(βi) = βi+1 for all integers i, and β3 ≤ α < β0 < β1 <
β2. By Theorem 2.3, for all sufficiently small |λ|, the high-dimensional map Fλ has
periodic points of all periods. Notice that if, in addition, limi→±∞ βi = α, then β0

is a homoclinic point for α and it forces certain patterns for f ; refer to [2, 7, 8].
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