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Abstract

We consider a one-parameter family of maps Fλ on Rm × Rn with the
singular map F0 having one of the two forms (i) F0(x, y) = (f(x), g(x)),
where f : Rm → Rm and g : Rm → Rn are continuous; and (ii) F0(x, y) =
(f(x), g(x, y)), where f : Rm → Rm and g : Rm×Rn → Rn are continuous and
g is locally trapping along the second variable y. We show that if f is one-
dimensional and has a positive topological entropy, or if f is high-dimensional
and has a snap-back repeller, then Fλ has a positive topological entropy for
all λ close enough to 0.

1 Introduction

In this paper, we consider multidimensional perturbations from a continuous map
f on a low-dimensional phase space, say Rm, to a continuous family of maps Fλ on
a high-dimensional space, say Rm × Rn, where λ ∈ R` is a parameter, such that at
λ = 0, the singular map F0 is one of the following forms:

(i) F0(x, y) = (f(x), g(x)) ∈ Rm × Rn;

(ii) F0(x, y) = (f(x), g(x, y)) ∈ Rm×Rn and g(Rm×S) ⊂ int(S) for some compact
set S ⊂ Rn homeomorphic to the closed unit ball in Rn; here int(S) denotes
the interior of S.

Let htop(ϕ) denote the supremum of topological entropies of a map ϕ restricted to
compact invariant sets. The basic question we study here is the following:

(#) If htop(f) > 0, will htop(Fλ) > 0 for λ near 0?
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In the present paper, we establish two kind of results addressing question (#).
First we show that if f is one-dimensional (without any other additional assumption)
then lim infλ→0 htop(Fλ) ≥ htop(f) (see Theorems 1 and 2). Second, we allow f to
be possibly high-dimensional and show that if f has a snap-back repeller (for a
discussion of its definition see Definition 3 and remarks in the next section) then
htop(Fλ) > 0 for all λ near enough 0 (see Theorems 4 and 5).

Our methodology is based on the concept of covering relations (see Section 3 for
the definition and basic properties ), which was introduced by Zgliczyński in [11, 12].
It allows to prove the existence of periodic points, the symbolic dynamics, and the
positive topological entropy without using hyperbolicity. As a by-product of using
such a method, we give a new proof of Blanco Garcia’s result in [1] that the existence
of a snap-back repeller implies the positive topological entropy (see Proposition 15).
It is also possible that the notion of snap-back repeller can be changed by other
structure, such as a hyperbolic horseshoe, in order to obtain similar results.

Let us compare our results to the existing literature. Assuming that f is one-
dimensional (i.e., m = 1) and some additional conditions are satisfied, affirma-
tive answers to question (#) have been given in literature. For the case when
f is an interval map and g = 0, Misiurewicz and Zgliczyński in [8] proved that
lim infλ→0 htop(Fλ) ≥ htop(f). They used the covering relation approach in the same
way as we use in the present paper.

For the planar case (i.e., m = n = 1), Marotto in [6] restricted perturbations to
the two types: one is that Fλ(x, y) = (ϕ(x, λy), x) and λ ∈ R, and the one that is
Fλ(x, y) = (ϕ(x, λ1y), g(λ2x, y)), λ = (λ1, λ2) ∈ R2, and the map y 7→ g(0, y) has a
stable fixed point. Assuming the map x 7→ ϕ(x, 0) is C1and has a snap-back repeller
(for a discussion of its definition see Definition 3 and remarks in the next section),
he showed that for all λ near 0, the map Fλ has a transverse homoclinic point. His
method relies heavily on the planar structure of the map F0 and the Birkhoff-Smale
transverse homoclinic point theorem.

The results from [2] and [4] about difference equations can be applied to question
(#), but these are in fact perturbations of one-dimensional maps.

Our results are applicable to a high-dimensional version of the Hénon-like maps.
Define a family of maps Hb(x, y) on Rm × Rn, with parameter b ∈ R`, by its com-
ponents, for x = (x1, . . . , xm) and y = (y1, . . . , yn),

{
x̄i = ai − x2

i + oi(b)ϕi(x, y), 1 ≤ i ≤ m,
ȳj = gj(x, y), 1 ≤ j ≤ n,

where each ai is a constant, oi, ϕi, gj are real-valued continuous functions, and
limb→0 oi(b)/ |b| = 0. If m = n = 1, one can reduce Hb to the original Hénon
map (x, y) 7→ (a − x2 + by, x) and apply results from the present paper as well as
from [2, 4, 6]. For the general case when m ≥ 1 and n ≥ 1, we assume that each gj

is either dependent only on x or bounded (hence, the conditions in form (i) or (ii)
are satisfied, respectively). At the singular value b = 0, the first m components of
H0, i.e., x̄i = ai − x2

i for 1 ≤ i ≤ m, form a decoupled map from Rm into itself, and
such a map has a positive topological entropy or a snap-back repeller by suitably
choosing ai’s. By applying results presented in this paper, we get that htop(Hb) > 0
for all b sufficiently near 0. Nevertheless, if m > 1 (the high-dimensional case), we
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can not apply to Hb the results in [2, 4, 6, 8]. Even when m = 1, we can not apply
those results neither for many situations: more precisely, in [8] if one of gj’s is not
the zero function, in [6] if one of gj’s depends on the variable y, and in [2, 4] if each
coordinate of the full orbits of Hb is not reduced to solutions of a difference equation.

This paper is organized as follows. In the next section, we give precise statement
of our main results along with a definition of snap-back repellers. In Section 3,
we present background information about covering relations, mainly from the work
of Zgliczyński and Gidea in [13]. In Section 4, we prove our results concerning
a one-dimensional map with a positive topological entropy (Theorems 1 and 2).
Then, in Section 5, we show that the existence of a snap-back repeller implies the
existence of two closed loops of covering relations, as well as a positive topological
entropy (Proposition 15). Finally, in Section 6, we prove our results concerning a
high-dimensional map with a snap-back repeller (Theorems 4 and 5).

2 Definitions and statement of main results

In this section, we state our main results and define snap-back repellers. First, we
consider multidimensional perturbations of a one-dimensional map f . If the singular
map F0 depends only on the phase variable of f (refer to form (i) in Section 1), we
have the following result.

Theorem 1. Let Fλ be a one-parameter family of continuous maps on R× Rn such
that Fλ(x, y) is continuous as a function jointly of λ ∈ R` and (x, y) ∈ R× Rn.
Assume that F0(x, y) = (f(x), g(x)) for all (x, y) ∈ R× Rn, where f : R → R and
g : R→ Rn. Then lim infλ→0 htop(Fλ) ≥ htop(f).

For the case when the singular map is locally trapping along the normal direction
(refer to form (ii) in Section 1), we have the following.

Theorem 2. Let Fλ be a one-parameter family of continuous maps on R× Rn such
that Fλ(x, y) is continuous as a function jointly of λ ∈ R` and (x, y) ∈ R× Rn.
Assume that F0(x, y) = (f(x), g(x, y)) for all (x, y) ∈ R× Rn, where f : R→ R, g :
R× Rn → Rn, and g(R× S) ⊂ int(S) for some compact set S ⊂ Rn homeomorphic
to the closed unit ball in Rn. Then lim infλ→0 htop(Fλ) ≥ htop(f).

Next, we consider multidimensional perturbations of a map on a space of dimen-
sion possibly bigger than one. Recently, Marotto [7] redefined snap-back repellers
and stated that his earlier result in [5] that the existence of a snap-back repeller
implies Li-Yorke chaos is still correct. Both definitions of snap-back repellers in [5]
and [7] depend on the norms of the phase space. In the following, we give a slightly
different definition so that it is independent of norms defined on the phase space.

Definition 3. Let f : Rm → Rm be a C1 function. A fixed point x0 for f is called
a snap-back repeller if (i) all eigenvalues of the derivative df(x0) are greater than
one in absolute value and (ii) there exists a sequence {x−i}i∈N such that x−1 6= x0,
limi→∞ x−i = x0, and for all i ∈ N, f(x−i) = x−i+1 and det(df(x−i)) 6= 0.
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Roughly speaking, a snap-back repeller of a map is a repelling fixed point asso-
ciated with a transverse homoclinic orbit. Notice that if there exists a norm ‖·‖∗ on
Rm such that for some constants r > 0 and ρ > 1, one has that ‖f(x)− f(y)‖∗ >
ρ ‖x− y‖∗ for all x, y ∈ B(x0, r), where B(x0, r) = {x ∈ Rm : ‖x− x0‖∗ < r},
then f is one-to-one on B(x0, r) and f(B(x0, r)) ⊃ B(x0, r); hence item (ii) of the
above definition is satisfied provided that there is a point q ∈ B(x0, r) such that
fk(q) = x0 and det(dfk(q)) 6= 0 for some positive integer k. In fact, item (i) implies
that such a norm must exist (refer to Theorem V.6.1 of Robinson [10]). Further-
more, if all eigenvalues of (df(x0))

T df(x0) are greater than 1, then such a norm can
be chosen to be the Euclidean norm on Rm (see Lemma 5 of Li and Chen [3]).

If the singular map depends only on the phase variable of a snap-back repeller,
we have the following result.

Theorem 4. Let Fλ be a one-parameter family of continuous maps on Rm×Rn such
that Fλ(x, y) is continuous as a function jointly of λ ∈ R` and (x, y) ∈ Rm × Rn.
Assume that F0(x, y) = (f(x), g(x)) for all (x, y) ∈ Rm × Rn, where f : Rm → Rm

is C1 and has a snap-back repeller and g : Rm → Rn. Then Fλ has a positive
topological entropy for all λ sufficiently close to 0.

When the singular map is locally trapping along the normal direction, we have
the following.

Theorem 5. Let Fλ be a one-parameter family of continuous maps on Rm × Rn

such that Fλ(z) is continuous as a function jointly of λ ∈ R` and (x, y) ∈ Rm ×Rn.
Assume that F0(x, y) = (f(x), g(x, y)) for all (x, y) ∈ Rm×Rn, where f : Rm → Rm

is C1 and has a snap-back repeller, g : Rm×Rn → Rn, and g(Rm×S) ⊂ int(S) for
some compact set S ⊂ Rn homeomorphic to the closed unit ball in Rn. Then Fλ has
a positive topological entropy for all λ sufficiently close to 0.

3 Covering relations

In this section, we give the background information about covering relations. First
of all, we introduce some notations. Suppose that Rk has a norm ‖·‖. For x ∈ Rk

and r > 0, we denote Bk(x, r) = {z ∈ Rk : ‖z − x‖ < r}, that is, the open ball of
radius r centered at the origin 0 in Rk; in short, we write Bk = Bk(0, 1), the open
unit ball in Rk. Moreover, for a subset S of Rk, let S, int(S) and ∂S denote the
closure, the interior and the boundary of S, respectively. It will be always clear from
the context, which norm is used.

We briefly recall some definitions and results in [13].

Definition 6. [13, Definition 1] A h-set in Rk is a quadruple consisting of the
following data:

• a compact subset N of Rk;

• a pair of numbers u(N), s(N) ∈ {0, 1, ..., n} with u(N) + s(N) = k;
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• a homeomorphism cN : Rk → Rk = Ru(N) × Rs(N) such that

cN(N) = Bu(N) ×Bs(N).

For simplicity, we will denote such a quadruple by N. Furthermore, we set

Nc = Bu(N) ×Bs(N), N−
c = ∂Bu(N) ×Bs(N), N+

c = Bu(N) × ∂Bs(N),

and
N− = c−1

N (N−
c ), N+ = c−1

N (N+
c ).

A covering relation between two h-sets are defined as follows.

Definition 7. [13, Definition 6] Let N , M be h-sets in Rk with u(N) = u(M) = u
and s(N) = s(M) = s, f : N → Ru×Rs be a continuous function, fc = cM ◦f ◦c−1

N :
Nc → Ru × Rs, and w be a nonzero integer. We say N f -cover M with degree w,
denoted by

N
f,w
=⇒ M,

if the following conditions are satisfied:

1. There exists a homotopy h : [0, 1]×Nc → Ru × Rs such that

h(0, x) = fc(x) for x ∈ Nc, (1)

h([0, 1], N−
c ) ∩Mc = ∅, (2)

h([0, 1], Nc) ∩M+
c = ∅. (3)

2. There exists a map A : Ru → Ru such that

h(1, p, q) = (A(p), 0) for p ∈ Bu and q ∈ Bs,

A(∂Bu) ⊂ Ru \Bu.

3. The local Brouwer degree of A at 0 in Bu is w; refer to [13, Appendix] for its
properties.

Usually, we will be not interested in the values of w among covering relations

and we just write N
f

=⇒ M if there exists w 6= 0 such that N
f,w
=⇒ M .

We will need the following two theorems proved by Zgliczyński and Gidea in [13].
The first one says that a closed loop of covering relations implies the existence of a
periodic point.

Theorem 8. [13, Theorem 9] Let Ni for 0 ≤ i ≤ m be h-sets in Rk such that
Nm = N0 and let fi for 1 ≤ i ≤ m be continuous maps on Rk such that the covering

relations Ni−1
fi,wi
=⇒ Ni with wi 6= 0 for all 1 ≤ i ≤ m. Then there exists a point

x ∈ int(N0) such that

fi ◦ fi−1 ◦ · · · ◦ f1(x) ∈ int(Ni) for 1 ≤ i ≤ m,

fm ◦ fm−1 ◦ · · · ◦ f1(x) = x.
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The following one shows that a covering relation is persistent under C0 small
perturbations.

Theorem 9. [13, Theorem 14] Let N , M be h-sets in Rk such that u(N) = u(M)

and s(N) = s(M). Let f, g : N → Rk be continuous maps. Assume that N
f,w
=⇒ M

and that the map cM satisfies a Lipschitz condition. Then there exists ε > 0 such
that if ‖f(x)− g(x)‖ < ε for all x ∈ N, then N

g,w
=⇒ M.

4 Proofs of Theorems 1 and 2

In this section, we will prove the first two of our main results. To this end, we need
the following lemma, which can be easily derived from [9]; see also Theorem 3.1 of
Misiurewicz and Zgliczyński in [8]. It says that for continuous interval maps, the
positive topological entropy is realized by horseshoes.

Lemma 10. Let I be a closed interval in R and f : I → I be a continuous map
with a positive topological entropy, i.e., htop(f) > 0. Then there exist sequences
{sk}∞k=1 and {tk}∞k=1 of positive integers such that for each k ∈ N there exist sk

disjoint closed intervals, N1, · · · , Nsk
, which are h-sets in R and satisfy the covering

relations Ni
f tk ,wi,j
=⇒ Nj with wi,j ∈ {−1, 1} for all 1 ≤ i, j ≤ sk; moreover, one has

limk→∞(log(sk)/tk) = htop(f).

Now, we are ready to prove the first main result.

Proof of Theorem 1. We only need to consider the case when f has a positive topo-
logical entropy. Let δ be an arbitrary number such that 0 < δ < htop(f). From
Lemma 10, there exist k, p ∈ N such that fk has p disjoint closed intervals, denoted
by N ′

i = [a2i, a2i+1] for 0 ≤ i ≤ p − 1 with a0 < · · · < a2p−1, which are h-sets
satisfying

N
′
i

fk,wi,j
=⇒ N

′
j for 0 ≤ i ≤ p− 1 and 0 ≤ j ≤ p− 1.

where wi,j = 1 or −1, and log(p)/k > δ.
Set N ′ = ∪p−1

i=0 N ′
i . Since g ◦ fk−1 is continuous and N ′ is compact, there exists

r > 0 such that g ◦ fk−1(N ′) ⊂ Bn(0, r). Set Ni = N ′
i × Bn(0, r) for 0 ≤ i ≤ p − 1

and N = ∪p−1
i=0 Ni. Then every Ni is an h-set for 0 ≤ i ≤ p − 1 and N is compact

in R× Rn. For λ = 0, we have F k
0 (x, y) = (fk(x), g ◦ fk−1(x)). Hence there are

covering relations:

Ni

F k
0 ,wi,j
=⇒ Nj for 0 ≤ i ≤ p− 1 and 0 ≤ j ≤ p− 1.

Since F k
λ (z) is uniformly continuous on a compact set, say [−1, 1] × N , as a

function jointly of λ and z, by using Theorem 9 for p2 times while each cNj
is linear

and satisfies the Lipschitz condition, there exists λ0 > 0 such that if |λ| < λ0 then
we have

Ni

F k
λ ,wi,j
=⇒ Nj for 0 ≤ i ≤ p− 1 and 0 ≤ j ≤ p− 1.
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Let m be a positive integer and |λ| < λ0. Consider any closed loop

Nα0

F k
λ=⇒ Nα1

F k
λ=⇒ · · · F k

λ=⇒ Nαm ,

where every αi ∈ {0, 1, . . . p − 1} and αm = α0. By using Theorem 8, F k
λ has a

periodic point x = x(λ) ∈ int(Nα0) such that F km
λ (x) = x. Since there are pm

choices of such closed loops, F k
λ has at least pm periodic points in N . These periodic

points provide a (m, ε)-separated set for F k
λ as long as ε is a positive number less

than gaps of N ′
i ’s, i.e., 0 < ε < min{a2i − a2(i−1)+1 : 1 ≤ i ≤ p − 1}. Since m

is arbitrarily chosen, we have htop(F
k
λ ) ≥ log(p) and so htop(Fλ) ≥ log(p)/k > δ.

Therefore, lim infλ→0 htop(Fλ) ≥ htop(f).

The proof of the second main result is the following.

Proof of Theorem 2. Define Gλ = (id, c)◦Fλ◦(id, c)−1, where id denotes the identity
map on R and c is a homeomorphism from S to Bn. Then the topological entropies
of Gλ and Fλ are equal. By applying the above argument to the family Gλ while

the corresponding cM of a covering relation N
Gλ,w
=⇒ M is the identity now, we have

the desired result.

5 Snap-back repeller and closed loops of covering

relations

Throughout this section, we assume that f : Rm → Rm is a C1 map having a snap-
back repeller x0 associated with a transverse homoclinic orbit. We shall construct
two closed loops of covering relations for f : the first one is from the snap-back
repeller to a homoclinic point then back to the repeller, and the second one consists

of just one relation Nr
f

=⇒ Nr, where Nr is one of the h-sets in the first closed
loop. Then, we use the covering relations approach to prove that f has a positive
topological entropy.

Let L be a linearization of f at x0, that is, L(z) = x0 +df(x0)(z−x0) for z ∈ Rm.
Since all eigenvalues of df(x0) are greater than one in absolute value, there exist a
norm ‖ · ‖ on Rm and a constant ρ > 1 such that

‖df(x0)z‖ ≥ ρ‖z‖ for z ∈ Rm. (4)

¿From now on, we keep this norm fixed.
For any r > 0 and x ∈ Rm, we denote the closed ball with the center x and

radius r by
N(x, r) = {x}+ Bm(0, r).

For any r > 0 we define an h-set Nx,r in Rm as follows: we set Nx,r = N(x, r),
cNx,r(z) = (z − x)/r, u(Nx,r) = m, and s(Nx,r) = 0. Since the point x0 is a fixed
point for f and will play a distinguished role in the following, we will write Nr

instead of Nx0,r. Next, we define a homotopy from the map f to L, its linearization
at x0, as follows:

fµ(z) = (1− µ)f(z) + µL(z) for µ ∈ [0, 1] and z ∈ Rm. (5)
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It is easy to see that f0(z) = f(z) , f1(z) = L(z) and dfµ(z) = (1−µ)df(z)+µdf(x0)
for all µ and z. This homotopy will be later used in covering relations in the vicinity
of the snap-back repeller.

First, we show the size of the repulsion set for snap-back repeller x0 can be
chosen uniformly for all fµ for µ ∈ [0, 1].

Lemma 11. Let β = (ρ+1)/2. Then there exists r0 > 0 such that for any µ ∈ [0, 1],
0 < r ≤ r0, z ∈ Nr with ‖z − x0‖ = r, the following holds:

‖fµ(z)− x0‖ > βr.

Proof. By using Taylor’s theorem with an integral remainder, we have

fµ(z)− x0 = fµ(z)− fµ(x0) = C(z − x0),

where

C = C(µ, z, x0) =

∫ 1

0

dfµ(x0 + t(z − x0))dt.

By (5), we get that

C − dfµ(x0) =

∫ 1

0

(1− µ)df(x0 + t(z − x0)) + µdf(x0)dt− dfµ(x0)

=

∫ 1

0

(1− µ)[df(x0 + t(z − x0))− df(x0)]dt. (6)

Since df is continuous at x0 and ρ > 1, there exists r0 > 0 such that if ‖y − x0‖ ≤ r0

then ‖df(y)− df(x0)‖ < (ρ− 1)/2. Hence, from (6), we have that for any µ ∈ [0, 1]
and z ∈ Bm(x0, r0),

‖C − dfµ(x0)‖ ≤
∫ 1

0

(1− µ) ‖df(x0 + t(z − x0))− df(x0)‖ dt

<

∫ 1

0

(1− µ)
ρ− 1

2
dt ≤ ρ− 1

2
.

Therefore, by using (4), we have that for any µ ∈ [0, 1], 0 < r ≤ r0, z ∈ Nr with
‖z − x0‖ = r,

‖fµ(z)− x0‖ = ‖C(z − x0)‖ = ‖(C − dfµ(x0) + dfµ(x0))(z − x0)‖
≥ ‖df(x0)(z − x0)‖ − ‖(C − dfµ(x0))(z − x0)‖
> ρr − ρ− 1

2
r = βr.

Throughout the rest of this section, we fix the two constants β and r0 as given
in Lemma 11. In the following, we establish a covering relation between two h-sets
around the snap-back repeller.
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Proposition 12. Let r and r1 be two numbers satisfying 0 < r ≤ r0 and 0 < r1 ≤
βr. Then the following covering relation holds:

Nr
f

=⇒ Nr1

Proof. Define h(µ, z) = cNr1
(fµ(c−1

Nr
(z)). We need to check whether all conditions

for the covering relation Nr
f

=⇒ Nr1 are satisfied.
First we deal with the conditions in the first item of Definition 7. Condition (1)

is implied by f0 = f , (2) follows from Lemma 11, and since N+
r1

= ∅, (3) is also
satisfied.

Next, we define a map A on Rm by A(z) = (r/r1)df(x0)z. Then for z ∈ Bm, we
have

h(1, z) =
L(rz + x0)− x0

r1

=
df(x0)(rz)

r1

= A(z).

Moreover, from (4) it follows that for z ∈ Bm with ‖z‖ = 1,

‖A(z)‖ ≥ ρr

r1

≥ ρr

βr
> 1.

Since A is linear, from the above equation we have that deg(A, Bm, 0) = ± det(A) 6=
0.

Next, we give a covering relation from the snap-back repeller x0 to points near
x0, which will be homoclinic points near x0 as the result is used later.

Lemma 13. Let r > 0, r1 > 0, and z1 ∈ Rm near x0 satisfy that (‖z1−x0‖+r1)/β <
r < r0. Then

Nr
f

=⇒ Nz1,r1

Proof. As in the proof of Proposition 12, we set h(µ, z) = cNz1,r1
(fµ(c−1

Nr
(z)). Again,

we need to check all conditions for the covering relation Nr
f

=⇒ Nz1,r1 .
Condition (1) is implied by f0 = f, and since N+

z1,r1
= ∅, (3) is also satisfied.

To verify condition (2), observe that it is equivalent to the following one

fµ(N−
r ) ∩Nz1,r1 = ∅ for µ ∈ [0, 1]. (7)

¿From Lemma 11, it follows that for any z ∈ N−
r (hence ‖z − x0‖ = r),

‖fµ(z)− z1‖ = ‖fµ(z)− x0 + x0 − z1‖ ≥ ‖fµ(z)− x0‖ − ‖x0 − z1‖
≥ βr − ‖x0 − z1‖ > ‖x0 − z1‖+ r1 − ‖x0 − z1‖ = r1.

This proves (7).
It remains to investigate h(1, z). Define a map A on Rm by A(z) = (rdf(x0)z +

x0 − z1)/r1. Then A is affine and for z ∈ Bm,

h(1, z) =
L(rz + x0)− z1

r1

=
x0 + df(x0)(rz)− z1

r1

= A(z).
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To prove that deg(A,Bm, 0) = det(df(x0)) = ±1, it is sufficient to show that the
unique solution ẑ = (1/r)df(x0)

−1(z1 − x0) of the equation A(z) = 0 is in Bm. To
this end, observe that from (4), we have ‖df(x0)

−1‖ ≤ ρ−1 and hence

‖ẑ‖ ≤ 1

r
‖df(x0)

−1‖ · ‖z1 − x0‖ ≤ ‖z1 − x0‖
ρr

<
‖z1 − x0‖+ r1

βr
< 1.

The following lemma gives a covering relation from a homoclinic point to the
snap-back repeller.

Lemma 14. Assume that z0 ∈ Rm such that fk(z0) = x0 for some integer k > 0
and det(dfk(z0)) 6= 0. Then there exists R > 0 such that if 0 < r < R then there is
v ≡ v(r) with 0 < v < r0 such that for any 0 < r2 ≤ v, we have

Nz0,r
fk

=⇒ Nr2 . (8)

Proof. By continuity of f , there is R1 > 0 such that

fk(Bm(z0, R1)) ⊂ Bm(x0, r0).

Define a homotopy as follows: for µ ∈ [0, 1] and z ∈ Bm(z0, R1),

gµ(z) = (1− µ)fk(z) + µ(dfk(z0)(z − z0) + x0). (9)

Then gµ(z0) = x0 and dgµ(z) = (1 − µ)dfk(z) + µdfk(z0) for all µ and z. Since
dfk(z0) is nonsingular, there is a constant α > 0 such that for any z ∈ Rm,

‖dfk(z0)z‖ ≥ α‖z‖. (10)

Next, we show that there exists a positive number R < min{R1, 2r0/α} such
that for all ‖z − z0‖ < R and µ ∈ [0, 1], one has

‖gµ(z)− x0‖ >
α

2
‖z − z0‖. (11)

To this end, we have to modify a bit the proof of Lemma 11. By using Taylor’s
theorem with integral remainder, we have

gµ(z)− x0 = gµ(z)− gµ(z0) = C(z − z0),

where

C = C(µ, z, z0) =

∫ 1

0

dgµ(z0 + t(z − z0))dt.

By (9), we get that

C − dgµ(z0) =

∫ 1

0

(1− µ)dfk(z0 + t(z − z0)) + µdfk(z0)dt− dgµ(z0)

=

∫ 1

0

(1− µ)[dfk(z0 + t(z − z0))− dfk(z0)]dt (12)

10



Since dfk is continuous at z0, there exists R > 0 such that if ‖y − z0‖ < R then

∥∥dfk(y)− dfk(z0)
∥∥ < α/2.

Hence, from (12), we have that for any µ ∈ [0, 1] and z ∈ Bm(z0, R),

‖C − dgµ(x0)‖ ≤
∫ 1

0

(1− µ)
∥∥dfk(z0 + t(z − z0))− dfk(z0)

∥∥ dt

<

∫ 1

0

(1− µ)
α

2
dt ≤ α

2
.

Therefore, by using (10), we obtain that for any µ ∈ [0, 1] and z ∈ Bm(z0, R),

‖gµ(z)− x0‖ = ‖C(z − z0)‖ = ‖(C − dgµ(z0) + dgµ(z0))(z − z0)‖
≥

∥∥dfk(z0)(z − z0)
∥∥− ‖(C − dgµ(z0))(z − z0)‖

> (α− α

2
) ‖(z − z0)‖ =

α

2
‖(z − z0)‖ .

Now we are ready to prove the desired covering relation (8). Let r a number
with 0 < r < R and let v = αr/2. Let r2 be a number with 0 < r2 ≤ v. Since α > 0
and R < 2r0/α, we have 0 < v < r0. We define a homotopy hµ by

hµ(z) = cNr2
(gµ(c−1

Nz0,r
(z))) for µ ∈ [0, 1] and z ∈ Bm.

The conditions from Definition 7 requiring the proof are only (2) and deg(h1, Bm, 0) 6=
0 while the rest ones are clear. To verify condition (2), notice that it is equivalent
to the following one

gµ(N−
z0,r) ∩Nr2 = ∅ for µ ∈ [0, 1]. (13)

¿From (11), it follows that for any z ∈ N−
z0,r (hence ‖z − z0‖ = r), one has

‖gµ(z)− x0‖ >
α

2
‖z − z0‖ > r2.

This proves (13). Finally, since

h1(z) =
r

r2

dfk(z0)z,

We obtain that h1 is a linear isomorphism; therefore deg(h1, Bm, 0) = det(dfk(z0)) 6=
0.

The next proposition shows that existence of a snap-back repeller defined in
Definition 3 implies a positive topological entropy. In [1], Blanco Garcia gave the
same result based on Marotto’s definition of a snap-back repeller and results in [5].
Here, we give a new proof by using covering relations.

Proposition 15. The topological entropy of f is positive.

11



Proof. Let β and r0 as given in Lemma 11. Since x0 is a snap-back repeller for f ,
there exists a sequence {x−i}i∈N such that x−1 6= x0, limi→∞ x−i = x0, and for all
i ∈ N, f(x−i) = x−i+1 and det(df(x−i)) 6= 0. Thus, there is an integer k > 0 such
that x−k ∈ B(x0, r0). By the chain rule, we have det(dfk(x−k)) 6= 0. Furthermore,
from Lemma 14, there exist positive constants rk and rb such that rb < r0 and

B(x−k, rk) ⊂ B(x0, r0), (14)

Nx−k,rk
∩Nrb

= ∅, (15)

Nx−k,rk

fk

=⇒ Nrb
. (16)

Since β > 1, there exists the minimal positive integer a such that βarb > ‖x−k−x0‖+
rk. By the minimum of a and equation (14), we have βa−1rb ≤ r‖x−k−x0‖+rk < r0.
From Proposition 12 and Lemma 13, it follows that we have the following chain of
covering relations:

Nrb

f
=⇒ Nβrb

f
=⇒ · · · f

=⇒ Nβa−1rb

f
=⇒ Nx−k,rk

. (17)

Moreover, from Proposition 12, it follows also that

Nrb

f
=⇒ Nrb

. (18)

These covering relations are enough to produce symbolic dynamics and a positive
topological entropy as follows. Let w = max(a, k). It is sufficient to construct an
f 2w-invariant set on which f 2w can be semi-conjugated onto the shift map σ : Σ+

2 →
Σ+

2 , where Σ+
2 = {0, 1}N, the one-sided shift space on two symbols with the standard

Tichonov (product) topology. By using equations (16)-(18), one can consider the
following chains of covering relations, each one of length 2w (which is counted by
the number of iterates of f):

Nrb

f
=⇒ Nrb

f
=⇒ Nrb

f
=⇒ · · · f

=⇒ Nrb
,

Nrb

f
=⇒ Nrb

f
=⇒ · · · f

=⇒ Nrb

f
=⇒ Nβrb

f
=⇒ · · · f

=⇒ Nβa−1rb

f
=⇒ Nx−k,rk

,

Nx−k,rk

fk

=⇒ Nrb

f
=⇒ Nrb

f
=⇒ · · · f

=⇒ Nrb
,

Nx−k,rk

fk

=⇒ Nrb

f
=⇒ · · · f

=⇒ Nrb

f
=⇒ Nβrb

f
=⇒ · · · f

=⇒ Nβa−1rb

f
=⇒ Nx−k,rk

.

Let us denote N0 = Nrb
and N1 = Nx−k,rk

. Then N0 and N1 are disjoint due to (15).
Define Z to be the set of points whose forward orbits under f 2w stays in N0 ∪ N1,
that is,

Z = {z ∈ N0 ∪N1 | f 2iw(z) ∈ N0 ∪N1 for all i ∈ N}.
Then Z is compact. On Z we define a projection π : Z → Σ+

2 by

π(z)i = j if and only if f 2iw(z) ∈ Nj.

It is obvious that the map π is continuous and we have a semiconjugacy: π ◦ f 2w =
σ ◦ π.

12



Finally, we shall show that π is onto. This gives us that the topological entropy
of f 2w on Z is greater than or equal to log 2. Let α = (α0, . . . , αl−1) ∈ {0, 1}l for
some positive integer l. By a suitable concatenation of the above listed chains of
covering relations and from Theorem 8, it follows that there exists a point xα ∈ Nα0

such that

f 2iw(xα) ∈ Nαi
for 0 ≤ i ≤ l − 1,

f 2lw(xα) = xα.

It is clear that xα ∈ Z and π(xα) = (α, α, . . .) ∈ Σ+
2 . Since α is arbitrarily chosen, the

set π(Z) contains all repeating sequences. From the density of repeating sequences
in Σ+

2 , it follows that π(Z) = Σ+
2 .

6 Proofs of Theorems 4 and 5

In this section, we combine all the material in the previous section to prove the last
two of our main results. First, we assume that all the hypotheses of Theorem 4 are
satisfied. We continue using the notations of the previous section. From the proof
of Proposition 15, we have a positive integer a such that the following closed loop
of covering relations holds:

Nrb

f
=⇒ Nrb

f
=⇒ Nβrb

f
=⇒ · · · f

=⇒ Nβa−1rb

f
=⇒ Nx−k,rk

fk

=⇒ Nrb
.

By adding the normal direction to the above h-sets and using the persistence of
covering relation, we shall construct a closed loop of covering relations for Fλ, similar
to the above loop for f . Recall that the singular map F0 is of the form F0(x, y) =
(f(x), g(x)) ∈ Rm × Rn. Set N = (∪a−1

i=0 Nβirb
) ∪ (∪k

i=0f
i(Nx−k,rk

)). Since g is
continuous and N is compact, there exists r > 0 such that g(N) ⊂ Bn(0, r). Let
us define the corresponding h-sets in Rm × Rn as follows. For i = 0, 1, . . . , a − 1,
we define h-sets N ′

βirb
in Rm × Rn by N ′

βirb
= Nβirb

× Bn(0, r), u(N ′
βirb

) = m,

s(N ′
βirb

) = n, and cN ′
βirb

(x, y) = (cNβirb
(x), 1

r
y). Moreover, we define an h-set N ′

x−k,rk

in Rm × Rn by N ′
x−k,rk

= Nx−k,rk
× Bn(0, r), u(N ′

x−k,rk
) = m, s(N ′

x−k,rk
) = n, and

cN ′
x−k,rk

(x, y) = (cNx−k,rk
(x), 1

r
y).

Observe that we have following closed loop of covering relations for F0.

Lemma 16. The following covering relations hold:

N ′
rb

F0=⇒ N ′
rb

F0=⇒ N ′
βrb

F0=⇒ · · · F0=⇒ N ′
βa−1rb

F0=⇒ N ′
x−k,rk

F k
0=⇒ N ′

rb
.

Proof. For each covering relation under consideration N ′ F j
0=⇒ M ′ with j = 1 or k,

we define a homotopy ĥ : [0, 1]×Bm ×Bn → Rm+n by

ĥ(µ, x, y) = (h(µ, x),
1− µ

r
g ◦ f j−1(c−1

N (x))).

13



where h is the homotopy from corresponding covering relation N
fj

=⇒ M . Then, we
have

ĥ(0, x, y) = (h(0, x),
1

r
g ◦ f j−1(c−1

N (x)))

= (cM ◦ f j ◦ c−1
N (x),

1

r
g ◦ f j−1(c−1

N (x))) = (F j
0 )c(x, y).

Since ĥ([0, 1], N ′,−) ⊂ h([0, 1], N−) × Rn, we get that condition (2) in Definition 7
follows from the analogous condition for h. Condition (3) is satisfied due to

ĥ([0, 1]×Bm ×Bn) ⊂ Rm ×Bn.

Finally, notice that
ĥ(1, x, y) = (h(1, x), 0).

Therefore, the other conditions in Definition 7 are also satisfied.

¿From Theorem 9, there exists λ0 > 0 such that if |λ| < λ0 then following chain
of covering relations holds for Fλ :

N ′
rb

Fλ=⇒ N ′
rb

Fλ=⇒ N ′
βrb

Fλ=⇒ · · · Fλ=⇒ N ′
βa−1rb

Fλ=⇒ N ′
x−k,rk

F k
λ=⇒ N ′

rb
. (19)

Similar to the proof of Proposition 15, covering relations listed in (19) are sufficient
to produce the symbolic dynamics and a positive topological entropy for Fλ with
|λ| < λ0.

This completes the proof of Theorem 4.
For the proof of Theorem 5, define Gλ = (id, c)◦Fλ◦(id, c)−1, where id denotes the

identity map on Rk and c is a homeomorphism from S to Bn. Then the conclusion
follows from the above argument applied to Gλ.
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