# TOPOLOGICAL METHOD FOR SYMMETRIC PERIODIC ORBITS FOR MAPS WITH A REVERSING SYMMETRY 

Daniel Wilczak<br>Jagiellonian University, Institute of Computer Science<br>Nawojki 11, 30-072 Kraków, Poland<br>Piotr Zgliczyński<br>Department of Computational Mathematics, Faculty of Computer Science, WSB - NLU<br>Zielona 27, 33-300 Nowy Sascz, Poland


#### Abstract

We present a topological method of obtaining the existence of infinite number of symmetric periodic orbits for systems with reversing symmetry. The method is based on covering relations. We apply the method to a fourdimensional reversible map.


1. Introduction. The goal of this paper is to present a topological method, which allows to establish, in finite computation, the existence of an infinite number of symmetric periodic orbits for dynamical systems with a reversing symmetry.

The role and impact of time reversing symmetries in dynamical systems has been extensively covered in the literature, see [La, La1, D1, D2] and references given there. In this paper we will restrict ourselves to the discrete time case. Before we outline our results we need first to introduce a few definitions.

Definition 1. Let $\Omega$ be a topological space. Let $f: \Omega \rightarrow \Omega$ be a homeomorphism. We define a discrete dynamical system induced by $f$ as follows

$$
\varphi: \mathbb{Z} \times \Omega \rightarrow \Omega, \quad \varphi(k, x)=f^{k}(x)
$$

Let $Z \subset \Omega$ and $f: Z \rightarrow \Omega$ be a homeomorphism of $Z$ and $f(Z)$ we define a local discrete dynamical system as follows. Let dom $(\varphi)$ be a subset of $\mathbb{Z} \times Z$, such that $(k, x) \in \operatorname{dom}(\varphi)$ iff $f^{i}(x)$ is defined for $i=0, \ldots, k$ when $k \geq 0$ or for $i=0,-1, \ldots, k$ if $k<0$.

$$
\varphi: \operatorname{dom}(\varphi) \rightarrow \Omega, \quad \varphi(k, x)=f^{k}(x)
$$

Definition 2. An invertible transformation $M: \Omega \longrightarrow \Omega$ is called a symmetry of the discrete dynamical system induced by $f: \Omega \longrightarrow \Omega$ if

$$
M \circ f=f \circ M
$$

[^0]It is easy to see that a symmetry of a discrete dynamical system transforms trajectories into trajectories.

Alternatively, a dynamical system may admit transformations $S: \Omega \rightarrow \Omega$ that map trajectories into other trajectories reversing the time direction.
Definition 3. [La1] An invertible transformation $S: \Omega \longrightarrow \Omega$ is called a reversing symmetry for the discrete dynamical system induced by $f: \Omega \longrightarrow \Omega$ if

$$
S \circ f=f^{-1} \circ S
$$

or equivalently $S^{-1} \circ f \circ S \circ f=\left.\mathrm{Id}\right|_{\Omega}$.
From above definition we immediately obtain the following very useful fact:
Remark 1. From the definition of reversing symmetry it follows that $f \circ S \circ f=S$. Hence if $y=f(x)$, then $f(S(y))=S(x)$. This implies, that if $x_{0}, x_{1}=f\left(x_{0}\right), \ldots, x_{k}=$ $f^{k}\left(x_{0}\right), \ldots$ is an orbit, then also a sequence obtained by reversing the order and applying the reversing symmetry $S\left(x_{k}\right), S\left(x_{k-1}\right), \ldots, S\left(x_{0}\right)$ is an orbit.
Definition 4. Let $\varphi: \mathbb{T} \times \Omega \rightarrow \Omega$ (where $\mathbb{T}=\mathbb{R}$ or $\mathbb{T}=\mathbb{Z}$ ) be a dynamical system. For each point $x_{0} \in \Omega$, we define its orbit $\Gamma\left(x_{0}\right)$ by

$$
\Gamma\left(x_{0}\right)=\left\{x \mid x=\varphi\left(t, x_{0}\right) \text { for some } t \in \mathbb{T}\right\}
$$

To describe the symmetry properties of orbits, following [GSS, La1] we introduce the notion of isotropy subgroup.

Definition 5. Consider a dynamical system on a phase space $\Omega$ with a symmetry (or a reversing symmetry) $S$.

If $S\left(\Gamma\left(x_{0}\right)\right)=\Gamma\left(x_{0}\right)$ for some $x_{0} \in \Omega$, then we say that the orbit $\Gamma\left(x_{0}\right)$ is $S$ symmetric. If the symmetric orbit $\Gamma\left(x_{0}\right)$ is periodic, then we will say that $x_{0}$ is a symmetric periodic point.

If $S$ is clear from the context, then we will often drop it and speak of a symmetric orbit.

Let $P: X \rightarrow X$ be a map with a reversing symmetry $S$. Let Fix $(S)=\{x \mid S(x)=$ $x\}$ be the fixed point set for $S$.

A standard method for studying symmetric periodic orbits for systems with a reversing symmetry is the Fixed Set Iteration (FSI) method [LQ, La1] (also known as DeVogelaere method [DV]). This method is based on the intersections of the iterates of Fix $(S)$ and Fix $(P \circ S)$ (see [La1, Prop. 1.2.2] for more details). Below we give its simplified version.
Theorem 1. If $y_{1} \in \operatorname{Fix}(S)$ and $P^{k}\left(y_{1}\right) \in \operatorname{Fix}(S)$ for some $k \in \mathbb{Z}_{+}$, then $y_{1}$ is a symmetric periodic point for $P$ and its principal period divides $2 k$.

Theorem 1 shows that to obtain a symmetric periodic orbit of period $k$, we have to examine the $k / 2$-iterate of $P$, which is an apparent obstacle for obtaining infinite number of $S$-symmetric periodic orbits with unbounded periods in a finite computation.

One way to overcome this problem is the method proposed by Devaney in [D2]. To describe Devaney's method, assume that $P: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is a $C^{1}$-map with a reversing symmetry $S$ and $\operatorname{Fix}(S)$ is an $n$-dimensional manifold. Now, if we have $p \in \operatorname{Fix}(S)$, which is a fixed (periodic) point for $P$ and the unstable manifold of $p, W^{u}(p)$, intersects transversally $\operatorname{Fix}(S)$ at point $q$, then by symmetry $W^{s}(p)=$ $S\left(W^{u}(p)\right)$, hence $W^{s}(p)$ intersects Fix $(S)$ transversally at $q$. In [D2] it is shown
that there exists $k_{0} \in \mathbb{N}$, such that for all $k \geq k_{0}$ there exists in the vicinity of $q$ a disk $D_{k}$ in Fix $(S)$, such that $P^{k}\left(D_{k}\right)$ intersects Fix $(S)$ transversally in the vicinity of $p$. Now by Theorem 1 one obtains periodic points of arbitrarily high periods.

The method proposed in this paper bears some resemblance with Devaney's method, as it also is based on some kind of transversality, which is preserved under the iteration of the map. Our method is purely topological and is based on the notion of covering relation (see [ZGi]) as a tool for the propagation of the topological transversality. Here we will informally outline our approach. We say that a cube $N P$-covers a cube $M$, denoted by $N \xlongequal{P} M$, if the image of the cube $N$ under the map $P$ is stretched across the cube $M$ in a topologically nontrivial manner (see Definition 8). These cubes together with the corresponding choices of coordinate systems will be referred to as h -sets (the letter h suggesting the hyperbolic-like directions). Now in each h-set $N$ we can define horizontal and vertical disks (see Definitions 11 and 12). In Section 3 we prove (see Theorem 3) that if we have the chain of covering relations

$$
\begin{equation*}
N=N_{0} \xlongequal{P} N_{1} \xlongequal{P} \ldots \xlongequal{P} N_{k}=M \tag{1}
\end{equation*}
$$

then for any horizontal disk $H$ in $N_{0}$ and any vertical disk $V$ in $N_{k}$, there exists $x \in H$, such that $P^{i}(x) \in N_{i}$ for $i=1, \ldots, k$ and $P^{k}(x) \in V$. Now if $\operatorname{Fix}(S)$ forms a horizontal disk in $N$ and Fix $(S)$ forms a vertical disk in $M$, then from Theorem 1 we obtain symmetric periodic point. Observe that if we can build a chain of covering relations (1) linking $N$ and $M$ of arbitrary length, then we will have symmetric periodic points of arbitrarily high period. For example it was shown that this happens for suitable 2-dimensional Poincaré maps for the Michelson system arising from the Kuramoto-Sivashinsky PDE [W], the planar restricted three body problem modelling the motion of the Oterma comet in the Sun-Jupiter system [WZ2] or the Henon-Heiles Hamiltonian [AZ]. In the above mentioned applications we had one unstable and one stable direction. In this paper we apply our method to a fourdimensional reversible map to prove the existence of symbolic dynamics and an infinite number of symmetric periodic orbits. The main feature, which makes this example interesting, is the fact that both stable and unstable directions are twodimensional. The proof is computer assisted, i.e., rigorous numerics is was used to verify assumptions of abstract theorems.

The proposed method was introduced in $[\mathrm{W}]$ in the planar case and direct coverings. In this case the proof of the transversality theorem (corresponding to Theorem 3) is very simple and is based on the connectivity argument. Unfortunately this proof cannot be generalized to higher dimension or to include coverings induced by inverse mappings.

The problem of finding symmetric periodic orbits for an ODE with a reversing symmetry $S$ can be seen as a two-point boundary value problem, with initial and final condition belonging to Fix $(S)$. Recently Srzednicki $[\mathrm{S}]$ introduced a topological method to study two-point boundary value problem, which is based on isolating chains as a tool to propagate transversality. The method proposed in present paper can be seen as the discretization of Srzednicki's method.

The content of this paper can be described as follows. In Section 2 we define topological notions: h-sets, covering relations and backcoverings relations. In Section 3 we prove the main transversality theorem (Theorem 3). In Section 4 describe how it can be applied to reversible dynamical systems in general. In Section 5 we consider an application of our method to a four-dimensional map with a reversing
symmetry. In Section 6 we describe how to verify the existence of covering relations by computer.
2. Topological tools: h-sets and covering relations. In this section we present main topological tools used in this paper. The crucial notion is that of covering relation [ZGi].
2.1. h-sets. Notation: For a given norm in $\mathbb{R}^{n}$ by $B_{n}(c, r)$ we will denote an open ball of radius $r$ centered at $c \in \mathbb{R}^{n}$. When the dimension $n$ is obvious from the context we will drop the subscript $n$. Let $S^{n}(c, r)=\partial B_{n+1}(c, r)$, by the symbol $S^{n}$ we will denote $S^{n}(0,1)$. We set $\mathbb{R}^{0}=\{0\}, B_{0}(0, r)=\{0\}, \partial B_{0}(0, r)=\emptyset$.

For a given set $Z$, by int $Z, \bar{Z}, \partial Z$ we denote the interior, the closure and the boundary of $Z$, respectively. For the map $h:[0,1] \times Z \rightarrow \mathbb{R}^{n}$ we set $h_{t}=h(t, \cdot)$. By Id we denote the identity map. For a map $f$, by $\operatorname{dom}(f)$ we will denote the domain of $f$. Let $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuous map, then we will say that $X \subset \operatorname{dom}\left(f^{-1}\right)$ if the map $f^{-1}: X \rightarrow \mathbb{R}^{n}$ is well defined and continuous. For $N \subset \Omega, N$-open and $c \in \mathbb{R}^{n}$ by $\operatorname{deg}(f, N, c)$ we denote the local Brouwer degree. For the properties of this notion we refer the reader to [L] (see also Appendix in [ZGi]).

Definition 6. [ZGi, Definition 1] A $h$-set, $N$, is the object consisting of the following data

- $|N|$ - a compact subset of $\mathbb{R}^{n}$
- $u(N), s(N) \in\{0,1,2, \ldots\}$, such that $u(N)+s(N)=n$
- a homeomorphism $c_{N}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}=\mathbb{R}^{u(N)} \times \mathbb{R}^{s(N)}$, such that

$$
c_{N}(|N|)=\overline{B_{u(N)}}(0,1) \times \overline{B_{s(N)}}(0,1) .
$$

We set

$$
\begin{gathered}
N_{c}=\overline{B_{u(N)}}(0,1) \times \overline{B_{s(N)}}(0,1) \\
N_{c}^{-}=\partial \overline{B_{u(N)}}(0,1) \times \overline{B_{s(N)}}(0,1) \\
N_{c}^{+}=\overline{B_{u(N)}}(0,1) \times \partial \overline{B_{s(N)}}(0,1) \\
N^{-}=c_{N}^{-1}\left(N_{c}^{-}\right), \quad N^{+}=c_{N}^{-1}\left(N_{c}^{+}\right)
\end{gathered}
$$

Hence a $h$-set, $N$, is a product of two closed balls in some coordinate system. The numbers, $u(N)$ and $s(N)$, stand for the dimensions of nominally unstable and stable directions, respectively. The subscript $c$ refers to the new coordinates given by homeomorphism $c_{N}$. Observe that if $u(N)=0$, then $N^{-}=\emptyset$ and if $s(N)=0$, then $N^{+}=\emptyset$. In the sequel to make notation less cumbersome we will often drop the bars in the symbol $|N|$ and we will use $N$ to denote both the h-sets and its support.
Definition 7. [ZGi, Definition 3] Let $N$ be a $h$-set. We define a $h$-set $N^{T}$ as follows

- $\left|N^{T}\right|=|N|$
- $u\left(N^{T}\right)=s(N), s\left(N^{T}\right)=u(N)$
- We define a homeomorphism $c_{N^{T}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}=\mathbb{R}^{u\left(N^{T}\right)} \times \mathbb{R}^{s\left(N^{T}\right)}$, by

$$
c_{N^{T}}(x)=j\left(c_{N}(x)\right)
$$

where $j: \mathbb{R}^{u(N)} \times \mathbb{R}^{s(N)} \rightarrow \mathbb{R}^{s(N)} \times \mathbb{R}^{u(N)}$ is given by $j(p, q)=(q, p)$.

Observe that $N^{T,+}=N^{-}$and $N^{T,-}=N^{+}$. This operation is useful in the context of inverse maps.

### 2.2. Covering relations.

Definition 8. [ZGi, Definition 6] Assume that $N, M$ are $h$-sets, such that $u(N)=$ $u(M)=u$ and $s(N)=s(M)=s$. Let $f: N \rightarrow \mathbb{R}^{n}$ be a continuous map. Let $f_{c}=c_{M} \circ f \circ c_{N}^{-1}: N_{c} \rightarrow \mathbb{R}^{u} \times \mathbb{R}^{s}$. Let $w$ be a nonzero integer. We say that

$$
N \xrightarrow{f, w} M
$$

( $N f$-covers $M$ with degree $w$ ) iff the following conditions are satisfied
1.: there exists a continuous homotopy $h:[0,1] \times N_{c} \rightarrow \mathbb{R}^{u} \times \mathbb{R}^{s}$, such that the following conditions hold true

$$
\begin{align*}
h_{0} & =f_{c},  \tag{2}\\
h\left([0,1], N_{c}^{-}\right) \cap M_{c} & =\emptyset  \tag{3}\\
h\left([0,1], N_{c}\right) \cap M_{c}^{+} & =\emptyset . \tag{4}
\end{align*}
$$

2.: If $u>0$, then there exists a map $A: \mathbb{R}^{u} \rightarrow \mathbb{R}^{u}$, such that

$$
\begin{align*}
h_{1}(p, q) & =(A(p), 0), \text { for } p \in \overline{B_{u}}(0,1) \text { and } q \in \overline{B_{s}}(0,1),  \tag{5}\\
A\left(\partial B_{u}(0,1)\right) & \subset \mathbb{R}^{u} \backslash \overline{B_{u}}(0,1) \tag{6}
\end{align*}
$$

Moreover, we require that

$$
\operatorname{deg}\left(A, \overline{B_{u}}(0,1), 0\right)=w
$$

Note that in the case $u=0$, if $N \xrightarrow{f, w} M$, then $f(N) \subset \operatorname{int} M$ and $w=1$.
Intuitively, $N \stackrel{f}{\Longrightarrow} M$ if $f$ stretches $N$ in the 'nominally unstable' direction, so that its projection onto 'unstable' direction in $M$ covers in topologically nontrivial manner projection of $M$. In the 'nominally stable' direction $N$ is contracted by $f$. As a result $N$ is mapped across $M$ in the unstable direction, without touching $M^{+}$. It is also very helpful to note that the degree $w$ in the covering relation depends only on $A_{\mid \partial B_{u}(0,1)}$.


Figure 1. Examples of covering (left) and backcovering (right) relations. In this case $u(N)=s(N)=1$ and $s(N)=s(M)=2$.

Definition 9. [ZGi, Definition 7] Assume $N, M$ are $h$-sets, such that $u(N)=$ $u(M)=u$ and $s(N)=s(M)=s$. Let $g: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Assume that $g^{-1}:|M| \rightarrow$ $\mathbb{R}^{n}$ is well defined and continuous. We say that $N \stackrel{g, w}{\rightleftharpoons} M(N g$-backcovers $M$ with degree $w)$ iff $M^{T} \xrightarrow{g-1}, w N^{T}$.

The geometry of Definitions 8 and 9 is presented in Fig. 1.
The following theorem was proved in [ZGi].
Theorem 2. [ZGi, Theorem 9] Assume $N_{i}, i=0, \ldots, k, N_{k}=N_{0}$ are h-sets and for each $i=1, \ldots, k$ we have either

$$
\begin{equation*}
N_{i-1} \stackrel{f_{i}, w_{i}}{\Longrightarrow} N_{i} \tag{7}
\end{equation*}
$$

or $N_{i} \subset \operatorname{dom}\left(f_{i}^{-1}\right)$ and

$$
\begin{equation*}
N_{i-1} \stackrel{f_{i}, w_{i}}{\rightleftharpoons} N_{i} \tag{8}
\end{equation*}
$$

Then there exists a point $x \in \operatorname{int} N_{0}$, such that

$$
\begin{align*}
f_{i} \circ f_{i-1} \circ \cdots \circ f_{1}(x) & \in \quad \operatorname{int} N_{i}, \quad i=1, \ldots, k  \tag{9}\\
f_{k} \circ f_{k-1} \circ \cdots \circ f_{1}(x) & =x \tag{10}
\end{align*}
$$

Obviously we cannot make any claim about the uniqueness of $x$ in Theorem 2 .
Theorem 2 shows that both the direct and the inverse covering relation can be treated on the same footing. This justifies the following definition.
Definition 10. Assume $N, M$ are h-sets and $P$ is a continuous map. We say that

$$
N \stackrel{P, w}{\Longleftrightarrow} M
$$

if one of the two following conditions is satisfied

$$
\begin{array}{r}
N \subset \operatorname{dom}(P) \quad \text { and } \quad N \stackrel{P, w}{\Longrightarrow} M \\
M \subset \operatorname{dom}\left(P^{-1}\right) \quad \text { and } \quad N \stackrel{P, w}{\rightleftharpoons} M .
\end{array}
$$

We would like to stress that the relation $N \stackrel{P, w}{\Longleftrightarrow} M$ is not symmetric.
3. The topological transversality theorem. The goal of this section is to state and prove the main topological transversality theorem for a chain of covering relations. For this end we need first to define the notions of vertical and horizontal disks in an h-set.
Definition 11. Let $N$ be an $h$-set. Let $b: \overline{B_{u(N)}}(0,1) \rightarrow|N|$ be continuous and let $b_{c}=c_{N} \circ b$. We say that $b$ is a horizontal disk in $N$ if there exists a continuous homotopy $h:[0,1] \times \overline{B_{u(N)}}(0,1) \rightarrow N_{c}$, such that

$$
\begin{align*}
h_{0} & =b_{c}  \tag{11}\\
h_{1}(x) & =(x, 0), \quad \text { for all } x \in \overline{B_{u(N)}}(0,1)  \tag{12}\\
h(t, x) & \in N_{c}^{-}, \quad \text { for all } t \in[0,1] \text { and } x \in \partial \overline{B_{u(N)}}(0,1) \tag{13}
\end{align*}
$$

Definition 12. Let $N$ be an $h$-set. Let $b: \overline{B_{s(N)}}(0,1) \rightarrow|N|$ be continuous and let $b_{c}=c_{N} \circ b$. We say that $b$ is a vertical disk in $N$ if there exists a continuous homotopy $h:[0,1] \times \overline{B_{s(N)}}(0,1) \rightarrow N_{c}$, such that

$$
\begin{aligned}
h_{0} & =b_{c} \\
h_{1}(x) & =(0, x), \quad \text { for all } x \in \overline{B_{s(N)}}(0,1) \\
h(t, x) & \in N_{c}^{+}, \quad \text { for all } t \in[0,1] \text { and } x \in \partial \overline{B_{s(N)}}(0,1) .
\end{aligned}
$$

It is easy to see that $b$ is a horizontal disk in $N$ iff $b$ is a vertical disk in $N^{T}$.
We would like to remark here that a horizontal disk in $N$ can be at the same time also vertical in $N$. An example of such disk is shown on Fig. 2. In case homotopies used in the definitions of horizontal and vertical disks are different. The existence of such disks, which are both vertical and horizonal will play very important role in our method for detection of an infinite number symmetric periodic orbits for maps with reversal symmetry.


Figure 2. The curve $b$ is both horizontal and vertical disk in $N$. In this example $u(N)=s(N)=1$.

Now we are ready to state and prove the main topological transversality theorem. A simplified version of this theorem was given in [W] for the case of one unstable direction and covering relations chain without backcoverings. The argument in [W], which was quite simple and was based on the connectivity only, cannot be carried over to a larger number of unstable directions or to the situation when both covering and backcovering relations are present.

Theorem 3. Let $k \geq 1$. Assume $N_{i}, i=0, \ldots, k$, are $h$-sets and for each $i=$ $1, \ldots, k$ we have either

$$
\begin{equation*}
N_{i-1} \stackrel{f_{i}, w_{i}}{\Longrightarrow} N_{i} \tag{14}
\end{equation*}
$$

or $N_{i} \subset \operatorname{dom}\left(f_{i}^{-1}\right)$ and

$$
\begin{equation*}
N_{i-1} \stackrel{f_{j}, w_{i}}{\rightleftharpoons} N_{i} . \tag{15}
\end{equation*}
$$

Assume that $b_{0}$ is a horizontal disk in $N_{0}$ and $b_{e}$ is a vertical disk in $N_{k}$.
Then there exists a point $x \in \operatorname{int} N_{0}$, such that

$$
\begin{align*}
x & =b_{0}(t), \quad \text { for some } t \in B_{u\left(N_{0}\right)}(0,1)  \tag{16}\\
f_{i} \circ f_{i-1} \circ \cdots \circ f_{1}(x) & \in \operatorname{int} N_{i}, \quad i=1, \ldots, k  \tag{17}\\
f_{k} \circ f_{k-1} \circ \cdots \circ f_{1}(x) & =b_{e}(z), \quad \text { for some } z \in B_{s\left(N_{k}\right)}(0,1) \tag{18}
\end{align*}
$$

Proof. Without loss generality we can assume that

$$
c_{N_{i}}=\mathrm{Id}, \quad \text { for } i=0, \ldots, k
$$

Then

$$
\begin{gathered}
f_{i}=f_{i, c}, \quad \text { for } i=1, \ldots, k, \\
N_{i}=N_{c, i}, \quad N_{i}^{ \pm}=N_{i, c}^{ \pm} \quad \text { for } i=0, \ldots, k
\end{gathered}
$$

We define $g_{i}=f_{i}^{-1}$, for those $i$ for which we have the back-covering relation $N_{i-1} \stackrel{f_{j}, w_{i}}{\rightleftharpoons} N_{i}$.

Notice that from the definition of covering relation, it follows immediately that there are $u \geq 0, s \geq 0$, such that $u\left(N_{i}\right)=u$ and $s\left(N_{i}\right)=s$, for all $i=0, \ldots, k$.

The idea of the proof is to rewrite our problem as a zero finding problem for a suitable map, then to compute its local Brouwer degree to infer the existence of a solution.

As a tool for keeping track of the occurrences of coverings and backcoverings, we define the map dir $:\{1, \ldots, k\} \rightarrow\{0,1\}$ by $\operatorname{dir}(i)=1$ if $N_{i-1} \stackrel{f_{i}, w_{i}}{\Longrightarrow} N_{i}$ and $\operatorname{dir}(i)=0$ if $N_{i-1} \stackrel{f_{j}, w_{i}}{\rightleftharpoons} N_{i}$. For $i=1, \ldots, k$ let $h_{i}$ be a homotopy map from the definition of covering relation for $N_{i-1} \stackrel{f_{i}, w_{i}}{\Longrightarrow} N_{i}$ or $N_{i-1} \stackrel{f_{j}, w_{i}}{\rightleftharpoons} N_{i}$. In the case of a direct covering (i.e. dir $(i)=1$ ), the homotopy $h_{i}$ satisfies

$$
\begin{align*}
h_{i}(0, x) & =f_{i}(x), \quad \text { where } x \in \mathbb{R}^{u+s},  \tag{19}\\
h_{i}(1,(p, q)) & =\left(A_{i}(p), 0\right), \quad \text { where } p \in \mathbb{R}^{u} \text { and } q \in \mathbb{R}^{s},  \tag{20}\\
h_{i}\left([0,1], N_{i-1}^{-}\right) \cap N_{i} & =\emptyset,  \tag{21}\\
h_{i}\left([0,1], N_{i-1}\right) \cap N_{i}^{+} & =\emptyset . \tag{22}
\end{align*}
$$

In the case of a backcovering (i.e. dir $(i)=0$ ), the homotopy $h_{i}$ satisfies

$$
\begin{align*}
h_{i}(0, x) & =g_{i}(x), \quad \text { where } x \in \mathbb{R}^{u+s},  \tag{23}\\
h_{i}(1,(p, q)) & =\left(0, A_{i}(q)\right), \quad \text { where } p \in \mathbb{R}^{u} \text { and } q \in \mathbb{R}^{s},  \tag{24}\\
h_{i}\left([0,1], N_{i}^{+}\right) \cap N_{i-1} & =\emptyset  \tag{25}\\
h_{i}\left([0,1], N_{i}\right) \cap N_{i-1}^{-} & =\emptyset . \tag{26}
\end{align*}
$$

Let $h_{t}$ and $h_{z}$ be the homotopies appearing in the definition of a horizontal and vertical disk for $b_{0}$ and $b_{e}$, respectively.

It is enough to prove that there exists $t \in B_{u}(0,1), z \in B_{s}(0,1)$ and $x_{i} \in \operatorname{int} N_{i}$ for $i=1, \ldots, k$ such that

$$
\begin{align*}
b_{0}(t) & =x_{0}, \\
f_{i}\left(x_{i-1}\right) & =x_{i}, \quad \text { if } \operatorname{dir}(i)=1, \\
g_{i}\left(x_{i}\right) & =x_{i-1}, \quad \text { if } \operatorname{dir}(i)=0,  \tag{27}\\
b_{e}(z) & =x_{k}
\end{align*}
$$

We will treat (27) as a multidimensional system of equations to be solved. To this end, let us define

$$
\Pi=\overline{B_{u}}(0,1) \times N_{1} \times \cdots \times N_{k-1} \times \overline{B_{s}}(0,1)
$$

A point $x \in \Pi$ will be represented by $x=\left(t, x_{1}, \ldots, x_{k-1}, z\right)$.
We define a map $F=\left(F_{1}, \ldots, F_{k}\right): \Pi \rightarrow \mathbb{R}^{(u+s) k}$ as follows: for $i=2, \ldots, k-1$ we set

$$
F_{i}\left(t, x_{1}, \ldots, x_{k-1}, z\right)= \begin{cases}x_{i}-f_{i}\left(x_{i-1}\right) & \text { if } \operatorname{dir}(i)=1 \\ x_{i-1}-g_{i}\left(x_{i}\right) & \text { if } \operatorname{dir}(i)=0\end{cases}
$$

For $i=1$ we set

$$
F_{1}\left(t, x_{1}, \ldots, x_{k-1}, z\right)= \begin{cases}x_{1}-f_{1}\left(b_{0}(t)\right) & \text { if } \operatorname{dir}(1)=1 \\ b_{0}(t)-g_{1}\left(x_{1}\right) & \text { if } \operatorname{dir}(1)=0\end{cases}
$$

For $i=k$ we define

$$
F_{k}\left(t, x_{1}, \ldots, x_{k-1}, z\right)= \begin{cases}b_{e}(z)-f_{k}\left(x_{k-1}\right) & \text { if } \operatorname{dir}(k)=1 \\ x_{k-1}-g_{k}\left(b_{e}(z)\right) & \text { if } \operatorname{dir}(k)=0\end{cases}
$$

With this notation, solving the system (27) is equivalent to solving the equation $F(x)=0$ in int $\Pi$.

We define a homotopy $H=\left(H_{1}, \ldots, H_{k}\right):[0,1] \times \Pi \rightarrow \mathbb{R}^{(u+s) k}$ as follows. For $i=2, \ldots, k-1$ we set

$$
H_{i}\left(\lambda, t, x_{1}, \ldots, x_{k-1}, z\right)= \begin{cases}x_{i}-h_{i}\left(\lambda, x_{i-1}\right) & \text { if } \operatorname{dir}(i)=1 \\ x_{i-1}-h_{i}\left(\lambda, x_{i}\right) & \text { if } \operatorname{dir}(i)=0\end{cases}
$$

For $i=1$ we set

$$
H_{1}\left(\lambda, t, x_{1}, \ldots, x_{k-1}, z\right)= \begin{cases}x_{1}-h_{1}\left(\lambda, h_{t}(\lambda, t)\right) & \text { if } \operatorname{dir}(1)=1 \\ h_{t}(\lambda, t)-h_{1}\left(\lambda, x_{1}\right) & \text { if } \operatorname{dir}(1)=0\end{cases}
$$

For $i=k$ we define

$$
H_{k}\left(\lambda, t, x_{1}, \ldots, x_{k-1}, z\right)= \begin{cases}h_{z}(\lambda, z)-h_{k}\left(\lambda, x_{k-1}\right) & \text { if } \operatorname{dir}(k)=1 \\ x_{k-1}-h_{k}\left(\lambda, h_{z}(\lambda, z)\right) & \text { if } \operatorname{dir}(k)=0\end{cases}
$$

Notice that $H(0, x)=F(x)$. The assertion of the theorem is a consequence of the following two lemmas, which will be proved after we complete the current proof.
Lemma 1. For all $\lambda \in[0,1]$ the local Brouwer degree $\operatorname{deg}(H(\lambda, \cdot)$, int $\Pi, 0)$ is well defined and does not depend on $\lambda$. Namely, for all $\lambda \in[0,1]$ we have

$$
\operatorname{deg}(H(\lambda, \cdot), \operatorname{int} \Pi, 0)=\operatorname{deg}(H(1, \cdot), \operatorname{int} \Pi, 0)
$$

## Lemma 2.

$$
|\operatorname{deg}(H(1, \cdot), \operatorname{int} \Pi, 0)|=\left|w_{1} \cdot w_{2} \cdots w_{k}\right|
$$

We continue the proof of Theorem 3. Since $F=H(0, \cdot)$, from the above lemmas it follows immediately that

$$
\operatorname{deg}(F, \operatorname{int} \Pi, 0)=\operatorname{deg}(H(0, \cdot), \operatorname{int} \Pi, 0)=\operatorname{deg}(H(1, \cdot), \operatorname{int} \Pi, 0) \neq 0
$$

Hence there exists $x \in \Pi$ such that $F(x)=0$.
Proof of Lemma 1: From the homotopy property of the local Brouwer degree (see Appendix in $[\mathrm{ZGi}])$ it is enough to prove that

$$
\begin{equation*}
H(\lambda, x) \neq 0, \quad \text { for all } x \in \partial(\Pi) \text { and } \lambda \in[0,1] . \tag{28}
\end{equation*}
$$

In order to prove (28), let us fix $x=\left(t, x_{1}, \ldots, x_{k-1}, k\right) \in \partial \Pi$. It is easy to see that one of the following conditions must be satisfied

$$
\begin{align*}
t & \in \partial B_{u}(0,1)  \tag{29}\\
z & \in \partial B_{s}(0,1)  \tag{30}\\
x_{i} & \in N_{i}^{+}, \quad \text { for some } i=1, \ldots, k-1  \tag{31}\\
x_{i} & \in N_{i}^{-} \quad \text { for some } i=1, \ldots, k-1 \tag{32}
\end{align*}
$$

We will deal with all above cases separately.
Consider first (29). Let us fix $\lambda \in[0,1]$. Let $x_{0}=h_{t}(\lambda, t)$. From Def. 11 it follows that $x_{0} \in N_{0}^{-}$. There are now two possibilities: either $\operatorname{dir}(1)=1$ (direct covering) or $\operatorname{dir}(1)=0$ (backcovering). Assume that $\operatorname{dir}(1)=1$. From condition (21) it
follows that $h_{1}\left(\lambda, x_{0}\right) \notin N_{1}$, hence $H_{1}(\lambda, x) \neq 0$. Assume now that $\operatorname{dir}(1)=0$. We have $h_{t}(\lambda, t) \in N_{0}^{-}$and since by $(26) h_{1}\left(\lambda, N_{1}\right) \cap N_{0}^{-}=\emptyset$, hence $H_{1}(\lambda, x) \neq 0$.

Consider now (30). Let us fix $\lambda \in[0,1]$ and let $x_{k}=h_{z}(\lambda, z)$. From Def. 12 it follows that $x_{k} \in N_{k}^{+}$. Now if $\operatorname{dir}(k)=1$, then from condition (22) $h_{k}\left(\lambda, N_{k-1}\right) \cap N_{k}^{+}=$ $\emptyset$, hence $H_{k}(\lambda, x) \neq 0$. If $\operatorname{dir}(k)=0$, then from (25) if follows, that $h_{k}\left(\lambda, x_{k}\right) \notin$ $N_{k-1}$, hence $H_{k}(\lambda, x) \neq 0$.

For each of cases (31) and (32) we have to consider the following four possibilities

$$
\begin{array}{ll}
N_{i-1} & \stackrel{f_{i}}{\rightleftharpoons} \\
N_{i} \stackrel{f_{i+1}}{\rightleftharpoons} & N_{i+1}, \\
N_{i-1} & \stackrel{f_{i}}{\rightleftharpoons} \\
N_{i} \stackrel{f_{i+1}}{\rightleftharpoons} & N_{i+1},  \tag{36}\\
N_{i-1} & \stackrel{f_{i}}{\rightleftharpoons} \\
N_{i} \stackrel{f_{i+1}}{\rightleftharpoons} N_{i+1}, \\
N_{i-1} & \stackrel{f_{i}}{\rightleftharpoons} \\
N_{i} \stackrel{f_{i+1}}{\rightleftharpoons} & N_{i+1} .
\end{array}
$$

Assume first that $x_{i} \in N_{i}^{+}$. If (33) or (34) holds true, then from (22) we obtain

$$
h_{i}\left(\lambda, x_{i-1}\right) \neq x_{i},
$$

for every $\lambda \in[0,1]$ and every $x_{i-1} \in N_{i-1}$. If (35) or (36) is satisfied, then from (25) it results that

$$
h_{i}\left(\lambda, x_{i}\right) \neq x_{i-1},
$$

for every $\lambda \in[0,1]$ and every $x_{i-1} \in N_{i-1}$. This proves that, if $x_{i} \in N_{i}^{+}$, then $H(\lambda, x) \neq 0$ for any $\lambda \in[0,1]$.

Assume now that $x_{i} \in N_{i}^{-}$. If (33) or (35) holds true, then from (21) it follows that for every $\lambda \in[0,1]$ and every $x_{i+1} \in N_{i+1}$ we have

$$
h_{i+1}\left(\lambda, x_{i}\right) \neq x_{i+1} .
$$

If (34) or (36) is satisfied, then from (26) we obtain

$$
h_{i+1}\left(\lambda, x_{i+1}\right) \neq x_{i}
$$

for every $\lambda \in[0,1]$ and every $x_{i+1} \in N_{i+1}$. This proves that if $x_{i} \in N_{i}^{-}$, then $H(\lambda, x) \neq 0$ for any $\lambda \in[0,1]$.

Proof of Lemma 2: Let us represent $x_{i}$ for $i=1, \ldots, k-1$ as a pair $x_{i}=\left(p_{i}, q_{i}\right)$, where $p_{i} \in \mathbb{R}^{u}$ and $q_{i} \in \mathbb{R}^{s}$. In this representation the map

$$
H\left(1, t, p_{1}, q_{1}, \ldots, p_{k-1}, q_{k-1}, z\right)=\left(\tilde{p}_{1}, \tilde{q}_{1}, \ldots, \tilde{p}_{k}, \tilde{q}_{k}\right)
$$

has the following form (for $\alpha=0$ )

- if $i=2, \ldots, k-1$ then

$$
\begin{array}{ll}
\text { if } \operatorname{dir}(i)=1, \text { then } & \tilde{p}_{i}=(1-\alpha) p_{i}-A_{i}\left(p_{i-1}\right), \quad \tilde{q}_{i}=q_{i} \\
\text { if } \operatorname{dir}(i)=0, \text { then } & \tilde{p}_{i}=p_{i-1}, \quad \tilde{q}_{i}=(1-\alpha) q_{i-1}-A_{i}\left(q_{i}\right) \tag{38}
\end{array}
$$

- if $i=1$, then

$$
\begin{array}{lll}
\text { if } \operatorname{dir}(1)=1, \text { then } & \tilde{p}_{1}=(1-\alpha) p_{1}-A_{1}(t), & \tilde{q}_{1}=q_{1} \\
\text { if } \operatorname{dir}(1)=0, \text { then } & \tilde{p}_{1}=t, \quad \tilde{q}_{1}=-A_{1}\left(q_{1}\right) \tag{40}
\end{array}
$$

- if $i=k$, then

$$
\begin{array}{ll}
\text { if } \operatorname{dir}(k)=1, \text { then } & \tilde{p}_{k}=-A_{k}\left(p_{k-1}\right), \quad \tilde{q}_{k}=z \\
\text { if } \operatorname{dir}(k)=0, \text { then } & \tilde{p}_{k}=p_{k-1}, \quad \tilde{q}_{k}=(1-\alpha) q_{k-1}-A_{k}(z) \tag{42}
\end{array}
$$

The above equations define a homotopy $C:[0,1] \times \Pi \rightarrow \mathbb{R}^{(u+s) k}$. We will show that $\operatorname{deg}(C(\alpha, \cdot)$, int $\Pi, 0)$ is independent of $\alpha$ and then we compute the degree of $C(1, \cdot)$.

Lemma 3. For any $\alpha \in[0,1]$

$$
\operatorname{deg}(C(\alpha, \cdot), \operatorname{int} \Pi, 0)=\operatorname{deg}(C(1, \cdot), \operatorname{int} \Pi, 0)
$$

Proof. From the homotopy property of the local degree (see Appendix in [ZGi]), it follows that it is enough to prove that

$$
\begin{equation*}
C(\alpha, x) \neq 0, \quad \text { for all } x \in \partial \Pi \text { and } \alpha \in[0,1] . \tag{43}
\end{equation*}
$$

Let us take $x=\left(t, p_{1}, q_{1}, \ldots, p_{k-1}, q_{k-1}, z\right) \in \partial \Pi$. One of the following conditions holds true

$$
\begin{aligned}
t & \in S^{u}, \\
z & \in S^{s}, \\
p_{i} & \in S^{u}, \quad \text { for some } i=2, \ldots, k-1 \\
q_{i} & \in S^{s}, \quad \text { for some } i=2, \ldots, k-1
\end{aligned}
$$

Assume that $t \in S^{u}$. If $\operatorname{dir}(1)=1$, then $\left\|A_{1}(t)\right\|>1$, hence $\left\|\tilde{p}_{1}\right\| \geq\left\|A_{1}(t)\right\|-\left\|p_{1}\right\|>$ 0 . If $\operatorname{dir}(1)=0$, then $\tilde{p_{1}}=t \neq 0$.

Assume that $z \in S^{s}$. If $\operatorname{dir}(k)=1$, then $\tilde{q}_{k}=z \neq 0$. If $\operatorname{dir}(k)=0$, then $\left\|A_{k}(z)\right\|>1$ and we obtain $\left\|\tilde{q_{k}}\right\| \geq\left\|A_{k}(z)\right\|-\left\|q_{k-1}\right\|>0$.

Assume that $p_{i} \in S^{u}$. If $\operatorname{dir}(i+1)=1$, then $\tilde{p}_{i+1} \neq 0$, because from condition (6) it follows that

$$
\begin{equation*}
\left\|A_{i+1}\left(p_{i}\right)\right\|>1 \geq\left\|(1-\alpha) p_{i+1}\right\| \tag{44}
\end{equation*}
$$

for any $p_{i+1} \in \overline{B_{u}}(0,1)$.
If $\operatorname{dir}(i+1)=0$, then obviously $\tilde{p}_{i+1}=p_{i} \neq 0$.
The argument for the case $q_{i} \in S^{s}$ is similar.

Now we turn to the computation of the degree of $C(1, \cdot)$. Observe that $C(1, \cdot)$ has the following form: for $i=2, \ldots, k-1$

$$
\begin{gather*}
\tilde{p}_{i}=-A_{i}\left(p_{i-1}\right), \tilde{q}_{i}=q_{i} \quad \text { if } \operatorname{dir}(i)=1  \tag{45}\\
\tilde{p}_{i}=p_{i-1}, \quad \tilde{q}_{i}=-A_{i}\left(q_{i}\right) \quad \text { if } \operatorname{dir}(i)=0 \tag{46}
\end{gather*}
$$

for $i=1$

$$
\begin{gather*}
\tilde{p}_{1}=-A_{1}(t), \tilde{q}_{1}=q_{1} \quad \text { if } \operatorname{dir}(1)=1  \tag{47}\\
\tilde{p}_{1}=t, \tilde{q}_{1}=-A_{1}\left(q_{1}\right) \quad \text { if } \operatorname{dir}(1)=0 \tag{48}
\end{gather*}
$$

and for $i=k$

$$
\begin{gather*}
\tilde{p}_{k}=-A_{k}\left(p_{k-1}\right), \tilde{q}_{k}=z \quad \text { if } \operatorname{dir}(1)=1  \tag{49}\\
\tilde{p}_{k}=t, \tilde{q}_{k}=-A_{k}(z) \quad \text { if } \operatorname{dir}(1)=0 \tag{50}
\end{gather*}
$$

From the product property of the degree (see Appendix in [ZGi]) it follows that

$$
\begin{array}{r}
|\operatorname{deg}(C(1, \cdot), \Pi, 0)|= \\
\left|\Pi_{i \in \operatorname{dir}-1}(1) \operatorname{deg}\left(-A_{i}, \overline{B_{u}}(0,1), 0\right) \cdot \Pi_{i \in \operatorname{dir}^{-1}(0)} \operatorname{deg}\left(-A_{i}, \overline{B_{s}}(0,1), 0\right)\right|
\end{array}
$$

In the formula above if $\operatorname{dir}^{-1}(j)=\emptyset$ (for $j=0,1$ ), then the corresponding product is set to be equal to 1 . Similarly if $u=0$ or $s=0$, then the corresponding product is also set equal to 1 .

From Collorary 18 in $[\mathrm{ZGi}]$ it follows that

$$
\begin{equation*}
\operatorname{deg}(-A, U, 0)=(-1)^{u} \operatorname{deg}(A, U, 0) \tag{51}
\end{equation*}
$$

This finishes the proof.
4. Reversing symmetry and covering relations. In this section we apply the tools developed in previous sections to the study of symmetric periodic orbits for reversible maps.
Theorem 4. Let $S$ be a reversing symmetry for the local dynamical system induced by the map P. Assume that

$$
M_{0} \stackrel{P}{\Longleftrightarrow} M_{1} \stackrel{P}{\Longleftrightarrow} M_{2} \cdots \stackrel{P}{\Longleftrightarrow} M_{n-1} \stackrel{P}{\Longleftrightarrow} M_{n},
$$

and

1. there exists a horizontal disk in $M_{0}$ contained in $\operatorname{Fix}(S)$
2. there exists a vertical disk in $M_{n}$ contained in Fix $(S)$

Then there exists $x \in M_{0}$, such that

$$
S(x)=x, P^{2 n}(x)=x
$$

$$
\begin{gathered}
\text { the orbit of } x \text { is } S \text {-symmetric } \\
P^{i}(x) \in M_{i} \text { for } i=1, \ldots, n, \\
P^{n+i}(x) \in S\left(M_{n-i}\right) \text { for } i=1, \ldots, n .
\end{gathered}
$$

Proof. From Theorem 3 it follows that there exists $x \in \operatorname{Fix}(S)$, such that

$$
\begin{array}{r}
P^{i}(x) \in M_{i} \text { for } i=1, \ldots, n \\
P^{n}(x) \in \operatorname{Fix}(S)
\end{array}
$$

The reversing symmetry of $P$ and Remark 1 imply that the following sequence of points

$$
\begin{array}{r}
x, P(x), \ldots, P^{n}(x)=S\left(P^{n}(x)\right), S\left(P^{n-1}(x)\right), \ldots \\
S\left(P^{n-2}(x)\right), S\left(P^{-1}(x)\right), S(x)=x
\end{array}
$$

constitutes an $S$-symmetric periodic orbit with desired properties.
Now we turn our attention to the action of symmetry on h-sets and covering relations.

Definition 13. Let $N$ be an h-set in $\mathbb{R}^{n}$. Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a homeomorphism.
We define an h-set $L * N$ as follows

- $|L * N|=L(|N|)$,
- $u(L * N)=u(N)$ and $s(L * N)=s(N)$,
- $c_{L * N}=c_{N} \circ L^{-1}$.

We define an h-set $L^{T} * N$ by

$$
L^{T} * N=(L * N)^{T}
$$

Informally speaking, $L * N$ is just a image of $N$ of under $L$ and $L^{T} * N$ is the image $N$ under $L$, but we additionally switch the 'expanding' and 'contracting' directions.

We have the following
Lemma 4. Let $S: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be a reversing symmetry for a map $P$ and $N \stackrel{P}{\Longleftrightarrow} M$, then $S^{T} * M \stackrel{P}{\Longleftrightarrow} S^{T} * N$.

Proof. For the proof it is enough to show, that

$$
\begin{align*}
& \text { if } N \xlongequal{P} M, \quad \text { then } \quad S^{T} * M \stackrel{P}{\rightleftharpoons} S^{T} * N,  \tag{52}\\
& \text { if } N \stackrel{P}{\rightleftharpoons} M, \quad \text { then } S^{T} * M \xlongequal{P} S^{T} * N . \tag{53}
\end{align*}
$$

We will prove (52) only. The proof of (53) is analogous. Assume that $N \xrightarrow{P, w} M$ and let $h, A$ be maps from Def. 8 used in conditions 1 and 2 , respectively. We will show that these $h$ and $A$ are also good for the verification of covering relation

$$
\begin{equation*}
S * N \stackrel{P^{-1}}{\Longrightarrow} S * M \tag{54}
\end{equation*}
$$

which by Def. 9 is equivalent to $S^{T} * M \stackrel{P, w}{\rightleftharpoons} S^{T} * N$, see Fig. 3.


FIGURE 3. The existence of covering relations $N \xrightarrow{P, w} K \xrightarrow{P, w} M$ implies the existence of covering relations $S * N \stackrel{P^{-1}, w}{\Longrightarrow} S * K \stackrel{P^{-1}, w}{\Longrightarrow}$ $S * M$.

Observe that the reversing symmetry implies that

$$
\begin{equation*}
P=S^{-1} \circ P^{-1} \circ S \tag{55}
\end{equation*}
$$

To verify the covering relation (54) we need to compute $\left(P^{-1}\right)_{c}=c_{S * M} \circ P^{-1} \circ c_{S * N}^{-1}$. Using Def. 13 and (55) we obtain

$$
\begin{gathered}
c_{S * M} \circ P^{-1} \circ c_{S * N}^{-1}=c_{M} \circ S^{-1} \circ P^{-1} \circ\left(c_{N} \circ S^{-1}\right)^{-1} \\
=c_{M} \circ\left(S^{-1} \circ P^{-1} \circ S\right) \circ c_{N}^{-1}=c_{M} \circ P \circ c_{N}^{-1}
\end{gathered}
$$

Hence the expression for $P$ in coordinates $c_{N}$ on input and $c_{M}$ on output coincides with $P^{-1}$ expressed in coordinates $c_{L * N}$ and $c_{L * M}$. This implies that we can use the same homotopy $h$ and $A$ for the verification of all conditions required by (54). These conditions are satisfied, because we assumed that $N \stackrel{P, w}{\Longrightarrow} M$.

The reversing symmetry maps, in a natural way, horizontal disks to vertical disks and vice versa. Namely, we have the following obvious lemma.

Lemma 5. Let $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a homeomorphism, $N$ be an $h$-set and $\gamma$ be a horizontal (vertical) disk in $N$.

Then $S(\gamma)$ is a vertical (horizontal) disk in $S^{T} * N$.
In the context of proving the existence of an infinite number of symmetric periodic orbits symmetric h-sets are of special importance.
Definition 14. Let $S$ be a reversing symmetry. We say that an h-set $N$ is $S^{T}$ symmetric if $S^{T} * N=N$.

It is easy to see, that if $N$ is $S^{T}$-symmetric h-set, then $u(N)=s(N)$ and the dimension of the phase space $n=u(N)+s(N)$ must be even.

The following theorem, which is an easy consequence of Theorem 4, illustrates our method of proving of the existence of an infinite number of symmetric periodic orbits.

Theorem 5. Let $S$ be a reversing symmetry for the local dynamical system induced by the map $P$. Let $M_{i}$ for $i=0,1,2,3$ be h-sets and $M_{i} \cap M_{j}=\emptyset$ for $i \neq j$. Assume that

$$
\begin{gathered}
M_{0} \stackrel{P}{\Longleftrightarrow} M_{1} \stackrel{P}{\Longleftrightarrow} M_{2}, \\
M_{0} \stackrel{P}{\Longleftrightarrow} M_{0}
\end{gathered}
$$

$M_{0}$ and $M_{2}$ are $S^{T}$-symmetric

$$
M_{3}=S^{T} * M_{1}
$$

there exists a horizontal disk in $M_{0}$ contained in Fix $(S)$
there exists a horizontal disk in $M_{2}$ contained in Fix $(S)$
Then for any sequence $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right) \in\{0,1,2,3\}^{n+1}$, satisfying the following conditions

$$
\begin{gathered}
\alpha_{0} \in\{0,2\}, \quad \alpha_{n} \in\{0,2\} \\
\text { if } \alpha_{i}=0, \text { then } \quad \alpha_{i+1} \in\{0,1\} \\
\text { if } \alpha_{i}=1, \text { then } \quad \alpha_{i+1}=2 \\
\text { if } \alpha_{i}=2, \text { then } \quad \alpha_{i+1}=3 \\
\text { if } \alpha_{i}=3, \text { then } \quad \alpha_{i+1}=1,
\end{gathered}
$$

there exists $x \in M_{\alpha_{0}}$, such that

$$
S(x)=x, P^{2 n}(x)=x
$$

the orbit of $x$ is $S$-symmetric

$$
\begin{gathered}
P^{i}(x) \in M_{i} \text { for } i=1, \ldots, n, \\
P^{n+i}(x) \in S\left(M_{n-i}\right) \text { for } i=1, \ldots, n .
\end{gathered}
$$

Proof. From Lemma 5 it follows that in $M_{0}$ and $M_{2}$ there exist vertical disks contained in Fix $(S)$. We can now apply Theorem 4 to the chain of covering relations

$$
M_{\alpha_{0}} \stackrel{P}{\Longleftrightarrow} M_{\alpha_{1}} \stackrel{P}{\Longleftrightarrow} \cdots \stackrel{P}{\Longleftrightarrow} M_{\alpha_{n}}
$$

5. One four-dimensional reversible example. In this section we present the application of the method introduced throughout the paper to a four-dimensional reversible map. As a consequence we obtain the existence of chaotic dynamics and the existence of an infinite number of symmetric periodic orbits for a certain iteration of such map. The proof is computer assisted, i.e., rigorous numerics is used to verify assumptions of abstract theorems. The main feature which makes this example interesting is the fact that both stable and unstable directions are two-dimensional and the map itself is not close to a product of two two-dimensional maps, with unstable dimension one each.
5.1. An example of a four-dimensional reversible map. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, $n>0$ be a continuous map, $F: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ be a map defined by

$$
F\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-y+f(x) \\
x
\end{array}\right]
$$

and let $S(x, y)=(y, x)$. It is straightforward to show that $S \circ F \circ S \circ F=\mathrm{Id}$. Therefore $F$ is a reversible homeomorphism of $\mathbb{R}^{2 n}$. In new coordinates given by $\bar{x}=\frac{x-y}{2}, \bar{y}=\frac{x+y}{2}$ we may rewrite $F$ as follows (we drop bars over $x$ and $y$ )

$$
F\left[\begin{array}{l}
x  \tag{56}\\
y
\end{array}\right]=\left[\begin{array}{c}
-y+\frac{1}{2} f(x+y) \\
x+\frac{1}{2} f(x+y)
\end{array}\right]
$$

and the reversing symmetry $S$ is given by $S(x, y)=(-x, y)$.
Let us fix $n=2$ and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
f\left[\begin{array}{l}
x_{1}  \tag{57}\\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}\left(1-x_{1}\right)+4-x_{2} \\
x_{2}\left(1-x_{2}\right)+4+x_{1}
\end{array}\right]
$$

In the remainder of this section we will investigate the map $F$ given by (56), where $f$ is as above. The map $S\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(-x_{1},-x_{2}, y_{1}, y_{2}\right)$ is a reversing symmetry of $F$.

It is easy to verify that each solution of

$$
\begin{equation*}
F\left(x_{1}, x_{2}, y_{1}, y_{2}\right)=\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \tag{58}
\end{equation*}
$$

satisfies $x_{1}=x_{2}=0$, hence all fixed points of $F$ are symmetric. Solving of Eq. (58) leads to the following system of equations

$$
\left\{\begin{array}{l}
y_{1}^{2}+\left(y_{2}+1\right)^{2}=9 \\
\left(y_{1}+1\right)^{2}-y_{2}^{2}=1
\end{array}\right.
$$

describing an intersection of a circle with a hyperbola in four points as shown in Fig. 4. Fixed points $P_{1}, P_{2}$ are hyperbolic with real eigenvalues, the fixed point $P_{3}$ is hyperbolic with four complex eigenvalues, the point $P_{4}$ possesses two complex eigenvalues on the unit circle and two real eigenvalues, i.e., it is of elliptic-hyperbolic type.

The fixed points may be exactly computed (for example using Mathematica). However, for our further consideration it is sufficient to use two approximate fixed points, which we will still denote by $P_{i}$, given by

$$
\begin{align*}
& P_{1}=(0,0,-2.9288690017630725,-1.649404627725545)  \tag{59}\\
& P_{2}=(0,0,2.199939462565084,-3.0396731015162355) \tag{60}
\end{align*}
$$

We will show that in the vicinity of $P_{1}$ and $P_{2}$ the map $F^{7}$ has symbolic dynamics on two symbols and there exist an infinite number of symmetric periodic points of an arbitrarily large period. The dynamical property used in the proof of these facts


Figure 4. The location of the fixed points of $F$.
is the apparent existence of transversal heteroclinic connection of $P_{1}$ and $P_{2}$ in both directions.

Before we proceed with the statement of main results for $F$ we need to discuss how we represent h-sets.
5.2. Representation of h-sets in $\mathbb{R}^{n}$. To define an h-set $N$ we need to specify a homeomorphism $c_{N}$ of $\mathbb{R}^{n}$ and two numbers $u(N)$ and $s(N)$ (see Def. 6). Since we will use the computer in order to verify covering relations, the homeomorphism must be representable by the machine. The simplest case is to take an affine map. We will use the maximum norm on $\mathbb{R}^{n}$, i.e. $\|x\|=\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$ and we treat vectors as columns.

Let $x, u_{1}, \ldots, u_{k}, s_{1}, \ldots, s_{n-k} \in \mathbb{R}^{n}, 0 \leq k \leq n$ be such that the vectors $u_{1}, \ldots, u_{k}$, $s_{1}, \ldots, s_{n-k}$ are linearly independent. We define a matrix $M \in \mathbb{R}^{n \times n}$ by

$$
M=\left[u_{1}, \ldots, u_{k}, s_{1}, \ldots, s_{n-k}\right]
$$

We define an h-set

$$
N=\mathfrak{h}\left(x, u_{1}, \ldots, u_{k}, s_{1}, \ldots, s_{n-k}\right)
$$

as follows

$$
\begin{aligned}
u(N) & =k \\
s(N) & =n-k, \\
|N| & =M\left(\overline{B_{n}}(0,1)\right)+x=M\left(\overline{B_{u(N)}}(0,1) \times \overline{B_{s(N)}}(0,1)\right)+x \\
c_{N}(v) & =M^{-1}(v-x), \quad \text { for } v \in \mathbb{R}^{n}
\end{aligned}
$$

Hence, the h-set $N$ defined above is a parallelepiped centered at $x$.
In the sequel we will work in $\mathbb{R}^{2 k}$ with $s(N)=u(N)=k$. In this case we will use also the notation $N=\mathfrak{h}(x, M)$, where $M$ is a linear isomorphism of $\mathbb{R}^{2 k}$. The first $k$ columns of $M$ correspond to unstable directions and the last $k$ columns of $M$ correspond to stable directions.
5.3. Important $\mathbf{h}$-sets and covering relations between them. As was mentioned before $P_{1}$ and $P_{2}$ are good numerical approximations to two hyperbolic fixed points with two-dimensional stable and unstable manifolds. We choose $u_{j}^{i}, s_{j}^{i} \in \mathbb{R}^{4}$, $i, j=1,2$ to be good numerical approximations of unstable and stable eigenvectors of $D F\left(P_{i}\right)$ normalized to 1 in euclidian norm. Put

$$
\begin{align*}
& u_{1}^{1}=\left[\begin{array}{l}
0.527847408170044 \\
0.254065286036574 \\
0.730261232439584 \\
0.351491787265563
\end{array}\right], \quad u_{1}^{2}=\left[\begin{array}{c}
-0.05726452423754 \\
0.594572575636284 \\
-0.0768865282444865 \\
0.7983061369797889
\end{array}\right],  \tag{61}\\
& u_{2}^{1}=\left[\begin{array}{l}
0.233876807615845 \\
0.485903716548415 \\
0.365235930520818 \\
0.758816138574061
\end{array}\right], \quad u_{2}^{2}=\left[\begin{array}{c}
0.8918103319483236 \\
-0.0858921121857865 \\
0.4421352370808943 \\
-0.0425829663821858)
\end{array}\right]
\end{align*}
$$

and put $s_{i}^{j}=S\left(u_{i}^{j}\right), i, j=1,2$. We define matrices $M_{i}$ for $i=1,2$ by

$$
\begin{equation*}
M_{1}=0.012\left[u_{1}^{1}, u_{2}^{1}, s_{1}^{1}, s_{2}^{1}\right], \quad M_{2}=0.31\left[u_{1}^{2}, u_{2}^{2}, s_{1}^{2}, s_{2}^{2}\right] \tag{62}
\end{equation*}
$$

We define two $S^{T}$ symmetric h-sets centered at $P_{1}$ and $P_{2}$ by

$$
\begin{equation*}
N_{1}=\mathfrak{h}\left(P_{1}, M_{1}\right), \quad N_{2}=\mathfrak{h}\left(P_{2}, M_{2}\right) \tag{63}
\end{equation*}
$$

The constants 0.31 and 0.012 which appear in the definitions of $N_{1}$ and $N_{2}$ will be explained in the sequel.

The sets $N_{1}$ and $N_{2}$ are disjoint. The projection of $N_{1}$ and $N_{2}$ onto $\left(y_{1}, y_{2}\right)$ coordinates is presented in Fig. 5. The following lemma was proved with a computer assistance.


Figure 5. The projection of the sets $N_{1}$ and $N_{2}$ onto $\left(y_{1}, y_{2}\right)$ coordinates.

Lemma 6. The following covering relations hold:

$$
N_{1} \xrightarrow{F, 1} N_{1}, \quad N_{2} \xrightarrow{F,-1} N_{2} .
$$

The details of the proof will be presented in Section 6 .
Remark 2. From above lemma and Theorem 2 it follows immediately, that there exists fixed points in $N_{1}$ and $N_{2}$. However, we cannot claim that they are unique in $N_{i}$ nor $S$-symmetric.

Now we will construct a dynamical link between sets $N_{1}$ and $N_{2}$. More precisely, we construct a chain of covering relations connecting $N_{1}$ and $N_{2}$. For this purpose we look for a point $Q_{1}$ in the neighborhood of $P_{1}$ on the unstable manifold of $P_{1}$
and such that $F^{k}\left(Q_{1}\right)$ (here $\left.k=10\right)$ is close to $P_{2}$. Then we define additional points $Q_{i}$ by taking some forward iterates of $Q_{1}$.

To be specific we set

$$
\begin{aligned}
Q_{1} & =P_{1}+0.0330092432 u_{1}^{1}-0.048949 u_{1}^{2}+0.0004931 s_{1}^{1} \\
Q_{2} & =F^{4}\left(Q_{1}\right) \\
Q_{3} & =F\left(Q_{2}\right)
\end{aligned}
$$

We have

$$
\begin{array}{r}
F^{-1}\left(Q_{1}\right) \in N_{1} \\
\left\|F^{-1}\left(Q_{1}\right)-P_{1}\right\|_{\infty}<0.006 \\
\left\|F^{10}\left(Q_{1}\right)-P_{2}\right\|_{\infty}<0.001
\end{array}
$$

The points $Q_{1}, Q_{2}$ and $Q_{3}$ will be used as the centers of new h-sets. We define

$$
\begin{aligned}
H_{1} & =\mathfrak{h}\left(Q_{1}, .001 u_{1}^{1}, .00175 u_{2}^{1}, .005 s_{1}^{1}, 0.005 s_{2}^{1}\right) \\
H_{2} & =\mathfrak{h}\left(Q_{2}, .28 u_{1}^{2}, .28 u_{2}^{2}, .2 s_{1}^{2}, .38 s_{2}^{2}\right) \\
H_{3} & =\mathfrak{h}\left(Q_{3}, .15 u_{1}^{2}, .15 u_{2}^{2}, .12 s_{1}^{2}, .42 s_{2}^{2}\right)
\end{aligned}
$$

Let us comment briefly about the spatial relations between $N_{i}$ and $H_{j}$. The set $H_{1}$ is close to $N_{1}$, this is the reason for using the same stable and unstable directions in the definitions of these sets. Sets $H_{2}$ and $H_{3}$ are close to $N_{2}$ and as in the previous case we used the same stable and unstable directions for them.

The approximate eigenvalues of $D F$ at $P_{1}$ are 6.2155, 4.5608, 0.21925, 0.16088 and at $P_{2}$ are $6.8367,-2.9664,-0.33710,0.14626$. The constant 0.31 which appears in the definition of $M_{2}$ is almost maximal size of the set $N_{2}$ for which the covering relation $N_{2} \xrightarrow{F,-1} N_{2}$ holds and for which the existence of such covering relation is relatively easy to prove with a computer assistance (the maximal possible value is approximately 0.6). The reason for using such a large set is that we wish to use a small number of iterates of $F$ to move the point $Q_{1}$ to $N_{2}$ under the action of $F$.

The constant 0.012 which appear in the definition of the set $N_{1}$ has been chosen as a relatively small but sufficient to obtain $Q_{1} \in F\left(N_{1}\right)$ - see Fig. 6.

Lemma 7. The following covering relations hold

$$
N_{1} \stackrel{F, 1}{\Longrightarrow} H_{1} \stackrel{F^{4},-1}{\Longrightarrow} H_{2} \stackrel{F,-1}{\Longrightarrow} H_{3} \stackrel{F,-1}{\Longrightarrow} N_{2} .
$$

The details of the proof will be presented in Section 6.
The numerical evidence of the existence of all covering relations $N_{1} \xrightarrow{F, 1} N_{1} \stackrel{F, 1}{\Longrightarrow}$ $H_{1} \stackrel{F^{4},-1}{\Longrightarrow} H_{2} \stackrel{F,-1}{\Longrightarrow} H_{3} \stackrel{F,-1}{\Longrightarrow} N_{2} \stackrel{F,-1}{\Longrightarrow} N_{2}$ is presented in Fig. 6.

For Lemma 7 we need to compute the fourth iteration of $F$ in some neighbourhood of $Q_{1}$, namely $H_{1}$. Observe that $\left\|D F^{4}\left(Q_{1}\right)\right\|_{\infty} \approx 1783.02$. Since we would like to prove the existence of covering relation $H_{1} \stackrel{F^{4},-1}{\Longrightarrow} H_{2}$ the set $H_{1}$ should be relatively small in comparison to $H_{2}$. Hence, the constants which appear in the definition of $H_{1}$ are over hundred times smaller than those in the definition of $H_{2}$. The sizes of the sets $H_{2}$ and $H_{3}$ are comparable to the size of $N_{2}$ and they have been chosen in numerical experiments as working well for our purpose.


Figure 6. The numerical evidence of the existence of covering relations $N_{1} \xrightarrow{F, 1} N_{1} \xrightarrow{F, 1} H_{1} \stackrel{F^{4},-1}{\Longrightarrow} H_{2} \xrightarrow{F,-1} H_{3} \xrightarrow{F,-1} N_{2} \xrightarrow{F,-1} N_{2}$. For any covering relation $D_{1} \xrightarrow{F^{i}, w} D_{2}$ of the chain present in the previous sentence, the projection of $F_{c}^{i}\left(\left(D_{1}\right)_{c}^{-}\right)$onto unstable directions of $D_{2}$ is outside the unit ball (first and third rows) and the projection of $F_{c}^{i}\left(\left(D_{1}\right)_{c}\right)$ onto stable directions of $D_{2}$ is inside the unit ball (second and fourth rows).

### 5.4. Chaotic dynamics of $F$.

Theorem 6. The discrete dynamical system induced by the map $F^{7}$ is semiconjugated with the full shift on two symbols, i.e. for an arbitrary $\left(i_{j}\right)_{j \in \mathbb{Z}} \in\{1,2\}^{\mathbb{Z}}$ there exists a point $x_{0} \in N_{i_{0}}$ such that

$$
\begin{equation*}
F^{7 j}\left(x_{0}\right) \in N_{i_{j}}, \quad j \in \mathbb{Z} \tag{64}
\end{equation*}
$$

Moreover, if the sequence $\left(i_{j}\right)_{j \in \mathbb{Z}}$ is periodic, then the point may be chosen as a periodic point for $F^{7}$ with the same principal period.

Proof. From Lemma 7 we obtain that

$$
\begin{equation*}
N_{1} \stackrel{F, 1}{\Longrightarrow} H_{1} \stackrel{F^{4},-1}{\Longrightarrow} H_{2} \stackrel{F,-1}{\Longrightarrow} H_{3} \stackrel{F,-1}{\Longrightarrow} N_{2} . \tag{65}
\end{equation*}
$$

Since the h-sets $N_{1}$ and $N_{2}$ are symmetric (by their definition), the reversing symmetry property of $F$ implies

$$
\begin{gather*}
N_{2}=S^{T} \star N_{2} \stackrel{F,-1}{\rightleftharpoons} S^{T} \star H_{3} \stackrel{F,-1}{\rightleftharpoons} S^{T} \star H_{2} \\
S^{T} \star H_{2} \stackrel{F^{4},-1}{\rightleftharpoons} S^{T} \star H_{1} \stackrel{F, 1}{\rightleftharpoons} S^{T} \star N_{1}=N_{1} . \tag{66}
\end{gather*}
$$

From Lemma 6 we get

$$
\begin{align*}
& N_{1} \stackrel{\overbrace{\stackrel{F, 1}{\Longrightarrow}}^{\Longrightarrow} N_{1} \stackrel{F, 1}{\Rightarrow} \cdots \stackrel{F, 1}{\Rightarrow} N_{1}}{7 \text { times }}  \tag{67}\\
& N_{2} \stackrel{\overbrace{\text { F,-1}}^{\Longrightarrow} N_{2}}{\stackrel{F,-1}{\Longrightarrow} \cdots \stackrel{F,-1}{\Longrightarrow} N_{2}} \tag{68}
\end{align*}
$$

Let $\left(i_{j}\right)_{j \in \mathbb{Z}} \in\{1,2\}^{\mathbb{Z}}$ be a periodic sequence of symbols, i.e. $i_{j+k}=i_{j}$ for $j \in \mathbb{Z}$ and a certain $k>0$. Let

$$
\begin{equation*}
N_{i_{0}} \Longleftrightarrow N_{i_{1}} \cdots \Longleftrightarrow N_{i_{k}}=N_{i_{0}} \tag{69}
\end{equation*}
$$

be a periodic sequence of covering relations, where by $N_{i_{j}} \Longleftrightarrow N_{i_{j+1}}$ we mean a corresponding sequence (65-68). Now, Theorem 2 implies that there exists a $k$-periodic point $x_{0} \in N_{i_{0}}$ for $F^{7}$, such that assertion (64) is satisfied.

Let $\left(i_{j}\right)_{j \in \mathbb{Z}} \in\{1,2\}^{\mathbb{Z}}$ be a nonperiodic sequence of symbols. For $k>0$ we define the periodic sequences

$$
\left(i_{j}^{k}\right)_{j \in \mathbb{Z}}=\left\{\ldots,\left\{i_{-k}, \ldots, i_{0}, \ldots, i_{k}\right\},\left\{i_{-k}, \ldots, i_{0}, \ldots, i_{k}\right\}, \ldots\right\} \in\{1,2\}^{\mathbb{Z}}
$$

where $i_{0}^{k}=i_{0}$.
For any $k>0$ we can find $(2 k+1)-$ periodic point $x_{k}$ for $F^{7}$ such that $F^{7 j}\left(x_{k}\right) \in$ $N_{i_{j}^{k}}$ for $j \in \mathbb{Z}$. Hence

$$
\begin{equation*}
F^{7 j}\left(x_{k}\right) \in N_{i_{j}}, \quad \text { for }-k \leq j \leq k \tag{70}
\end{equation*}
$$

Since $N_{i_{0}}$ is a compact set, we can assume that the sequence $\left\{x_{k}\right\}_{k>0}$ is converging to point $x_{0} \in N_{i_{0}}$. Passing to the limit $k \rightarrow \infty$ in (70) gives us (64) for $x_{0}$.

### 5.5. Symmetric periodic points for $F$.

Theorem 7. There exist symmetric periodic points for $F$ with arbitrarily large principal periods.

The proof of Theorem 7 is a direct consequence of the following lemma.
Lemma 8. Let

$$
V_{0} \stackrel{g_{0}}{\Longleftrightarrow} V_{1} \stackrel{g_{1}}{\Longleftrightarrow} \cdots \stackrel{g_{k-1}}{\Longleftrightarrow} V_{k}
$$

be a sequence of covering relations, where

$$
\begin{array}{r}
V_{0}, V_{k} \in\left\{N_{1}, N_{2}\right\}, \\
V_{i} \in\left\{N_{1}, N_{2}, H_{1}, H_{2}, H_{3}\right\}, \quad \text { for } j=1, \ldots, k-1, \\
g_{i}=F \text { or } g_{i}=F^{4}, \quad \text { for } i=0, \ldots, k-1 .
\end{array}
$$

Then there exists a symmetric periodic point $x_{0}$ of $F$, such that

$$
\begin{array}{r}
x_{0} \in V_{0} \cap \operatorname{Fix}(S), \\
\left(g_{i} \circ \cdots \circ g_{1} \circ g_{0}\right)\left(x_{0}\right) \in V_{i+1}, \quad i=0, \ldots, k-2 \\
\left(g_{k-1} \circ \cdots \circ g_{1} \circ g_{0}\right)\left(x_{0}\right) \in V_{k} \cap \operatorname{Fix}(S)
\end{array}
$$

Proof. Recall that the sets $N_{1}, N_{2}$ are symmetric and defined by vectors $u_{i}^{j}, s_{i}^{j}$, $i, j=1,2-\operatorname{see}(61)$ and (63). For $i=1,2$ we define a map $b_{i}: \overline{B_{2}}(0,1) \longrightarrow\left|N_{i}\right|$ by

$$
b_{i}(p, q)=k_{i} M_{i}[p, q, p, q]^{T}+P_{i}, \quad i=1,2
$$

where $k_{1}=0.012, k_{2}=0.31$ are the coefficients used in (62) to define $N_{i}$. We will show, that $b_{i}$ is a horizontal disk in $N_{i}$.

First observe that

$$
\begin{equation*}
b_{i, c}=c_{N_{i}} \circ b_{i}(p, q)=(p, q, p, q) . \tag{71}
\end{equation*}
$$

We define the homotopy $h_{i}$ by

$$
h_{i}(t, p, q)=(p, q,(1-t) p,(1-t) q) .
$$

It is easy to see, that conditions (11-13) from Definition 11 are satisfied. Namely, we have

$$
\begin{aligned}
h_{i}(0, p, q) & =(p, q, p, q)=\left(b_{i}\right)_{c}(p, q), \quad \text { for }(p, q) \in \overline{B_{2}}(0,1), \\
h_{i}(1, p, q) & =(p, q, 0,0), \quad \text { for }(p, q) \in \overline{B_{2}}(0,1), \\
h_{i}(t, p, q) & \in\left(N_{i}\right)_{c}^{-}=\partial \overline{B_{2}}(0,1) \times \overline{B_{2}}(0,1), \quad \text { for }(p, q) \in \partial \overline{B_{2}}(0,1), t \in[0,1] .
\end{aligned}
$$

This proves that $b_{i}$ is a horizontal disk in $N_{i}$.
Let us remind the reader that $S\left(P_{i}\right)=P_{i}$ and $S\left(u_{j}^{i}\right)=s_{j}^{i}$. Hence we obtain

$$
\begin{array}{r}
S\left(b_{i}(p, q)\right)=S\left(k_{i}\left(p u_{1}^{i}+q u_{2}^{i}+p s_{1}^{i}+q s_{2}^{i}\right)+P_{i}\right)= \\
=k_{i}\left(p S\left(u_{1}^{i}\right)+q S\left(u_{2}^{i}\right)+p S\left(s_{1}^{i}\right)+q S\left(s_{2}^{i}\right)\right)+S\left(P_{i}\right)=b_{i}(p, q)
\end{array}
$$

where $k_{1}=0.012, k_{2}=0.31$ are the coefficients used in (62) to define $N_{i}$. This proves that $b_{i}$ are contained in $\operatorname{Fix}(S)$.

We will show that $b_{i}$ is also a vertical disk in $N_{i}$. Namely, if follows from Lemma 5 that $S\left(b_{i}\right)=b_{i}$ is a vertical disk in $S^{T} * N_{i}=N_{i}$.

Since $V_{0}, V_{k} \in\left\{N_{1}, N_{2}\right\}$ we conclude that there exists a horizontal disk contained in $\operatorname{Fix}(S) \cap V_{0}$ and there exists vertical disk contained in $\operatorname{Fix}(S) \cap V_{k}$. Now, the assertion is a direct consequence of Theorem 3.

Proof of Theorem 7: The assertion follows from the fact that the sets $N_{1}$ and $N_{2}$ are disjoint and we can construct arbitrarily long sequences satisfying the assumptions of Lemma 8, for example
for $k>0$. The period of the periodic point obtained from above chain of covering relations is equal to $2(k+8)$.
6. How to verify covering relations with computer assistance. In this section we discuss some numerical aspects of the verification of covering relations.

Let $N, M$ be a h-sets in $\mathbb{R}^{n}$ such that $u(N)=u(M)=u$ and $s(N)=s(M)=s$ and let $f: N \rightarrow \mathbb{R}^{n}$ be continuous. In order to prove that the covering relation $N \stackrel{f}{\Longrightarrow} M$ holds, it is necessary to find the homotopy $h:[0,1] \times N_{c} \rightarrow \mathbb{R}^{u} \times \mathbb{R}^{s}$ and a map $A: \mathbb{R}^{u} \rightarrow \mathbb{R}^{u}$ satisfying conditions (2-5).

Since in our example $f_{c}=c_{M} \circ f \circ c_{N}^{-1}$ is a diffeomorphism we can try to find a homotopy between $f_{c}$ and its derivative computed in the center of the set and projected onto unstable directions, i.e., we define

$$
A: \mathbb{R}^{u} \ni p \rightarrow \pi_{u}\left(D f_{c}(0)(p, 0)\right) \in \mathbb{R}^{u},
$$

where $\pi_{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{u}$ is the projection onto first $u$ variables. We require $A$ to be an isomorphism, then we have

$$
\operatorname{deg}\left(A, \overline{B_{u}}(0,1), 0\right)=\operatorname{sgn}(\operatorname{det} A)= \pm 1
$$

Now we define the homotopy between $f_{c}$ and $(p, q) \rightarrow(A(p), 0)$ by

$$
\begin{equation*}
h(t, p, q)=(1-t) f_{c}+t(A(p), 0), \quad \text { for }(p, q) \in \overline{B_{u}}(0,1) \times \overline{B_{s}}(0,1) \tag{72}
\end{equation*}
$$

Obviously the homotopy (72) satisfies conditions (2) and (5). We need to check whether the homotopy (72) satisfies conditions (3-4). Below we describe algorithms used in this verification.
Definition 15. Let $U \subset \mathbb{R}^{n}$ be a bounded set. We say that $\mathcal{G} \subset 2^{\mathbb{R}^{n}}$ is a grid of $U$ if

1. $\mathcal{G}$ is a finite set,
2. $U \subset \bigcup_{G \in \mathcal{G}} G$,
3. each $G \in \mathcal{G}$ can be represented in a computer.

Definition 16. Let $U \subset \mathbb{R}$ be a bounded set. By $(U)_{I}$ we denote the interval enclosure of the set, i.e., the set $(U)_{I}$ is the smallest representable interval containing $U$ or $[-\infty, \infty]$ if there is not a representable interval containing $U$.

Let $U \subset \mathbb{R}^{n}$ be a bounded set. By $(U)_{I}$ we denote $\left(\pi_{1}(U)\right)_{I} \times \cdots \times\left(\pi_{n}(U)\right)_{I}$ where $\pi_{i}$ is a projection onto the $i$-th variable.

In the algorithms presented bellow all computations are performed in interval arithmetic [Mo].

First we discuss how we check condition (3).

## Algorithm 1.

function ComputeUnstableWall( $\mathcal{G}_{1}$ : grid, $\mathcal{G}_{2}$ : grid) : bool
var
$X, L X, Z$ : representable sets;
begin
foreach $G_{1} \in \mathcal{G}_{1}$
begin
$X:=G_{1} \times 0 ; / / 0 \in \mathbb{R}^{s}$
$L X:=\left(D f_{c}(0)(X)\right)_{I} ;$
foreach $G_{2} \in \mathcal{G}_{2}$
begin
$Z:=\left(f_{c}\left(G_{1} \times G_{2}\right) \cup L X\right)_{I} ;$
if not $\pi_{u}(Z) \subset \mathbb{R}^{u} \backslash \overline{B_{u}}(0,1)$ return False;
end;
end;
return True;
end.
Lemma 9. Assume $N, M$ be h-sets and $f: N \rightarrow \mathbb{R}^{n}$ be such that $f_{c}$ is smooth. Let $\mathcal{G}_{1}$ be a grid of $\partial B_{u}(0,1)$ and let $\mathcal{G}_{2}$ be a grid of $\overline{B_{s}}(0,1)$. If Algorithm 1 is
called with arguments $\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)$ and returns True then the homotopy defined in (72) satisfies condition (3).

Proof. Let $(p, q) \in N_{c}^{-}$. Since $\mathcal{G}_{1}$ is a grid of $\partial B_{u}(0,1)$ and $\mathcal{G}_{2}$ is a grid of $\overline{B_{s}}(0,1)$ then

$$
\mathcal{G}_{1} \times \mathcal{G}_{2}:=\left\{G_{1} \times G_{2} \mid G_{1} \in \mathcal{G}_{1}, G_{2} \in \mathcal{G}_{2}\right\}
$$

is a grid of $N_{c}^{-}$. Therefore $(p, q) \in G_{1} \times G_{2}$ for some $G_{1} \in \mathcal{G}_{1}, G_{2} \in \mathcal{G}_{2}$. Since the Algorithm 1 stops and returns True the condition

$$
\begin{equation*}
\pi_{u}\left(\left(f_{c}\left(G_{1} \times G_{2}\right) \cup L X\right)_{I}\right) \subset \mathbb{R}^{u} \backslash \overline{B_{u}}(0,1)=\mathbb{R}^{u} \backslash \pi_{u}\left(M_{c}\right) \tag{73}
\end{equation*}
$$

is satisfied. Observe that from the definition of $h$ (see (72)) we have

$$
\begin{equation*}
h([0,1],(p, q)) \subset\left(f_{c}\left(G_{1} \times G_{2}\right) \cup L X\right)_{I} \tag{74}
\end{equation*}
$$

Hence we obtain

$$
\begin{equation*}
\pi_{u}(h([0,1],(p, q))) \subset \mathbb{R}^{u} \backslash \pi_{u}\left(M_{c}\right), \tag{75}
\end{equation*}
$$

which implies that for $t \in[0,1], h(t, p, q) \notin M_{c}$.

Now we discuss how we verify condition (4). The main point of our approach is that it is enough to compute $f_{c}\left(\partial N_{c}\right)$.

## Algorithm 2.

function ComputeBoundary $(\mathcal{G}$ : grid) : bool
var
$X$ : representable set;
begin
foreach $G \in \mathcal{G}$
begin
$X:=\left(f_{c}(G)\right)_{I} ;$
if not $\pi_{s}(X) \subset \operatorname{int} B_{s}(0,1)$ return False;
end;
return True;
end.
Lemma 10. Assume $N, M$ be h-sets, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be such that $f_{c}$ is a diffeomorphism. Let $\mathcal{G}$ be a grid of $\partial N_{c}$. If Algorithm 2 is called with argument $\mathcal{G}$ and returns True then the homotopy defined by (72) satisfies condition (4).

Proof. Let $x \in \partial N_{c}$. Since Algorithm 2 stops and returns True we obtain that $\pi_{s}\left(f_{c}(x)\right) \in B_{s}(0,1)$. From Eq. (72) it follows that for $x \in \partial N_{c}$ and $t \in[0,1]$ $\pi_{s}(h(t, x)) \in B_{s}(0,1)$. Therefore for $x \in \partial N_{c}$ and $t \in[0,1]$

$$
\begin{equation*}
h(t, x) \notin \overline{B_{u}}(0,1) \times \partial B_{s}(0,1)=M_{c}^{+} . \tag{76}
\end{equation*}
$$

There remains to prove that Eq. (76) is satisfied for $x \in N_{c}$ and $t \in[0,1]$. Since $f_{c}$ is a diffeomorphism, the Brouwer-Jordan Theorem implies that $\pi_{s}\left(f_{c}\left(N_{c}\right)\right) \subset B_{s}(0,1)$. Hence, for $t \in[0,1]$

$$
\pi_{s}\left(h\left(t, N_{c}\right)\right) \subset B_{s}(0,1)
$$

which implies that $h\left(t, N_{c}\right) \cap M_{c}^{+}=\emptyset$.
6.1. Technical data. The grids used in the numerical proof of Lemma 6 and Lemma 7 always consist of "boxes", i.e., products of representable intervals. The total number of boxes used in the proof is approximately equal to $2.2 \cdot 10^{8}$. The numerical proof of Lemma 6 and Lemma 7 took approximately 31 minutes on 3.0 GHz processor under SuSe Linux Distribution.

The C++ sources with a short instruction on how to run the program are available at [W1].

## REFERENCES

[AZ] G. Arioli and P. Zgliczyński, Periodic, homoclinic and heteroclinic orbits for Hénon Heiles Hamiltonian near the critical energy level, Nonlinearity, vol. 16, No. 5 (2003), 1833-1852
[D1] R. L. Devaney, Reversible diffeomorphisms and flows, Trans. Amer. Math. Soc. 218 (1976), 89-113
[D2] R.L. Devaney, Homoclinic bifurcation and the area conserving Hénon mapping, J. Differential Equations 51 (1984), 254-266, 1984
[DV] R. DeVogelaere, On the structure of symmetric periodic solutions of conservative systems, in: Contribution to the theory of nonlinear oscillations, vol. 4, Princeton, Princeton University Press, 1958
[GSS] M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularites and Groups in Bifurcation Theory vol.2, Applied Mathematical Sciences vol. 42, Springer New York, 1987
[La] J.S.W. Lamb, Reversing symmetries in dynamical systems, J. Phys. A:Math. Gen. 25 (1992), 925-937
[La1] J.S.W. Lamb, Reversing symmetries in dynamical systems, PhD Thesis, Amsterdam University, 1994
[LQ] J.S.W. Lamb and G.R. Quispel, Reversing k-symmetries in dynamical systems, Physica D 73 (1994), 277-304
[L] N. G. Lloyd, Degree theory, Cambridge Tracts in Math., No. 73, Cambridge Univ. Press, London, 1978
[Mo] R.E. Moore, Interval Analysis. Prentice Hall, Englewood Cliffs, N.J., 1966
[S] R. Srzednicki, On isolated sets of solutions of some two-point boundary value problems, Nonlinear Anal. 54 (2003), no. 3, 457-469
[W] D. Wilczak, Chaos in the Kuramoto-Sivashinsky equations - a computer assisted proof, J. Differential Equations, 194(2003), 433-459
[W1] D. Wilczak, http://www.ii.uj.edu.pl/~wilczak.
[WZ] D. Wilczak and P. Zgliczyński, Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem - A Computer Assisted Proof, Comm. Math. Phys., 234 (2003) 1, 37-75.
[WZ2] D. Wilczak and P. Zgliczyński, Heteroclinic Connections between Periodic Orbits in Planar Restricted Circular Three Body Problem - Part II, Comm. Math. Phys. 259, (2005) 3, 561576.
[ZGi] P. Zgliczyński and M. Gidea, Covering relations for multidimensional dynamical systems, J. Differential Equations, 202/1(2004), 33-58

E-mail address: wilczak@ii.uj.edu.pl, zgliczyn@ii.uj.edu.pl


[^0]:    2000 Mathematics Subject Classification. 37C25, 37C80, 65G20.
    Key words and phrases. reversible systems, symmetric periodic orbits, computer assisted proofs.

    The first author was supported by Polish State Committee for Scientific Research grant 2 P03A 04124 and the annual national scholarship for young scientists from the Foundation for Polish Science.

