
 Coming soon

 Y. Bai, S. Migorski, S.D. Zeng, Generalized vector complementarity problem in fuzzy environment, Fuzzy Sets and Systems, 2018, in press.
 Z. Liu, S. Migorski, B. Zeng, Optimal feedback control and controllability for hyperbolic evolution inclusions of Clarke’s subdifferential type, Computers & Mathematics with Applications, 2018, doi 10.1016/j.camwa.2017.08.024.
 B. Zeng, S. Migorski, Evolutionary subgradient inclusions with nonlinear weakly continuous operators and applications, Computers & Mathematics with Applications, 2018, in press.
 L. Gasinski, S. Migorski, A. Ochal, Z. Peng, Optimal control for doubly nonlinear evolutionary inclusions, Applied Mathematics and Computation 321 (2018), 244254.
 S.D. Zeng, S. Migorski, A class of timefractional hemivariational inequalities with application to frictional contact problem, Communications in Nonlinear Science and Numerical Simulation 56 (2018), 3448.
 S. Migorski, D. Paczka, On steady flow of nonNewtonian fluids with frictional boundary conditions in reflexive Orlicz spaces, Nonlinear Analysis Series B: Real World Applications 39 (2018), 337–361.

 S. Dudek, P. Kalita, S. Migorski, Steady flow of generalized Newtonian fluid with multivalued rheology and nonmonotone friction law, Computers & Mathematics with Applications 74 (2017), 18131825.
 S.D. Zeng, S. Migorski, Noncoercive hyperbolic variational inequalities with applications to contact mechanics, Journal of Mathematical Analysis and Applications 455 (2017), 619637.
 Z.H. Liu, S. Migorski, S.D. Zeng, Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, Journal of Differential Equations 263 (2017), 39894006.
 S. Migorski, A. Ochal, M. Shillor, M. Sofonea, Nonsmooth dynamic frictional contact of a thermoviscoelastic body, Applicable Analysis, 2017, doi 10.1080/00036811.2017.1344227.
 S. Migorski, M. Sofonea, A historydependent variationalhemivariational inequality in contact mechanics, Chapter 8 in: Mathematical Modelling in Solid Mechanics, F. dell’Isola et al. (Eds.), Advanced Structured Materials 69, Springer, Singapore, 2017, 123134.
 P. Gamorski, S. Migorski, Hemivariational inequalities modeling electroelastic unilateral frictional contact problem, Mathematics and Mechanics of Solids, 2017, doi 0.1177/1081286517718602.
 Z.H. Liu, S. Migorski, S.D. Zeng, Existence results and optimal control for a class of quasi mixed equilibrium problems involving the $(f, g, h)$quasimonotonicity, Appl. Math. Optim. 2017, doi 10.1007/s0024501794313.
 J. F. Han, S. Migorski, H. Zeng, Weak solvability of a fractional viscoelastic frictionless contact problem, Applied Mathematics and Computation 303 (2017), 118.
 W. Han, S. Migorski, M. Sofonea, Analysis of a general dynamic historydependent variationalhemivariational inequality, Nonlinear Analysis: Real World Applications 36 (2017), 6988.
 S. Dudek, P. Kalita, S. Migorski, Stationary OberbeckBoussinesq model of generalized Newtonian fluid governed by a system of multivalued partial differential equations, Applicable Analysis 96 (2017), 21922217.
 S. Migorski, J. Ogorzaly, A variationalhemivariational inequality in contact problem for locking materials and nonmonotone slip dependent friction, Acta Mathematica Scientia 37 (2017), 16391652.
 S. Migorski, J. Ogorzaly, Dynamic historydependent variationalhemivariational inequalities with applications to contact mechanics, Zeitschrift für angewandte Mathematik und Physik, (2017) 68:15, doi:10.1007/s0003301607584.
 S. Migorski, A. Ochal, M. Sofonea, A class of variationalhemivariational inequalities in reflexive Banach spaces, J. Elasticity 127 (2017), 151178.

 M. Sofonea, S. Migorski, A class of historydependent variationalhemivariational inequalities, Nonlinear Differential Equations and Applications, (2016) 23: 38, doi:10.1007/s0003001603910.
 P. Kalita, S. Migorski, M. Sofonea, A multivalued variational inequality with unilateral constraints, Chapter 28 in "System Modeling and Optimization", Series: IFIP Advances in Information and Communication Technology, vol. 494, L. Bociu et al. (Eds.), Springer, Cham, Switzerland, 2016, 302312.
 Y. Li, S. Migorski, JF. Han, A quasistatic frictional contact problem with damage involving viscoelastic materials with short memory, Mathematics and Mechanics of Solids, 21 (10) (2016), 11671183.
 J.R. Fernandez, P. Kalita, S. Migorski, M.C. Muniz, C. Nunez, Existence and uniqueness results for a kinetic model in bulksurface surfactant dynamics, SIAM J. Mathematical Analysis 48(5) (2016), 30653089.
 J.F. Han, S. Migorski, H. Zeng, Analysis of a dynamic viscoelastic unilateral contact problem with normal damped response, Nonlinear Analysis: Real World Applications, 28 (2016), 229250.
 C. Fang, W. Han, S. Migorski, M. Sofonea, A class of hemivariational inequalities for nonstationary NavierStokes equations, Nonlinear Analysis: Real World Applications, 31 (2016) 257276.
 J.F. Han, S. Migorski, A quasistatic viscoelastic frictional contact problem with multivalued normal compliance, unilateral constraint and material damage, Journal of Mathematical Analysis and Applications 443 (2016), 5780.
 S. Migorski, J. Ogorzaly, A class of evolution variational inequalities with memory and its application to viscoelastic frictional contact problems, Journal of Mathematical Analysis and Applications 442 (2016), 685702.
 P. Kalita, S. Migorski, M. Sofonea, A class of subdifferential inclusions for elastic unilateral contact problems, SetValued and Variational Analysis 24 (2016), 355379.
 K. Bartosz, P. Kalita, S. Migorski, A. Ochal, M. Sofonea, History dependent problems with applications to contact models for elastic beams, Applied Mathematics and Optimization 73 (2016), 7198.

 X. Li, Z.H.Liu, S. Migorski, Approximate controllability for second order nonlinear evolution hemivariational inequalities, Electronic Journal of Qualitative Theory of Differential Equations 100 (2015), 116.
 S. Dudek, P. Kalita, S. Migorski, Stationary flow of non–Newtonian fluid with nonmonotone frictional boundary conditions, Zeitschrift für angewandte Mathematik und Physik, 66 (5) (2015), 26252646.
 M. Sofonea, W. Han, S. Migorski, Numerical analysis of historydependent variationalhemivariational inequalities with applications to contact problems, European Journal of Applied Mathematics, 26 (2015), 427452.
 J. Han, Y. Li, S. Migorski, Analysis of an adhesive contact problem for viscoelastic materials with long memory, Journal of Mathematical Analysis and Applications, 427 (2015), 646668.
 S. Migorski, A. Ochal, M. Sofonea, Evolutionary Inclusions and Hemivariational Inequalities, Chapter 2 in: a book edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 3964, Springer.
 M. Sofonea, S. Migorski, A. Ochal, Two Historydependent Contact Problems, Chapter 14 in: a book edited by W. Han, S. Migorski, and M. Sofonea, in Advances in Mechanics and Mathematics Series, vol. 33 (2015), 355380, Springer.
 L. Gasinski, Z.H. Liu, S. Migorski, A. Ochal. Z. Peng, Hemivariational inequality approach to evolutionary constrained problems on starshaped sets, Journal of Optimization Theory and Applications 164 (2015), 514533.
 Y.Huang, Z.H. Liu, S. Migorski, Elliptic hemivariational inequalities with nonhomogeneous Neumann boundary conditions and their applications to static frictional contact problems, Acta Applicandae Mathematicae, 138 (2015), 153170.
 L. Gasinski, S. Migorski. A. Ochal, Existence results for evolutionary inclusions and variationalhemivariational inequalities, Applicable Analysis, 94 (2015), 16701694.
 S. Migorski, A. Ochal, M. Sofonea, Historydependent VariationalHemivariational Inequalities in Contact Mechanics, Nonlinear Analysis: Real World Applications 22 (2015), 604618.

 W. Han, S. Migorski, M. Sofonea, A class of variationalhemivariational inequalities with applications to frictional contact problems, SIAM Journal of Mathematical Analysis 46 (2014), 3891–3912.
 B. Barabasz, E.GajdaZagorska, S. Migorski, M. Paszynski, R. Schaefer, M.Smolka, A hybrid algorithm for solving inverse problems in elasticity, International Journal of Applied Mathematics and Computer Science 24 (2014), 865886.
 J.F. Han, S. Migorski, Continuity of the solution set to second order evolution inclusions, chapter in a book "System Modeling and Optimization", Series: IFIP Advances in Information and Communication Technology 443, Ch. Potzsche et al. (Eds.), Springer, 2014, 138147.
 S. Migorski, A. Ochal, M. Sofonea, Analysis of a piezoelectric contact problem with subdifferential boundary condition, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 144A (2014), 10071025.
 X. Cheng, S. Migorski, A. Ochal, M. Sofonea, Analysis of two quasistatic historydependent contact models, Discrete and Continuous Dynamical Systems, Series B 19 (8) (2014), 24252445.
 S. Migorski, A. Ochal, M. Sofonea, A class of historydependent inclusions with applications to contact problems, Chapter 3 in a book "Optimization and Control Techniques and Applications", Springer Proceedings in Mathematics & Statistics, volume 86, Honglei Xu, Kok Lay Teo, Yi Zhang (Eds.), Springer, 2014, 4574, ISBN 9783662434048.
 Z.H. Liu, S. Migorski, Analysis and control of differential inclusions with antiperiodic conditions, Proceedings of the Royal Society of Edinburgh: Section A Mathematics 144A (2014), 591–602.
 S. Migorski, A. Ochal, M. Shillor, M. Sofonea, A model of a springmassdamper system with temperaturedependent friction, European Journal of Applied Mathematics 25 (2014), 4564.
 S. Migorski, P. Szafraniec, A class of dynamic frictional contact problems governed by a system of hemivariational inequalities in thermoviscoelasticity, Dedicated to the memory of Professor Zdzislaw Naniewicz, Nonlinear Analysis: Real World Applications 15 (2014), 158–171.
 J.R. Fernandez, P. Kalita, S. Migorski, M.C. Muniz, C. Nunez, Variational analysis of the LangmuirHinshelwood dynamic mixedkinetic adsorption model, Nonlinear Analysis: Real World Applications 15 (2014), 205–220.

 J.R. Fernandez, P. Kalita, S. Migorski, M.C. Muniz, C. Nunez, Variational and numerical analysis of a mixed kineticdiffusion surfactant model for the modified the LangmuirHinshelwood equation, Proceedings of the 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2013, Almeria, Spain, June 2427, 2013, vol. II, 601614.
 S. Migorski, A note on optimal control problem for a hemivariational inequality modeling fluid flow, Discrete and Continuous Dynamical Systems, Supplement 2013, 533542.
 S. Migorski, A. Ochal, M. Sofonea, Weak solvability of two quasistatic viscoelastic contact problems, Mathematics and Mechanics of Solids, 18 (2013), 745759.
 S. Migorski, A. Ochal, M. Sofonea, Historydependent hemivariational inequalities with applications to Contact Mechanics, Annals of the University of Bucharest. Mathematical Series, 4 (LXII) (2013), 193212.

 A. Kulig, S. Migorski, Solvability and Continuous Dependence Results for Second Order Nonlinear Evolution Inclusions with a Volterratype Operator, Nonlinear Analysis Theory, Methods and Applications, 75 (2012), 47294746.
 S. Migorski, Existence of Solutions for a Class of HistoryDependent Evolution Hemivariational Inequalities, Dynamic Systems and Applications, 21 (2012), 319330.
 S. Migorski, Identification of Operators in Systems Governed by Second Order Evolution Inclusions with Applications to Hemivariational Inequalities, International Journal of Innovative Computing, Information and Control, 8 (5) (2012), 38453862.
 S. Migorski, Subdifferential Inclusions and QuasiStatic Hemivariational Inequalities for Frictional Viscoelastic Contact Problems, Central European Journal of Mathematics, 10 (2012), 19531968.

 S. Migorski, A. Ochal, M. Sofonea, Analysis of Lumped Models with Contact and Friction, Zeitschrift fuer angewandte Mathematik und Physik, 62(1) (2011), 99113.
 S. Migorski, A. Ochal, M. Sofonea, Analysis of Frictional Contact Problem for Viscoelastic Materials with Long Memory, Discrete and Continuous Dynamical Systems, Series B, 15 (2011), 687705.
 B. Barabasz, S. Migorski, R. Schaefer, M. Paszynski, Multi Deme, Twin Adaptive Strategy hpHGS, Inverse Problems in Science and Engineering, 19(1) (2011), 316.
 Z. Denkowski, S. Migorski, A. Ochal, A Class of Optimal Control Problems for Piezoelectric Frictional Contact Models, Nonlinear Analysis: Real World Applications, 12 (2011) 1883–1895.
 S. Migorski, A. Ochal, M. Sofonea, Analysis of a Quasistatic Contact Problem for Piezoelectric Materials, Journal of Mathematical Analysis and Applications, 382 (2011), 701713.
 S. Migorski, A. Ochal, M. Sofonea, HistoryDependent Subdifferential Inclusions and Hemivariational Inequalities in Contact Mechanics, Nonlinear Analysis Real World Applications, 12 (2011), 33843396.
 S. Migorski, Existence of Solutions to Nonlinear Second Order Evolution Inclusions without and with Impulses, Dynamics of Continuous, Discrete and Impulsive Systems, Series B, 18 (2011), 493520.

 S. Migorski, A. Ochal, M. Sofonea, Variational Analysis of Fully Coupled ElectroElastic Frictional Contact Problems, Mathematische Nachrichten, 283 (9) (2010), 13141335.
 S. Migorski, A. Ochal, M. Sofonea, A dynamic frictional contact problem for piezoelectric materials, Journal of Mathematical Analysis and Applications, 361 (2010), 161176.
 S. Migorski, A. Ochal, M. Sofonea, Weak solvability of antiplane frictional contact problems for elastic cylinders, Nonlinear Analysis Real World Applications, 11 (2010), 172183.
 S. Migorski, A. Ochal, An inverse coefficient problem for a parabolic hemivariational inequality, Applicable Analysis, 89 (2010), 243256.
 S. Migórski, A. Ochal, Nonconvex Inequality Models for Contact Problems of Nonsmooth Mechanics, Keynote Lecture in the Minisymposium on Computational Contact Mechanics, Chapter 3 in Lectures of the CMM 2009 , “Computer Methods in Mechanics”, Advanced Structured Materials, Book Series, M. Kuczma, K. Wilmanski (Eds.), Vol. 1, 4358, Springer, Berlin, Heidelberg, 2010.
 S. Migorski, A. Ochal, M. Sofonea, Analysis of a dynamic contact problem for electroviscoelastic cylinders, Nonlinear Analysis Theory, Methods and Applications, 73(5) (2010), 12211238.
 S. Migorski, Evolution Hemivariational Inequalities with Applications, in: Handbook of Nonconvex Analysis and Applications, Chapter 8, D. Y. Gao and D. Motreanu (eds.), International Press, Boston, 2010, 409473.

 S. Migorski, A. Ochal, M. Sofonea, Solvability of Dynamic Antiplane Frictional Contact Problems for Viscoelastic Cylinders, Nonlinear Analysis Theory, Methods and Applications, 70 (2009), 37383748.
 Z. Liu, S. Migorski, A Note on a Paper by Su Ke and He Zhen, Applied Mathematics Letters, 22 (2009), 5657.
 S. Migorski, A. Ochal, M. Sofonea, Weak Solvability of a Piezoelectric Contact Problem, European Journal of Applied Mathematics, 20 (2009), 145167.
 S. Migorski, A. Ochal, Quasistatic Hemivariational Inequality via Vanishing Acceleration Approach, SIAM Journal of Mathematical Analysis, 41 (2009), 14151435.
 S. Migorski, A. Ochal, M. Sofonea, An evolution problem in nonsmooth elastoviscoplasticity, Nonlinear Analysis Theory, Methods and Applications, 71 (2009), 27662771.
 S. Migorski, A. Ochal, M. Sofonea, Modeling and analysis of an antiplane piezoelectric contact problem, Mathematical Models and Methods in Applied Sciences, 19 (2009), 12951324.

 S. Migorski, A Class of Hemivariational Inequalities for Electroelastic Contact Problems with Slip Dependent Friction, dedicated to Professor Z. Denkowski on the occasion of his 65th birthday, Discrete and Continuous Dynamical Systems Series S, 1(1) (2008), 117126.
 Z. Liu, S. Migorski, Noncoercive Damping in Dynamic Hemivariational Inequality with Application to Problem of Piezoelectricity, Discrete and Continuous Dynamical Systems Series B, 9 (2008), 129143.
 Z. Liu, S. Migorski, A. Ochal, Homogenization of Boundary Hemivariational Inequalities in Linear Elasticity, Journal of Mathematical Analysis and Applications, 340 (2008), 13471361.
 S. Migorski, A. Ochal, M. Sofonea, Integrodifferential Hemivariational Inequalities with Applications to Viscoelastic Frictional Contact, Mathematical Models and Methods in Applied Sciences, 18(2) (2008), 271290.
 S. Migorski, A. Ochal, Dynamic Bilateral Contact Problem for Viscoelastic Piezoelectric Materials with Adhesion, Nonlinear Analysis Theory, Methods and Applications, 69 (2008), 495509.
 S. Migorski, A. Ochal, M. Sofonea, Analysis of a Dynamic ElasticViscoplastic Contact Problem with Friction, Discrete and Continuous Dynamical Systems Series B, 10 (2008), 887902.

 S. Migorski, A. Ochal, Vanishing Viscosity for Hemivariational Inequality Modeling Dynamic Problems in Elasticity, Nonlinear Analysis Theory Methods and Applications, 66 (2007), 18401852.
 S. Migorski, A. Ochal, Nonlinear Impulsive Evolution Inclusions of Second Order, Dynamic Systems and Applications, 16 (2007), 155174.
 Z. Denkowski, S. Migorski, A. Ochal, Optimal Control for a Class of Mechanical Thermoviscoelastic Frictional Contact Problems, a special issue in honour of Professor S. Rolewicz, invited paper, Control and Cybernetics, 36(3)(2007), 611632.
 S. Migorski, A. Ochal, NavierStokes Problems Modeled by Evolution Hemivariational Inequalities, dedicated to Professor Z. Denkowski on the occasion of his 65th birthday, Discrete and Continuous Dynamical Systems, Supplement Volume 2007, 731740.

 S. Migorski, A. Ochal, A Unified Approach to Dynamic Contact Problems in Viscoelasticity, Journal of Elasticity, 83 (2006), 247276.
 S. Migorski, A. Ochal, Existence of Solutions for Second Order Evolution Inclusions with Application to Mechanical Contact Problems, a special issue dedicated to Professor N.U. Ahmed on the occasion of his 70th birthday, Optimization, 55 (2006), 101120.
 S. Migorski, Hemivariational Inequality for a Frictional Contact Problem in Elastopiezoelectricity, Discrete and Continuous Dynamical Systems Series B, 6(6) (2006), 13391356.
 S. Migorski, Evolution Hemivariational Inequality for a Class of Dynamic Viscoelastic Nonmonotone Frictional Contact Problems, Computer and Mathematics with Applications, 52 (2006), 677698.
 Z. Denkowski, S. Migorski, A. Ochal, Existence and Uniqueness to a Dynamic Bilateral Frictional Contact Problem in Viscoelasticity, Acta Applicandae Mathematicae, 94 (2006), 251276.

 Z. Denkowski, S. Migorski, A System of Evolution Hemivariational Inequalities Modeling Thermoviscoelastic Frictional Contact, Nonlinear Analysis Theory Methods and Applications, 60(8) (2005), 14151441.
 S. Migorski, A. Ochal, Hemivariational Inequality for Viscoelastic Contact Problem with SlipDependent Friction, Nonlinear Analysis Theory Methods and Applications, 61 (2005), 135161.
 S. Migorski, A. Ochal, Hemivariational Inequalities for Stationary NavierStokes Equations, Journal of Mathematical Analysis and Applications, 306 (2005), 197217.
 S. Migorski, Boundary Hemivariational Inequalities of Hyperbolic Type and Applications, Journal of Global Optimization, 31 (2005), 505533.
 S. Migorski, Dynamic Hemivariational Inequality Modeling Viscoelastic Contact Problem with Normal Damped Response and Friction, Applicable Analysis, 84 (2005), 669699.
 S. Migorski, Dynamic Hemivariational Inequalities in Contact Mechanics, Nonlinear Analysis Theory Methods and Applications, 63 (2005), e77e86.
 Z. Denkowski, S. Migorski, Hemivariational Inequalities in Thermoviscoelasticity, Nonlinear Analysis Theory Methods and Applications, 63 (2005), e87e97.

 S. Migorski, A. Ochal, Boundary Hemivariational Inequality of Parabolic Type, Nonlinear Analysis Theory Methods and Applications, 57(4) (2004), 579596.
 Z. Denkowski, S. Migorski, Sensitivity of Optimal Solutions to Control Problems for Systems Described by Hemivariational Inequalities, Control and Cybernetics, 33(2) (2004), 211236.
 S. Migorski, Hemivariational Inequalities Modeling Viscous Incompressible Fluids, Journal of Nonlinear and Convex Analysis, 5(2) (2004), 217227.

 S. Migorski, Optimal Control of a Class of Boundary Hemivariational Inequalities of Hyperbolic Type, Dynamic Continuous Discrete Impulsive Systems, Series B, Applications Algorithms 2003, suppl., 159164.
 Z. Denkowski, S. Migorski, N.S. Papageorgiou, On the Convergence of Solutions of Multivalued Parabolic Equations and Applications, Nonlinear Analysis Theory Methods and Applications, 54(4) (2003), 667682.
 S. Migorski, Homogenization Technique in Inverse Problems for Boundary Hemivariational Inequalities, Inverse Problems in Engineering, 11(3) (2003), 229242.

 S. Migorski, Existence and Convergence Results for Evolution Hemivariational Inequalities, Topological Methods in Nonlinear Analysis, 16(1) (2000), 125144.
 S. Migorski, A. Ochal, Optimal Control of Parabolic Hemivariational Inequalities, Dedicated to the memory of Professor P.D. Panagiotopoulos, Journal of Global Optimization, 17(14) (2000), 285300.
 S. Migorski, Sensitivity Analysis of Inverse Problems with Applications to Nonlinear Systems, Dynamic Systems and Applications, 8(1) (1999), 7389.
 Z. Denkowski, S. Migorski, Optimal Shape Design for Hemivariational Inequalities, Universitatis Iagellonicae Acta Matematica, 36(1998), 8188.
 Z. Denkowski, S. Migorski, Optimal Shape Design Problems for a Class of Systems Described by Hemivariational Inequalities, Journal of Global Optimization, 12(1) (1998), 3759.
 S. Migorski, Some Remarks on Extremal Solutions of Nonlinear First Order Evolution Inclusions, Dynamic Systems and Applications, 6(1) (1997), 2128.
 S. Migorski, Control Problems for Systems Described by Nonlinear Second Order Evolution Inclusions, Nonlinear Analysis Theory Methods and Applications, 30(1) (1997), 419428.
 S. Migorski, On Existence Result for Nonlinear Evolution Inclusions, Proceedings of the Edinburgh Mathematical Society, 39(1) (1996), 133141.
 Z. Denkowski, S. Migorski, S. Mortola, Differential Inclusions and Minimizing Movements, Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica e Applicazioni, 20(1) (1996), 3564.
 S. Migorski, Homogenization of HyperbolicParabolic Equations in Perforated Domains, Universitatis Iagellonicae Acta Matematica, 33 (1996), 5972.
 S. Migorski, Variational Stability Analysis of Optimal Control Problems for Systems Governed by Nonlinear Second Order Evolution Equations  Summary, Journal of Mathematical Systems, Estimation, and Control, 6(4) (1996), 469472. Full electronic manuscript = 24pp, 456,920 bytes; http://www.birkhauser.com/journals/jmsec/download.html. Retrieval Code: 60121.
 S. Migorski, A Stability Result for Parameter Identification Problems in Nonlinear Parabolic Problems, International Journal of Mathematics & Mathematical Sciences, 18(1) (1995), 2532.
 S. Migorski, Sensitivity Analysis of Distributed Parameter Optimal Control Problems for Nonlinear Parabolic Equations, Journal of Optimization Theory and Applications, 87(3) (1995), 595613.
 S. Migorski, Existence and Relaxation Results for Nonlinear Evolution Inclusions Revisited, Journal of Applied Mathematics and Stochastic Analysis, 8(2) (1995), 143149.
 S. Migorski, Convergence of Optimal Solutions in Control Problems for Hyperbolic Equations, Annales Polonici Mathematici, 62(2) (1995), 111121.
 S. Migorski, A Counterexample to a Compact Embedding Theorem for Functions with Values in a Hilbert Space, Proceedings of the American Mathematical Society, 123(8) (1995), 24472450.
 S. Migorski, A Counterexample to a Compact Embedding Theorem for Functions with Values in a Hilbert Space, Short Report, Journal of Applied Mathematics and Stochastic Analysis, 8(4) (1995), p. 431, paper invited by the editor.
 S. Migorski, Existence, Variational and Optimal Control Problems for Nonlinear Second Order Evolution Inclusions, Dynamic Systems and Applications, 4(4) (1995), 513528.
 S. Migorski, Existence and Relaxation Results for Nonlinear Second Order Evolution Inclusions, Discussiones Mathematicae: Differential Inclusions, 15(2) (1995), 129148.
 Z. Denkowski, S. Migorski, R. Schaefer, H. Telega, Inverse Problem for the Prelinear Filtration of Ground Water, Computer Assisted Mechanics and Engineering Sciences, 3 (1995), 97107.
 S. Migorski, Stability of Parameter Identification Problems with Applications to Nonlinear Evolution Systems, Dynamic Systems and Applications, 2(3) (1993), 387404.
 S. Migorski, Asymptotic Behaviour of Optimal Solutions in Control Problems for Elliptic Equations, Rivista di Matematica Pura ed Applicata, 11 (1992), 728.
 S. Migorski, On Asymptotic Limits of Control Problems with Parabolic and Hyperbolic Equations, Rivista di Matematica Pura ed Applicata, 12 (1992), 3350.
 S. Migorski, S. Mortola, J. Traple, Homogenization of First Order Differential Operators, Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica, 110, 16(14) (1992), 259276.
 S. Migorski, R. Schaefer, The Existence Aspects of Dupuit and Boussinesq Filtration Models Using Finite Element Method, Lecture Notes in Physics 371, K.W. Morton (ed.), 504508, Springer Verlag, Berlin, 1990.
 Z. Denkowski, S. Migorski, Control Problems for Parabolic and Hyperbolic Equations via the Theory of G and Gamma Convergence, Annali di Matematica Pura ed Applicata, 149 (4) (1987), 2339.